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Abstract

We prove that there are,u§ +39p +3444-24gcdp —1,3) +11gedp —1,4) +2gcdp —1,5)
isomorphism types of groups and nilpotent Lie rings with orgrfor every primep > 5. We
establish the result, and power-commutator presentations for the groups, in various ways. The
most novel method constructs product presentations for nilpotent Lie rings with p‘?dmd then
uses the Baker—Campbell-Hausdorff formula to construct power-commutator presentations for the
corresponding groups. Public access to the group presentations is provided via a database distributed
with computer algebra systems.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The determination of the groups with a given order has a long history; for a detailed
account see Besche, Eick, and O’Brien [6]. The central task is to prowidmalete and
irredundant list of the groups with a given order. The primary difficulty is the reduction to
isomorphism types; it is comparatively easy to give a complete list.

The 5 groups with ordep?® are well-known, so are the 14 groups with order 16 and
the 15 groups with ordep® for p odd (see, for example, Burnside [10]). There are
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51 groups with order 2 (Miller [23]). The groups with ordep® for p > 5, of which
there are 64 2p + 2gcdp — 1, 3) + gcd(p — 1, 4), were first determined and tabulated
by Bagnera [2]. The 67 groups with ordet @ere finally listed by James in 1980 [20].

Here we report on a new and independent determination of the groups withySriter
primesp > 5. Our primary result is the following.

Theorem 1. Thereare
3p2 +39p + 344+ 24gcdp —1,3) +11gedp — 1,4) +2gedp — 1, 5)
groups with order p® for p > 5.

Previous attempts to obtain such a result, and to list the groups, have been flawed. There
is a description of some of this work in Section 2.

The 267 groups with order®avere first determined by P. Hall and Senior in the late
1930s and their descriptions were published by M. Hall and Senior [16]; the 504 groups
with order & were first described in James [20].

Recall the Baker—Campbell-Hausdorff formula [18] and the Lazard correspondence [8]
establish an isomorphism between the category of nilpotent Lie rings with pfdend
nilpotency class at mogt — 1 and the category of finite-groups with ordep” and class
at mostp — 1; in particular, this applies where > n. As a novel approach to proving
Theorem 1, we first determine the nilpotent Lie rings with ord®mand then exploit this
equivalence to obtain all of the-groups with ordep® for p > 5, excluding the 5-groups
of maximal class. The 5-groups with ordér&nd maximal class are well-known; see, for
example, Blackburn [5].

In Section 5, we present an algorithm to determine the nilpotent Lie rings with
order p". It is an analogue of the-group generation algorithm, which we now briefly
recall; for a detailed description see O'Brien [27]. LRtbe a p-group. The algorithm
uses the lowerp-central series, defined recursively B4 (P) = P and P;;1(P) =
[P;(P), P1P; (P)P fori > 1. Thep-class ofP is the length of this series. EaghgroupP,
apart from the elementary abelian ones, isramediate descendant of the quotientP/R
where R is the last non-trivial term of the lowep-central series ofP. Thus all the
groups with ordemp®, except the elementary abelian one, are immediate descendants of
groups with orderp* for k < 6. All of the immediate descendants ofpagroup Q are
quotients of a certain extension ¢@f; the isomorphism problem for these descendants
is equivalent to the problem of determining orbits of certain subgroups of this extension
under an action of the automorphism group @f Not all p-groups have immediate
descendants, those that do are calbegable. We observe that Lie ring calculations
are usually significantly easier for an arbitrary prime than those for the corresponding
groups.

We used thd.ie ring generation algorithm to determine all of the nilpotent Lie rings
with order p8 for all p > 2, and to obtairproduct presentations (see [17]) for them. We
then applied the Baker—Campbell-Hausdorffformula to “translate” these presentations into
group presentations; this is discussed in Section 4. In this way our Lie ring generation
algorithm leads to a list of presentations for the groups with opddor p > 5.
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In summary, forp > 3, there are 42 nilpotent Lie rings which have immediate
descendants with ordef. For p > 5 presentations for the corresponding groups are given
in Theorem 2. Table 1 gives the number of immediate descendants withtfterthese
42 groups. Theorem 1 is now an immediate consequence.

An alternative proof of Theorem 1 uses P. Hall’'s notion of isoclinism [15]; this is the
basis of the 1940 work of Easterfield [12] and the work of James [19,20]. Recall that two
groupsG and H are calledisoclinic if there are isomorphismg: G/Z(G)— H/Z(H)
andy : G’ — H’, such that for alg1, g2 € G,

81Z(G)p =h1Z(H), §2Z(G)p = h2Z(H), (81, g21¥ = [h1, h2].

For p > 5 the groups with ordes® are classified into 43 isoclinism families [12]. All of the
groups in a family are quotients of certain “generating groups”. The isomorphism problem
for these quotients is equivalent to the problem of determining orbits of certain subgroups
under (a quotient of) the automorphism group of each generating group. For a discussion
of this approach, see Section 7.

Easterfield [12] tabulated parametrised presentations for the groups withSrder
p = 5. We have, with the help of Robert McKibbin, checked this tabulation. It was chosen
initially because it seemed reasonably accurate and gave lots of detail about the groups
to help with checking. Easterfield’s tables are not completely error-free. Thepe-ark
groups missing from isoclinism famil13 and the presentations for one isoclinism family
(®10) had sufficient problems that we replaced them by the corresponding presentations of
James [20]. There were also a small number of typographical errors.

That the two proofs, via Lie ring generation and isoclinism, reach the same conclusion
significantly increases our confidence in Theorem 1.

We have created a database of parametrised presentations for the groups wigf order
for p > 5, based on the corrected Easterfield list. The database is currently designed for
use with MAGMA [7]; the data can readily be incorporated into other computer algebra
systems. The construction from the database of the list for a given prime is extremely
fast. For example, on an 800 MHz processoradWA constructs power-commutator
presentations [34] for the 860 groups with ord&itvabout 1 second, and for the 181076
groups with order 239in about 500 seconds.

We describe the construction, the content, and the organisation of the database in
Section 8 and in Section 9 discuss steps taken to verify the results.

2. Background

The first attempt to list the groups with orde? was made by Potron [32] in his Paris
thesis of 1904. He followed Burnside [10] and de Séguier [11] in using the structure of
the upper central factors as the basis for his classification. Miller [24] and Easterfield [12]
have drawn attention to substantial problems with Potron’s list. However, in retrospect, his
list exhibits some significant aspects of the situation. The list is partitioned into several
hundred cases each of which is described by a (usually parametrised) power-commutator
presentation. This can be done so that at most 2 parameters are used in addition to a prime
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parameter. The primes can be partitioned into 11 parts; with 2, 3, 5 separate and the others
classified according to whether their remainders modulo 3, 4, and 5 are 1 or not.

Miller [24] used maximal abelian normal subgroups as the basis of an attempt to
determine the groups with order 64. This led to the work by Senior and his collaboration
with Hall. From 1935 Brahana determined certain groups with class 2 and exppnent
mainly using projective geometric methods, see [9].

Easterfield in his 1939/1940 Cambridge dissertation [12] used isoclinism (which he
called isologism) as a basis for listing the regular (in the sense of Hall) groups. This
handles all primes greater than 5 and the prime 5 for nilpotency class less than 5. He also
handled the 5-groups with class 5 and determined the isoclinism families for the prime
3. James used a similar method in his PhD thesis [19], published (in amended form) in
1980 [20]. That paper has a number of inaccuracies. Some of these were pointed out by
Pilyavskaya [29].

Pilyavskaya (also transcribed Pylyavska) made a determination using maximal abelian
normal subgroups. Her approach is described in a document deposited in the VINITI
archive [30] and in her Candidate’s thesis [31]. Some errors were corrected in an English
version of her thesis which was circulated privately. Recently an exchange of emails
has resulted in other errors being corrected. This further supports the enumeration stated
in Theorem 1. There is agreement at the level of presentations in the small number of
isoclinism families that have been compared in detalil.

Other contributions to the problem include work by Tordella [35], Kipper [22], and
Baldwin [3].

3. Themain result

For p > 5, there are 42 groups with ordef for k < 6 which have immediate
descendants with ordgr®. These groups were determined directly using the Lie ring
generation algorithm. Of course, the result can also be deduced from the published
tabulations: Bagnera [2], de Séguier [11], Schreier [33], Bender [4], and James [20].

In Theorem 2 we record a finite presentation for each such capable groygar@nt),
and the number of its immediate descendants with gpfieThe finite presentation and the
listed p-class can be used to construct a power-commutator presentation. (For example, it
can be supplied with a specific primpeto the p-quotient algorithm [26].)

Theorem 2. For p > 5, the groups with order dividing p® which have immediate descen-
dantswith order p® are the following where w is a primitive root of unity mod p:

(1) (a|class3;

(2) (a,b|[b,al, class 2;

(3) (a,b|bP, class 2;

(4) {a,b| bP[b,al™?, class 2;

(5) (a,b|class 2,

(6) (a,b| aP, bP, class 3;

(7) (a,b| aP[b,a,al™™, bP, class 3;
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(8) (a,b| al[b,a,b]™t, b?, class 3;
(9) (a,b| aP[b,a,b]™®, bP, class 3;
(10) (a,b| aP[b,a,al™t, bP[b,a,b], class 3;

(11) (a,b| a?

(12) {(a,b|
(23) (a,b|
(14) (a,b|
(15) {(a,b|
(16) (a,b|

(18) (a,b|
(19) (a,b|
(20) {(a,b|
(21) {(a,b|
(22) {(a,b|
(23) {(a,b,c|
(24) (a,b,c|

(26) (a,b,c|
(27) {(a,b, c|
(28) (a,b,c|
(29) (a,b, c|
(30) (a,b,c|
(31) (a,b,c|
(32) {(a,b,c|
(33) (a,b,c|
(34) (a,b,c|
(35) (a,b,c|
(36) (a,b,c|
(37) {(a,b,c|
(38) (a,b,c|

[b,a,b], bP[b,a,al]®, class 3,

b,al, bl’z, class 3;

b,a]a*l’z, bl’z, class 3;

b,a,al, [b,a,b], b?, class 3;
b,a,bl, a’’, b?, class 3:

b,a,bl, a”’, bP[b,a,a]" L, class 3:

[
[
[
[
[
(17) (a,b| [b,a,b], a’*, bP[b,a,a]~®, class 3;
[b,a,al, a”’, bP, class 3:
[b,a,al, bP[b,a]"L, class 3;
[b,a], bP, class 4;

[b,a,b], a?, bP, class 4;

[

b,a,bl[b,a,a,al™t, a?, bP, class 4;

class 1;

[c,al, [c,bl,a?, bP, cP, class 2;

[b,al, [c,al, [c,b], cP, class 2;

[c,al, [c,b], bP, P, class 2;

lc,al, [c,b], bP[b,a]™ 1, cP, class 2;
[c,al, [c,b], bP, cP[b,a]l™L, class 2;
[c,al, [c,b], aP, bP, class 2;

[c,al, [c,b], aP[b,a]™L, bP, class 2;

[c, b], a?, bP, cP, class 2;

[c,bl, aP[b,al™L, bP, P, class 2;

[c,b], aP, bP[b,al L, cP, class 2;

[c, b], aP, bP[c,al™t, cP, class 2;

le,b], aP[b,a]™}, bP[c,al L, cP, class 2;
[b,a], [c,al, [c,b], b?, cP, class 3,
[b,a,b], [c,al, [c,b], aP, bP, cP, class 3;
[b,a,b], [c,al], [C,b][b,a,a]_l, aP, b?, ¢, class 3;

(39) (a,b,c,d] class };

(40) (a,b,c,d| [b,al, [c,al, [d,al, [c,b], [d,b], [d,c], b?, cP, dP, class 2,
(41) (a,b,c,d]| [c,al, [c,b], [d,al, [d,b], [d,c], a?, bP, cP, dP, class 2,
(42) (a,b,c,d,e| class }.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(25) (a,b,c|
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

The number of immediate descendants of each group is summarised in Table 1.

As presented, Theorem 2 concermpsggroups. We proved the theorem by using Lie
ring generation to construct the immediate descendants of each of the corresponding 42
nilpotent Lie rings; in Section 6 we illustrate some of the relevant calculations. The theorem
was also established using the corrected Easterfield list.
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Table 1
Number of immediate descendants with orgdérof the 42 parents
Parent Number of immediate descendants
1 1
2 2
3 p+15
4 1
5 p+8
6 5+3gcdp —1,3)
7 p+gcdp—1,3)+1
8 1+gcd(p —1,3)+gcdp—1,4)/2
9 1+gcdp —1,3)+gcd(p —1,4)/2
10 p+1
11 P
12 2
13 1
14 4
15 2gcdp—1,3)+gcdp —1,4) +3
16 Ap+1)/2
17 Ap+1)/2
18 2gcdp—1,3)+gedp —1,4) +3
19 2
20 2
21 3gcdp—1,4+2gcdp—1,3)+7
22 2p+2gedp —1,3) +gecdp —1,4) +2gcdp — 1,5)
23 3p +27
24 32 +13p +37+9gcdp — 1,3) + ged(p — 1, 4)
25 4
26 23
27 5
28 4
29 12
30 p+1
31 35
32 2p+13
33 4 +8
34 2p+3gcdp—1,3)+gedp —1,4) + 13
35 3
36 3
37 4gcdp —1,3)+2gecdp —1,4) + 11
38 2gcdp—1,3)+4
39 4p + 48
40 4
41 18
42 7

4. Baker—Campbell-Hausdor ff

It has been known since the 1950s that the Baker—Campbell-Hausdorff formula gives an
isomorphism between the category of nilpotent Lie rings with ogdleand the category
of finite p-groups with orderp” provided p > n. However, we are not aware that this
connection has been systematically exploited to classify fiiggoups until now.
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Let A be the free associative algebra with unity over the ratiofiaishich is freely
generated by non-commuting indeterminates. We extendA to the ringA of formal
power series consisting of the formal sums

00
E Unp,

n=0

whereu, is a homogeneous element of weighin A. If a € A, and if the homogeneous
component of: of weight 0 is 0, then we define

2 3
a a
€ =1ta+t o4+
in the usual way. The producte’ € A can be expressed in the formrlu for someu € A
with 0 as its homogeneous component of weight 0, and

0 n
e'e’ =e', wherev = Z(—l)"*lu—.
n
n=1

The Baker—Campbell-Hausdorff formula (see, for example, Jacobson [18]) enables us to
compute the homogeneous components. dthe first few components are given by

1 1 1 1
v=x+y— E[y,x]—i— 1—2[y,x,X]— 1—2[y,x,y]+ ﬂ[y,x,x,y]

—ﬁ)[y,x,x,x,x]er.

It turns out that all the homogeneous components afe Lie elements ot (that is,
elements in the Lie subalgebra afgenerated by andy with respect to the Lie product
[a, b] = ab — ba). A proof of this may be found in Vaughan-Lee [36]. A similar formula
holds for commutators

[, e] = e,

where
=1 ]+1[ ]+1[ ]+1[ ]+1[ ]
w=[y. x4 Sy, x. x4 Sy x yl+ gy xox x4+ Ly xoxy
1
Ty oyl

(Here [¢”, €'] is the group commutator@e *e’e*, and w is an infinite sum of Lie
elementsin.)

These formulae sometimes enable us to define a group structure on a Lie algebra.
Perhaps the simplest situation where this applies is whes a nilpotent Lie algebra
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over Q. As described in [1], the Baker—Campbell-Hausdorff formula provides an
isomorphism (the Mal’cev correspondence) between the category of nilpotent Lie algebras
overQ and the category of torsion-free divisible nilpotent groups.

The Baker—Campbell-Hausdorff formula also provides a connection betweeryfinite
groups and nilpotent Lie rings (ové&f) with prime-power order, in the case when the
groups and Lie rings are nilpotent of class at mpst 1. We write the element above as

v=uvi+vp e,

wherev; is a homogeneous Lie element of weightori =1, 2, ..., and we consider the
truncated expression

v(x,y)=vi+v2+ -+ vp_1.

Observe that the denominators of the coefficients that occui¢xiny) are coprime tagp.
If L is a Lie ring with orderp” (so thatL has characteristip for somek), and if L is
nilpotent of class at mogt — 1, then we can define a group operatiefi 6n L by setting

aob=1v(a,b) fora,belL.

This turnsL into a group with ordep”, and every finitep-group of nilpotency class at
mostp — 1 arises in this way from a finite Lie ring. Thisazard correspondence appears
as Exercise 8§7.4 in Bourbaki [8, Chapter 2].

5. ThelLiering generation algorithm

Our method of classifying nilpotent Lie rings with ordet closely follows thep-group
generation algorithm (see Newman [25] and O’Brien [27]). A Lie rinig an abelian group
under+ (addition) together with a bilinear product which satisfies

aa=0 forallaelL,
(ab)c + (bc)a + (ca)b=0 foralla,b,ce L.

(We useab to denote the Lie product af and b, rather than the more familide, b].)
Note that the axionaa = 0 together with bilinearity implies thdta = —ab. The identity
(ab)c + (bc)a + (ca)b = 0 is the Jacobi identity.

Since the Lie product is not associative the bracketing of a product is significant. We
adopt the left-normed convention whereby

aiar...a, = ( .. ((alaz)ag) .. .a,,,l)a,,.
For a Lie ringL we define théower central series

L>L%2>13>...>0>...
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by settingL? = (ab | a,b € L), andLt1 = (ab |a € L, b e L) for ¢ > 1. Itis easy to
show that a product af elements of. (with any choice of bracketing) lies ih. Further,
L° consists of the set of all linear combinations of left-normed produgts. . .a. of
elements ofL. We say that_ is nilpotent of class if L1 = {0}, L¢ # {0}.

When calculating in finite nilpotent Lie rings with prime-power order, lthweer p-cen-
tral series

L=L1>Ly>Lg>-->L;>---

is often more useful than the lower central series. This is defined for Lie rings in an
analogous way to groups. We sef = L, L, = L% + pL, and forc > 1 we setL. 1 =
L.L+ pL.. (HereL.Lis {(ab|a € L., b e L).) Note that we use superscripts to denote
terms of the lower central series, and subscripts to denote terms of the powentral
series. The ideal . consists of all linear combinations of terms of the form

2 -1
aiaz...a., paiaz...d.—1, pcaiaz...de—2, ..., p‘ cai.

We say that. hasp-classc if L.+1 = {0}, L. # {0}.

If L is a nilpotent Lie ring with finite ordep” for some primep, thenL.1 will equal
{0} for somec. In fact if L is nilpotent of clas& and if the exponent af as a finite abelian
group isp™ then L hasp-classc for somec with k < ¢ < k + m.

If L and M are two finite nilpotent Lie rings with prime-power order, thénis a
descendant of M if L/L. = M for somec > 2. If L/L. = M and L has p-classc (so
that L. # {0}, L.+1 = {0}) then L is animmediate descendant of M. Note that if L
is a descendant off then L/L, = M/M>, so thatL and M have the same generator
number.

The key idea for calculating nilpotent Lie rinds with order p” is as follows. If L
has p-class 1 therL is the direct sum of: copies ofZ,; call L elementary abelian. If
L has p-class greater than 1, thdnis an immediate descendant of a nilpotent Lie ring
with order p™ for somem < n. The starting point for calculating the nilpotent Lie rings
with order p® is to calculate the nilpotent Lie rings with ordgf for 1 < k < 6. For
each of these Lie rings we calculate the immediate descendants withySrdsrfollows.
Given ad-generator Lie ring we construct itg-covering ring]\?. This is ad-generator
Lie ring M having a central elementary abelian idgakuch thatﬂ/z = M and every
immediate descendant @f is isomorphic toA7I/T for someT < Z. HoweverIVI/T is
not an immediate descendantMf for every subringl’ < Z. If M hasp-classc (so that
M1 = {0}) then we define theucleus of M to be M.,1. ThenM/T is an immediate
descendant oM if and only if T is a proper subring o such thatT supplements
the nucleust.,1. It can happen that/,.,1 = {0}, in which caseM has no immediate
descendants andierminal.

Hence we obtain a complete list of the immediate descendamisloy calculating its
p-covering ringlVI, and listing the proper subrinds< Z such thatr +A7IC+1 =Z.(These
are theallowable subrings of Z.) If M is ad-generator Lie ring with ordep” thenZ is
elementary abelian of rank at me&t/ — 1)/2+ d(n — d + 1). The elementary abelian Lie
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ring with orderp® hasp-covering ring with ordep??; this is the largest ring we construct
in studying the nilpotent Lie rings with order dividinsf.

We now have a list of the immediate descendantdfgfand we can easily restrict
to those with a specified order. This list will usually contain redundancies, and we
need to solve the isomorphism problem. This is done as follows. We compute the
automorphism group a¥ and we extend each automorphisrof M to an automorphism
a* of M. (If M is generated byi1, ay, ..., as then we choose preimages, xo, ..., xq
in M for a1, az, ..., aq, and preimagesi, y. . .., yq in M for aie, asa, ..., aqe. Then
X1, X2, ..., X4 generathI, and we define™* by settingx;a* = y; fori =1,2,...,d.) Then
Zoa* = Z, and the action o&* on Z is uniquely determined by. Two allowable subrings
T1, T» define isomorphic descendari&/Tl, A’/I/Tz if and only if Toa* = Ty for some
automorphisna of M. We obtain a complete irredundant set of immediate descendants of
M by choosing a set of representatives for the orbits of the allowable subrirfysiofier
this action of the automorphism group &f.

The p-covering ring is completely analogous to tpecovering group. We refer the
reader to the proofs of the corresponding results in O’Brien [27, Section 2].

6. Liering examples

As an illustration of the Lie ring generation algorithm, we compute the descendants
with order p® of

A:(a,b| baa, pza, pb, class$

A is a 2-generator Lie ring with order® and p-class 3. If we apply the Baker—Campbell—
Hausdorff formula to its presentation then we obtain the following group presentation:

la.b|[b.a.al, a’’, b”, class 3.

This group presentation has the same form as that of the Lie ring, although this is not
always the case. (This is group 18 from Theorem 2.)

It is easy to show that /A has ordem? and is generated by + Ao, b + A»; further
A2/ Az has orderp? and is generated byz + A3, pa + Az; the last termAz has orderp
and is generated byub. Itis also easy to show thatdf, b’ are the images af, b under an
automorphism ofd thena’ = aa + yba + dpa + ebab andd’ = Bb + ¢ba + npa + 6bab
with «, 8 coprime top. Further, ifa’, b’ are of this form then there is an automorphism of
A mappinga, b to a’, b'. Hence the automorphism group 4tas ordexp — 1)2p8.

Let L be a2-generator Lie ring gf-class 4 such thdt/L4 = A. ThenL is generated by
a, b; further L, is generated bya, pa moduloL3 andL3 is generated byab moduloLg.
Recall thatL, is defined to be.3L + pL3. SinceL3 is generated modulb4 by bab we
see thatL, is generated byaba, babb and p(bab). Howeverbaa, p%a and pb are inLa,
and sobaba = baab = 0 and p(bab) = (pb)ab = 0. HenceL4 is generated byabb
andbaa = Ababb, p2a = pbabb, pb = vbabb for somex, u, v. SinceL4 has orderp,
we can think ofi, u, v as elements of,. It is easy to show that alp® values of the
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triple A, u, v define a Lie ringL with order p® and p-class 4 which is a descendantof
It remains to solve the isomorphism problem: when do two triplgs, v and A/, i/, v/
define isomorphic Lie rings?

We solve this problem by letting the automorphism groug @afct on the set of possible
presentations foL. In other words we consider a presentation

L={a,b|baa — rbabb, p*a — ubabb, pb— vbabb, class 4
for a descendant of with order p® and p-class 4, and we let
a’ =aa + yba + 8pa + ebab, b' = Bb+ ¢ba+ npa + 6bab.
Itis now easy to compute that
bd'a =a?Bbaa =a’Brbabb=aBf ?\bd'b'V,
p%a’ = ap?a = aubabb =g 3ub'a'b'V’,
pb' = Bpb + np%a = (Bv + nu)babb = a1 73(Bv + nu)b'a'b'b’.
Hence the triplest, u, v and «f—2x, B~3u, « 18~3(Bv + nu) determine isomorphic
algebras.
It follows easily that we get a complete set of pairwise non-isomorphic descendants of
A with order p® by taking triplesk, ., v satisfying the following properties:
e A=0o0r1,
e 1=0o0r1,or (wherp =1 mod 3)w or w? wherew is a primitive element iz,
e v=0whenu #0,v=00r1whem.=u=0,andwherh.=1,u=0thenv=0,1
or w, or (whenp = 1 mod 4)w? or w3 wherew is a primitive element irZ,.
Hence the number of descendants(@fb | baa, p%a, pb, class 3 with order p®
depends on the value pfmod 12, and is 2gdg — 1, 3) + gcdp — 1, 4) + 3.
We now apply the Baker—Campbell-Hausdorff formula to the Lie ring presentations

described above to obtain a complete and irredundant list of (group) presentations for the
immediate descendants of the group having presentation

{a.b|[b,a,al, a?’, bP, class 3.
The Baker—Campbell-Hausdorff formula applied to the Lie ring presentation
{a, b | baa — Ababb, p2a — wbabb, pb —vbabb, classl}
gives the group presentation

{a,b|[b,a,allb,a,b,b]™, a?’[b,a,b,b]™", bP[b,a,b,b]", class 4.
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Again, the group presentations have the same form as the Lie ring presentations, with the
same ranges for the parameters.

We sometimes obtain group presentations which differ significantly from the corre-
sponding Lie ring presentations. For example, when computing the immediate descendants
with order p® of

(a, b | bab, pza, pb — baa, class $,
we obtain presentations
{a, b | bab, pza, pb — baa — Abaaa, classl}

with 0 < A < p. (There are other descendants.) If we replaty —a in this presentation
then we obtain

{a, b | bab, pza, pb — baa + Abaaa, class Z},

and so it is clear that the parameterand—A give isomorphic Lie rings. If we let take
thevalues 01, ..., (p—1)/2then we getp + 1)/2 pairwise non-isomorphic descendants.
Applying the Baker—Campbell-Hausdorff formula to these presentations, we obtain the
group presentations

{a,b | [b,a,b], a”z, bP[b,a,al b, a,a,al* ™, classl}.

Note thati and —A must give isomorphic groups since the corresponding Lie rings are
isomorphic, and the groups obtained by letting- 0,1, ..., (p — 1)/2 are pairwise non-
isomorphic. In the group context it might seem more natural to parametrise these groups
with a parametep replacing the exponent1 1. In these terms the isomorphism question
is less transparent andy’ give isomorphic groups it — 1= +(u' — 1).

As another example, we consider the 4-generator Lie rings with gtland p-class 2.
Let L = (a,b,c,d) be a Lie ring of this form. As a first step we divide the problem up
into three cased. is abelian,L2 has orderp, andL? has ordemp?. (Recall thatZ? is the
derived ring{xy | x,y € L).)

Just as for groups, there is only one abelian 4-generator Lie ring with pfdand
p-class 2. It has additive structufg, © Z, ® Z 2 & Z .

If L2 has orderp then the map
(x+ L2,y + L2) = xy
defines an alternating bilinear map frdmiL, x L/Ly — L?. (Here we are viewind. /L2
as a 4-dimensional vector space o¥gr and we are viewing.? as a 1-dimensional vector

space oveZ,.) We may assume thdf is generated bya. Hence

ca=da=chb=db=dc=0 or ca=da=cb=db=0, dc=hba.
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In other words, ifL.2 has ordep then we may assume thatsatisfies one of these two sets
of commutator relations. A Lie ring satisfying the first set of relations cannot be isomorphic
to a Lie ring satisfying the second set.If has ordep? then (up to isomorphism) has
4 possible commutator structures.
We examine in detail the situation whérf has orderp and is generated by, and
whenca = da = cb = db =dc = 0. The centre of. has ordep” and equalgc, d)+ Ly, S0
{c,d) + L is a characteristic subring. Hence it is easy to see that#f, ¢/, d’ generatd.,
and if

cda'=dad =cb=db =dc=0
then (modulaLy)

a =aa+ Bb+ec+id, b =ya+8b+nc+6d,
¢ =i+ pud, d =vc+&d
forsomew, B, ..., & € Z, with 8 — By andr&é — uv coprime top. (Further, ifa’, b’, ¢, d’
are elements of this form, then they generatand satisfy the same commutator relations
asa,b,c,d.) It is convenient to think ofL, as a vector space of dimension 2 o%y.
Since(c,d) + Ly is a characteristic subring, we can now divide the current situation into
three subcasegic, pd are linearly independentic, pd span a space of dimension 1; and
pc=pd=0.
If pc, pd are linearly independent then we can choose

a =a+sc+id, b=b+nc+6d

so thatpa’ = pb’ = 0. Then we can choosé, d’ so thatpc’ = b'a’, and salL; is generated
by b'a’, pd’. Hence we have the presentation

{a,b,c,d|ca, da, cb, db, dc, pa, pb, pc —ba, class 2.

Next suppose thgbc, pd span a space of dimension at most 1. Then we may assume
that pd =0, so that

L={a,b,c)ad).

The subringa, b, ¢) must have ordep® and derived ring with ordep, and from the list of
nilpotent Lie rings with ordep® we see thata, b, ¢) is isomorphic to one of the following:

{(a,b,c|ca, cb, pb, pc, class 2, {(a,b,c|ca, cb, pb—ba, pc, class 2,
{a,b,c|ca, cb, pb, pc — ba, class 2, (a,b,c|ca, cb, pa, pb, class 2,
{(a,b,c|ca, cb, pa —ba, pb, class 2.
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These examples are fairly simple, but they illustrate the main ideas used. Sometimes the
relevant automorphism groups are hard to compute. Once an automorphism group has been
computed, then we calculate its action on the set of presentations under consideration. In
these cases it was easy to compute a set of representatives for the orbits of the presentations
under the action of the automorphism group, but this is sometimes a much harder problem.
The methods used here parallel one possible group theoretic approach pheltes two
example the group calculation is identical to the Lie ring calculation. But irptickass 4
example the linearity of Lie rings means that it is much easier to compute the action
of the automorphism group oA on the set of presentations far than it would be in
groups.

7. Isoclinism families

We use the determination (and linear ordering) of the isoclinism families provided by
Easterfield [12]. While it would technically be possible to verify his division into isoclinism
families using the algorithm of James, Newman, and O’'Brien [21], we see little merit
in doing this: the completeness of the list is established using Theorem 2, and hence its
organization into isoclinism families does not impact on its overall accuracy. In Table 2 we
record the corrected number of groups in each family.

As one example of the computations involved, we consilgy; our results agree with
Easterfield [12] and Pilyavskaya [29], but differ from James [20].

Each group in this family is a 4-generator group wijtftlass 2. Its central quotlent is
the elementary abelian group with orge€rwhich hasp-covering groupD with orderpl4
The defining generators df are labelledis, . . ., as. We choose the defining commutator
relations for the family to bes = [a2, a1] = [aa, az], as = a3, a1], ag = [a4, a2] with all
other commutators triviaky is a primitive root modp. Each member of this family is a
guotient of

(a1,....a10| as=laz, a1l = [aa, a3), as = la3, a1l, af = [aa, a2],

a7=af, ag:ag, ag:ag, al():af).

For this group the relevant quotient of its automorphism group has ongér2 1) x
(p*—p?).

If G is a group in this family, theitz” has rank 0, 1, or 2 and we use the rank of this
subgroup to help classify the individual groups in the family. For each gafup—,aS a6 ,
i=1,...,4, and we refer to the 8 4 matrix of these values as tleponent matrix. The
individual groups in this family are determined by the orbits4obn the exponent matri-
ces.



50021-8693(03)00777-4/FLA  AID:9967 Vol.eee(eee) i P.15 (1-19)
ELSGMLTM(YJABR) :m1 2004/01/13 Prn:5/02/2004; 11:39 yJabr996 by:V.Cer p. 15

M.F. Newman et al. / Journal of Algebra eee (eeee) see—eee 15
Table 2
Numbers for isoclinism families
Family Number of groups
1 11
2 31
3 32
4 3p +32
5 7
6 2p+21
7 21
8 p+5
9 3gcdp—1,3)+7
10 3gcdp —1,4)+3gecdp—1,3) +4
11 2p+10
12 p+13
13 p+10
14 3
15 p+3
16 p+gcdp—1,3) +12
17 gcdp —1,3)+4p+30
18 3p+gcdp—1,3)+gcdp—1,4) +9
19 Bp2+10p +21)/2
20 50 +gcdp—1,3) +gcdp —1,4) + 13
21 (Bp?+4p+5)/2
22 7
23 p+4agedp—1,3)+gedp—-1.4+5
24 gcdp—1,3)+3
25 (p+3)/2
26 (p+3)/2
27 gedp —1,3) +gecdp —1,4) + 3
28 )4
29 P
30 2gcdp—1,3)+4
31 7
32 5
33 6
34 3
35 gedp —1,4)+2
36 gcdp—1,4+gedp—1,6)+1
37 gcdp—1,4)+4
38 gcdp—1,4 +gedp—1,5+p
39 p+gcdp— 1,5 +gedp —1,6)
40 gedp—1,3)+2
41 gedp—1,3)+1
42 p+1
43 P

Power relations for thep + 3 groups together with other relevant information is
summarised in Table 3. The column ‘Stabiliser ordeL’ records the order of the subgroup
of GL(4, p) which stabilises the subgroup factored frém
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Table 3

Presentations and other information fbis
Group Defining relations Stabiliser order Rank®f

T S

1 o w9 B 2p*—D(pt—pd 0
2 as 9 9 Y 2p%(p -1 1
3 as ag [ 1% 2 2
4 as B0 a? 20p* - p? 2
5 as g 0 ag” 2(p* - p? 2
6...p+3 asag % (4] ag 2p2(p—1) 2

In the last rowr and g are solutions of the equations

woa? —w?—B2=kB fork=0,...,p—1, k #+20.

8. Thedatabase

The groups with order 64 and 729 are already available in electronic form in the
SMALL GRouPslibrary described in Besche et al. [6]. They can be accessed through the
computer algebra syster®\P [14] and MAGMA [7].

Recently a database for the groups with order divigiigor p > 5 has been prepared
by Eick and Girnat.

Both proofs of Theorem 1 provide parameterised presentations for the groups with order
p8, for p > 7. However, the presentations obtained by applying the Baker—Campbell—
Hausdorff to the product presentations are sometimes more complicated. Further, in some
families certain congruences have been solved explicitly by Easterfield [12].

Hence, the database is based on a corrected version of Easterfield’s list, and the linear
ordering employed is very close to his. It differs only in the addition of groupsiif) in
using the James presentations for the groupkiis and a small number of typographical
amendments.

Each group with ordep® is described by a power-commutator presentation on 6
generators and 21 relations: 15 are commutator relations and 6 are power relations. Each
presentation has the prime as a parameter. The additional (at most two) parameters
run though a small number of subsets [0 ..., p — 1]; the number can be made
independent ofp. Examples includgl, o] where w is a (fixed) primitive root and
transversals of cubes in the multiplicative group[af..., p — 1] mod p. There are
also some more subtle invariants corresponding to ovals in the affine plane over the
field of p elements. Sometimes the parameter range depends on the residue of the prime
modulo 4.

For example, the parameterized presentation

{a1....,a6] laz, a1l = aa, [a3,a1] = ag, a3, az) = as, [as,a1] = as,

_ p_.n p_ 5§
laa, a2] = ae, aj =ad, a} = azas},
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wheret is arbitrary andy € {1, ..., (p — 1)/2} describep (p — 1)/2 different groups with
orderp8. A more complex example is the following:

{a1.....a6 | laz,a1] = a3, [a3, a1]l = a4, a3, a2] = as, [as, a1] = ae,
—1l/o —n+1 —&+1
las, az] = ag ", al = alag"™", ab = asag**Y,

where? — w1y =ifori =1,..., p—1. (Allrelations whose right-hand sides are trivial
are not shown.)

The database contains about 500 parametrised presentations, most of thgsadne
only parameter. The precise number is not significant as it depends on decisions about the
fine structure of the underlying classification. The database also has functions for accessing
subsets of the corresponding groups. In particular, we provide a function which given a
prime p > 5 produces a complete and irredundant list of presentations for the groups with
order p8. Further, the groups in a particular isoclinism family or having a particular parent
can be listed.

9. Accuracy of results

We now comment on some of the steps taken to ensure that the enumeration and the
resulting database are accurate.

Observe that the primes can be partitioned according to the values of the residues which
occur in the formula of Theorem 1. The ggd— 1, 5) factor enters only from the count
of maximal class groups with ordef®; these groups were independently classified by
Blackburn [5]. Hence, for the remaining groups with orgérthe primes can be classified
according to the residue classes pf~ 1 modulo 3 and 4: representative primes are
5,7,11,13.

The p-group generation algorithm is implemented both as a stand-alone program and
in GAP and MAGMA. This allowed us to determine presentations for all the groups with
order p® explicitly for primesp up to 13. We used it in conjunction with the enumeration
algorithm of Eick and O’Brien [13] to verify Theorem 1 for all primes up to 23.

We also computed invariants, such as the structure of lower central series, for each
group. With a moderate set of invariants, the groups can be divided into a large number of
bins; the groups in each bin are very similar in structure and we now decide isomorphism
among the remaining groups. Influenced by our observation on representative primes, we
used invariant calculations and the isomorphism algorithm of O’Brien [28] to demonstrate
that the database list is complete and irredundanp fqrl3.

A useful check is to compare different determinations. Easterfield compared many of
his results against those of Potron; the one serious error occurs in an isoclinism family
(®13) which Potron missed. Pilyavskaya compared her work with that of James. We
have compared our results with those of earlier workers and those from our different
approaches. In particular, we established a correspondence for primes at most 13 between
the corrected version of Easterfield’s list and the list obtained from the application of the
Baker—Campbell-Hausdorff technique to the product presentations for nilpotent Lie rings.
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