
odern control systems must meet in-
creasingly demanding requirements
stemming from the need to cope with
significant degrees of uncertainty, as
well as with
more dynamic

environments, and to provide greater
flexibility. This, in turn, means that con-
trol systems software is highly complex in that it invariably
has a large number of interacting parts [20]. This complexity
requires that state-of-the-art software engineering methods
and techniques be employed. In this article, we will argue that
analyzing, designing, and implementing such complex soft-

ware systems as a collection of interacting, autonomous, flexi-
ble components (i.e., as agents) affords software engineers
several significant advantages over contemporary methods.

In seeking to demonstrate the efficacy of the agent-ori-
ented software engineering approach
[11], the most compelling argument
would be to show quantitatively how
its adoption improved the develop-

ment process in a range of (control system) projects. Al-
though several applications have been deployed (see [15]
and [19] for overviews), such data are simply not available
(as is the case for other contemporary software engineering
approaches such as patterns, application frameworks, and
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component-ware). Given this fact, the best that can be
achieved is a qualitative justification for why agent-oriented
approaches are well suited to engineering complex control
systems. This general premise is then supported with two
specific case studies in the domains of industrial process
control (in particular, electricity transportation manage-
ment) and manufacturing control (in particular, manufac-
turing line control), where the experiences of using an
agent-based approach are assessed.

Before making the general case for agent-oriented software
engineering, however, we first discuss the characteristics of
complex software systems (of which control systems are natu-
rally an instance). We then discuss the methods that software
engineers have developed to help manage this complexity.

The role of any new software engineering paradigm is to
provide structures and techniques that make complexity eas-
ier to handle. Fortunately for designers, this complexity ex-
hibits several important regularities [20]. First, complexity
frequently takes the form of a hierarchy; that is, a system
composed of interrelated subsystems, each of which is in
turn hierarchic in structure, until the lowest level of elemen-
tary subsystem is reached. The precise nature of these orga-
nizational relationships varies between subsystems;
however, some generic forms (such as client-server, peer,
etc.) can be identified. These relationships are not static;
they often vary over time. Second, the choice of which com-
ponents in the system are primitive is relatively arbitrary and
is defined by the observer’s aims and objectives. Third, hier-
archical systems evolve more quickly than nonhierarchical
ones of comparable size (i.e., complex systems will evolve
from simple systems more rapidly if there are clearly identifi-
able stable intermediate forms than if there are not). Fourth,
it is possible to distinguish between the interactions among
subsystems and those within subsystems. The latter are
both more frequent (typically by at least an order of magni-
tude) and more predictable than the former. This gives rise to
the view that complex systems are nearly decomposable:
subsystems can be treated almost as if they are independent,

but not quite, since there are some interactions between
them. Moreover, although many of these interactions can be
predicted at design time, some cannot.

Drawing these insights together, a canonical view of a
complex system (Figure 1) can be defined. The system’s hi-
erarchical nature is expressed through the “related to”
links; components within a subsystem are connected
through “frequent interaction” links, and interactions be-
tween components are expressed through “infrequent inter-
action” links.

Given these observations, software engineers have de-
vised several fundamental tools of the trade to help manage
this complexity [2], [3].

• Decomposition: The most basic technique for tackling
large problems is to divide them into smaller, more man-
ageable chunks, each of which can then be addressed in
relative isolation (note the nearly decomposable sub-
systems in Figure 1). Decomposition helps tackle com-
plexity because it limits the designer’s scope.

• Abstraction: The process of defining a simplified
model of the system that emphasizes some of the de-
tails or properties while suppressing others. Again,
this works because it limits the designer’s scope of in-
terest at a given time.

• Organization: The process of defining and managing the
interrelationships among the various problem-solving
components (note the subsystem and interaction links
of Figure 1). This covers phenomena such as inheritance
(in object-oriented systems) and subroutines (in proce-
dural languages). The ability to specify and enact orga-
nizational relationships helps designers tackle
complexity by enabling a number of basic components
to be grouped together and treated as a higher-level unit
of analysis and by providing a means of describing the
high-level relationships among various units.

Having characterized complex software systems and
identified the fundamental software engineering ap-
proaches that help manage this complexity, the case for

agent-oriented software engineering
can now be made.

The Case for
Agent-Oriented
Software Engineering
The first step in arguing for an agent-ori-
ented approach to software engineer-
ing involves identifying the key
concepts of agent-based computing.
The first such concept is that of an
agent: “An agent is an encapsulated
computer system that is situated in
some environment and can act flexibly
and autonomously in that environment
to meet its design objectives” [22].

Several points about this definition
require elaboration. Agents are i)
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clearly identifiable problem-solving entities with well-defined
boundaries and interfaces; ii) situated (embedded) in a par-
ticular environment over which they have partial control and
observability—they receive inputs related to the state of
their environment through sensors and they act on the envi-
ronment through effectors; iii) designed to fulfill a specific
role—they have particular objectives to achieve; iv) autono-
mous—they have control over both their internal state and
their own behavior; v) capable of exhibiting flexible prob-
lem-solving behavior in pursuit of their design objectives, be-
ing both reactive (able to respond in a timely fashion to
changes that occur in their environment) and proactive (able
to opportunistically adopt goals and take the initiative) [24].

When adopting an agent-oriented view, it soon becomes
apparent that most problems require or involve multiple
agents: to represent the decentralized nature of the prob-
lem, the multiple loci of control, the multiple perspectives,
or the competing interests [1]. Moreover, the agents will
need to interact with one another, either to achieve their in-
dividual objectives or to manage the dependencies that en-
sue from being situated in a common environment. These
interactions can vary from simple semantic interoperation
(information passing), through traditional client-server-
type interactions, to rich social interactions (the ability to
cooperate [12], coordinate [10], and negotiate [13] about a
course of action). Whatever the nature of the social process,
however, two points qualitatively differentiate agent inter-
actions from those that occur in other software engineering
paradigms. First, agent-oriented interactions generally oc-
cur through a high-level (declarative) agent communication
language (often based on speech act theory [17]). Conse-
quently, interactions are conducted at the knowledge level
[16]: in terms of which goals should be followed, at what
time, and by whom (compare method invocation or func-
tion calls that operate at a purely syntactic level). Second,
as agents are flexible problem solvers, operating in an envi-
ronment over which they have only partial control and
observability, interactions need to be handled in a similarly
flexible manner. Thus, agents need the ability to make con-
text-dependent decisions about the nature and scope of
their interactions and to initiate (and respond to) interac-
tions that were not foreseen at design time.

In the majority of cases, agents act either on behalf of in-
dividuals/companies or as part of some wider initiative.
Thus, there is typically some underpinning organizational
context to the agents’ interactions. This context defines the
nature of the relationship between the agents and the rules
that must be adhered to during the interaction. For exam-
ple, the agents may be peers working together in a team, or
one may be the manager of the others, or the agents must
negotiate according to the rules of a particular auction
house. To capture such links, agent systems have explicit
constructs for modeling organizational relationships (e.g.,
manager, team member, auctioneer). In many cases, these
relationships are subject to ongoing change: social interac-

tion means existing relationships evolve (e.g., a team of
peers may elect a leader) and new relationships are created
(e.g., a number of unrelated agents band together to deliver
a service that no one individual can offer). The temporal ex-
tent of these relationships can also vary enormously: from
providing a service as a one-off to a permanent bond. To
cope with this variety and dynamism, agent researchers
have devised protocols that enable organizational group-
ings to be formed and disbanded [6], specified mechanisms
to ensure that groupings act together in a coherent fashion
[12], [10], and developed structures to characterize the
macro behavior of collectives [15], [24].

Drawing these points together (Figure 2), it can be seen
that i) adopting an agent-oriented approach to software en-
gineering means decomposing the problem into multiple au-
tonomous components that can act and interact in flexible
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Agents Versus Objects

Although there are certain similarities between
object- and agent-oriented approaches (e.g.,
both adhere to the principle of information hid-

ing and recognize the importance of interactions),
there are also several important differences [22]. First,
objects are generally passive in nature: they need to be
sent a message before they become active. Second, al-
though objects encapsulate state and behavior realiza-
tion, they do not encapsulate behavior activation
(action choice). Thus, any object can invoke any pub-
licly accessible method on any other object. Once the
method is invoked, the corresponding actions are per-
formed. Third, object orientation fails to provide an ad-
equate set of concepts and mechanisms for modeling
complex systems; for such systems “we find that ob-
jects, classes and modules provide an essential yet in-
sufficient means of abstraction” [2, p. 34]. Individual
objects represent too fine a granularity of behavior and
method invocation is too primitive a mechanism for
describing the types of interactions that take place.
Recognition of these facts led to the development of
more powerful abstraction mechanisms such as design
patterns, application frameworks, and compo-
nent-ware. Although these are undoubtedly a step for-
ward, they fall short of the desiderata for complex
system developments. By their very nature, they focus
on generic system functions, and the mandated pat-
terns of interaction are rigid and predetermined. Fi-
nally, object-oriented approaches provide only
minimal support for specifying and managing organiza-
tional relationships (basically, relationships are de-
fined by static inheritance hierarchies).



ways to achieve their set objectives; ii) the key abstraction
models that define the agent-oriented mindset are agents,
interactions, and organizations; and iii) explicit structures
and mechanisms are often used to describe and manage the
complex and changing web of organizational relationships
that exist among the agents.

From a control perspective, this view of software sys-
tems has several similarities to work on heterarchical sys-
tems in distributed control [8]. The work of [9], for example,
avoids the drawbacks of hierarchical control by distributing
the decision making into intelligent parts. However, the
work on heterarchical control tends to concentrate on the
distributed systems nature of these control systems and,
to a certain extent, on the autonomy of the individual
components, rather than on the flexible, high-level nature
of the interactions and the explicit representation of the or-
ganizational context.

The Software Engineering Credentials
of the Agent-Oriented Approach
Here the argument in favor of an agent-oriented approach to
software engineering is composed of the following steps: i)
show that agent-oriented decompositions are an effective
way of partitioning the problem space of a complex system,
ii) show that the key abstractions of the agent-oriented
mindset are a natural means of modeling complex systems,
and iii) show that the agent-oriented philosophy for model-
ing and managing organizational relationships is appropriate
for dealing with the dependencies and interactions that exist
in complex systems. When taken together, these steps form a
complete mapping (cross product) between the characteris-
tics of a complex system and the key software engineering ab-
stractions for handling complexity as they apply to agent-
based systems. Each step is now discussed in turn.

The Merits of Agent-Oriented Decompositions
Complex systems consist of a number of related subsys-
tems organized in a hierarchical fashion (Figure 1). At any
given level, subsystems work together to achieve the func-
tionality of their parent system. Moreover, within a subsys-

tem, the constituent components work together to deliver
the overall functionality. Thus, the same basic model of in-
teracting components, working together to achieve particu-
lar objectives, occurs throughout the system. Given this
fact, it is entirely natural to modularize the components in
terms of the objectives they achieve. (Indeed, the view that
decompositions based on functions/actions/processes are
more intuitive and easier to produce than those based on
data/objects is even acknowledged within the object-ori-
ented community (see [18, p. 44])). In other words, each
component can be thought of as achieving one or more ob-
jectives. A second important observation is that complex
systems have multiple loci of control: “real systems have no
top” [18, p. 43]. Applying this philosophy to objective-
achieving  decompositions  means  the  individual  compo-
nents should localize and encapsulate their own control.
Thus, entities should have their own thread of control (i.e.,
they should be active), and they should have control over
their own actions (i.e., they should be autonomous).

For the active and autonomous components to fulfill
both their individual and collective objectives, they need to
interact (recall that complex systems are only nearly de-
composable). However, the system’s inherent complexity
means it is impossible to a priori know about all potential
links: interactions will occur at unpredictable times, for un-
predictable reasons, between unpredictable components.
For this reason, it is futile to try to predict or analyze all the
possibilities at design time. It is more realistic to endow the
components with the ability to make decisions about the na-
ture and scope of their interactions at runtime. From this, it
follows that components need the ability to initiate (and re-
spond to) interactions in a flexible manner.

The policy of deferring to runtime decisions about compo-
nent interactions facilitates the engineering of complex sys-
tems in two ways. First, problems associated with the
coupling of components are significantly reduced (by dealing
with them in a flexible and declarative manner). Components
are specifically designed to respond to unanticipated re-
quests and can spontaneously generate requests for assis-
tance if they find themselves in difficulty. Moreover, because

these interactions are enacted through
a high-level agent communication lan-
guage, coupling becomes a knowl-
edge-level issue. This removes
syntactic concerns from the types of er-
rors caused by unexpected interac-
tions. Second, the problem of managing
control relationships among the soft-
ware components (a task that bedevils
traditional objective-based decomposi-
tions) is significantly reduced. All
agents are continuously active, and any
coordination or synchronization that is
required is handled bottom-up through
interagent interaction.

64 IEEE Control Systems Magazine June 2003

Agent

Interaction

Organizational
Relationship

Environment

Sphere of Visibility
and Influence

Figure 2. Canonical view of an agent-based system.



From this discussion, it is apparent that the natural way to
modularize a complex system is in terms of multiple autono-
mous components that act and interact in flexible ways to
achieve their objectives. Given this, the agent-oriented ap-
proach is simply the best fit.

The Suitability of Agent-Oriented Abstractions
A significant part of the design process is finding the right
models for viewing the problem. Typically, there will be mul-
tiple candidates, and the difficult task is choosing the most
appropriate one. When designing software, the most power-
ful abstractions are those that minimize the semantic gap
between the units of analysis that are intuitively used to
conceptualize the problem and the constructs present in
the solution paradigm. In the case of complex systems, the
problem to be characterized consists of subsystems, sub-
system components, interactions, and organizational rela-
tionships.

• Subsystems naturally correspond to agent organiza-
tions. They involve several constituent components
that act and interact according to their role within the
larger enterprise.

• The case for viewing subsystem components as
agents has been made above.

• The interplay between the subsystems and between
their constituent components is most naturally
viewed in terms of high-level social interactions: “In a
complex system at any given level of abstraction, we
find meaningful collections of objects that collaborate
to achieve some higher level view” [2, p. 34]. This view
accords precisely with the knowledge-level treatment
of interaction afforded by the agent-oriented ap-
proach. Agent systems are invariably described in
terms of “cooperating to achieve common objec-
tives,” “coordinating their actions,” or “negotiating to
resolve conflicts.”

• Complex systems involve changing webs of relation-
ships among their various components. They also re-
quire collections of components to be treated as a
single conceptual unit when viewed from a different
level of abstraction. Here again, the agent-oriented
mindset provides suitable abstractions. A rich set of
structures is available for explicitly representing orga-
nizational relationships [6]. Interaction protocols ex-
ist for forming new groupings and disbanding
unwanted ones. Finally, structures are available for
modeling collectives [12]. The latter point is espe-
cially useful in relation to representing subsystems, as
they are nothing more than a team of components
working together to achieve a collective goal.

The Need for Flexible Management
of Changing Organizational Structures
Organizational constructs are first-class entities (in the pro-
gramming language sense) in agent systems—explicit rep-

resentations are made of organizational relationships and
structures. Moreover, agent-oriented systems have the con-
comitant computational mechanisms for flexibly forming,
maintaining, and disbanding organizations. This represen-
tational power enables agent systems to exploit two facets
of the nature of complex systems. First, the notion of a primi-
tive component can be varied according to the needs of the
observer. Thus, at one level, entire subsystems can be
viewed as singletons or collections of agents can be viewed
as primitive components, and so on, until the system even-
tually bottoms out. Second, such structures provide the sta-
ble intermediate forms that are essential for the rapid
development of complex systems. Their availability means
that individual agents or organizational groupings can be
developed in relative isolation and then added into the sys-
tem in an incremental manner. This, in turn, ensures a
smooth growth in functionality.

Will Agent-Oriented Techniques
Be Widely Adopted?
Two key pragmatic issues will determine whether agent-
oriented approaches catch on as a software engineering
paradigm: the degree to which agents represent a radical
departure from current software engineering thinking and
the degree to which existing software can be integrated
with agents.

Several trends become evident when examining the evolu-
tion of programming models. First, there has been an inexora-
ble shift from languages whose conceptual basis is
determined by the underlying machine architecture to lan-
guages whose key abstractions are rooted in the problem do-
main. Here the agent-oriented world view is perhaps the most
natural way of characterizing many types of problems. Just
as the real world is populated with objects that have opera-
tions performed on them, so it is equally full of active, pur-
poseful agents that interact to achieve their objectives.
Indeed, many object-oriented analyses start from precisely
this perspective: “We view the world as a set of autonomous
agents that collaborate to perform some higher level func-
tion” [2, p. 17]. Second, the basic building blocks of the pro-
gramming models exhibit increasing degrees of localization
and encapsulation [19]. Agents follow this trend by localizing
purpose inside each agent, by giving each agent its own
thread of control, and by encapsulating action selection.
Third, ever richer mechanisms for promoting reuse are being
provided. Here, the agent view also reaches new heights.
Rather than stopping at reuse of subsystem components (de-
sign patterns and component-ware) and rigidly preordained
interactions (application frameworks), agents enable whole
subsystems and flexible interactions to be reused. In the for-
mer case, agent designs and implementations are reused
within and between applications. Consider, for example, the
class of agent architectures that have beliefs (what the agent
knows), desires (what the agent wants), and intentions (what
the agent is doing) at their core [23]. Such architectures have
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been used in a wide variety of applications, including air traf-
fic control, process control, fault diagnosis, and transporta-
tion [15], [19]. In the latter case, flexible patterns of
interaction such as the contract net protocol [21] (an agent
with a task to complete advertises this fact to others that it
believes are capable of performing it; these agents may sub-
mit a bid to perform the task if they are interested, and the
originator then delegates the task to the agent that makes the
best bid) and various forms of resource-allocation auction

(e.g., English, Dutch, first- and second-price sealed bid [25])
have been reused in numerous applications (see the manu-
facturing line control scenario). In short, agent-oriented tech-
niques represent a natural progression of current software
engineering thinking, and, for this reason, the main concepts
and tenets of the approach should be readily acceptable to
software engineering practitioners.

The second factor in favor of a widespread use of agents
is that their adoption does not require a revolution in
terms of an organization’s existing software systems.
Agent-oriented systems are evolutionary and incremental,
as legacy (nonagent) software can be incorporated in a rel-
atively straightforward manner (see the electricity trans-
portation case study). The technique used is to place
wrapping software around the legacy code to serve as an
agent interface to the other software components. Thus,
from the outside, the wrapper looks like any other agent;
on the inside, it performs a two-way translation function:
taking external requests from other agents and mapping
them into calls in the legacy code and taking the legacy
code’s external requests and mapping them into the appro-
priate set of agent communication commands. This ability
to wrap legacy systems means agents may initially be used
as an integration technology. As new requirements are
placed on the system, however, bespoke agents may be de-
veloped and added. This feature enables a complex system
to grow in an evolutionary fashion (based on stable inter-
mediate forms) while continually maintaining a working
version of the system.

Case Studies
Having discussed the potential benefits of agent-based sys-
tems for complex systems in general, we now present two
specific agent-based control system applications. The goal in
presenting these case studies is twofold: i) to ground the ab-
stract concepts of agent-based computing in specific applica-

tion contexts and ii) to highlight the practical advantages
that can accrue from an agent-based solution. Moreover, the
scope and applicability of agent-based solutions is empha-
sized by discussing two examples that are at fundamentally
different levels of the control spectrum: control of an entire
network and control of an individual production line.

Electricity Transportation Management
This application was developed and deployed by the Spanish

electric utility Iberdrola (more details
of the underpinning agent technology
can be found in [14], and more details
of its application in this domain can
be found in [7]). Generally, energy
management is the process of moni-
toring and controlling the cycle of
generating, transporting, and distrib-
uting electrical energy to industrial
and domestic customers. Generation
transforms raw energy (hydraulic,

thermal, nuclear, and solar) into a more accessible form that
then needs to be transported from its generation site to the
consumer. To minimize losses during transportation, the
electrical voltage is made high (132 kV or above) before it is
placed on a transport network and sent over many hundreds
of kilometers. Finally, the voltage is lowered and electricity is
delivered to consumers using a distribution network involv-
ing many kilometers (all below 132 kV) spread over a much
smaller area.

To ensure that the transportation network remains
within the desired safety and economical constraints, it is
equipped with a sophisticated data acquisition system
(SCADA) and several conventional application programs
that help the operator (a control engineer) analyze it (these
programs are primarily designed for normal operating con-
ditions). The network’s operation is monitored from a dis-
patching control room (DCR), and whenever an unexpected
event occurs, hundreds of alarms are automatically sent to
it by the SCADA system. Under these circumstances, the op-
erator must rely on experiential knowledge to analyze the
information, diagnose the situation, and take appropriate
remedial actions to return the network to a safe state. To re-
duce the operators’ cognitive load in such circumstances
and to help them make better decisions faster, Iberdrola
first developed several (stand-alone) decision support sys-
tems (e.g., a real-time database that stores information
about the state of the network and an alarm analysis expert
system that diagnoses faults produced in the network based
on the alarm messages received at the DCR). To improve
this support, Iberdrola decided that these systems should
interoperate to produce a coherent view and that new func-
tionality should be added (to enable the control engineer to
actually perform and dynamically monitor the service res-
toration process and also to exploit the new data sources,
such as chronological information and faster rate snap-
shots, which became available as the SCADA system was im-
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proved). What follows is a description of how these goals
were achieved using agent technology.

Why Use Agent Techniques for This Application?
This application required the tried and tested decision sup-
port tools to be integrated and extended with new function-
ality. Two means of realizing this system upgrade strategy
were considered: extend the existing systems to cover the
new features or follow a distributed approach and allow the
new functionality to be expressed as distinct computational
entities that can interact with the existing systems through
a common distribution platform. The second option was
chosen because it was considered the most effective means
of the following:

• Permitting reasoning based on information of different
granularity. Two types of alarms, nonchronological and
chronological, need to be dealt with. In the former
case, the time stamped is coincident with the time of
acquisition by the control system (consequently, it is
conditioned by the control system’s polling mecha-
nism), whereas in the latter case, the time stamped is
coincident with the actual occurrence of the event. As
chronological alarms represent a more accurate pic-
ture of events in the network, they generally lead to a
swifter diagnosis; however, they have the disadvan-
tage that chronological information has a low priority
in Iberdrola’s communication channels. Thus, when
the channels are saturated (as often happens during a
disturbance), their time of arrival is unpredictable. For
these reasons, a new alarm analysis expert system was
built that utilized chronological information and could
subsequently integrate its results with those of the pre-
existing system, rather than constructing a monolithic
system that received both types of data and had to em-
body both types of diagnostic knowledge.

A similar situation occurs when considering ser-
vice restoration. Two types of information are rele-
vant to this activity: snapshots (which provide a
comprehensive picture of the current state of all the
network’s components) and alarm messages (which
show how the state of the components has changed
over time). The former can be produced relatively
quickly and give a complete picture of the system’s
state, whereas the latter may take several minutes for
a large disturbance but are needed to indicate the
type of fault from which the system must be restored.
Rather than trying to place both types of information
and reasoning in a single system, it seemed more natu-
ral to develop a service restoration subsystem that
dealt mainly with snapshots and received the neces-
sary high-level information about the equipment at
fault from a diagnosis subsystem (rather than trying
to deal with the raw alarm messages themselves).

• Allowing the inclusion of different network models
within the same system. Some of the problem solvers

need to work on the SCADA model of the network,
while others need the applications network model (a
model that permits differential equations to be solved
and takes into account the physical characteristics of
all its components). Rather than trying to combine
and harmonize these complex and disparate models
at design time, it was decided that each subsystem
should work on whichever model was most appropri-
ate for its task. Then the various components can in-
teract at runtime to resolve any inconsistencies that
arise from their use of different network models.

• Enabling the use of several different problem-solving
paradigms. The diverse range of activities that need to
be performed means there is no universally best prob-
lem-solving paradigm; procedural techniques are re-
quired for algorithmic calculations such as
connectivity (to know which component is connected
to which other) and load-flow analysis (solution of the
differential equations), whereas symbolic reasoning
based on heuristic search is best for diagnosis. A dis-
tributed approach enabled each component to be en-
coded in the most appropriate method.

• Meeting the application’s performance criteria. Trans-
portation management is a time-critical application,
and as many different types of information can be pro-
cessed in parallel, with only a small synchronization
overhead, the response time of the overall system can
be improved through the use of several intercon-
nected machines.

Having decided on a distributed approach, a choice had
to be made between using more conventional distributed
processing techniques or agent-based techniques. Here the
latter was adopted for the following reasons:

• Robustness: As the subsystems have overlapping do-
mains of expertise, the failure of one of them to pro-
duce an answer does not necessarily mean that no
solution will be forthcoming (because one of the other
systems may be able to produce at least a partial solu-
tion). However, to achieve this backup functionality
flexibly, the different problem-solving components
need to be intelligently coordinated in a context-sensi-
tive manner (see the cooperative scenario for more
details), a task beyond present-generation distributed
processing systems.

• Reliability: The solutions of the overlapping systems
can be cross referenced so as to present the operator
with more reliable information. Again, however, this
cross-referencing functionality needs to be properly
managed according to the prevailing circumstances
and thus requires dynamic and flexible reasoning to
take place.

• Natural representation of the domain: An agent-based
approach accurately represents the way the control
engineers work when a large disturbance occurs.
They perform specialized roles—one works toward
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restoration, another tries to diagnose the problem
based on different sources of information, and so
on—and they communicate relevant information to
one another to ensure they are following a coherent
course of action toward the overall objective of re-
storing the service.

Specification of the Agents
During normal working conditions, management of the net-
work by the operator in the DCR consists mainly of routine
and simple tasks. However, during emergency situations,
management becomes considerably more difficult because of
the large number of constraints that must be taken into con-
sideration and the insufficient quality of the information
available to make these decisions. Emergency situations typi-
cally originate from a short circuit in a line, bus bar, or trans-
former. They can be exacerbated by equipment mal-
functioning (e.g., a breaker failing to open) or subsequent
overloads (a domino effect can cause one line to fail because
of an overload, which in turn increases the load on neighbor-
ing lines so they become overloaded and subsequently fail,
and so on). The situation can become even worse if power
stations become disconnected, as this will cause an imbal-
ance in the network’s power. Consequently, actions to restore
service must be taken rapidly and accurately so that what
starts as a relatively minor problem does not escalate into a
major disaster. In these circumstances, the actions the opera-
tor can perform consist mainly of breaker operations, topol-
ogy changes, and activation/deactivation of automatisms
and protective relays. For larger disturbances, however, ac-
tions on power plants may also be required. From this de-
scription of the control engineer’s job, a top-down analysis
determined that a comprehensive decision support system
should cover the following activities:

• detect the existence of disturbances; sometimes the
operation of protective relays and breakers can be
caused by routine maintenance, and this should not
be confused with genuine disturbances

• determine the cause, location, and type of the distur-
bance, including identifying if any equipment is per-
manently damaged

• analyze the situation of the network once it arrives at
a steady state

• prepare a restoration plan to return the network to its
original operational state.

Allying this top-down analysis with the bottom-up per-
spective of examining the extant systems, we decided to en-
capsulate the following preexisting systems as agents: the
alarm analysis expert system and the interface to the con-
trol system. As discussed earlier, the availability of chrono-
logical alarm messages necessitated a new diagnosis
system, which we decided to make available as an agent. Fi-
nally, it was always known that information about the initial
area out of service (the blackout area) could help constrain
the search for the faulty equipment; however, developing a

dedicated stand-alone system for this purpose was never
deemed cost-effective since the original alarm analysis ex-
pert system’s performance was considered satisfactory (if
somewhat slow). However, through the use of agent tech-
nology, much of the basic infrastructure to implement this
functionality was now available from other agents, so devel-
oping a system capable of producing this information was
considered economically viable.

In more detail, the operational system consists of seven
agents running on five different machines (Figure 3). This
figure shows a small portion of the Iberdrola network, which
contains four substations (Sestao, Sodupe, Erandio, and
Achuri). Each of these substations has a corresponding re-
mote transmission unit (RTU) that sends information to the
DCR in Bilbao about the status of its bus bars, breakers, and
other electrical components. In the DCR, this information is
collected by the front-end computer and made available to
the cooperating agents through the control system’s inter-
face functions.

• BRS (breakers and relays supervisor): The new alarm
analysis expert system detects the occurrence of a dis-
turbance, determines the type of fault and its extent,
generates an ordered list of fault hypotheses, validates
hypotheses, and identifies malfunctioning equipment.
To perform its analysis, it takes two types of inputs:
chronological alarm messages and snapshots of the net-
work that give the status of every breaker and switch.

• AAA (preexisting, nonchronological alarm analysis agent
expert system): This agent pursues similar goals to the
BRS, but the quality of information it receives is inferior
to that of the BRS. Although the alarm messages re-
ceived by both systems relate to the same physical op-
erations, those received by the AAA represent ±5 s
accuracy, whereas those received by the BRS are pre-
cise. This means that if the data are error free, then the
BRS performs a better diagnosis than the AAA. However,
if some of the chronological information is lost (a dis-
tinct possibility when the SCADA system is busy), the
BRS may perform worse than the AAA. Therefore, when-
ever incomplete or erroneous information exists, which
is true in most interesting cases, there is a need for coop-
eration between the two systems to make the overall
system more robust and reliable (see below).

• SRA (service restoration agent): This agent devises a ser-
vice restoration plan to return the network to a steady
state after a blackout has occurred. To do so, it takes
into account the constraints imposed by the damaged
equipment as identified by the diagnosis agents.

• UIA (user interface agent): This agent implements the
interface between the users and the community of
agents. It allows the user to inspect the results pro-
duced by the diagnosis agents, display the alarms re-
ceived, and browse through the log of analyzed
disturbances. From the standpoint of restoration, the
user can see the plan produced, modify it, run it in a
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simulated environment to see its predicted effect, and
request the development of a new restoration plan
that takes into account the actions that are deemed
pertinent. Through the use of a distributed window-
ing system, the UIA presents the appropriate informa-
tion on the consoles of the various control engineers
who are working on the system (Figure 3 shows two
such control engineers, one working on restoration
activities and one on diagnosis activities).

• BAI (blackout area identifier): When a fault occurs, the
network’s protective relays and breakers automatically
try to isolate the minimum amount of equipment possi-
ble; in an ideal case, only the element at fault would be
isolated. The BAI’s objective is to identify which ele-
ments of the network are initially out of service, as the
actual element at fault must be within this region. It uses
nonchronological alarm messages as its information
source and cooperates with the BRS and the AAA to in-
crease the efficiency of the overall diagnosis process.

• CSI (preexisting control system interface): The CSI acts as
the front end to the control system computers. Its objec-
tives are to acquire and distribute network data to the
other agents, to interface with the conventional man-
agement system application programs, and to monitor
the restoration process to detect unexpected devia-
tions. It is split into two physical agents: CSI-D, which de-
tects the occurrence of disturbances and preprocesses
the chronological and nonchronological alarm mes-
sages that are used by the AAA, BAI, and BRS agents; and
CSI-R, which detects and corrects inconsistencies in the
snapshot data file of the network, calculates the power
flowing through it, and makes this information available
to the SRA and the UIA.

This system design ensures that all the tasks identified by
the top-down analysis are per-
formed by at least one agent.
Robustness is achieved by
having multiple agents that are
able to provide the same (or at
least some) overlapping re-
sults. Efficiency is obtained by
the parallel activation of tasks.
Reliability is increased be-
cause even if one of the agents
breaks down, the rest of the
agents can often produce a re-
sult that, although not as good
as the one provided by the
complete system, is still of use
to the operator.

Cooperative Diagnosis
and Restoration
An important example of co-
operation in this system in-

volves the information interchange between the AAA, BRS,
and BAI agents. The AAA and BRS produce the same result
from different information sources, whereas BAI applies dif-
ferent knowledge to produce a result that should be coher-
ent with that of the AAA and BRS.

Assume a block of nonchronological alarm messages has
been provided by the SCADA system, and these alarm mes-
sages have been identified as related to a disturbance by the
CSI. Using its model of the other agents, the CSI will realize
the alarms are relevant to the AAA and BAI and will volun-
tarily send them out as unsolicited data. Some time later, the
same process will be repeated, and the BRS will receive the
corresponding chronological alarm messages. At this point,
the AAA, BAI, and BRS are all operating in parallel.

When the AAA receives the alarm messages, it starts its
diagnosis process, and a preliminary set of hypotheses is
produced. During this time, the BAI would also have re-
ceived the alarm messages and would have started trying to
identify the initial blackout area. Again based on its models
of the other agents, the BAI sends this information to the
AAA. After a certain delay, the BRS agent starts working on
the analysis of the chronological alarm messages. This will
also result in a list of initial hypotheses being produced. The
BRS checks whether any agents are interested in this infor-
mation—again the AAA is noted and the hypotheses sent to
it. The BRS then continues with its diagnosis to try and vali-
date the cause of the fault.

After producing its tentative list of hypotheses, the AAA
proceeds with a detailed analysis to try to ascertain the pre-
cise cause of the fault. The following situations may then oc-
cur: i) the initial blackout area is available to the AAA,
triggering a refinement behavior that may reduce the number
of hypotheses to be validated because the BAI has given a fo-
cused view of the situation; ii) the initial hypotheses pro-
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vided by the BRS are available to the AAA, triggering another
refinement behavior and obtaining a better reordering of the
hypotheses to be validated and a benefit in finding the ele-
ment at fault; iii) the validated hypotheses provided by the
BRS are available to the AAA, triggering yet another refine-
ment behavior that has the same functionality as the previ-
ous one, but the reordering is based on validated hypotheses
that are more accurate; iv) if no information is available from
the BAI or BRS, the AAA proceeds with its hypothesis valida-
tion as a stand-alone agent. Therefore, if the other agents are
down or are too slow to provide the information, the AAA will
continue and find a faulty element, although its diagnosis will
be less reliable and will take longer.

The restoration process is activated whenever a distur-
bance is detected. Once the disturbance is identified, the
disturbance identifier is sent to the CSI-R, which acquires
the snapshot of the network, corrects any inconsistencies
that have arisen in its representation, and calculates the
power flow solution of the current state. This information is
then passed on to the SRA so that it can prepare for its resto-
ration planning. The SRA waits until the diagnosis agents
have informed it of the element suspected of being at fault
and then proceeds to prepare a restoration plan. If, during
this plan preparation, the SRA is informed that the equip-
ment at fault is different from that originally indicated by ei-
ther the AAA or the BRS, then it replans the restoration
taking this information into account.

The UIA is the interface through which the user accesses
the results produced by the agent community. During the di-
agnosis phase, the user is presented with both the tentative
(early) list of suspected hypotheses and the final (validated)
list. During the restoration phase, the UIA supports a more
participatory interaction between the user and the teams of
agents. The user is presented with the restoration plan and
can then decide to modify it, run a detailed simulation to see
the effects of the plan, or specify new constraints and ask for
a new plan to be devised taking them into account.

Observations and Reflections
This application afforded several benefits. First, the agent
system gives better results than its stand-alone counterparts
because it takes into account multiple types of knowledge
and data and then integrates them in a consistent manner.
Second, the agent system is more robust because there are
overlapping functionalities, meaning partial results can be
produced in the case of component (agent) failure. Third,
some results can be provided more quickly because coopera-
tion provides a shortcut. Fourth, the functionalities of the dif-
ferent domain systems can be increased independently,
which makes them easier to maintain (see, for example, the
argument for developing the BAI and the general point about
stable intermediate forms). Fifth, the control engineer is pro-
vided with an integrated view of the results of interest. Fi-
nally, the system has been designed to be open so that new
agents can be added in an incremental manner.

One of the key features of this multiagent system is
the way it handles fault diagnosis by using two different
types of data (the nonchronological alarms used by the
AAA and the chronological alarms used by the BRS) and
two different points of view (the typical diagnosis
approach of hypothesis generation and validation used
by the AAA and BRS and the BAI’s monitoring approach,
which provides a high-level view of the status of the net-
work). With this setup, the solution method that is best
suited to the current situation can be dynamically se-
lected. For example, if the BRS is operational but the AAA
is not, the solution provided to the control engineer is the
one created by the BRS; but if both the BRS and the AAA
are running, the solution provided is the one that is mutu-
ally agreed on between them. Also, the fact that multiple
agents are trying to generate the same results can be ex-
ploited to avoid repetition of certain tasks if deemed de-
sirable in a particular context. For example, both the AAA
and the BRS can provide initial hypotheses; conse-
quently, if these hypotheses are provided by the BRS and
made available to the AAA before it starts its own genera-
tion task, then this task need not be executed and the hy-
potheses provided by the BRS can be used instead. This
ability to flexibly manage, at runtime, multiple sources of
data and multiple problem-solving perspectives provides
enormous robustness to the overall system because if
one of the agents crashes, the others will still be able to
provide some form of solution.

Manufacturing Line Control
This application was developed by a DaimlerChrysler-led
industrial consortium and was deployed on one of
DaimlerChrysler’s production lines in Stuttgart, Germany
(more details can be found in [5]). The overall aim of the sys-
tem is to provide a flexible and robust system for controlling
a manufacturing line. This process has several basic parts
(workpieces) that have various operations performed on
them by various machines.

The industry-standard approach to manufacturing con-
trol is to devise a global schedule, typically covering one
day, for the entire manufacturing process. This indicates
when the various parts should be released from their stores,
which machines they should be routed through, and what
operations should be performed at the various machines.
The problem with this centralized and preplanned ap-
proach, however, is that plan formation is divorced from
plan execution. Thus, the schedule can rarely be adhered to
in practice: machines and operations fail (sometimes in
ways that are difficult to predict), and operations take lon-
ger than expected. When such disturbances occur, the plant
controller must either initiate a costly rescheduling exer-
cise or use the out-of-date schedule as an approximate
guide. Both of these options lead to inefficiencies in the
manufacturing process and are therefore undesirable.
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Why Use Agent Techniques for
This Application?
To overcome the aforementioned
problems, the control system must be
made responsive to the prevailing sit-
uation of the manufacturing process.
In this domain, a centralized control-
ler is not a viable option—it would be
too time consuming to construct and
maintain an up-to-date representation
of what is going on in the whole sys-
tem, it would be a severe bottleneck in
the system’s performance, and it would represent a single
point of failure (meaning the system would not be robust).

Given the requirements for decentralization, responsive-
ness, and flexible contingency handling, an agent- based ap-
proach was adopted. In this system, each manufactured part
is represented by an autonomous agent that has the objec-
tive of getting itself to the end of the manufacturing line after
a specified set of operations has been performed on it. Each
machine is also represented by an agent. Such agents have
the objective of maximizing their throughput, and they do
this by deciding what parts will be accepted in what order
and what operations will be performed at what time. Thus,
for a given part to have an operation performed on it, its
agent must negotiate with a machine agent capable of per-
forming that operation. In short, resources are allocated dy-
namically on a just-in-time basis through a continuous
coordination process among the relevant agents.

Specification of the Agents and Their Interactions
To achieve robustness and flexibility, the machines must have
overlapping capacities. This means that there must always be
more than one machine that can perform every manufacturing
step. Thus, when machine breakdowns occur, the redundancy
gives the system the flexibility of diverting the part to another
machine. Diverting a part, however, is not possible without the
ability to bypass a machine (or machines). To this end, the
concept of a modular manufacturing system was developed
(Figure 4) in which the entire manufacturing system is com-
posed of standard modules. Each module consists of a ma-
chine, three one-way conveyors, and two transportation
switches (Figure 5). Every switch can move a part from any of
its entry points to any of its exits. In Figure 4, each of the inter-
mediary switches has two entries and one exit on the left-hand
side and two exits and only one entry on the right-hand side.

An arrangement of standard modules, as in Figure 4,
means a part can either enter a machine through the lower-
most conveyor or bypass the machine through the middle
one. After bypassing a machine, a part has two options: it
can either proceed in a forward direction to a subsequent
machine or move backward using the topmost conveyor. If,
for instance, the lowermost conveyor is already occupied,
preventing a part from entering the target machine, then the
part can move backward and forward in a circle until the

lowermost conveyor is available again. In this way, the en-
tire transportation system serves as a flexible buffer.

To control this flexible manufacturing system in a decen-
tralized manner, a specific agent is associated with each
workpiece, machine, and switch. A workpiece agent manages
the state (which operations need to be performed and which
operations have already been performed) of the workpiece
attached. A machine agent controls the overall material flow
through a machine, not just the work in progress. To this end,
every machine agent manages what we call a virtual buffer.
This buffer includes not only the machine’s current work in
progress, but also the outgoing flow of material; that is, all
those workpieces that have already been processed by the
machine but are not yet able to find an appropriate new ma-
chine. The switch agent controls a particular switch, decid-
ing which entry to serve first and where to move a part.

All these agents constitute parallel processes. These pro-
cesses, of course, are not independent; they have to be coor-
dinated. Here coordination is achieved by a negotiation
procedure, which also takes place simultaneously. A single
workpiece negotiates with the machines about which of
them should process it next. In particular, the workpiece
auctions off its current due operations by inviting machines
to bid for these tasks. Every machine bid includes informa-
tion about the current state of the machine’s virtual buffer. If
a workpiece awards one or more operations to a specific ma-
chine, then getting to this machine becomes the next goal of
the workpiece. The routing of a workpiece is also organized
through a sequence of bilateral communications, in each
case, between the workpiece and the next switch that the
workpiece approaches. This continues until the workpiece
eventually reaches its goal.

June 2003 IEEE Control Systems Magazine 71

M101 M102 M103 M104 M105

Figure 4. A flexible manufacturing system.

M101

Figure 5. A standard module.



In more detail, the allocation of workpiece operations to
machines is carried out by a first-price, sealed auction (the
organizational structure). Each round involves three steps.

Step 1: The protocol is always initiated by a workpiece
agent; in particular, whenever a workpiece first enters the
manufacturing system and, thereafter, immediately after it
leaves a machine. In any case, the workpiece determines its
current task (next and subsequent operations to be per-
formed on it) and all forward successors of the machine it has
just left. The system is more efficient if parts move forward
(left to right in Figure 4). However, this is not always possible
(e.g., due to disturbances), and if workpieces do move back-
ward, an assignment must be enforced to avoid deadlocks (see
[5] for more details). The workpiece then sends an invitation
to all these machines to bid for its current task.

Step 2: If a machine receives an invitation to bid for a cur-
rent task, it checks whether it is able to perform it. If it can, it
issues a bid; otherwise, it simply ignores the call. Short-term
disturbances of some of the machine’s operations are ig-
nored here. This is because the subject of the negotiation is
a future allocation of a subtask, and the current situation ob-
viously does not tell us much about a machine’s state when
the workpiece enters the machine. The machine agent is-
sues no bids without making sure that it is actually ready to
accept a new workpiece; it therefore checks the capacity of
its virtual buffer. If it does not have capacity, it does not an-
swer the call. If the agent does make a bid, it includes the
current size of its virtual buffer and the maximum number of
the desired operations it is able to perform.

Step 3: The workpiece agent collects all the bids for a spe-
cific call. If there are no bids, it issues another invitation to bid,
continuing with step 1; otherwise the workpiece selects the
best bid. This selection is based on both components (a) and
(b) of a bid, with (a) having a higher priority. In this case, the

lower the current size of the virtual buffer, the better. The more
operations the maximal subtask (b) contains, the better. The
chosen machine agent is then informed, and it then includes
the relevant workpiece in its (virtual) input buffer.

Once a workpiece agent has selected its next target ma-
chine, the workpiece must be moved to its new goal. In a lay-
out like the one depicted in Figure 4, there is usually a vast
number of different paths ultimately leading to the same
goal. Of course, shorter paths are preferred, but even more
important than optimizing the routing is the avoidance of
any congestion (since this can have disastrous conse-
quences on the overall system performance). In an unpre-
dictable environment such as a manufacturing system, jams
can only be avoided by strictly separating the actual routing
from the goal itself. In this system, such dynamic routing is
ensured through a sequence of bilateral communications,
each time between the workpiece and the next switch it ap-
proaches. A switch always tries to move a workpiece di-
rectly to its goal, thus trying to optimize the routing. If an
exit is not available, then an alternative route is taken. In this
case, however, the priority of the workpiece is incremented.
These priorities are used to decide which workpiece to pre-
fer if a switch has more than one possibility: the workpiece
with the highest priority is always served first so as to avoid
indefinitely routing a workpiece along a cycle rather than to
its actual goal.

Observations and Reflections
To evaluate the system, DaimlerChrysler conducted a series
of simulations, all of which are based on authentic product
types and cycle times. The disturbance characteristics have
been taken from existing machines. A typical configuration
consists of four blocks of identical machines. The number of
machines in a block ranges from 5 to 11, with 36 machines in

total. The simulations have shown that
the agent-based mechanism is ex-
tremely robust against disturbances of
machines as well as failures of control
units. Moreover, its performance is
nearly optimal, achieving about 99.7%
of the theoretical optimum.

In addition to this simulation work,
the control system has been installed
as a bypass to an existing large-series
manufacturing line for cylinder heads.
The bypass, located in a plant in
Stuttgart-Untertürkheim, Germany, is
shown in Figure 6. The bypass has un-
dergone a series of performance tests
which showed that the results of the
simulations are valid under real manu-
facturing conditions. Moreover, the sys-
tem has now been in routine operation
for more than two years and has con-
firmed its robustness in day-to-day pro-
duction situations.
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The success of the system, in terms of both increased
throughput and greater robustness to failure, can be attrib-
uted to several points. First, representing the components
and the machines as agents means the decision making is
much more localized. It can therefore be more responsive to
prevailing circumstances. If unexpected events occur,
agents have the autonomy and proactiveness to try alterna-
tives. Second, because the schedules are built up dynami-
cally through flexible interactions, they can readily be
altered in the event of delays or unexpected contingencies.

Conclusions
This article has sought to justify precisely why agent-ori-
ented approaches are well suited to developing complex
software systems in general and control systems in partic-
ular. These general points are then made concrete by
showing how they apply in two very different agent-based
control systems: Iberdrola’s electricity transportation
management system and DaimlerChrysler’s manufactur-
ing line control system. In making these arguments, propo-
nents of other software engineering paradigms can claim
that the key concepts of agent-oriented computing can be
reproduced using their technique. This is undoubtedly
true. Agent-oriented systems are, after all, computer pro-
grams, and all programs have the same set of computable
functions. However, this misses the point. The value of a
paradigm is the mindset and the techniques it provides to
software engineers. In this respect, agent-oriented con-
cepts and techniques are both well suited to developing
complex, distributed systems and an extension of those
currently available in other paradigms.

We believe that agent-based systems provide several ad-
vantages to the next generation of control systems. They
provide a decentralized solution based on local decision
making that gives the system a high degree of flexibility and
robustness. The downside of devolving the decision making
to autonomous components, however, is that it is corre-
spondingly more difficult to predict overall system behav-
ior. To this end, work is progressing on agent-oriented
methodologies specifically for control applications [4]. In
the systems described here, the agents are under the con-
trol of a single organization, which makes it easier to tailor
their behavior so that desirable system properties emerge
from their interplay. In the more general case of multiple or-
ganizations, however, producing predictable system-wide
behavior is still an area of active research.
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