Data M odel Documentation

Table of Contents
[Data Model Documentation| .

a .

UJOQ
Q
<|
Q|
=
D
O
2

.
<
o

- ol -

|ass Hierarchy] .

oolean Data Objects
umeric Data Objects

ring Data Objectg

eneric Data Objectg
allLiteral Data Objectq .
[Extending the Data Objectd

pd

©CoOoO~NOOUIr~WERBRF

Data M odel Documentation

These HTML pages are available in book form as a postscript file and as a. PDF file.

Overview of the Data M odel

The Able data model provides acommon set of literal and variable data objects that are used in other Able
components, such asfilters, rule systems, and inference engines, and can be extended by others for private
needs.

Literals are immutable objects and are assigned avalue at construction time. Variablescan be assigned
values at any time, either from other variables or from literals. A set of operatorsallows comparing
literals and variables and assigning new values to variables.

All literals and variables are typed and fall into one of four categories:

1. Boolean - values are either true or false

2. Numeric - values are numbers, which are represented internally as Java doubles.
3. String - values are Java Strings.

4. Generic - values are any Java Object

When assigning or comparing values, some attempt is made at converting one data type to another. For
example, a numeric variable may be assigned a value from a boolean variable (or literal) since a boolean
data object, whose value is either true or false, is considered to have a numericvaue of either 1.0 or 0.0,
respectively. However, not all combinations of data assignment and comparison are possible, and
AbleDataExceptionare thrown when appropriate. For example, the lessthanoperator has no meaning for
generic datatypes whose "red" Java data types are not numbers or strings at the time an assignment or
comparison is made.

In adition to the four data types mentioned above, thereis afifth data type, called a call literal. Like other
literals, it isaread-onlyobject, but one that wraps an Able sensor or effector. This means that every time
acal literal’ s current value is requested, the data that is returned is actually the data obtained by calling
the wrappered sensor or effector. The returned data can be any Java Object but must be, of course, atype
expected by the receiving application.

All literals and variables implement, at minimum, the following methods found in the AbleRd interface,
which isthe interface that must be implemented by all "readable"data objects:

publ i c bool ean get Bool eanVal ue()
public AbleLiteral getFuzzyVal ue()

public Object get Generi cVal ue()
publ i c doubl e get Nuneri cVal ue()
public String get StringVal ue()

public AbleLiteral getValue()

AblelLiteral isapartia implementation of the AbleRd interface; AbleBooleanLiteral, AbleCallLiteral,
AbleGenericLiteral, AbleNumericLiteral, and AbleStringLitera are the concrete implementations.

Variablesimplement, at minimum, the additional following methods found in the AbleWr interface,
which isthe interface that must be implemented by all "writable" data objects:

public void setBool eanVal ue(bool ean)
public void setFuzzyVal ue(Abl eLiteral)
public void setGenericVal ue(vj ect)
public void set NunericVal ue(doubl e)
public void setStringVal ue(String)
public void setVal ue(AbleLiteral)

AbleVariableisa partial implementation of the AbleWr interface; AbleBooleanVariable,
AbleCategoricalVariable, AbleContinuousV ariable, AbleDiscreteVariable, AbleGenericVariable,
AbleNumericVariable, and AbleStringVariable are the concrete implementations.

Given the "get" and "set" methods listed above, the following coding is possible:

doubl e aDbl = soneNumericVar.get NunericVal ue();
bool ean aBool = soneNunericVar. get Bool eanVal ue();
String aStr = soneNumericVar.getStringVal ue();

anot her Nurer i cVar . set Nuneri cVal ue(abbl) ;
anot her Nuneri cVar . set Nunmeri cVal ue(sonmeNuneri cVar. get Nuneri cVal ue());
anot her Nuneri cVar. set Stri ngVal ue(aStr);

anot her Nuneri cVar. set Val ue(someNurreri cVar . get Val ue());

anyTypeO Var . set Val ue(anyQt her Var . get Val ue()) ;
anyTypeOf Var . set Val ue(anyTypeCfLiteral);

if (sonmeNunericVar.getNunericVal ue() <= anot her Nuneri cVar. get Nureri cVal ue())

However, al of the assignment and comparison operations above can be better accomplished using the
built-in "operators' defined in the AbleRd and AbleWr classes. AbleRd, the interface that defines
"readable" data objects, defines these comparison operators, which are implemented in all AbleLiterals
and AbleVariables:

public bool ean cnpEq (AbleRd) // ==

public boolean cnp& (AbleRd) // >

public bool ean cnp& Eq(Abl eRd) // >=

public double cnpls (AbleRd) // is, fuzzy conpare
public bool ean cnpLt (AbleRd) // <

publ i c bool ean cnpLt Eq(Abl eRd) // <=

public bool ean cnpNeq (AbleRd) // !=

AbleWr, the interface that defines "writable" data objects, defines these assignment operators, which are
implemented in all AbleVariables:

public void asgnEq(Abl eRd) /1 bool ean assi gnnent
public void asgnl s(Abl eRd) /1 fuzzy assi gnnent
public void asgnls(Abl eRd, double) // fuzzy asignment with correlation

Given the above comparison and assignment operators, the following style of coding is possible:

if (someNurericVar. cnplLt Eq(anot her NurrericVar)) {
soneStri ngVar . asgnEq(anot her Stri ngVar) ;

}

...and so on. In summary, these are the comparison operators implemented by al Ableliterals and
AbleVariables:

Method Function Usage
cmpEq Boolean compare, equal to (==) AbleRd.cmpEqg(AbleRd)
cmpGt Boolean compare, greater than (>) AbleRd.cmpGt(AbleRd)

cmpGtEq Boolean compare, greater than or equal to (>=) AbleRd.cmpGtEq(AbleRd)

cmpls Fuzzy compare (is) FsVarContinuous.cmpl s(FsSet)
cmpLt Boolean compare, less than (<) AbleRd.cmpLt(AbleRd)
cmpLtEq Boolean compare, less than or equal to (<=) AbleRd.cmpLtEq(AbleRd)
cmpNeq Boolean compare, not equal to (=) AbleRd.cmpNeg(AbleRd)

And these are the assignment operators implemented by all AbleVariables:

Method Function Usage
asgnEq Boolean assignment (=) AbleVariable.asgnEq(AbleRd)
asgnls Fuzzy assignment (is) FsVarContinuous.asgnEq(FsSet)

The remainder of this paper contains further details about all literals and variablesin the Able data
package.

Class Hierarchy

Here are the classes that make up the Able Data Mode!:

[IMAGE]

Remember that all literals and variables are classifed into basic types:

1. Boolean
2. Numeric
3. String

4. Generic

and lastly,
5. CdlLitera

Essentially, any data object can be compared to any other data object, and any data object and be assigned
to any variable. Thisis accomplished through the various get . . . Val ue() andset . .. Val ue() methods.
The following sections list the data objects in each category (boolean, numeric, string, and generic) and
contain a chart showing what each get . . . Val ue() method returns. Each method’ s return value depends,
of course, on the data object’s actual current "raw" value at the time the method isinvoked.

Looking at the chart for boolean data types, for example, you can see that when a boolean variable's
current value istrue, get Bool eanVal ue() returnstrue, get Nurrer i cVval ue() returns 1.0, and

get Stri ngVal ue() returns"True", but when the current value is false get Bool eanVval ue() returnsfalse,
get Nurrer i cVal ue() returns 0.0, and get St ri ngVval ue() returns"False". Thusit is possible to assign a
numeric variable a value from a boolean literal or variable, and so on.

When a particular combination is not possible, or when the current raw value of a particular data object
doesn't lend itself to conversion to another data type, an AbleDataException is thrown. This may happen,
for example, when trying to assign a numeric variable avalue from a string literal or string variable. If the
source string data object contains something like "123.456" or "-0.005", the assignment is possible,
because the string can be parsed into a number. But if the string data object contains something like
"Kilroy was here", an AbleDataException is thrown.

Boolean Data Objects
There are two boolean data objects. They are:

® AbleBooleanLiteral
® AbleBooleanVariable

Both the literal and the variable must be given an initial value of either true or false when created.

For convenience, there are two pre-defined, static AbleBooleanLiterals. AbleData.True and
AbleData.False.

Return values from boolean data object
get...Valueg() methods

Boolean
gsjr?:nts getBooleanValue() | getGenericValue() | getNumericValue() | getStringValue() getValue()
value
" " new
true true new Boolean(true) | 1.0 True AbleBooleanL iteral (true)
" " new
fase fase new Boolean(false) | 0.0 False AbleBooleanLiteral (false)

Numeric Data Objects
The numeric data objects are:
® AbleContinuousVariable

Continuous variables are numeric variables whose current value must be between aminimum and a
maximum, inclusive, both of which are specified when the variable is created. Any attempt to set a
continuous variable to avalue outside the specified range results in an AbleDataException.

For historical reasons, continuous variables have an initial value of Double.NaN.
o AbleDiscreteVariable

Discrete variables are numeric variables whose current value must be a value chosen from afinite list
of numeric values. The list of acceptable values can be specified when a discrete variable is created,
or it can be set for the variable at anytime. Methods are also provided to add and remove values from
the list of acceptable values. However, changing a variable' s acceptable value list after avariableis
created and used can have ramifications for the variable's current value. Any attempt to set a discrete
variable to avalue not in the acceptable value list results in an AbleDataException.

For historical reasons, discrete variables have an initial value of Double.NaN.

® AbleNumericLiteral
® AbleNumericVariable

Both the literal and the variable must be given an initial value when created. The value can be any
number as values are completely unrestricted.

Return values from numeric data object
get...Value() methods

Numeric

object’s

current
value

getBooleanValue() | getGenericValue() | getNumericValue() | getStringValue() getValug()

new

00 false new Double(0.0) | 0.0 0.0 AbleNumericL iteral (0.0)

any
non-zero I new

number, true new Double(n.m) nm nm AbleNumericLiteral(n.m)
n.m

String Data Objects

The string data objects are:

® AbleCategoricalVariable

Categorical variables are string variables whose current value must be a value chosen from afinite
list of strings. The list of acceptable strings can be specified when a categorical variable is created, or
it can be set for the variable at anytime. Methods are aso provided to add and remove strings from
the list of acceptable strings. However, changing avariable' s acceptable value list after avariableis

created and used can have ramifications for the variabl€’ s current value. Any attempt to set a
categorical variable to a string not in the acceptable string list results in an AbleDataException.

For historical reasons, categorical variables have aninitial value of AbleData.StringNull
("Able_NULL_Able").

® AbleStringLiteral
® AbleStringVariable

Both the literal and the variable must be given an initial value when created. The value can be any

string as values are completely unrestricted.

Return values from string data object
get...Valug() methods

String

Zgjr?:nts getBooleanValue() | getGenericValue() getNumericValue() getStringValue() getValue()

value
"true” o
i(ﬁgsitive) true new String(“true") | AbleDataException true AbleStringLiteral("true”)
"false" .
i(ﬁggtive) false new String("false") | AbleDataException false AblestingLiterdl(“false’)
string form
ofa o
gﬂrnﬁbelre AbleDataException | new String("n.m") | (Double.valueOf("n.m")).doubleValue() | "n.m AbleStringLiteral("n.m")
"n.m"
any other o
ircl)cr:?, AbleDataException | new String("foo") | AbleDataException foo AbleStringLiteral(“foo”)

Behavior of string data object
set...Value() methods

Source
gg{fcetnf setBooleanValue() setGenericValue() setNumericValue() setStringValue() setValue()
value

boolean .

true setStringVa ue(true) N/A

boolean)

false setStringV aue(false) N/A

Boolean, b N/A setBooleanV alue(b.booleanV alue()) N/A

Number, n N/A setNumericValue(n.doubleValue()) N/A

String, s N/A setStringValue(s) N/A

Abletterd, N/A setValue(a) NIA

Object, 0 N/A AbleDataException N/A

2”% double, N/A setStringV a ue(Doubl e.toString(n.m)) N/A
"foo"
For categorical

any String, variables, "foo"

"foo" N/A must bein the NIA
list of acceptable
strings.

an cals

Agl eLiteral N/A set...Vaue(a.get...Vaue()

a ’ depending on type of

literal

Generic Data Objects

The generic data abjects are;

® AbleGenericLiteral
® AbleGenericVariable

Both the literal and the variable must be given an initial value when created. The value can be any
Java Object as values are compl etely unrestricted.

Return values from generic data obj ect
get...Value() methods

Generic
zgjrf(;tms getBooleanValue() getGenericValue() getNumericValue() getStringValue() getValue()
value
1.0if true; "True" if true; new
Boolean, b | b.booleanvalue() b 00, if false "False" if false AbleGenericLiteral(b)
faseif new
Number, n n.doubIeVa_Iue()==0.0; n n.doubleValue() Double.toString(n.doubleValue()) AbleGenericL iteral(n)
true otherwise
trueif
s-equalsignoreCase("true); (DoublevalueOf(s)).doubleValue()
String, s falseif s or S new
s.equa ;I gnoreCase("false"); AbleDataException AbleGenericLiteral(s)
otherwise
AbleDataException
AbleLiteral, ! . new
a agetBooleanValue() a agetNumericValue() agetStringValue() AbleGenericL iteral(a)
any other . . . new
Object, 0 AbleDataException o AbleDataException o.toString() AbleGenericL iteral (o)

CallLiteral Data Objects
The call literal objects are:
e AbleCalLitera

A cal literal isawrapper for an Able sensor or effector. This means that every time acall literal’s current
value is requested, the data that is returned is actually the data obtained by immediately and
synchronously calling the wrappered sensor or effector. Call literals more or less expect that the data
returned by the wrappered sensor or effector is a Boolean, Number, or String, but in reality, any Java
Object is allowed. The returned data must be, of course, a type expected by the receiving application,
which will most likely use the get Generi cVval ue() method to obtain the call literal’ s value.

Cadll literals are unique in another respect: they can be used only on the right-hand side of a compare or
assignment operation. Attempts to use them on the left-hand side result in an AbleDataException. For
example, given two string literals, the literals may be used in either of the following ways and obtain
identical results:

bool ean testl
bool ean test2

stringLitA cnpEg(stringLitB);
stringLitB. cnpEq(stringLitA);

But when using a call literal in the expression, the following happens:

bool ean testl
bool ean test2

stringLitA cnpEq(callLitA); /] Perfectly OK
call Lit A cnpEq(stringLitA); /| Abl eDat aException !

The reason for this anomaly is simply performance: it isjust too inefficient to test for and convert data
types when a call literal, which can represent any datatype, is on the left-hand side of an expression. Y ou
might reason, then, and correctly, too, that the data type on the left-hand side of an expression sets the
tone for any conversions and compares that need to be done.

A get...Val ue() chartisnot given here, because the code dealing with return values from sensors and
effectorsis too complex to summarize nesatly in atable.

Extending the Data Objects

Whileit is not possible to add completely new data types to the Able data model, it is possible to extend
any of the existing data objects with additional or modified behavior. If you want to create a
ComplexNumberVariable, for example, you might start by extending the AbleNumericVariable class, the
AbleContinuousVariable class, or the AbleDiscreteVariable class, depending on whether you want your
complex numbers completely unrestricted, limited within a certain range, or limited to one-of-n complex
values, respectively. If you choose to extend AbleContinuousV ariable so that you can limit your complex
numbers to arange, you probably need to override the setDiscourselof), setDiscourseHi(), and
withinUniversOf Discourse() methods, among others, to get the desired behavior. Y ou also need to
override or perhaps even add new "operator" methods appropriate for your new ComplexNumber data
object.

Last modified: Thu Aug 24 10:09:33 CDT 2000

	Data Model Documentation
	
	
	Overview of the Data Model
	Class Hierarchy
	Boolean Data Objects
	Numeric Data Objects
	String Data Objects
	Generic Data Objects
	CallLiteral Data Objects
	Extending the Data Objects

