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Abstract. We shall consider a genus two curve for cryptography,
that is an equation of the curve contains y-term. Sigma function
related to the curve is constructed by means of recurrence relations
in the form of a power series in coordinates of Jacobian variety and
parameters of the curve. Explicit expressions of the addition law
in terms of (i) Abelian functions and (ii) coordinates of two points
will be presented.

1. Introduction

We consider a family of genus two curves V which are of great interest
in hyperelliptic cryptography. These are curves of the form

(1) 0 = f(x, y) = −y2 + x5 + y(µ1x
2 + µ3x+ µ5)

+ µ2x
4 + µ4x

3 + µ6x
2 + µ8x+ µ10,

In our consideration coefficients µ = (µ1, µ3, µ5, µ2, µ4, µ6, µ8, µ10) are
complex variables in C8, and so (1) defines a family of curves over the
base C8.

The present paper is devoted to construction of sigma function re-
lated to curve (1) by means of the theory of multivariate sigma func-
tions developed by Leykin and Buchstaber in [1–4]. The theory is pro-
posed for a special class of curves called (n, s)-curves, and (2, 5)-curve
V(2,5)

0 = f(2,5)(z, w) = −w2 + z5 + λ4z
3 + λ6z

2 + λ8z + λ10.(2)

serves as the main example in [4].
Sigma function related to (1) is constructed by a new method, based

on a transformation from the known (2, 5)-curve V(2,5) to the curve in
question, and is defined by the formula

(3) σ(u;µ) = exp
{

1
20

(µ2
1 + 4µ2)

(
u21 + 1

20
(µ2

1 + 4µ2)u1u3

− 1
2

(
3

200
(µ2

1 + 4µ2)
2 − 1

2
(µ1µ3 + 2µ4)

)
u23

)}
×

1
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× σ(2,5)
(
u1 + 1

20
(µ2

1 + 4µ2), u3;λ(µ)
)
.

The expansion for σ(u, µ) is given in Appendix A. The reader could
find a similar expansion obtained by C. Eilbeck for a similar curve, see
http://www.ma.hw.ac.uk/Weierstrass/Hyp25/, though the curve in
the set of problem looks slightly defective in term µ1x

2 + µ3x + µ5

(taken with the opposite sign). So some coefficients in the expansion
and relations between Abelian functions differ from the obtained in this
paper.

Addition theorem for genus 2 curve goes back to Baker [5],

σ(u+ v)σ(u− v)

σ(u)2σ(v)2

= ℘1,1(u)℘1,3(v)− ℘1,1(v)℘1,3(u) + ℘1,1(v)− ℘1,1(u)

New results and generalization to hyperelliptic case can be found in
[6, 7], a summary in [8, p. 232]. Below an alternative method of con-
structing addition law is used. The method proposed firstly in [9],
where it is applied to a trigonal curve, gives a nice form of representing
an addition law, in the case of genus 2 curve V we have with u+v+w = 0

rank


1 0 ℘1,3(u) −1

2

(
℘1,1,3(u)− µ1℘1,3(u)− µ5

)
℘1,1(u)℘1,3(u)

1 0 ℘1,3(v) −1
2

(
℘1,1,3(v)− µ1℘1,3(v)− µ5

)
℘1,1(v)℘1,3(v)

1 0 ℘1,3(w) −1
2

(
℘1,1,3(w)− µ1℘1,3(w)− µ5

)
℘1,1(w)℘1,3(w)

0 1 ℘1,1(u) −1
2

(
℘1,1,1(u)− µ1℘1,1(u)− µ3

)
℘1,1(u)2 + ℘1,3(u)

0 1 ℘1,1(v) −1
2

(
℘1,1,1(v)− µ1℘1,1(v)− µ3

)
℘1,1(v)2 + ℘1,3(v)

0 1 ℘1,1(w) −1
2

(
℘1,1,1(w)− µ1℘1,1(w)− µ3

)
℘1,1(w)2 + ℘1,3(w)

 = 4.

(4)

Here an adaptation to the curve V defined by (1) is given.

2. Preliminaries

In this paper we focus on the curve V defined by (1), which is genus 2
hyperelliptic curve with five finite branch points, and one at infinity.
The curve is supposed not degenerate, that is its discriminant does
not vanish. However all constructions and computations are valid in
the case of degenerate curve. Homology basis {a1, b1, a2, b2} is intro-
duced in the standard way, see for example [10, p. 303]. The standard
cohomology basis consists of first kind differentials du = (du1, du3)

t,

du1 =
x dx

∂yf
, du3 =

dx

∂yf
,

and second kind differentials dr = (dr1, dr3)
t associated to the first

kind differentials, see [10, p. 306] for definition. The latter are known
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for genus 2 curve V(2,5) defined by (2) as in (10), and are obtained here
for curve V , see (9).

The Jacobian of a curve V is denoted by Jac(V), Abel’s map is
defined with the base point at infinity as

A(P ) =

∫ P (x,y)

∞
du

and also second kind integral

A∗(P ) =

∫ P (x,y)

∞
dr,

regardless of the singularity of dr at this point. The second kind inte-
gral is regularized through expansion at infinity, where

(5) x = ξ−2, y = ξ−5
(

1 +
µ1

2
ξ +

1

8
(µ2

1 + 4µ2)ξ
2 +

µ3

2
ξ3

+
(µ4

2
+
µ1µ3

4
− 1

27
(µ2

1 + 4µ2)
2
)
ξ4 +

µ5

2
ξ5 +O(ξ6)

)
.

Thus,

A∗(ξ) =

(
−ξ−1
−ξ−3

)
+

∫ P (x,y)

∞

(
dr1(ξ)− ξ−2
dr3(ξ)− 3ξ−4

)
.

Second kind integral relates to zeta function as follows, where points
(x1, y1), (x2, y2) form Abel’s preimage of u ∈ Jac(V)

r1(x1, y1) + r1(x2, y2) = −ζ1(u),

r3(x1, y1) + r3(x2, y2) = −ζ3(u) +
1

2
℘1,1,1(u).

Thoughout the paper we use Satō weights as subscripts for conve-
nience. The weight shows an exponent with opposite sign of the lead-
ing term in expansion about infinity in parameter ξ, namely wgtx = 2,
wgt y = 5, wgt f(x, y) = 10, wgtµi = i, and wgtu1 = −1, wgtu3 = −3,
wgt r1 = 1, wgt r3 = 3. The theory we use here respects Satō weight,
so every expression is homogenious in the weight.

3. Sigma function from curve transformation

Suppose we find a transformation (z, w) 7→ (x, y) from a known curve

f̃(z, w, λ) = 0 to a new one f(x, y, µ) = 0, and also a transformation of
coefficients λ 7→ µ. We need also cohomology bases on the both curves.
According to [2,3] a cohomology basis on a curve consists of g first and
g second kind differentials such that the period matrix with respect to
these differentials is symplectic. There is a way which allows to obtain
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such a basis avoiding computation of periods. Let R̃ = (dũ, dr̃)t be
the cohomology basis on the known curve, and R = (du, dr)t be the

basis on the new curve. Applying the transformations to R̃ we obtain

a matrix T of linear transformation from R to R̃ of the form

R̃ = TR, where T =

(
T11 T12
T21 T22

)
.

Evidently, T12 = 0. Moreover, T is a symplectic matrix, that is T
satisfies Legendre identity

T t JT = J, J =

(
0 J
−J 0

)
, J =

(
0 1
1 0

)
With the transformation defined above sigma-function transforms by

the rule

(6) σ(u;µ) = exp
(

1
2
ut(JT−122 T21)u

)
σ̃
(
T11u;λ(µ)

)
.

4. Transformation from (2, 5)-curve

Curve (1) is obtained from (2) by the transformation

w = y − 1

2

(
µ1x

2 + µ3x+ µ5

)
, z = x+

1

20

(
µ2
1 + 4µ2

)
,(7)

and

λ4 = µ4 +
1

2
µ1µ3 −

2

5
µ2
2 −

1

5
µ2
1µ2 −

1

40
µ4
1,

(8)

λ6 = µ6 +
1

2
µ1µ5 +

1

4
µ2
3 −

2

25
µ3
2 −

3

50
µ2
1µ

2
2 −

3

200
µ4
1µ2 −

µ6
1

800

− 3

20

(
µ2
1 + 4µ2

)(
µ4 +

1

2
µ1µ3 −

2

5
µ2
2 −

1

5
µ2
1µ2 −

1

40
µ4
1

)
,

λ8 = µ8 +
1

2
µ3µ5 −

µ4
2

125
− 1

125
µ2
1µ

3
2 −

3µ4
1µ

2
2

1000
− µ6

1µ2

2000
− µ8

1

32000

− 1

10

(
µ2
1 + 4µ2

)(
µ6 +

1

2
µ1µ5 +

1

4
µ2
3 −

2

25
µ3
2 −

3

50
µ2
1µ

2
2 −

3

200
µ4
1µ2 −

µ6
1

800

)
+

3

202

(
µ2
1 + 4µ2

)2(
µ4 +

1

2
µ1µ3 −

2

5
µ2
2 −

1

5
µ2
1µ2 −

1

40
µ4
1

)
,

λ10 = µ10 +
µ2
5

4
− µ5

2

3125
− µ2

1µ
4
2

2500
− µ4

1µ
3
2

5000
− µ6

1µ
2
2

20000
− µ8

1µ2

160000
− µ10

1

3200000

− 1

20

(
µ2
1 + 4µ2

)(
µ8 +

1

2
µ3µ5 −

µ4
2

125
− 1

125
µ2
1µ

3
2 −

3µ4
1µ

2
2

1000
− µ6

1µ2

2000
− µ8

1

32000

)
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+
1

202

(
µ2
1 + 4µ2

)2(
µ6 +

1

2
µ1µ5 +

1

4
µ2
3 −

2

25
µ3
2 −

3

50
µ2
1µ

2
2 −

3µ4
1µ2

200
− µ6

1

800

)
+

1

203

(
µ2
1 + 4µ2

)3(
µ4 +

1

2
µ1µ3 −

2

5
µ2
2 −

1

5
µ2
1µ2 −

1

40
µ4
1

)
.

By the method of [3], we find cohomology basis on V , which consists
of 2 standard first kind differentials, and 2 second kind differentials
associated to the first ones

R =


du3
du1
dr1
dr3

 =


1
x
x2

3x3 +
(
2µ2 + 1

2
µ2
1

)
x2 +

(
µ4 + 1

2
µ1µ3

)
x

 dx

∂yf
.(9)

Applying (7) and (8) to the cohomology basis on V(2,5)

R̃ =


dũ3
dũ1
dr̃1
dr̃3

 =


1
z
z2

3z3 + λ4z

 dz

∂wf
.(10)

we figure out transformation matrix T such that R̃ = TR. Actually,

T11 =

(
1 0

1
20

(µ2
1 + 4µ2) 1

)
, T22 =

(
1 0

− 1
20

(µ2
1 + 4µ2) 1

)
T21 =

(
1

202
(µ2

1 + 4µ2)
2 1

10
(µ2

1 + 4µ2)

− 1
20

(µ2
1 + 4µ2)

(
7

202
(µ2

1 + 4µ2)
2 − 1

2
(µ1µ3 + 2µ4)

)
− 1

202
(µ2

1 + 4µ2)
2

)
.

Thus,

JT−122 T21 =

(
− 1

20
(µ2

1 + 4µ2)
(

3
200

(µ2
1 + 4µ2)

2 − 1
2
(µ1µ3 + 2µ4)

)
1

202
(µ2

1 + 4µ2)
2

1
202

(µ2
1 + 4µ2)

2 1
10

(µ2
1 + 4µ2)

)
.

Finally, we come to (6).

5. Jacobi inversion problem

Here we take into account the solution of Jacobi inversion problem,
that is R4(x, y;u) and R5(x, y;u) vanish simultaneously at the Abel’s
preimage (xk, yk), k = 1, 2, of u, where

R4(x, y;u) = x2 − x℘1,1(u)− ℘1,3(u),(11a)

R5(x, y;u) = 2y +
1

2

(
℘1,1,1(u)− µ1℘1,1(u)− µ3

)
x(11b)

+
1

2

(
℘1,1,3(u)− µ1℘1,3(u)− µ5

)
.
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The functions R4 and R4 are obtained from Klein formula

F(x, y, xk, yk) + 2yyk
(x− xk)2

= xxk℘1,1(U) + (x+ xk)℘1,3(U) + ℘3,3(U)(12)

which holds for two points (xk, yk) of the divisor of u , where

U =

(∫ (x1,y1)

∞
du+

∫ (x2,y2)

∞
du

)
−
∫ (x,y)

∞
du,

and Klein bipolar is of the following form

F(x, y, z, w) = −y(µ1z
2 + µ3z + µ5)− w(µ1x

2 + µ3x+ µ5)

+ x2z2(x+ z) + (µ2
1 + 2µ2)x

2z2 + (µ4 + µ1µ3)xz(x+ z)

+ 1
2
µ1µ5(x+ z)2 + (µ2

3 + 2µ6)xz + (µ8 + µ3µ5)(x+ z) + µ2
5 + 2µ10.

Formula (12) is expanded in the vicinity of infinity when (x, y)→∞ in
parameter ξ, where (5) is applied. Function R4 arises as a coefficient
at ξ−6, and R5 as a coefficient at ξ−5.

Only four Abelian functions ℘1,1, ℘1,3, ℘1,1,1, and ℘1,1,3 occur in (11),
we use them as a basis in the differential field of Abelian functions
on the Jacobian Jac(V). Equations (11) are solved for these basis
functions:

℘1,1(u) = x1 + x3, ℘1,1,1(u) = −2
y1 − y2
x1 − x2

+ µ1(x1 + x2) + µ3,

℘1,3(u) = −x1x2, ℘1,1,3(u) = 2
y1x2 − y2x1
x1 − x2

− µ1x1x2 + µ5.
(13)

We use formulas (13) for computation of the basis Abelian functions
in terms of a divisor.

6. Addition formulas

Here we obtain addition law from trilinear relation, see [7, p. 104],
by the method developed in [9].

σ(u+A(ξ))σ(v +A(ξ))σ(w +A(ξ))

ψ3(ξ)σ(u)σ(v)σ(w)
= R6

(
x(ξ), y(ξ)

)∣∣∣
u+v+w=0

,(14)

where ψ is an entire function in ξ of the form, see [7, p. 79]

ψ(ξ) = exp

(
−
∫ ξ

0

A∗(ξ̃)dA(ξ̃)

)
.

Function R6 is extracted from the expansion of Klein formula (12) as
a coefficient at ξ−4.
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Proposition 6.1. Assume a rational funtion of order 3g = 6 on V

R6(x, y) = x3 + α1y + α2x
2 + α4x+ α6,(15)

vanishes at 2g = 4 points (xk, yk) and (zk, wk), k = 1, 2, which are
Abel’s preimages of u and v in the Jacobian of V. Then

(α2, α1)
t = −

(
M(u)−M(v)

)−1(
π(u)− π(v)

)
,

(α6, α4)
t = M(u)

(
M(u)−M(v)

)−1(
π(u)− π(v)

)
− π(u),

(16)

where

M(u) =

(
℘1,3(u) −1

2

(
℘1,1,3(u)− µ1℘1,3(u)− µ5

)
℘1,1(u) −1

2

(
℘1,1,1(u)− µ1℘1,1(u)− µ3

)) ,
π(u) =

(
℘1,1(u)℘1,3(u)

℘1,1(u)2 + ℘1,3(u)

)
.

Proof. We employ the relation in terms of (11)

(17) R6(x, y)− 1
2
α1R5(x, y;u)

−
(
x+ α2 + 1

2
µ1α1 + ℘1,1(u)

)
R4(x, y;u) = (1, x)Q(u),

where

Q(u) = (α6, α4)
t +M(u)(α2, α1)

t + π(u).

By the assumption R6(x, y) vanishes sumiltaneously with R4(x, y;u)
and R5(x, y;u) on the preimages of u and v. This implies Q(u) = 0
and Q(v) = 0, which form a system of linear equations with respect to
{α1, α2, α4, α6}. And (16) solves the system. �

In fact, the function (15) has 3g = 6 zeros on V . Besides the sets
(xi, yi), (zi, wi) it vanishes at two more points (si, ti), i = 1, 2, core-
sponding to w ∈ Jac(V) under Abel’s map. Then by the Abel’s the-
orem u + v + w = 0. The addition law on Jac(V) can be written
as

rank

I2 M(u) π(u)
I2 M(v) π(v)
I2 M(w) π(w)

 6 4 = 2g.

In the case of genus 2 curve it leads to (4).
Now we use (16) to obtain expressions for αs

α1 = 2
G8(u, v)

G7(u, v)
, α2 =

G9(u, v)

G7(u, v)
,
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where

G7(u, v) =
(
℘1,3(u)− ℘1,3(v)

)(
℘1,1,1(u)− ℘1,1,1(v)− µ1(℘1,1(u)− ℘1,1(v))

)
−
(
℘1,1(u)− ℘1,1(v)

)(
℘1,1,3(u)− ℘1,1,3(v)− µ1(℘1,3(u)− ℘1,3(v))

)
,

G8(u, v) =
(
℘1,3(u)− ℘1,3(v)

)2
+
(
℘1,1(u)− ℘1,1(v)

)(
℘1,3(u)℘1,1(v)− ℘1,3(v)℘1,1(u)

)
,

G9(u, v) =
(
℘1,1(u)2 − ℘1,1(u)2 + ℘1,3(u)− ℘1,3(v)

)
×

×
(
℘1,1,3(u)− ℘1,1,3(v)− µ1(℘1,3(u)− ℘1,3(v))

)
−
(
℘1,1(u)℘1,3(u)− ℘1,1(v)℘1,3(v)

)
×

×
(
℘1,1,1(u)− ℘1,1,1(v)− µ1(℘1,1(u)− ℘1,1(v))

)
.

Here we use basis functions ℘1,1, ℘1,3, ℘1,1,1, ℘1,1,3 of arguments u and v.
It is enough to have α1 α2 to obtain the addition law, which is written
for the same functions of −w = u+ v.

In order to find addition law we expand (14) about infinity, where
ξ → 0, Since the relation holds for every ξ, we obtain an infinite se-
quence of equations, which are produced by a finite number of relations.
Given a multi-index ν we denote pν = ℘ν(u)+℘ν(v)+℘ν(w) subject to
u+ v+w = 0. In the case #ν = 1 we have pi = −ζi(u)− ζi(v)− ζi(w),
i = 1, 3. So we are able to find all αk in terms of pν , namely

α1 = −p1,(18a)

α2 = −1

2

(
p1,1 − p21 − µ1p1

)
.(18b)

Coefficient of ξ−3 gives the equation

p3 +
1

2
p1,1,1 = 3α2α1 − α3

1 −
1

2
(µ2

1 + 4µ2)α1.(19)

From (18a) and (19) we find addition formulas in Frobenius-Stikelberger
form

ζ1(u+ v) = ζ1(u) + ζ1(v)− α1,(20a)

ζ3(u+ v) = ζ3(u) + ζ3(v)− 1

2

(
℘1,1,1(u) + ℘1,1,1(v)

)
(20b)

− 1

2
∂u1∂v1α1 + α1

(
3α2 − α2

1 −
1

2
(µ2

1 + 4µ2)
)
.

Appendix A. Expansion of sigma function

Sigma function related to curve (1) has the following expansion
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σ(tu1, t
3u3) =

(
u3 −

u31
3

)
t3 − 1

60
(µ2

1 + 4µ2)u
5
1t

5

−
(

1

24
(µ1µ3 + 2µ4)u

4
1u3 +

1

2520

(
(µ2

1 + 4µ2)
2 + (µ1µ3 + 2µ4)

)
u71

)
t7

+

(
− 1

720

(
8µ6 + 4µ1µ5 + 2µ2

3 + (µ2
1 + 4µ2)(µ1µ3 + 2µ4)

)
u3u

6
1

− 1

24
(µ6 + 2µ1µ5 + µ2

3)u
2
3(u3 − u31) +

1

181440

(
8(µ6 + 2µ1µ5 + µ2

3)

− 6(µ2
1 + 4µ2)(µ1µ3 + 2µ4)− (µ2

1 + 4µ2)
3
)
u91

)
t9 +O(t11).

Also the expansion for sigma function related to (2, 5)-curve (2) is
given below, cf. [7, p. 124]

σ(tu1, t
3u3) =

(
u3 −

u31
3

)
t3 −

(
λ4
12
u41u3 +

λ4
1260

u71

)
t7

+

(
λ6
6
u33 −

λ6
6
u23u

3
1 −

λ6
90
u3u

6
1 +

λ6
5670

u91

)
t9 −

(
λ8
6
u33u

2
1 +

λ8
30
u23u

5
1

+
λ8

1260
u3u

8
1 +

λ24
10080

u81u3 +
λ8

24948
u111 +

17λ24
1663200

u111

)
t11 +O(t13).

Appendix B. Relations between Abelian functions

Relations between Abelian functions defined on the Jacobian of V
defined by (1) are obtained from the expansion of Klein formula as
explained in Section 5

℘1,1,1,1(u) = 6℘1,1(u)2 + 4℘1,3(u) + (µ2
1 + 4µ2)℘1,1(u)(21a)

+ 2µ4 + µ1µ3,

℘1,1,1,3(u) = 6℘1,1(u)℘1,3(u)− 2℘3,3(u) + (µ2
1 + 4µ2)℘1,3(u),(21b)

℘1,1,3,3(u) = 2℘1,1(u)℘3,3(u) + 4℘1,3(u)2 + (2µ4 + µ1µ3)℘1,3(u).(21c)

℘1,3,3(u) = ℘1,3(u)℘1,1,1(u)− ℘1,1(u)℘1,1,3(u),(22a)

℘3,3,3(u) =
(
2℘1,3℘1,1 − ℘3,3 + 1

2
(µ2

1 + 4µ2)℘1,3

)
℘1,1,1(u)

−
(
℘1,3(u) + 2℘1,1(u)2 + 1

2
(µ2

1 + 4µ2)℘1,1(u)(22b)

+ 1
2
(µ1µ3 + 2µ4)

)
℘1,1,3(u).

℘1,1,1(u)2 = 4℘3
1,1 + 4℘1,1℘1,3 + 4℘3,3 + (µ2

1 + 4µ2)℘
2
1,1(23a)



10 JULIA BERNATSKA

+ (2µ1µ3 + 4µ4)℘1,1 + 4µ6 + 2µ1µ5 + µ2
3,

℘1,1,1(u)℘1,1,3(u) = 4℘2
1,1℘1,3 + 2℘2

1,3 − 2℘1,1℘3,3(23b)

+ (µ2
1 + 4µ2)℘1,1℘1,3 + (µ1µ3 + 2µ4)℘1,3 + 2λ8 + µ3µ5,

℘1,1,3(u)2 = 4℘1,1℘
2
1,3 − 4℘1,3℘3,3 + (µ2

1 + 4µ2)℘
2
1,3 + 4µ10 + µ2

5.(23c)

All relations are checked numerically with the expansion given in Ap-
pendix A
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