A survey of Agent-Oriented Software Engineering

Amund Tveit
amund.tveit@idi.ntnu.no
Norwegian University of Science and Technology

May 8, 2001

Abstract 3. Artificial players or actors in computer games

and simulations (e.g. Quake)
Agent-Oriented Software Engineering is the one of

the most recent contributions to the field of Software4. Trading and negotiation agents (e.g. the auction
Engineering. It has several benefits compared to agent aEBay)

existing development approaches, in particular the

ability to let agents represent high-level abstractions-
of active entities in a software system. This paper
gives an overview of recent research and industrial
applications of both general high-level methodolo-

gies and on more specific design methodologiesft rA corEmog ctlassmca'i!on sfcheme of ?g?rr:ts IS
industry-strength software engineering. € weax and strong notion o agencSyZ_I. n the
weak notion of agengyagents have their own will

(autonomy, they are able to interact with each

other &ocial ability), they respond to stimulus

(reactivity), and they take initiative pfo-activity).

In the strong notion of agencthe weak notions of

1 Introduction agency are preserved, in addition agents can move
around (nobility), they are truthful ¥eracity), they

Agent-Oriented Software Engineeringg being do what they're told to doblenevolenge and they

described as a new paradigi®?] for the research Will perform in an optimal manner to achieve goals

field of Software Engineering But in order to (rationality).

become a new paradigm for the software industry,

robust and easy-to-use methodologies and tooldPue to the fact that existing agents have more in

have to be developed. common with software than with intelligence, they
will be referred to as software agents or agents in

But first, let us explain what an agent is. An agerifiis context.

also called a software agent or an intelligent agent,

i_s a piece of autonomo_us software, .the words in_tq__-_ 1 Terminology

ligent and agent describe some of its characteristic

features. Intelligent is used because the software &ging a relatively new research field, agent-based

have certain types of behavidirftelligent behavior software engineering currently has a set of closely

is the selection of actions based on knowledgaihd related terms used in research papers, | will thus try

the termagenttells something about the purpose db clarify and explain the terms and their relations

the software. An agent i®ne who is authorized to below.

act for or in the place of another(Merriam Web-

Web spiders (collecting data to build indexes
to used by a search engine, i@oogle

Keywords: Intelligent Agents, Software Engi-
neering, UML, Design Patterns and Components

ster’s Dictionary). Agent-Oriented ProgrammingAOP)[29, 3(] is
seen as an improvement and extension of Object-
Examples of software agents Oriented Programming (OOP). Since the word

. . o “Programming” is attached, it means that both
1. The animated paperclip agent in Microsoft Ofconcepts are close to the programming language and

fice implementation level. The term “Agent-Oriented
2. Computer viruses (destructive agents) Fzrg]grammmg was introduced by Shoham in 1993

*http://lwww.elcomag.com/amund/

First NTNU CSGSC, May 2001 WWwWWw.csgsc.org

http://www.jfipa.org/amund/index.php?fp
mailto:amund.tveit@idi.ntnu.no
http://www.ebay.com/
http://www.google.com
http://www.csgsc.org/

Agent-Oriented DevelopmeraOD) [8] is an 2 Agent-Oriented Software En-
extension of Object-Oriented Development (OOD). ; ;
The word “Development” is sometimes interpreted gineering

as "Programming’, on the other hand itis frequentl¥he main purposes of Agent-Oriented Software En-
interpreted to include the full development process

. e ~gineering are to create methodologies and tools that
that covers the requirement specification and desi . . .
: L T nables inexpensive development and maintenance
in addition to the programming itself.

of agent-based software. In addition, the software
should be flexible, easy-to-use, scalatdgdnd of
Software Engineering with Agen{83], Agent- high quality. In other words quite similar to the re-
Based Software Engineeringl2], Multi-agent search issues of other branches of software engineer-
Systems Engineering(MaSE) B, 31] and ing, e.g. object-oriented software engineering.
Agent-Oriented Software EngineeringAOSE)
[22, 20, 35, 15] are semantically equivalent terms L _
but MaSE refers to a particular methodology andfiow are agents distinguished from objects?

AQSEseems to be the most widely used term. T'}?gent-oriented programming (AOP) can be seen
difference between AOSE and AOD, is that AOSEg g extension of object-oriented programming

also covers issues such as re-use and maintena(@ep)’ OOP on the other hand can be seen as
of the agent-s_ystem in addition to the deVGIOpm_thsuccessor of structured programmirp,[30].
of the system |t§elf. However, to be on the safe Sldﬁ, OOP the main entity is the object. An object
one should omit the use of the term AOD since j§ 5 |ogical combination of data structures and
can easily be misinterpreted as pointed out earligfir corresponding methods (functions). Objects
(due to the different interpretations). are successfully being used as abstractions for
passiveentities (e.g. a house) in the real-world,
The termAgent-Based Computirfd6] can be ap- and agents are regarded as a possible successor
plied to describe all issues related to agent-orientetiobjects since they can improve the abstractions
software engineering, but it also covers issues e active entities. Agents are similar to objects,
gardinghowandwhatagents compute. but they also support structures for representing
mental components, i.e. beliefs and commitments.
In addition, agents support high-level interaction
(using agent-communication languages) between
agents based on the “speech act” theory as opposed
to ad-hoc messages frequently used between objects
[22], examples of such languages &#&A ACL
In this paper we will present a topical overview ofind KQML [21].
recent advances of methodologies for development
of agent-based systems. The focus is both onAnother important difference between AOP and
general high-level methodologies and on mMOoKBOP is that objects are controlled from the outside
specific design methodologies related to softwaf@hitebox control), as opposed to agents that have
engineering. This means that specialized agefitonomous behavior which can’t be directly con-
methodologies, e.g. to improve coordination, coogrollable from the outside (blackbox control). In
eration, communication and artificial intelligencether words, agents have the right to say “n@y’ [
in agents and agent systems, are outside the scope

of this paper. Suggested readings that give good 5
overviews of other aspects of the agent researcn agents solve all software problems?

field are presented in the work by Jennings et &ince this is a new and rapidly growing filed, there is
[11] and by Nwana et al.47]. a danger that researchers becoowerly optimistic
regarding the abilities of agent-oriented software
This paper is organized as follows: section @ngineering.
describes aspect of Agent-Oriented Software Engi-
neering, section 3 gives a description of high-level Wooldridge and Jenningg[33] discuss the po-
methodologies, section 4 describes design metkntial pitfalls of agent-oriented software engineer-
ods inspired by well-known software engineerinmg. They have classified pitfalls in five groups: po-
methods and standards (e.g. UML, componeriscal, conceptual, analysis and design, agent-level,
and design patterns), section 5 describes problemmsd society-level pitfallsPolitical pitfalls can occur
methodologies and tools for agents in industrial coifthe concept of agents is oversold or sought applied
text. as athe universal solutionConceptual pitfallsnay

1.2 Scope and limitations

First NTNU CSGSC, May 2001 WWWw.csgsc.org

http://www.fipa.org/
http://www.csgsc.org/

occur if the developer forgets that agents are soitt-is allowed to access.Activities are tasks that a
ware, in fact multithreaded softwar@nalysis and role performs without interacting with other roles.
design pitfallsmay occur if the developer ignoresProtocols are the specific patterns of interaction,
related technology, e.g. other software engineeriegy. a seller role can support different auction
methodologiesAgent-level pitfallsnay occur if the protocols, e.g. “English auction”. Gaia has formal
developer tries to use too much or too little artifieperators and templates for representing roles and
cial intelligence in the agent-system. And finallytheir belonging attributes, it also has schemas that
society-level pitfallsan occur if the developer seesan be used for the representation of interactions.
agents everywhere or applies too few agents in the
agent-system In the Gaiadesignprocess, the first step is to map
roles intoagent typesand then to create the right
number ofagent instanceesf each type. The second
step is to determine thservices modeheeded
Being aware of the failing promises of the closelto fulfill a role in one or several agents, and the
related field of Artificial Intelligence in the 1980sfinal step to is create thacquaintance modefor
Jennings, a prominent researcher of the agent fielde representation of communication between the
points out that the failure of keeping promises arabents.
becoming an offer of media hype and then “slaugh-
ter”, could perfectly well happen to the field of agent Due to the mentioned restrictions of Gaia, it is
research1f]. of less value in the open and unpredictable domain
of Internet applications, on the other hand it has
. . been proven as a good approach for developing
3 ngh-level Methodologles closed domain agent-systems. As a result of the
domain restrictions of the Gaia method, Zambonelli,
This section describes methodologies that providelénnings et al. 35] proposes some extensions and
top-down and iterative approach towards modelingiprovements of it with the purpose of supporting
and developing agent-based systems. development of Internet applications.

The problem with hype

3.1 The Gaia Methodology Other sources for the discurssio_n of micro and
macro aspects of agent modeling include work by
Wooldridge, Jennings and Kinnyl(, 8] present Chaib-draaZ]
the Gaia methodology for agent-oriented analysis
and design. Gaia i; a general methodology thgto The Multiagent Systems Engineer-
supports both the mlcrq—level (agent s'truc;ture) and ing Methodology
macro-level (agent society and organization struc-
ture) of agent development, it is however no “silvélVood and DelLoach3, 31] suggest the Multiagent
bullet” approach since it requires that inter-ageiystems Engineering Methodology (MaSE). MaSE
relationships (organization) and agent abilities are similar to Gaia with respect to generality and the
static at run-time. The motivation behind Gaia iapplication domain supported, but in addition MaSE
that existing methodologies fail to represent thgoes further regarding support for automatic code
autonomous and problem-solving nature of agentsgation through the MaSE tool. The motivation
they also fail to model agents’ ways of performingpehind MaSE is the current lack of proven method-
interactions and creating organizations. Usinglogy and industrial-strength toolkits for creating
Gaia, software designers can systematically develagent-based systems. The goal of MaSE is to lead
an implementation-ready design based on systéine designer from the initial system specification to
requirements. the implemented agent system. Domain restrictions
of MaSE is similar to those of Gaia’s, but in addition
The first step in the Gaianalysisprocess is to it requires that agent-interactions are one-to-one and
find theroles in the system, and the second is toot multicast.
modelinteractionsbetween the roles found. Roles
consist of four attributes: responsibilites, permis- The MaSE methodology are divided into seven
sions, activities and protocolResponsibiliteare of sections (phases) in a logical pipelin€apturing
two types: liveness properties the role has to add goals the first phase, transforms the initial sys-
something good to the system, esafety properties tem specification into a structured hierarchy of sys-
- prevent and disallow that something bad happeten goals. This is done by first identifying goals
to the systemPermissiongepresents what the rolebased on the initial system specification’s require-
is allowed to do, in particular, which informationments, and then ordering the goals according to im-

First NTNU CSGSC, May 2001 WWwWw.csgsc.org

http://www.csgsc.org/

portance in a structured and topically ordered hieravents, actions, commitments, claims and objects.
chy. Applying Use Caseghe second phase, create€ommitments and claims are dualistic, commit-
use cases and sequence diagrams based on thenignts of one agent are seen as claims against other
tial system specification. Use cases presents the lagents. Organizations are modeled as a group of
ical interaction paths between various roles in amtdib-agents. Each of the sub-agents hasitig to
the system itself. Sequence diagrams are used to perform certain actions, but they are also commited
termine the minimum number of messages that hawwedutiessuch as monitoring claims and events rel-
to be passed between roles in the system. The théndhnt for the agent-organization. The interpretation
phase isrefining roles it creates roles that are re-of duties and permissions seems to correspond with
sponsible for the goals defined in phase one. In geservices and permissions found in the Gaia method-
eral each goal is represented by one role, but a stigy [10]. An example of an agent-based database
of related goals may map to one role. Together withformation system can be found in Magnanelli et.
the roles a set of tasks are created, the tasks defia23)].
how to solve goals related to the role. Tasks are de-
fined as state diagrams. The fourth phaseating .
agent classesnaps roles to agent classes in an agefit DeS|gn Methods
class diagram. This diagram resemble object class
diagrams, but the semantic of relationships is higlhis section describes methodologies that are
level conversation as opposed to the object class digainly inspired by the methodologies and standards
grams’ inheritance of structure. The fifth phasen- of the object-oriented software engineering field.
structing conversationglefines a coordination pro-
tocol in the form of state diagrams that define th%i UML
conversation state for interacting agents. In the sixt
phaseassembling agent classebe internal func- The Universal Modeling Language (UML) is a
tionality of agent classes are created. Selected fuigeaphical representation language originally devel-
tionality is based on five different types of agent asped to standardize the design of object classes.
chitectures: Belief-Desire-Intention (BDI), reactivelt has later been greatly extended with support
planning, knowledge based and user-defined arcfor designing sequences, components etc., in fact
tecture. The final phaseystem desigrtreate actual all parts of an object-oriented information system
agent instances based on the agent classes, the filesign.
result is presented in a deployment diagram.
Visions of the future for MaSE is to provide com- Yim et al. [34] suggest an architecture-centric
pletely automatic code generation based on the design method for multi-agent systems. The method
ployment diagram. is based on standard extensions of UML using
on the Object Constraints Language (OCL), and
3.3 Modeling database information sys- it supports the tran_sforma_tion o_f agent-orien_ted
tems modeling problems into object-oriented modeling
problems. In the transformation process, relations
Wagner P9, 30] suggests the Agent-Object Relabetween agents are transformed to design patterns,
tionship (AOR) modeling approach in the design dhese patterns are then used as relations between
information systems. AOR is inspired by the twabject classes, in contrast to the more commonly
widely applied models of databases, i.e. the Entitppplied relation types between object classes such
Relationship (ER) meta-model and the Relationak inheritance. The result of this method is that
Database (RDB) model. designers and developers are able to use existing
UML-based tools in addition to knowledge and ex-
The purpose of the ER meta-model is to eagerience from developing object-oriented systems.
the transformation of relations between different
types of data (entities) into an implementation-ready Odell, Parunak and Bauet4] suggested a three-
(database) information system design. This trarlayer representation of Agent-Interaction Protocols
formation is well-supported fostatic entities or (AIP). AIP are defined as patterns representing both
objects, but falls short in modelliractiveentities or the message communication between agents, and to
agents in an information system; the purpose of thiee corresponding constraints on the content of such
AOR-model is to extend the ER-model by providingnessages. In contrast to Yim et al’'s UML-based
the ability to model relations between agents iarchitecture 34], Odell et al's approach requires
addition to static entities. changes of the UML visual language and not
only the expressed semantics. The representation
In AOR, entities can be of six types: agentsequires changes of the following UML represen-

First NTNU CSGSC, May 2001 WWWw.csgsc.org

http://www.csgsc.org/

tations: packages, templates, sequence diagrash® Design Patterns
collaboration diagrams, activity diagrams and
statecharts. In théirst layer, the communication Design patterns are reoccuring patterns of program-
protocol (i.e. type of interaction) is represented inming code or components software architecture.
reusable manner applying UML packages and tem-
plates. Thesecond layerepresents interactions (i.e. aridor and Lange 1] suggest a classification
which type of agents can communicate with whomheme for design patterns in a mobile agent
between agents using sequence, collaboration gRghtext. In addition they suggest patterns belonging
activity diagrams as well as statecharts. Intiied 5 each the classes. The purpose is to increase
layer, the internal agent processing (i.e. why and_,se and quality of code and at the same time
how the agent acts) is represented using activifyy,ce the effort of development of mobile agent
diagrams and statecharts. systems. The classification scheme has three
classes: traveling, task and interaction. Patterns
In “Extending UML for Agents” [L3], Odell in the traveling classspecify features for agents
et al. suggests further extensions to UML calleithat move between various environments, e.g. the
Agent UML (AUML) to be able to represent allforwarding pattern that specifies how newly arrived
aspects of agents using AUML. AUML has beeagents can be forwarded to another host. Patterns
submitted to the UML standardization committeef the task classspecify how agents can perform
as a proposal for inclusion in the forthcoming UMIltasks, e.g. the plan pattern specifies how multiple
2.0 [17). According to the suggestion, UML hadasks can be performed on multiple hosts. Patterns
to include richer role specificationthat requires of the interaction class specify how agents can
modification of the UML sequence diagram formatommunicate and cooperate. An example of an
To be able to represent agents instead of operatidgnteraction class pattern is the facilitator, it defines
as interface points, the UML package definition ha@n agent that provides services for identifying and
to modified. Agents have the ability to be mobil&inding agents with specific capabilities.
in the sense that they can move between different

agent systems autonomously. In order to represenpther approaches for design patterns for mobile
this in UML, the deployment diagram definition haggents include the approach of Rana and Biancheri
to be changed. [26] applying Petri Nets to model the meeting
pattern of mobile agents.
Bergenti and Poggilfp] suggest the application

of four agent-oriented UML diagrams at the high- Kendall et al. §] ([19, 18]) suggest a seven-layer
est abstraction level of Agent-Oriented Softwargrchitecture pattern for agents, and sets of patterns
Engineering, namely the agent level. It is similaselonging to each of the layers. The seven layers
to Yim’'s approach in the sense that there are m@e: mobility, translation, collaboration, actions,
required changes of the UML standard itself. Theasoning, beliefs and sensory. The three lowest
first is the ontology diagram it is used to model layers have patterns that select the mental model of
the world as relations between entities using thre agent, e.g. if the agent is to respond to stimulus
UML static class diagram format. The second is thie reactive agent pattern should be selected, if it
architecture diagramthat is used in modeling theis to interact with human users the interface agent
configuration of a multi-agent system by applyingattern should be selected. Selecting patterns as
the UML deployment format. Diagram three isi methodology for agent development is being
the protocol diagram it is used to represent theustified by referring to the previous successes of

language of interaction, and is based on the UMdpplying patterns in traditional software technology.
collaboration diagram format. Thigrotocol dia-

gram corresponds to Odell et al’d4] first layer — compared to the previously mentioned pattern
model of the communication protocol. The fourth I8|assification scheme in the work by Aridor and

the role diagrambased on the UML class OliagramLange, the layered architecture has a similar logical

it is used to represent the functionalities each aged"rbuping of patterns. The mobility layer together

role has. with the translation layer corresponds to the class
of traveling, the collaboration layer corresponds to
Parunak and OdelB] combine existing organiza-the class of interaction, and the actions layer corre-
tional models for agents in a UML-based frameworponds to the class of task. The main difference be-
in order to model and represent social structurestimeen this and the previously mentioned approaches
UML. This work is an improvement oo the Agenfor mobile agents, is that this one aims to cover all
UML extensions to UML. main types of agent design patterns.

First NTNU CSGSC, May 2001 WWww.csgsc.org

http://www.csgsc.org/

4.3 Components digital (e.g. communication protols), social (e.g.

) . user interfaces) and electromechanical (e.g. motor
Components are logical groups of related objects o interfaces).

that can provide certain functionalities. This might

sound quite similar to agents, but in fact COMpo- ey hysiness users, as opposed to researchers, are
nents are not autonomous as opposed to agents. By _adapters of new and immature technology, as
grouping related objects, components allow MOLe aq it of this anaturity metricof agent-based sys-
coarse-grained re-use than the combination of sin s is developed to be able to measure the level of
classes from scratch, this has shown to an effectié{sem technology and systems. The maturity met-
and popular development approach in the softwaig 55 six degrees ranging from modeled applica-

industry. tions to products.Modeled applicationsthe least
) mature, are theoretical applications in the form of ar-
Erol, Lang and Levy §] suggest a three-tier ar-chjtectural descriptions or analyses. The metric con-
chitecture that enables composition of agents by &y es withemulated applicationthat are relatively
plying reusable components. The first tieii&rac- jmmature due to the fact that they are simulations

tions it is_bui_ltup by agent r(_)les and utterar_wes. ThE a 1ab environment.Prototype applicationsep-
second tier idocal information and expertisehat resent the next maturity degree, they run in a non-

enables the storage of information such as executiQfimercial environment but on real hardwaki-
state, plan and constraints of the agéntormation- | gpplicationsare relatively mature applications,
content the third tier, is passive and often domainsgyever they are not expected to be completely bug-
specific, since it is often used to wrap legacy SYfge, and after a certain period they usually become
tems, e.g. a mainframe database application. more mature and becomoduction applications
A production application is being applied in sev-
4.4 Graph Theory erz_;tl businesse_s, but they require support for ins_tal-
lation and maintenance. The most mature applica-
Depke and Heckel] apply formal graph theory ontions areproducts they are usually shrink-wrapped
requirement specifications for agent-systems in @nd sold over desk, and they can usually be installed
der to maintain consistency when the requiremerdad maintained by the non-expert user.
are transformed into a design model.

5.1 Agents in the industry - where and

5 Agents in the real-world how?

Parunak 24] presents a review of industrial agent
The agent-oriented approach is increasingly beia@plications. Application areas considered are:
applied in industrial applications, but it is far frommanufacturing scheduling, control, collaboration
as widespread as the object-oriented approach. Thfgl agent simulation. Thereafter tools, method-
section describes where and how agents have b@ﬂj‘gies, insights and problems for development of
applied with success in the manufacturing indUStr)agent systems are presented and discussed.

Parunak 5] defines agenthood, a taxonomy Manufacturing schedulings the ordering and
and a maturity metric in an industrial contextiming of processes in a production facility. The
His purpose is to improve the understanding aqdirpose is to optimize the production by maximiz-
utilization of agent-oriented software engineering iimg the number of units produced per time slot and
industry. keep good quality of the product, and minimize

the resource requirements per unit and the risk

Agenthood i.e. agent-oriented programmingof failures. Processes and machinery has to be
is explained as an iterative improvement of theontrolled in order to operate as scheduled. The
industry-strength methodology of object-orientedontrol can range from simple regulation of the
programming. power level for a piece of machinery to advanced

real-time cybernetic control of processes. For

Thetaxonomyclassifies agent systems as belongaany industries, humacollaborationis needed to
ing to one of the followingenvironments digital solve complex problems, e.g. in a design process
(i.e. software and digital hardware), social (involvengineers and designers have to collaborate in
ing human users) or electromechanical (non-digitafder to guarantee that products are pleasent to
hardware, e.g. a motor). Thereafter the taxonongok in addition to being safe. In industries such
classifies agents according to théerfacethey sup- as electronics production, there are tremendous
port. Interface types are similar to the environmentsetup costs for production facilities, consequently

First NTNU CSGSC, May 2001 WWwWWw.csgsc.org

http://www.csgsc.org/

there is a need for cost-efficiestmulationof the [3] DeLoach S. A. Multiagent Systems Engineering

manufacturing processes. A Methodology and Language for Designing Agent
Systems In Proc. of Agent Oriented Information
Systemgpages 45-57, 1999.

Agent methodologies in the industry [4] Depke R. and Heckel R. Formalizing' the De-
velopment of Agent-Based Systems Using Graph

Methodologiedor creating industrial agent systems Processes. IProc. of the ICALP’2000 Satellite
presented ardRockwells Foundation Technology WorkshopsWorkshop on Graph Transformation and
and DaimlerChrysler's Agent Design for agent- Visual Modelling Techniques (GTVMT'QOpages
based controld4]. 419-426, 2000.
[5] ErolK., LangJ. and Levy R. Designing Agents from
In Rockwells Foundation Technology four issues ~ Reusable Components. Rroc. of the fourth inter-
are considered in the development of agent-based nhational conference on Autonomous agergages

control architectures, the first iexibility related 7677, 2000.
to fault-tolerance in a multi-objective environment,[6] Kendall E. A, Krishna P. V. M., Pathak C. V. and
the second isself-configurationfor the support Suresh C. B. Patterns of intelligent and mobile

of new products and rapidly changing old ones, agents. IrProc. of the second international confer-
without much manual reconfiguration, the third is ~ €NCe on Autonomous agenpages 92-99, 1998.
productivity- how to at least maintain and hopefully [7] Wooldridge M. J.and Jennings N. R. Pitfalls of
improve productivity by applying agents, and the agent-oriented development. Rroc. of the sec-

final issue isequipment life span cost how to ond international conference on Autonomous agents
keep the agent in sync with life-cycle costs of the Pages 385-391, 1998.
operating equipment. [8] Wooldridge M. J, Jenning N. R. and Kinny D. A
methodology for agent-oriented analysis and design.
Similar to Rockwells approach, Daimler- In Proc. of the third international conference on Au-

Chryslets Agent Design approach is also divided tonomous agenipages 6976, 1999.

in four steps. The first step is to analyze and creat®] Parunak H. V. Dand Odell J. Representing Social
a model of the manufacturing task, the second is Structures in UML. InProc. of the fifth interna-
to further investigate the model to identify and tional conference on Autonomous agefisrthcom-
classify the roles that are needed, the third is to ing, 2001.

specify interactions between roles, and the final stp@] Wooldridge M. J, Jennings N. R. and Kinny D. The
is to specify agents that will fill these roles. This Gaia methodology for agent-oriented analysis and

approach has much in common with the Gdig] [design. Autonomous Agents and Multi-Agent Sys-
and MaSE $1] methodologies with respect to role tems 3(3):285-312, September 2000.
identification and interaction between roles. [11] Jennings N. R.Sycara K. and Wooldridge M. J. A

Roadmap of Agent Research and Developméut.
tonomous Agents and Multi-Agent Systef{g):7—
38, 1998.

6 COﬂClUSIOﬂ [12] Jennings N. R.On agent-based software engineer-

]))) ing. Artificial Intelligence 2000.
This paper has sought to give a topical overwew%f Odell J. Parunak H. V. D. and Bauer B. Extendin
recent progress of agent-oriented software engine 13—] ell -, rarunak 1. V. . a auer b. Extending

. . . UML for Agents. InProc. of the Agent-Oriented In-
ing methodologies. Further work should include a formation Systems (AOIS) Workshop at the 17th Na-
more thorough analysis of the field in addition to

. : :) tional conference on Atrtificial Intelligence (AAAI)
practical testing of and experiments with the meth- »qgp.

ods. [14] Odell J, Parunak H. V. D. and Bauer B. Represent-

ing Agent Interaction Protocols in UML. The First
International Workshop on Agent-Oriented Software
References Engineering (AOSE-2000), 2000.

[1] Aridor Y. and Lange D. B. Agent Design Patterns[15] Bergenti F.and Poggi A. Exploiting UML in the

Elements of Agent Application Design. Froc. of Design of Multi-Agent Systems. Ifroc. of the
the second international conference on Autonomous ECOOP - Workshop on Engineering Societies in
agents pages 108-115, 1998. the Agents’ World 2000 (ESAW'QQ)ages 96-103,

[2] Chaib-draa B. Connection between micro and macro 2000.
aspects of agent modeling. Rroc. of the first in- [16] Jennings N. R.Agent-Based Computing: Promise
ternational conference on Autonomous agep&ges and Perils. IrProc. 16th Int. Joint Conf. on Atrtificial
262-267, 1997. Intelligence (IJCAI-99)pages 1429-1436, 1999.

First NTNU CSGSC, May 2001 WWwWw.csgsc.org

http://www.rockwell.com
http://www.rockwell.com
http://www.rockwell.com
http://www.daimlerchrysler.com/
http://www.daimlerchrysler.com/
http://www.jfipa.org/publications/adr.php?l=AA1998Aridor
http://www.jfipa.org/publications/adr.php?l=AA1998Aridor
http://www.jfipa.org/publications/adr.php?l=AA1998Aridor
http://www.jfipa.org/publications/adr.php?l=AA1997Chaib
http://www.jfipa.org/publications/adr.php?l=AA1997Chaib
http://www.jfipa.org/publications/adr.php?l=AOIS1999DeLoach
http://www.jfipa.org/publications/adr.php?l=AOIS1999DeLoach
http://www.jfipa.org/publications/adr.php?l=AOIS1999DeLoach
http://www.jfipa.org/publications/adr.php?l=GT2000Depke
http://www.jfipa.org/publications/adr.php?l=GT2000Depke
http://www.jfipa.org/publications/adr.php?l=AA2000Erol
http://www.jfipa.org/publications/adr.php?l=AA2000Erol
http://www.jfipa.org/publications/adr.php?l=AA1998Kendall
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.jfipa.org/publications/adr.php?l=AA1998WoolJen
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.jfipa.org/publications/adr.php?l=AA1999WoolJen
http://www.acm.org/pubs/contents/proceedings/ai/301136/
http://www.acm.org/pubs/contents/proceedings/ai/301136/
http://www.jfipa.org/publications/adr.php?l=AA2001ParunakOdell
http://www.csc.liv.ac.uk/~agents2001/
http://www.csc.liv.ac.uk/~agents2001/
http://www.jfipa.org/publications/adr.php?l=AAMAS2000WoolJenKinny
http://www.jfipa.org/publications/adr.php?l=AAMASJenSycaraWool1998
http://www.jfipa.org/publications/adr.php?l=AI2000Jen
http://www.jfipa.org/publications/adr.php?l=AOIS2000Odell
http://www.jfipa.org/publications/adr.php?l=AOSE2000OdellParunakBauer
http://www.jfipa.org/publications/adr.php?l=ESAW2000Bergenti
http://www.jfipa.org/publications/adr.php?l=IJCAI1999Jen
http://www.csgsc.org/

[17] Odell J.and Bock C. Suggested UML Extensions fof33]
Agents, December 1999.

[18] Kendall E. A, Malkoun M. and Jiang C. Multia-
gent systems design based on object oriented pga4]
terns. Journal of Object Oriented Programming
June 1997.

[19] Kendall E. A, Malkoun M. and Jiang C. The ap-
plication of object-oriented analysis to agent based
systems.Journal of Object Oriented Programming [35]
February 1997.

[20] Jennings N. R. Building Complex Software Sys-
tems: The Case for an Agent-based Approdbm-
munications of the ACMForthcoming, 2001.

[21] Labrou Y., Finin T. and Peng Y. Agent Communi-
cation Languages: The Current LandscapEEE
Intelligent Systemd.4(2), March/April 1999 1999.

[22] Lind J. Issues in Agent-Oriented Software Engineer-
ing. The First International Workshop on Agent-
Oriented Software Engineering (AOSE-2000), 2000.

[23] Magnanelli M. and Norrie M. C. Databases for
Agents and Agents for Databasek Proc. of 2nd
International Bi-Conference Workshop on Agent-
Oriented Information Systemaune 2000.

[24] Parunak H. V. D. A Practitioner’s Review of In-
dustrial Agent Applications. Autonomous Agents
and Multi-Agent System8(4):389-407, December
2000.

[25] Parunak H. V. D. Agents in Overalls: Experiences
and Issues in the Development and Deployment of
Industrial Agent-Based Systeniaternational Jour-
nal of Cooperative Information Systen®(3):209—
227, 2000.

[26] Rana O.F. and Biancheri C. A Petri Net Model of the
Meeting Design Pattern for Mobile-Stationary Agent
Interaction. InProc. of the 32nd Hawaii Interna-
tional Conference on System Sciende¥99.

[27] Nwana H. S. and Ndumu D. A perspective on soft-
ware agents researciThe Knowledge Engineering
Review 14(2):1-18, 1999.

[28] Shoham Y. Agent-oriented programmingrtificial
Intelligence (60):51-92, 1993.

[29] Wagner G. Agent-Object-Relationship Modeling.
In Proc. of Second International Symposium - from
Agent Theory to Agent Implementation together with
EMCRS 2000April 2000.

[30] Wagner G. Agent-Oriented Analysis and Design
of Organizational Information Systems. Rroc.
of Fourth IEEE International Baltic Workshop on
Databases and Information Systems, Vilnius (Lithua-
nia), May 2000.

[31] Wood M. F. and DeLoach S. A. An Overview of
the Multiagent Systems Engineering Methodology.
The First International Workshop on Agent-Oriented
Software Engineering (AOSE-2000), 2000.

[32] Wooldridge M. J. and Jennings N. R. Intelligent
Agents: Theory and PracticeThe Knowledge En-
gineering Review2(10):115-152, 1995.

First NTNU CSGSC, May 2001

Wooldridge M. J. and Jennings N. R. Software En-
gineering with Agents: Pitfalls and Pratfall$EEE
Internet Computing3(3):20-27, May/June 1999.

Yim H., Cho K., Jongwoo K. and Park S.
Architecture-Centric ~ Object-Oriented Design
Method for Multi-Agent Systems. IfProc. of the

Fourth International Conference on MultiAgent
Systems (ICMAS-200®000.

Zambonelli F., Jennings N. R., Omicini A. and
Wooldridge M. J. Coordination of Internet Agents:
Models, Technologies and Applicatiorhapter 13.
Springer-verlag, 2000. Agent-Oriented Software En-
gineering for Internet Applications.

WWW.CSgSC.0rg

http://www.jfipa.org/publications/adr.php?l=OMG1999OdellBock
http://www.jfipa.org/publications/adr.php?l=OOP1997KendallMalkounJiangb%
http://www.jfipa.org/publications/adr.php?l=OOP1997KendallMalkounJiang
http://www.wkap.nl/oasis.htm/264732
http://www.wkap.nl/oasis.htm/264732
http://www.csgsc.org/

	1 Introduction
	1.1 Terminology
	1.2 Scope and limitations

	2 Agent-Oriented Software Engineering
	3 High-level Methodologies
	3.1 The Gaia Methodology
	3.2 The Multiagent Systems Engineering Methodology
	3.3 Modeling database information systems

	4 Design Methods
	4.1 UML
	4.2 Design Patterns
	4.3 Components
	4.4 Graph Theory

	5 Agents in the real-world
	5.1 Agents in the industry - where and how?

	6 Conclusion

