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Abstract

We prove that there are 3p2 + 39p+ 344+ 24gcd(p− 1,3)+ 11gcd(p− 1,4)+ 2gcd(p− 1,5)
isomorphism types of groups and nilpotent Lie rings with orderp6 for every primep � 5. We
establish the result, and power-commutator presentations for the groups, in various way
most novel method constructs product presentations for nilpotent Lie rings with orderp6 and then
uses the Baker–Campbell–Hausdorff formula to construct power-commutator presentations
corresponding groups. Public access to the group presentations is provided via a database d
with computer algebra systems.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The determination of the groups with a given order has a long history; for a de
account see Besche, Eick, and O’Brien [6]. The central task is to provide acomplete and
irredundant list of the groups with a given order. The primary difficulty is the reductio
isomorphism types; it is comparatively easy to give a complete list.

The 5 groups with orderp3 are well-known, so are the 14 groups with order 16
the 15 groups with orderp4 for p odd (see, for example, Burnside [10]). There
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51 groups with order 25 (Miller [23]). The groups with orderp5 for p � 5, of which
there are 61+ 2p + 2 gcd(p − 1,3)+ gcd(p − 1,4), were first determined and tabulat
by Bagnera [2]. The 67 groups with order 35 were finally listed by James in 1980 [20].

Here we report on a new and independent determination of the groups with orderp6 for
primesp � 5. Our primary result is the following.

Theorem 1. There are

3p2 + 39p+ 344+ 24 gcd(p − 1,3)+ 11 gcd(p− 1,4)+ 2 gcd(p − 1,5)

groups with order p6 for p � 5.

Previous attempts to obtain such a result, and to list the groups, have been flawed
is a description of some of this work in Section 2.

The 267 groups with order 26 were first determined by P. Hall and Senior in the l
1930s and their descriptions were published by M. Hall and Senior [16]; the 504 g
with order 36 were first described in James [20].

Recall the Baker–Campbell–Hausdorff formula [18] and the Lazard corresponden
establish an isomorphism between the category of nilpotent Lie rings with orderpn and
nilpotency class at mostp− 1 and the category of finitep-groups with orderpn and class
at mostp − 1; in particular, this applies wherep � n. As a novel approach to provin
Theorem 1, we first determine the nilpotent Lie rings with orderp6 and then exploit this
equivalence to obtain all of thep-groups with orderp6 for p � 5, excluding the 5-group
of maximal class. The 5-groups with order 56 and maximal class are well-known; see,
example, Blackburn [5].

In Section 5, we present an algorithm to determine the nilpotent Lie rings
orderpn. It is an analogue of thep-group generation algorithm, which we now brie
recall; for a detailed description see O’Brien [27]. LetP be ap-group. The algorithm
uses the lowerp-central series, defined recursively byP1(P ) = P and Pi+1(P ) =
[Pi (P ),P ]Pi (P )

p for i � 1. Thep-class ofP is the length of this series. Eachp-groupP ,
apart from the elementary abelian ones, is animmediate descendant of the quotientP/R
whereR is the last non-trivial term of the lowerp-central series ofP . Thus all the
groups with orderp6, except the elementary abelian one, are immediate descenda
groups with orderpk for k < 6. All of the immediate descendants of ap-groupQ are
quotients of a certain extension ofQ; the isomorphism problem for these descenda
is equivalent to the problem of determining orbits of certain subgroups of this exte
under an action of the automorphism group ofQ. Not all p-groups have immediat
descendants, those that do are calledcapable. We observe that Lie ring calculation
are usually significantly easier for an arbitrary prime than those for the correspo
groups.

We used theLie ring generation algorithm to determine all of the nilpotent Lie ring
with orderp6 for all p > 2, and to obtainproduct presentations (see [17]) for them. We
then applied the Baker–Campbell–Hausdorff formula to “translate” these presentatio
group presentations; this is discussed in Section 4. In this way our Lie ring gene
algorithm leads to a list of presentations for the groups with orderp6 for p > 5.
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In summary, forp � 3, there are 42 nilpotent Lie rings which have immedi
descendants with orderp6. Forp � 5 presentations for the corresponding groups are g
in Theorem 2. Table 1 gives the number of immediate descendants with orderp6 for these
42 groups. Theorem 1 is now an immediate consequence.

An alternative proof of Theorem 1 uses P. Hall’s notion of isoclinism [15]; this is
basis of the 1940 work of Easterfield [12] and the work of James [19,20]. Recall tha
groupsG andH are calledisoclinic if there are isomorphismsϕ : G/Z(G) 	→ H/Z(H)

andψ :G′ 	→H ′, such that for allg1, g2 ∈G,

g1Z(G)ϕ = h1Z(H), g2Z(G)ϕ = h2Z(H), [g1, g2]ψ = [h1, h2].

Forp � 5 the groups with orderp6 are classified into 43 isoclinism families [12]. All of th
groups in a family are quotients of certain “generating groups”. The isomorphism pro
for these quotients is equivalent to the problem of determining orbits of certain subg
under (a quotient of) the automorphism group of each generating group. For a disc
of this approach, see Section 7.

Easterfield [12] tabulated parametrised presentations for the groups with orderp6 for
p � 5. We have, with the help of Robert McKibbin, checked this tabulation. It was ch
initially because it seemed reasonably accurate and gave lots of detail about the
to help with checking. Easterfield’s tables are not completely error-free. There arep − 1
groups missing from isoclinism family�13 and the presentations for one isoclinism fam
(�19) had sufficient problems that we replaced them by the corresponding presentat
James [20]. There were also a small number of typographical errors.

That the two proofs, via Lie ring generation and isoclinism, reach the same conc
significantly increases our confidence in Theorem 1.

We have created a database of parametrised presentations for the groups with op6

for p � 5, based on the corrected Easterfield list. The database is currently design
use with MAGMA [7]; the data can readily be incorporated into other computer alg
systems. The construction from the database of the list for a given prime is extr
fast. For example, on an 800 MHz processor, MAGMA constructs power-commutat
presentations [34] for the 860 groups with order 76 in about 1 second, and for the 181 0
groups with order 2396 in about 500 seconds.

We describe the construction, the content, and the organisation of the datab
Section 8 and in Section 9 discuss steps taken to verify the results.

2. Background

The first attempt to list the groups with orderp6 was made by Potron [32] in his Par
thesis of 1904. He followed Burnside [10] and de Séguier [11] in using the structu
the upper central factors as the basis for his classification. Miller [24] and Easterfiel
have drawn attention to substantial problems with Potron’s list. However, in retrospe
list exhibits some significant aspects of the situation. The list is partitioned into se
hundred cases each of which is described by a (usually parametrised) power-comm
presentation. This can be done so that at most 2 parameters are used in addition to
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parameter. The primes can be partitioned into 11 parts; with 2, 3, 5 separate and the
classified according to whether their remainders modulo 3, 4, and 5 are 1 or not.

Miller [24] used maximal abelian normal subgroups as the basis of an attem
determine the groups with order 64. This led to the work by Senior and his collabo
with Hall. From 1935 Brahana determined certain groups with class 2 and exponp
mainly using projective geometric methods, see [9].

Easterfield in his 1939/1940 Cambridge dissertation [12] used isoclinism (whic
called isologism) as a basis for listing the regular (in the sense of Hall) groups.
handles all primes greater than 5 and the prime 5 for nilpotency class less than 5. H
handled the 5-groups with class 5 and determined the isoclinism families for the
3. James used a similar method in his PhD thesis [19], published (in amended fo
1980 [20]. That paper has a number of inaccuracies. Some of these were pointed
Pilyavskaya [29].

Pilyavskaya (also transcribed Pylyavska) made a determination using maximal a
normal subgroups. Her approach is described in a document deposited in the V
archive [30] and in her Candidate’s thesis [31]. Some errors were corrected in an E
version of her thesis which was circulated privately. Recently an exchange of e
has resulted in other errors being corrected. This further supports the enumeration
in Theorem 1. There is agreement at the level of presentations in the small num
isoclinism families that have been compared in detail.

Other contributions to the problem include work by Tordella [35], Küpper [22],
Baldwin [3].

3. The main result

For p � 5, there are 42 groups with orderpk for k < 6 which have immediate
descendants with orderp6. These groups were determined directly using the Lie
generation algorithm. Of course, the result can also be deduced from the pub
tabulations: Bagnera [2], de Séguier [11], Schreier [33], Bender [4], and James [20]

In Theorem 2 we record a finite presentation for each such capable group (orparent),
and the number of its immediate descendants with orderp6. The finite presentation and th
listedp-class can be used to construct a power-commutator presentation. (For exam
can be supplied with a specific primep to thep-quotient algorithm [26].)

Theorem 2. For p � 5, the groups with order dividing p5 which have immediate descen-
dants with order p6 are the following where ω is a primitive root of unity modp:

(1) 〈a | class 5〉;
(2) 〈a, b | [b, a], class 2〉;
(3) 〈a, b | bp, class 2〉;
(4) 〈a, b | bp[b, a]−1, class 2〉;
(5) 〈a, b | class 2〉;
(6) 〈a, b | ap, bp, class 3〉;
(7) 〈a, b | ap[b, a, a]−1, bp, class 3〉;
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(8) 〈a, b | ap[b, a, b]−1, bp, class 3〉;
(9) 〈a, b | ap[b, a, b]−ω, bp, class 3〉;

(10) 〈a, b | ap[b, a, a]−1, bp[b, a, b], class 3〉;
(11) 〈a, b | ap[b, a, b], bp[b, a, a]ω, class 3〉;
(12) 〈a, b | [b, a], bp2

, class 3〉;
(13) 〈a, b | [b, a]a−p2

, bp
2
, class 3〉;

(14) 〈a, b | [b, a, a], [b, a, b], bp, class 3〉;
(15) 〈a, b | [b, a, b], ap2

, bp, class 3〉;
(16) 〈a, b | [b, a, b], ap2

, bp[b, a, a]−1, class 3〉;
(17) 〈a, b | [b, a, b], ap2

, bp[b, a, a]−ω, class 3〉;
(18) 〈a, b | [b, a, a], ap2

, bp, class 3〉;
(19) 〈a, b | [b, a, a], bp[b, a]−1, class 3〉;
(20) 〈a, b | [b, a], bp, class 4〉;
(21) 〈a, b | [b, a, b], ap, bp, class 4〉;
(22) 〈a, b | [b, a, b][b, a, a, a]−1, ap, bp, class 4〉;
(23) 〈a, b, c | class 1〉;
(24) 〈a, b, c | [c, a], [c, b], ap, bp, cp, class 2〉;
(25) 〈a, b, c | [b, a], [c, a], [c, b], cp, class 2〉;
(26) 〈a, b, c | [c, a], [c, b], bp, cp, class 2〉;
(27) 〈a, b, c | [c, a], [c, b], bp[b, a]−1, cp, class 2〉;
(28) 〈a, b, c | [c, a], [c, b], bp, cp[b, a]−1, class 2〉;
(29) 〈a, b, c | [c, a], [c, b], ap, bp, class 2〉;
(30) 〈a, b, c | [c, a], [c, b], ap[b, a]−1, bp, class 2〉;
(31) 〈a, b, c | [c, b], ap, bp, cp, class 2〉;
(32) 〈a, b, c | [c, b], ap[b, a]−1, bp, cp, class 2〉;
(33) 〈a, b, c | [c, b], ap, bp[b, a]−1, cp, class 2〉;
(34) 〈a, b, c | [c, b], ap, bp[c, a]−1, cp, class 2〉;
(35) 〈a, b, c | [c, b], ap[b, a]−1, bp[c, a]−1, cp, class 2〉;
(36) 〈a, b, c | [b, a], [c, a], [c, b], bp, cp, class 3〉;
(37) 〈a, b, c | [b, a, b], [c, a], [c, b], ap, bp, cp, class 3〉;
(38) 〈a, b, c | [b, a, b], [c, a], [c, b][b, a, a]−1, ap, bp, cp, class 3〉;
(39) 〈a, b, c, d | class 1〉;
(40) 〈a, b, c, d | [b, a], [c, a], [d, a], [c, b], [d, b], [d, c], bp, cp, dp, class 2〉;
(41) 〈a, b, c, d | [c, a], [c, b], [d, a], [d, b], [d, c], ap, bp, cp, dp, class 2〉;
(42) 〈a, b, c, d, e | class 1〉.

The number of immediate descendants of each group is summarised in Table 1.

As presented, Theorem 2 concernsp-groups. We proved the theorem by using L
ring generation to construct the immediate descendants of each of the correspon
nilpotent Lie rings; in Section 6 we illustrate some of the relevant calculations. The the
was also established using the corrected Easterfield list.
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Table 1
Number of immediate descendants with orderp6 of the 42 parents

Parent Number of immediate descendants

1 1
2 2
3 p+ 15
4 1
5 p+ 8
6 5+ 3gcd(p− 1,3)
7 p+ gcd(p − 1,3)+ 1
8 1+ gcd(p − 1,3)+ gcd(p− 1,4)/2
9 1+ gcd(p − 1,3)+ gcd(p− 1,4)/2

10 p+ 1
11 p

12 2
13 1
14 4
15 2gcd(p− 1,3)+ gcd(p − 1,4)+ 3
16 3(p+ 1)/2
17 3(p+ 1)/2
18 2gcd(p− 1,3)+ gcd(p − 1,4)+ 3
19 2
20 2
21 3gcd(p− 1,4)+ 2gcd(p− 1,3)+ 7
22 2p + 2gcd(p− 1,3)+ gcd(p− 1,4)+ 2gcd(p− 1,5)
23 3p + 27
24 3p2 + 13p + 37+ gcd(p− 1,3)+ gcd(p− 1,4)
25 4
26 23
27 5
28 4
29 12
30 p+ 1
31 35
32 2p + 13
33 4p + 8
34 2p + 3gcd(p− 1,3)+ gcd(p− 1,4)+ 13
35 3
36 3
37 4gcd(p− 1,3)+ 2gcd(p− 1,4)+ 11
38 2gcd(p− 1,3)+ 4
39 4p + 48
40 4
41 18
42 7

4. Baker–Campbell–Hausdorff

It has been known since the 1950s that the Baker–Campbell–Hausdorff formula g
isomorphism between the category of nilpotent Lie rings with orderpn and the categor
of finite p-groups with orderpn providedp � n. However, we are not aware that th
connection has been systematically exploited to classify finitep-groups until now.
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Let A be the free associative algebra with unity over the rationalsQ which is freely
generated by non-commuting indeterminatesx, y. We extendA to the ringÂ of formal
power series consisting of the formal sums

∞∑
n=0

un,

whereun is a homogeneous element of weightn in A. If a ∈ Â, and if the homogeneou
component ofa of weight 0 is 0, then we define

ea = 1+ a + a2

2! + a3

3! + · · ·

in the usual way. The product exey ∈ Â can be expressed in the form 1+ u for someu ∈ Â

with 0 as its homogeneous component of weight 0, and

exey = ev, wherev =
∞∑
n=1

(−1)n−1u
n

n
.

The Baker–Campbell–Hausdorff formula (see, for example, Jacobson [18]) enable
compute the homogeneous components ofv. The first few components are given by

v = x + y − 1

2
[y, x] + 1

12
[y, x, x] − 1

12
[y, x, y] + 1

24
[y, x, x, y]

− 1

720
[y, x, x, x, x]+ · · · .

It turns out that all the homogeneous components ofv are Lie elements ofA (that is,
elements in the Lie subalgebra ofA generated byx andy with respect to the Lie produc
[a, b] = ab − ba). A proof of this may be found in Vaughan-Lee [36]. A similar formu
holds for commutators

[
ey,ex

] = ew,

where

w = [y, x] + 1

2
[y, x, x] + 1

2
[y, x, y] + 1

6
[y, x, x, x] + 1

4
[y, x, x, y]

+ 1

6
[y, x, y, y]+ · · · .

(Here [ey,ex ] is the group commutator e−ye−xeyex , andw is an infinite sum of Lie
elements inA.)

These formulae sometimes enable us to define a group structure on a Lie a
Perhaps the simplest situation where this applies is whenL is a nilpotent Lie algebra
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over Q. As described in [1], the Baker–Campbell–Hausdorff formula provides
isomorphism (the Mal’cev correspondence) between the category of nilpotent Lie alg
overQ and the category of torsion-free divisible nilpotent groups.

The Baker–Campbell–Hausdorff formula also provides a connection between finp-
groups and nilpotent Lie rings (overZ) with prime-power order, in the case when t
groups and Lie rings are nilpotent of class at mostp− 1. We write the elementv above as

v = v1 + v2 + · · · ,

wherevi is a homogeneous Lie element of weighti, for i = 1,2, . . . , and we consider th
truncated expression

ṽ(x, y)= v1 + v2 + · · · + vp−1.

Observe that the denominators of the coefficients that occur inṽ(x, y) are coprime top.
If L is a Lie ring with orderpn (so thatL has characteristicpk for somek), and ifL is
nilpotent of class at mostp− 1, then we can define a group operation “◦” on L by setting

a ◦ b = ṽ(a, b) for a, b ∈ L.

This turnsL into a group with orderpn, and every finitep-group of nilpotency class a
mostp − 1 arises in this way from a finite Lie ring. ThisLazard correspondence appears
as Exercise §7.4 in Bourbaki [8, Chapter 2].

5. The Lie ring generation algorithm

Our method of classifying nilpotent Lie rings with orderpn closely follows thep-group
generation algorithm (see Newman [25] and O’Brien [27]). A Lie ringL is an abelian group
under+ (addition) together with a bilinear product which satisfies

aa = 0 for all a ∈L,

(ab)c+ (bc)a + (ca)b= 0 for all a, b, c ∈ L.

(We useab to denote the Lie product ofa andb, rather than the more familiar[a, b].)
Note that the axiomaa = 0 together with bilinearity implies thatba = −ab. The identity
(ab)c+ (bc)a + (ca)b= 0 is the Jacobi identity.

Since the Lie product is not associative the bracketing of a product is significan
adopt the left-normed convention whereby

a1a2 . . . an = (
. . .

(
(a1a2)a3

)
. . . an−1

)
an.

For a Lie ringL we define thelower central series

L� L2 � L3 � · · · � Lc � · · ·
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by settingL2 = 〈ab | a, b ∈ L〉, andLc+1 = 〈ab | a ∈ Lc, b ∈ L〉 for c > 1. It is easy to
show that a product ofc elements ofL (with any choice of bracketing) lies inLc. Further,
Lc consists of the set of all linear combinations of left-normed productsa1a2 . . . ac of
elements ofL. We say thatL is nilpotent of classc if Lc+1 = {0}, Lc �= {0}.

When calculating in finite nilpotent Lie rings with prime-power order, thelower p-cen-
tral series

L= L1 � L2 � L3 � · · · �Lc � · · ·

is often more useful than the lower central series. This is defined for Lie rings
analogous way to groups. We setL1 = L, L2 = L2 + pL, and forc > 1 we setLc+1 =
LcL+ pLc . (HereLcL is 〈ab | a ∈ Lc, b ∈ L〉.) Note that we use superscripts to den
terms of the lower central series, and subscripts to denote terms of the lowerp-central
series. The idealLc consists of all linear combinations of terms of the form

a1a2 . . . ac, pa1a2 . . . ac−1, p2a1a2 . . . ac−2, . . . , pc−1a1.

We say thatL hasp-classc if Lc+1 = {0}, Lc �= {0}.
If L is a nilpotent Lie ring with finite orderpn for some primep, thenLc+1 will equal

{0} for somec. In fact ifL is nilpotent of classk and if the exponent ofL as a finite abelian
group ispm thenL hasp-classc for somec with k � c < k +m.

If L andM are two finite nilpotent Lie rings with prime-power order, thenL is a
descendant of M if L/Lc

∼= M for somec � 2. If L/Lc
∼= M andL hasp-classc (so

that Lc �= {0}, Lc+1 = {0}) thenL is an immediate descendant of M. Note that ifL
is a descendant ofM thenL/L2 ∼= M/M2, so thatL andM have the same generat
number.

The key idea for calculating nilpotent Lie ringsL with orderpn is as follows. IfL
hasp-class 1 thenL is the direct sum ofn copies ofZp ; call L elementary abelian. If
L hasp-class greater than 1, thenL is an immediate descendant of a nilpotent Lie r
with orderpm for somem < n. The starting point for calculating the nilpotent Lie rin
with orderp6 is to calculate the nilpotent Lie rings with orderpk for 1 � k < 6. For
each of these Lie rings we calculate the immediate descendants with orderp6 as follows.
Given ad-generator Lie ringM we construct itsp-covering ringM̂ . This is ad-generator
Lie ring M̂ having a central elementary abelian idealZ such thatM̂/Z ∼= M and every
immediate descendant ofM is isomorphic toM̂/T for someT � Z. HoweverM̂/T is
not an immediate descendant ofM for every subringT � Z. If M hasp-classc (so that
Mc+1 = {0}) then we define thenucleus of M to beM̂c+1. ThenM̂/T is an immediate
descendant ofM if and only if T is a proper subring ofZ such thatT supplements
the nucleusM̂c+1. It can happen that̂Mc+1 = {0}, in which caseM has no immediate
descendants and isterminal.

Hence we obtain a complete list of the immediate descendants ofM by calculating its
p-covering ringM̂, and listing the proper subringsT < Z such thatT +M̂c+1 =Z. (These
are theallowable subrings of Z.) If M is ad-generator Lie ring with orderpn thenZ is
elementary abelian of rank at mostd(d − 1)/2+ d(n− d+ 1). The elementary abelian Li
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ring with orderp5 hasp-covering ring with orderp20; this is the largest ring we constru
in studying the nilpotent Lie rings with order dividingp6.

We now have a list of the immediate descendants ofM, and we can easily restric
to those with a specified order. This list will usually contain redundancies, an
need to solve the isomorphism problem. This is done as follows. We comput
automorphism group ofM and we extend each automorphismα of M to an automorphism
α∗ of M̂. (If M is generated bya1, a2, . . . , ad then we choose preimagesx1, x2, . . . , xd
in M̂ for a1, a2, . . . , ad , and preimagesy1, y2, . . . , yd in M̂ for a1α,a2α, . . . , adα. Then
x1, x2, . . . , xd generatêM , and we defineα∗ by settingxiα∗ = yi for i = 1,2, . . . , d .) Then
Zα∗ =Z, and the action ofα∗ onZ is uniquely determined byα. Two allowable subrings
T1, T2 define isomorphic descendantŝM/T1, M̂/T2 if and only if T2α

∗ = T1 for some
automorphismα of M. We obtain a complete irredundant set of immediate descenda
M by choosing a set of representatives for the orbits of the allowable subrings ofZ under
this action of the automorphism group ofM.

The p-covering ring is completely analogous to thep-covering group. We refer th
reader to the proofs of the corresponding results in O’Brien [27, Section 2].

6. Lie ring examples

As an illustration of the Lie ring generation algorithm, we compute the descen
with orderp6 of

A= 〈
a, b | baa, p2a, pb, class 3

〉

A is a 2-generator Lie ring with orderp5 andp-class 3. If we apply the Baker–Campbe
Hausdorff formula to its presentation then we obtain the following group presentatio

{
a, b

∣∣ [b, a, a], ap2
, bp, class 3

}
.

This group presentation has the same form as that of the Lie ring, although this
always the case. (This is group 18 from Theorem 2.)

It is easy to show thatA/A2 has orderp2 and is generated bya +A2, b +A2; further
A2/A3 has orderp2 and is generated byba +A3, pa +A3; the last termA3 has orderp
and is generated bybab. It is also easy to show that ifa′, b′ are the images ofa, b under an
automorphism ofA thena′ = αa + γ ba + δpa + εbab andb′ = βb+ ζba+ ηpa + θbab

with α,β coprime top. Further, ifa′, b′ are of this form then there is an automorphism
A mappinga, b to a′, b′. Hence the automorphism group ofA has order(p− 1)2p6.

LetL be a 2-generator Lie ring ofp-class 4 such thatL/L4 ∼=A. ThenL is generated by
a, b; furtherL2 is generated byba,pa moduloL3 andL3 is generated bybab moduloL4.
Recall thatL4 is defined to beL3L+ pL3. SinceL3 is generated moduloL4 by bab we
see thatL4 is generated bybaba, babb andp(bab). Howeverbaa, p2a andpb are inL4,
and sobaba = baab = 0 andp(bab) = (pb)ab = 0. HenceL4 is generated bybabb
andbaa = λbabb, p2a = µbabb, pb = νbabb for someλ,µ, ν. SinceL4 has orderp,
we can think ofλ,µ, ν as elements ofZp . It is easy to show that allp3 values of the
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triple λ,µ, ν define a Lie ringL with orderp6 andp-class 4 which is a descendant ofA.
It remains to solve the isomorphism problem: when do two triplesλ,µ, ν andλ′,µ′, ν′
define isomorphic Lie rings?

We solve this problem by letting the automorphism group ofA act on the set of possibl
presentations forL. In other words we consider a presentation

L= {
a, b | baa− λbabb, p2a −µbabb, pb − νbabb, class 4

}

for a descendant ofA with orderp6 andp-class 4, and we let

a′ = αa + γ ba + δpa + εbab, b′ = βb+ ζba + ηpa + θbab.

It is now easy to compute that

b′a′a′ = α2βbaa = α2βλbabb= αβ−2λb′a′b′b′,

p2a′ = αp2a = αµbabb= β−3µb′a′b′b′,

pb′ = βpb + ηp2a = (βν + ηµ)babb= α−1β−3(βν + ηµ)b′a′b′b′.

Hence the triplesλ,µ, ν and αβ−2λ, β−3µ,α−1β−3(βν + ηµ) determine isomorphi
algebras.

It follows easily that we get a complete set of pairwise non-isomorphic descenda
A with orderp6 by taking triplesλ,µ, ν satisfying the following properties:

• λ= 0 or 1,
• µ= 0 or 1, or (whenp = 1 mod 3)ω or ω2 whereω is a primitive element inZp ,
• ν = 0 whenµ �= 0, ν = 0 or 1 whenλ = µ= 0, and whenλ= 1,µ= 0 thenν = 0,1

or ω, or (whenp = 1 mod 4)ω2 orω3 whereω is a primitive element inZp .

Hence the number of descendants of〈a, b | baa,p2a, pb, class 3〉 with orderp6

depends on the value ofp mod 12, and is 2 gcd(p− 1,3)+ gcd(p − 1,4)+ 3.
We now apply the Baker–Campbell–Hausdorff formula to the Lie ring presenta

described above to obtain a complete and irredundant list of (group) presentations
immediate descendants of the group having presentation

{
a, b

∣∣ [b, a, a], ap2
, bp, class 3

}
.

The Baker–Campbell–Hausdorff formula applied to the Lie ring presentation

{
a, b | baa − λbabb, p2a −µbabb, pb − νbabb, class 4

}

gives the group presentation

{
a, b

∣∣ [b, a, a][b, a, b, b]−λ, ap
2[b, a, b, b]−µ, bp[b, a, b, b]−ν, class 4

}
.
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Again, the group presentations have the same form as the Lie ring presentations, w
same ranges for the parameters.

We sometimes obtain group presentations which differ significantly from the c
sponding Lie ring presentations. For example, when computing the immediate desce
with orderp6 of

〈
a, b | bab, p2a, pb − baa, class 3

〉
,

we obtain presentations

{
a, b | bab, p2a, pb − baa − λbaaa, class 4

}

with 0 � λ < p. (There are other descendants.) If we replacea by −a in this presentation
then we obtain

{
a, b | bab, p2a, pb− baa + λbaaa, class 4

}
,

and so it is clear that the parametersλ and−λ give isomorphic Lie rings. If we letλ take
the values 0,1, . . . , (p−1)/2 then we get(p+1)/2 pairwise non-isomorphic descendan
Applying the Baker–Campbell–Hausdorff formula to these presentations, we obta
group presentations

{
a, b

∣∣ [b, a, b], ap2
, bp[b, a, a]−1[b, a, a, a]1−λ, class 4

}
.

Note thatλ and−λ must give isomorphic groups since the corresponding Lie rings
isomorphic, and the groups obtained by lettingλ = 0,1, . . . , (p − 1)/2 are pairwise non
isomorphic. In the group context it might seem more natural to parametrise these
with a parameterµ replacing the exponent 1− λ. In these terms the isomorphism quest
is less transparent:µ andµ′ give isomorphic groups ifµ− 1 = ±(µ′ − 1).

As another example, we consider the 4-generator Lie rings with orderp6 andp-class 2.
Let L = 〈a, b, c, d〉 be a Lie ring of this form. As a first step we divide the problem
into three cases:L is abelian,L2 has orderp, andL2 has orderp2. (Recall thatL2 is the
derived ring〈xy | x, y ∈ L〉.)

Just as for groups, there is only one abelian 4-generator Lie ring with orderp6 and
p-class 2. It has additive structureZp ⊕ Zp ⊕ Zp2 ⊕ Zp2.

If L2 has orderp then the map

(x +L2, y +L2) 	→ xy

defines an alternating bilinear map fromL/L2 ×L/L2 → L2. (Here we are viewingL/L2
as a 4-dimensional vector space overZp , and we are viewingL2 as a 1-dimensional vecto
space overZp .) We may assume thatL2 is generated byba. Hence

ca = da = cb = db = dc = 0 or ca = da = cb = db = 0, dc= ba.
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In other words, ifL2 has orderp then we may assume thatL satisfies one of these two se
of commutator relations. A Lie ring satisfying the first set of relations cannot be isomo
to a Lie ring satisfying the second set. IfL2 has orderp2 then (up to isomorphism)L has
4 possible commutator structures.

We examine in detail the situation whenL2 has orderp and is generated byba, and
whenca = da = cb = db = dc = 0. The centre ofL has orderp4 and equals〈c, d〉+L2, so
〈c, d〉+L2 is a characteristic subring. Hence it is easy to see that ifa′, b′, c′, d ′ generateL,
and if

c′a′ = d ′a′ = c′b′ = d ′b′ = d ′c′ = 0,

then (moduloL2)

a′ = αa + βb+ εc+ ζd, b′ = γ a + δb+ ηc+ θd,

c′ = λc+µd, d ′ = νc+ ξd

for someα,β, . . . , ξ ∈ Zp with αδ−βγ andλξ −µν coprime top. (Further, ifa′, b′, c′, d ′
are elements of this form, then they generateL and satisfy the same commutator relatio
asa, b, c, d .) It is convenient to think ofL2 as a vector space of dimension 2 overZp .
Since〈c, d〉 + L2 is a characteristic subring, we can now divide the current situation
three subcases:pc,pd are linearly independent;pc,pd span a space of dimension 1; a
pc = pd = 0.

If pc,pd are linearly independent then we can choose

a′ = a + εc+ ζd, b′ = b+ ηc+ θd

so thatpa′ = pb′ = 0. Then we can choosec′, d ′ so thatpc′ = b′a′, and soL2 is generated
by b′a′,pd ′. Hence we have the presentation

{a, b, c, d | ca, da, cb, db, dc, pa, pb, pc − ba, class 2}.

Next suppose thatpc,pd span a space of dimension at most 1. Then we may as
thatpd = 0, so that

L= 〈a, b, c〉 ⊕ 〈d〉.

The subring〈a, b, c〉 must have orderp5 and derived ring with orderp, and from the list of
nilpotent Lie rings with orderp5 we see that〈a, b, c〉 is isomorphic to one of the following

〈a, b, c | ca, cb, pb, pc, class 2〉, 〈a, b, c | ca, cb, pb − ba, pc, class 2〉,
〈a, b, c | ca, cb, pb, pc− ba, class 2〉, 〈a, b, c | ca, cb, pa, pb, class 2〉,

〈a, b, c | ca, cb, pa − ba, pb, class 2〉.
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These examples are fairly simple, but they illustrate the main ideas used. Sometim
relevant automorphism groups are hard to compute. Once an automorphism group h
computed, then we calculate its action on the set of presentations under considera
these cases it was easy to compute a set of representatives for the orbits of the prese
under the action of the automorphism group, but this is sometimes a much harder pr
The methods used here parallel one possible group theoretic approach. In thep-class two
example the group calculation is identical to the Lie ring calculation. But in thep-class 4
example the linearity of Lie rings means that it is much easier to compute the a
of the automorphism group ofA on the set of presentations forL than it would be in
groups.

7. Isoclinism families

We use the determination (and linear ordering) of the isoclinism families provide
Easterfield [12]. While it would technically be possible to verify his division into isoclin
families using the algorithm of James, Newman, and O’Brien [21], we see little m
in doing this: the completeness of the list is established using Theorem 2, and he
organization into isoclinism families does not impact on its overall accuracy. In Table
record the corrected number of groups in each family.

As one example of the computations involved, we consider�15; our results agree with
Easterfield [12] and Pilyavskaya [29], but differ from James [20].

Each group in this family is a 4-generator group withp-class 2. Its central quotient
the elementary abelian group with orderp4 which hasp-covering group̂P with orderp14.
The defining generators of̂P are labelleda1, . . . , a4. We choose the defining commutat
relations for the family to bea5 = [a2, a1] = [a4, a3], a6 = [a3, a1], aω6 = [a4, a2] with all
other commutators trivial;ω is a primitive root modp. Each member of this family is
quotient of

〈
a1, . . . , a10

∣∣ a5 = [a2, a1] = [a4, a3], a6 = [a3, a1], aω6 = [a4, a2],

a7 = a
p
1 , a8 = a

p
2 , a9 = a

p
3 , a10 = a

p
4

〉
.

For this group the relevant quotient of its automorphism group has order 2(p4 − 1)×
(p4 − p2).

If G is a group in this family, thenGp has rank 0, 1, or 2 and we use the rank of t
subgroup to help classify the individual groups in the family. For each group,a

p
i = a

αi
5 a

βi
6 ,

i = 1, . . . ,4, and we refer to the 2× 4 matrix of these values as theexponent matrix. The
individual groups in this family are determined by the orbits ofA on the exponent matri
ces.
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Table 2
Numbers for isoclinism families

Family Number of groups

1 11
2 31
3 32
4 3p + 32
5 7
6 2p + 21
7 21
8 p + 5
9 3gcd(p − 1,3)+ 7

10 3gcd(p − 1,4)+ 3gcd(p − 1,3)+ 4
11 2p + 10
12 p + 13
13 p + 10
14 3
15 p + 3
16 p + gcd(p− 1,3)+ 12
17 gcd(p − 1,3)+ 4p + 30
18 3p + gcd(p− 1,3)+ gcd(p − 1,4)+ 9
19 (3p2 + 10p + 21)/2
20 5p + gcd(p− 1,3)+ gcd(p − 1,4)+ 13
21 (3p2 + 4p + 5)/2
22 7
23 p + 4gcd(p − 1,3)+ gcd(p − 1,4)+ 5
24 gcd(p − 1,3)+ 3
25 (p + 3)/2
26 (p + 3)/2
27 gcd(p − 1,3)+ gcd(p − 1,4)+ 3
28 p

29 p

30 2gcd(p − 1,3)+ 4
31 7
32 5
33 6
34 3
35 gcd(p − 1,4)+ 2
36 gcd(p − 1,4)+ gcd(p − 1,6)+ 1
37 gcd(p − 1,4)+ 4
38 gcd(p − 1,4)+ gcd(p − 1,5)+ p

39 p + gcd(p− 1,5)+ gcd(p− 1,6)
40 gcd(p − 1,3)+ 2
41 gcd(p − 1,3)+ 1
42 p + 1
43 p

Power relations for thep + 3 groups together with other relevant information
summarised in Table 3. The column ‘Stabiliser order’ records the order of the sub
of GL(4,p) which stabilises the subgroup factored from̂P .
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Table 3
Presentations and other information for�15

Group Defining relations Stabiliser order Rank ofGp

a
p
1 a

p
2 a

p
3 a

p
4

1 ∅ ∅ ∅ ∅ 2(p4 − 1)(p4 − p2) 0
2 a5 ∅ ∅ ∅ 2p2(p − 1) 1
3 a5 a6 ∅ ∅ 2 2
4 a5 ∅ ∅ aω6 2(p4 − p2) 2

5 a5 ∅ ∅ a−ω
6 2(p4 − p2) 2

6. . . p + 3 a5a
α
6 ∅ ∅ a

β
6 2p2(p − 1) 2

In the last rowα andβ are solutions of the equations

ωα2 −ω2 − β2 = kβ for k = 0, . . . , p − 1, k �= ±2ω.

8. The database

The groups with order 64 and 729 are already available in electronic form in
SMALL GROUPSlibrary described in Besche et al. [6]. They can be accessed throug
computer algebra systemsGAP [14] and MAGMA [7].

Recently a database for the groups with order dividingp5 for p � 5 has been prepare
by Eick and Girnat.

Both proofs of Theorem 1 provide parameterised presentations for the groups with
p6, for p � 7. However, the presentations obtained by applying the Baker–Camp
Hausdorff to the product presentations are sometimes more complicated. Further, i
families certain congruences have been solved explicitly by Easterfield [12].

Hence, the database is based on a corrected version of Easterfield’s list, and th
ordering employed is very close to his. It differs only in the addition of groups in�13, in
using the James presentations for the groups in�19, and a small number of typographic
amendments.

Each group with orderp6 is described by a power-commutator presentation o
generators and 21 relations: 15 are commutator relations and 6 are power relation
presentation has the primep as a parameter. The additional (at most two) parame
run though a small number of subsets of[0, . . . , p − 1]; the number can be mad
independent ofp. Examples include[1,ω] where ω is a (fixed) primitive root and
transversals of cubes in the multiplicative group of[1, . . . , p − 1] mod p. There are
also some more subtle invariants corresponding to ovals in the affine plane ov
field of p elements. Sometimes the parameter range depends on the residue of th
modulo 4.

For example, the parameterized presentation

{
a1, . . . , a6 | [a2, a1] = a4, [a3, a1] = aω6 , [a3, a2] = a5, [a4, a1] = a5,

[a4, a2] = a6, a
p = a

η
, a

p = a
ξ
a6

}
,
1 5 3 5
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whereξ is arbitrary andη ∈ {1, . . . , (p−1)/2} describesp(p−1)/2 different groups with
orderp6. A more complex example is the following:

{
a1, . . . , a6

∣∣ [a2, a1] = a3, [a3, a1] = a4, [a3, a2] = a5, [a4, a1] = a6,

[a5, a2] = a
−1/ω
6 , a

p

1 = aω5 a
−η+1
6 , a

p

2 = a4a
−ξ+1
6

}
,

whereξ2−ω−1η2 = i for i = 1, . . . , p−1. (All relations whose right-hand sides are triv
are not shown.)

The database contains about 500 parametrised presentations, most of these havep as the
only parameter. The precise number is not significant as it depends on decisions ab
fine structure of the underlying classification. The database also has functions for acc
subsets of the corresponding groups. In particular, we provide a function which g
primep � 5 produces a complete and irredundant list of presentations for the group
orderp6. Further, the groups in a particular isoclinism family or having a particular pa
can be listed.

9. Accuracy of results

We now comment on some of the steps taken to ensure that the enumeration
resulting database are accurate.

Observe that the primes can be partitioned according to the values of the residues
occur in the formula of Theorem 1. The gcd(p − 1,5) factor enters only from the coun
of maximal class groups with orderp6; these groups were independently classified
Blackburn [5]. Hence, for the remaining groups with orderp6, the primes can be classifie
according to the residue classes ofp − 1 modulo 3 and 4: representative primes
5,7,11,13.

Thep-group generation algorithm is implemented both as a stand-alone progra
in GAP and MAGMA. This allowed us to determine presentations for all the groups
orderp6 explicitly for primesp up to 13. We used it in conjunction with the enumerat
algorithm of Eick and O’Brien [13] to verify Theorem 1 for all primes up to 23.

We also computed invariants, such as the structure of lower central series, fo
group. With a moderate set of invariants, the groups can be divided into a large num
bins; the groups in each bin are very similar in structure and we now decide isomor
among the remaining groups. Influenced by our observation on representative prim
used invariant calculations and the isomorphism algorithm of O’Brien [28] to demon
that the database list is complete and irredundant forp � 13.

A useful check is to compare different determinations. Easterfield compared ma
his results against those of Potron; the one serious error occurs in an isoclinism
(�13) which Potron missed. Pilyavskaya compared her work with that of James
have compared our results with those of earlier workers and those from our dif
approaches. In particular, we established a correspondence for primes at most 13 b
the corrected version of Easterfield’s list and the list obtained from the application
Baker–Campbell–Hausdorff technique to the product presentations for nilpotent Lie
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