
 

 

FIPA-OS TaskGenerator Tool 
 
This tool can be used to auto-generate the message handling code associated with a FIPA protocol. The 
tool analyses a Java class file that contains a FIPA-OS protocol definition and auto-generates code that 
will handle the sending and receipt of messages associated with that protocol for both the initiator and the 
participant agents of a conversation. 
 
To be precise, this tool will generate Java source files that define the five classes needed to handle both 
side of a conversation. They are: 
 
The Initiator Handler Task 
 
The initiator handler task contains methods for sending the messages that can be sent by the 
conversation initiator agent, and also methods for receiving messages that can be sent by the 
conversation participant agent. 
 
The Initiator Ability 
 
The initiator ability is an interface that must be implemented by the initiator agent. It contains method 
signatures for callback methods that are invoked on the agent when a message is received by the initiator 
handler task. 
 
The Participant Handler Task 
 
The participant handler task contains methods for receiving messages that are sent by the conversation 
initiator agent. It also contains methods for sending the messages that can be sent by the conversation 
participant agent. 
 
The Participant Ability 
 
The participant ability is an interface that must be implemented by the participant agent. It contains 
method signatures for callback methods that are invoked on the agent when a message is received by 
the participant handler task. 
 
The Daemon Task 
 
The task generation tool creates a daemon task that the participant agent sets as its listener task. This 
daemon task listens for the first performative in a conversation and when it receives that performative it 
spawns a new Participant Handler Task and passes it the conversation to deal with. 
 
The generated class names are prefixed with the name of the class that defines the protocol. So for the 
FIPA request protocol, which is defined in a class called FIPARequest, the tool would generate the 
classes: 
 
FIPARequestDaemonTask.java 
FIPARequestInitiatorAbility.java 
FIPARequestInitiatorHandlerTask.java 
FIPARequestParticipantAbility.java 
FIPARequestParticipantHandlerTask.java 



 

 

Using the TaskGenerator Tool 
 

 
 
Using the tool is as simple as filling in the required fields and pressing the “Generate Code” button. The 
meaning of the fields is described below. 
 
Protocol Token 
The identifier for the protocol as it appears in the protocol field of a FIPA ACL message. 
 
Protocol Class 
The fully qualified name of the class containing the FIPA-OS definition for this protocol. The compiled 
class file that represents this protocol class must be in the Java classpath when the tool is run. 
 
Destination Package 
The Java package that you wish the generated classes to be placed in. 
 
ACL Language Field 
The value for the language parameter of ACL messages sent from the generated code. 
 
ACL Ontology Field 
The value for the ontology parameter of ACL messages sent from the generated code. 
 
License File 
If you wish, the tool can insert a license file or other header information as a Java comment at the start of 
each generated file. You can use the browse button to search for the license file using a file dialogue. 
 
Output Directory 
The location to which the generated Java files will be saved. You can use the browse button to specify 
the output directory using a file dialogue. 
 
Once you have defined a protocol generation template (a genmap), you can save it to disk in case you 
need to regenerate the Java code again. The file menu allows you to load and save .genmap files as XML 
structures on disk.



 

 

Generated Code 
 
 
The Handler Tasks 
 
In the FIPA request protocol the initiator can send the performative request 
 
The participant can send the performatives: agree, refuse, inform, failure 
 
Therefore the FIPARequestInitiatorHandlerTask will contain the methods: 
 
handleAgree 
handleRefuse 
handleInform 
handleFailure 
sendRequest 
 
The FIPARequestParticipantHandlerTask will contain the methods: 
 
sendAgree 
sendRefuse 
sendInform 
sendFailure 
 
Notice that the participant handler task does not contain a handleRequest method for the first 
performative sent by the initiator agent. This initial performative is handled by the participant handler 
task's startTask method. This is because the participant agent's daemon task has already intercepted the 
request message and passes it to a new FIPARequestParticipantHandlerTask through its constructor. 
 
The Ability Interfaces 
 
The interface methods are named in the format dealWith<protocol class name><performative to handle> 
 
The FIPARequestInitiatorAbility interface will define the signatures: 
 
dealWithFIPARequestAgree 
dealWithFIPARequestRefuse 
dealWithFIPARequestInform 
dealWithFIPARequestFailure 
 
The FIPARequestParticipantAbility interface will define the signatures: 
 
dealWithFIPARequestRequest 
 
Defining a FIPA-OS protocol 
 
With the introduction of the TaskGenerator tool, the format of a FIPA-OS protocol definition has changed 
slightly. The agent action component is now mandatory instead of optional. 
 
The format for a stage in a protocol is now: 
 
(<performative> <agent action> <sender> [next stage])+



 

 

As an example, the code for the FIPARequest protocol is given below: 

private static Object[] __after_agree =
{
FIPACONSTANTS.FAILURE, new Integer(CONVERSATION_END), new Integer(1),
FIPACONSTANTS.INFORM, new Integer(CONVERSATION_END), new Integer(1)
};

private static Object[] __after_request =
{
FIPACONSTANTS.NOT_UNDERSTOOD, new Integer(CONVERSATION_END), new Integer(1),
FIPACONSTANTS.REFUSE, new Integer(CONVERSATION_END), new Integer(1),
FIPACONSTANTS.AGREE, new Integer(AGENT_ACTION_REQ), new Integer(1), __after_agree
};

public static Object[] __protocol =
{
FIPACONSTANTS.REQUEST, new Integer(AGENT_ACTION_REQ), new Integer(0), __after_request
};


	FIPA-OS TaskGenerator Tool
	The Initiator Handler Task
	The Initiator Ability
	The Participant Handler Task
	The Participant Ability
	The Daemon Task
	
	Protocol Token
	Protocol Class
	Destination Package
	ACL Language Field
	ACL Ontology Field
	License File
	Output Directory
	The Handler Tasks
	The Ability Interfaces



