The groups of order p^{7}

Eamonn O'Brien and Michael Vaughan-Lee

Groups of order p^{k} for $k=1,2, \ldots, 6$

	$p=2$	$p=3$	$p \geq 5$
p	1	1	1
p^{2}	2	2	2
p^{3}	5	5	5
p^{4}	14	15	15
p^{5}	51	67	u
p^{6}	267	504	v

$$
u=2 p+61+2 \operatorname{gcd}(p-1,3)+\operatorname{gcd}(p-1,4)
$$

$$
v=3 p^{2}+39 p+344+24 \operatorname{gcd}(p-1,3)+11 \operatorname{gcd}(p-1,4)+2 \operatorname{gcd}(p-1,5)
$$

Order p^{7}

$p=2$	$p=3$	$p=5$
2328	9310	34297

For $p>5$ the number of groups of order p^{7} is

$$
\begin{aligned}
& 3 p^{5}+12 p^{4}+44 p^{3}+170 p^{2}+707 p+2455 \\
& +\left(4 p^{2}+44 p+291\right) \operatorname{gcd}(p-1,3) \\
& +\left(p^{2}+19 p+135\right) \operatorname{gcd}(p-1,4) \\
& +(3 p+31) \operatorname{gcd}(p-1,5) \\
& +4 \operatorname{gcd}(p-1,7)+5 \operatorname{gcd}(p-1,8) \\
& +\operatorname{gcd}(p-1,9)
\end{aligned}
$$

Baker-Campbell-Hausdorff Formula

$\mathrm{e}^{x} . \mathrm{e}^{y}=\mathrm{e}^{u}$ where

$$
\begin{aligned}
u= & x+y-\frac{1}{2}[y, x]+\frac{1}{12}[y, x, x]-\frac{1}{12}[y, x, y]+\frac{1}{24}[y, x, x, y] \\
& -\frac{1}{720}[y, x, x, x, x]-\frac{1}{180}[y, x, x, x, y]+\frac{1}{180}[y, x, x, y, y] \\
& +\frac{1}{720}[y, x, y, y, y]-\frac{1}{120}[y, x, x,[y, x]]-\frac{1}{360}[y, x, y,[y, x]]+.
\end{aligned}
$$

Baker-Campbell-Hausdorff Formula

$\mathrm{e}^{x} . \mathrm{e}^{y}=\mathrm{e}^{u}$ where

$$
\begin{aligned}
u= & x+y-\frac{1}{2}[y, x]+\frac{1}{12}[y, x, x]-\frac{1}{12}[y, x, y]+\frac{1}{24}[y, x, x, y] \\
& -\frac{1}{720}[y, x, x, x, x]-\frac{1}{180}[y, x, x, x, y]+\frac{1}{180}[y, x, x, y, y] \\
& +\frac{1}{720}[y, x, y, y, y]-\frac{1}{120}[y, x, x,[y, x]]-\frac{1}{360}[y, x, y,[y, x]]+.
\end{aligned}
$$

$$
\left[\mathrm{e}^{y}, \mathrm{e}^{x}\right]=\mathrm{e}^{w} \text { where }
$$

$$
\begin{aligned}
w= & {[y, x]+\frac{1}{2}[y, x, x]+\frac{1}{2}[y, x, y] } \\
& +\frac{1}{6}[y, x, x, x]+\frac{1}{4}[y, x, x, y]+\frac{1}{6}[y, x, y, y]+\ldots
\end{aligned}
$$

If L is a Lie algebra define a group operation \circ on L by setting

$$
a \circ b=a+b-\frac{1}{2}[b, a]+\frac{1}{12}[b, a, a]-\frac{1}{12}[b, a, b]+\ldots
$$

This works if L is a nilpotent Lie algebra over \mathbb{Q}, or if L is a Lie ring of order p^{k} and L is nilpotent of class at most $p-1$.

If G is a group under \circ and if $a, b \in G$ define

$$
\begin{gathered}
a+b=a \circ b \circ[b, a]_{G}^{\frac{1}{2}} \circ[b, a, a]_{G}^{-\frac{1}{12}} \circ[b, a, b]_{G}^{\frac{1}{12}} \circ \ldots \\
{[b, a]_{L}=[b, a]_{G} \circ[b, a, a]_{G}^{-\frac{1}{2}} \circ[b, a, b]_{G}^{-\frac{1}{2}} \circ \ldots}
\end{gathered}
$$

If G is a group under \circ and if $a, b \in G$ define

$$
\begin{gathered}
a+b=a \circ b \circ[b, a]_{G}^{\frac{1}{2}} \circ[b, a, a]_{G}^{-\frac{1}{12}} \circ[b, a, b]_{G}^{\frac{1}{12}} \circ \ldots \\
{[b, a]_{L}=[b, a]_{G} \circ[b, a, a]_{G}^{-\frac{1}{2}} \circ[b, a, b]_{G}^{-\frac{1}{2}} \circ \ldots}
\end{gathered}
$$

We need G to be nilpotent, and we need unique extraction of roots. So this works if G is a nilpotent torsion free divisible group, or if G is a finite p-group of class at most $p-1$.

If G is a group under \circ and if $a, b \in G$ define

$$
\begin{gathered}
a+b=a \circ b \circ[b, a]_{G}^{\frac{1}{2}} \circ[b, a, a]_{G}^{-\frac{1}{12}} \circ[b, a, b]_{G}^{\frac{1}{12}} \circ \ldots \\
\quad[b, a]_{L}=[b, a]_{G} \circ[b, a, a]_{G}^{-\frac{1}{2}} \circ[b, a, b]_{G}^{-\frac{1}{2}} \circ \ldots
\end{gathered}
$$

This gives the Mal'cev correspondence between nilpotent Lie algebras over \mathbb{Q} and nilpotent torsion free divisible groups. It also gives the Lazard correspondence between nilpotent Lie rings of order p^{k} and class at most $p-1$ and finite groups of order p^{k} and class at most $p-1$.

Classify groups of order p^{7} for $p>5$ by classifying nilpotent Lie rings of order p^{7}.

Use the Lie ring generation algorithm to classify the Lie rings. (Analogous to the p-group generation algorithm.)

Then use the Baker-Campbell-Hausdorff formula to translate Lie ring presentations into group presentations.

Lower exponent- p-central series

$$
\begin{aligned}
& L_{1}=L \\
& L_{2}=p L+[L, L] \\
& L_{3}=p L_{2}+\left[L_{2}, L\right] \\
& \cdots \\
& L_{n+1}=p L_{n}+\left[L_{n}, L\right] \\
& \\
& \hline a, b \\
& \hline b a, p a, p b \\
& \hline b a a, b a b, p b a, p^{2} a, p^{2} b \\
& \hline \ldots
\end{aligned}
$$

L has p-class c if $L_{c+1}=\{0\}, L_{c} \neq\{0\}$.
Classify the nilpotent Lie rings of order p^{k} according to p-class.

If L has p-class $c>1$ then we say that L is an immediate descendant of L / L_{c}.

To classify nilpotent Lie rings of order p^{k}, first classify all nilpotent Lie rings of order p^{m} for $m<k$.

If L has order $p^{m}(m<k)$ find all immediate descendants of L of order p^{k}.

The p-covering ring

Let M be a nilpotent d-generator Lie ring of order p^{m} The p-covering ring \widehat{M} is the largest d-generator Lie ring with an ideal Z satisfying

- $Z \leq \zeta(\widehat{M})$
- $p Z=\{0\}$
- $\widehat{M} / Z \cong M$

Immediate descendants

If M has p-class c then every immediate descendant of M is of the form \widehat{M} / T for some $T<Z$ such that

$$
T+\widehat{M}_{c+1}=Z
$$

If α is an automorphism of M then α lifts to an automorphism α^{*} of \widehat{M}.

$$
\widehat{M} / S \cong \widehat{M} / T
$$

if and only if $T=S \alpha^{*}$ for some α.

An example

$$
\langle a, b| p a-b a a-x b a b b, p b-b a b b, \text { class }=4\rangle
$$

$(0 \leq x<p)$

An example

$$
\langle a, b| p a-b a a-x b a b b, p b-b a b b, \text { class }=4\rangle
$$

$(0 \leq x<p)$
My Magma program computes this as a Lie algebra over $\mathbb{Z}\left[x, y, z, x_{1}, x_{2}, \ldots, x_{12}\right]$.

An example

$$
\langle a, b| p a-b a a-x b a b b, p b-b a b b, \text { class }=4\rangle
$$

$(0 \leq x<p)$
My Magma program computes this as a Lie algebra over
$\mathbb{Z}\left[x, y, z, x_{1}, x_{2}, \ldots, x_{12}\right]$.
The power map $u \mapsto p u$ is handled as a linear map from L to L satisfying the relations $(p u) v=p(u v)$ for all $u, v \in L$.

An example

$$
\langle a, b| p a-b a a-x b a b b, p b-b a b b, \text { class }=4\rangle
$$

$(0 \leq x<p)$
My Magma program computes this as a Lie algebra over $\mathbb{Z}\left[x, y, z, x_{1}, x_{2}, \ldots, x_{12}\right]$.
The power map $u \mapsto p u$ is handled as a linear map from L to L satisfying the relations $(p u) v=p(u v)$ for all $u, v \in L$.

$$
\begin{aligned}
& a_{1}=a, a_{2}=b \\
& a_{3}=b a \\
& a_{4}=b a a, a_{5}=b a b \\
& a_{6}=b a b b
\end{aligned}
$$

Computing the automorphism group

Consider an automorphism given by

$$
\begin{aligned}
a_{1} & \mapsto x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}+x_{4} a_{4}+x_{5} a_{5}+x_{6} a_{6} \\
a_{2} & \mapsto x_{7} a_{1}+x_{8} a_{2}+x_{9} a_{3}+x_{10} a_{4}+x_{11} a_{5}+x_{12} a_{6}
\end{aligned}
$$

Computing the automorphism group

Consider an automorphism given by

$$
\begin{aligned}
a_{1} & \mapsto x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}+x_{4} a_{4}+x_{5} a_{5}+x_{6} a_{6} \\
a_{2} & \mapsto x_{7} a_{1}+x_{8} a_{2}+x_{9} a_{3}+x_{10} a_{4}+x_{11} a_{5}+x_{12} a_{6}
\end{aligned}
$$

The program gives the following conditions on $x_{1}, x_{2}, \ldots, x_{12}$ class by class.

Computing the automorphism group

Consider an automorphism given by

$$
\begin{aligned}
a_{1} & \mapsto x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}+x_{4} a_{4}+x_{5} a_{5}+x_{6} a_{6} \\
a_{2} & \mapsto x_{7} a_{1}+x_{8} a_{2}+x_{9} a_{3}+x_{10} a_{4}+x_{11} a_{5}+x_{12} a_{6}
\end{aligned}
$$

At class 2, nothing.

Computing the automorphism group

Consider an automorphism given by

$$
\begin{aligned}
a_{1} & \mapsto x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}+x_{4} a_{4}+x_{5} a_{5}+x_{6} a_{6} \\
a_{2} & \mapsto x_{7} a_{1}+x_{8} a_{2}+x_{9} a_{3}+x_{10} a_{4}+x_{11} a_{5}+x_{12} a_{6}
\end{aligned}
$$

At class 3:

$$
\begin{aligned}
-x_{1}^{2} x_{8}+x_{1} x_{2} x_{7}+x_{1} & =0 \\
-x_{1} x_{2} x_{8}+x_{2}^{2} x_{7} & =0 \\
x_{7} & =0
\end{aligned}
$$

This gives $x_{2}=x_{7}=0, x_{8}=x_{1}^{-1}$.

Computing the automorphism group

Consider an automorphism given by

$$
\begin{aligned}
a_{1} & \mapsto x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}+x_{4} a_{4}+x_{5} a_{5}+x_{6} a_{6} \\
a_{2} & \mapsto x_{7} a_{1}+x_{8} a_{2}+x_{9} a_{3}+x_{10} a_{4}+x_{11} a_{5}+x_{12} a_{6}
\end{aligned}
$$

Set $x_{2}=x_{7}=0$, and then at class 4 we have

$$
\begin{aligned}
-x_{1}^{2} x_{8}+x_{1} & =0 \\
-x_{1} x_{1} x_{8}^{3}+x_{1} & =0 \\
-x_{1} x_{8}^{3}+x_{8} & =0
\end{aligned}
$$

These relations give $x_{1}=x_{8}=1$.

The p-covering ring, \widehat{L}, has order p^{9} with

$$
\begin{aligned}
& a_{7}=b a b b a \\
& a_{8}=p a-b a a-x b a b b \\
& a_{9}=p b-b a b b
\end{aligned}
$$

\widehat{L}_{5} is generated by $a_{7}=b a b b a$, and so the immediate descendants of L are

$$
\langle a, b \mid p a-b a a-x b a b b-y b a b b a, p b-b a b b-z b a b b a\rangle
$$

with class 5 and $0 \leq y, z<p$.

If we apply the automorphism

$$
\begin{aligned}
a_{1} & \mapsto a_{1}+x_{3} a_{3}+x_{4} a_{4}+x_{5} a_{5}+x_{6} a_{6} \\
a_{2} & \mapsto a_{2}+x_{9} a_{3}+x_{10} a_{4}+x_{11} a_{5}+x_{12} a_{6}
\end{aligned}
$$

to \widehat{L}, then

$$
\begin{aligned}
b a b b a & \mapsto b a b b a \\
p a-b a a-x b a b b & \mapsto p a-b a a-x b a b b+\left(x_{3}^{2}+2 x_{5}\right) b a b b a \\
p b-b a b b & \mapsto p b-b a b b
\end{aligned}
$$

So we can take $y=0$, and we have p non-isomorphic descendants for each value of x.

$$
\langle a, b| p a-b a a-x b a b b, p b-b a b b-z b a b b a, \text { class }=5\rangle
$$

Apply the Baker-Campbell-Hausdorff formula, and obtain the group relations

$$
\begin{aligned}
a^{p} & =[b, a, a] \cdot[b, a, b, b]^{x} \cdot[b, a, b, b, a]^{(x+1 / 3)} \\
b^{p} & =[b, a, b, b] \cdot[b, a, b, b, a]^{z}
\end{aligned}
$$

MAGMA functions for checking results

- Descendants(G:StepSizes:=[s]) - compute immediate descendant of G of order $|G| \cdot p^{s}$

MAGMA functions for checking results

- Descendants(G:StepSizes:=[s]) - compute immediate descendant of G of order $|G| \cdot p^{s}$
- ClassTwo $(\mathrm{p}, \mathrm{d}, \mathrm{s})$ - count number of d-generator p-class 2 groups of order p^{d+s}

MAGMA functions for checking results

- Descendants(G:StepSizes:=[s]) - compute immediate descendant of G of order $|G| \cdot p^{s}$
- ClassTwo $(\mathrm{p}, \mathrm{d}, \mathrm{s})$ - count number of d-generator p-class 2 groups of order p^{d+s}
- Islsomorphic(P,Q)

MAGMA functions for checking results

- Descendants(G:StepSizes:=[s]) - compute immediate descendant of G of order $|G| \cdot p^{s}$
- ClassTwo $(\mathrm{p}, \mathrm{d}, \mathrm{s})$ - count number of d-generator p-class 2 groups of order p^{d+s}
- Islsomorphic(P,Q)
- StandardPresentation (P)

MAGMA functions for checking results

- Descendants(G:StepSizes:=[s]) - compute immediate descendant of G of order $|G| \cdot p^{s}$
- ClassTwo $(\mathrm{p}, \mathrm{d}, \mathrm{s})$ - count number of d-generator p-class 2 groups of order p^{d+s}
- Islsomorphic(P,Q)
- StandardPresentation(P)
- IsIdenticalPresentation(P,Q)
$\mathrm{p}:=2$;
while p It 20 do
for x in [0..p-1] do
$\mathrm{G}:=$ Group $^{2} \mathrm{a}, \mathrm{b} \mid \mathrm{a}^{\wedge} \mathrm{p}=(\mathrm{b}, \mathrm{a}, \mathrm{a})^{*}(\mathrm{~b}, \mathrm{a}, \mathrm{b}, \mathrm{b})^{\wedge} \mathrm{x}, \mathrm{b}^{\wedge} \mathrm{p}=(\mathrm{b}, \mathrm{a}, \mathrm{b}, \mathrm{b})>$; P:=pQuotient(G,p,4);
$\mathrm{D}:=$ Descendants(P:StepSizes:=[1]); print "p =",p," x =",x," ", Order(P) eq p^6, \#D eq p;
end for;
if p eq 5 then readi i; end if;
$\mathrm{p}:=$ NextPrime (p);
end while;

