
A survey of Agent-Oriented Software Engineering

Amund Tveit∗

amund.tveit@idi.ntnu.no
Norwegian University of Science and Technology

May 8, 2001

Abstract

Agent-Oriented Software Engineering is the one of
the most recent contributions to the field of Software
Engineering. It has several benefits compared to
existing development approaches, in particular the
ability to let agents represent high-level abstractions
of active entities in a software system. This paper
gives an overview of recent research and industrial
applications of both general high-level methodolo-
gies and on more specific design methodologies for
industry-strength software engineering.

Keywords: Intelligent Agents, Software Engi-
neering, UML, Design Patterns and Components

1 Introduction

Agent-Oriented Software Engineeringis being
described as a new paradigm [22] for the research
field of Software Engineering. But in order to
become a new paradigm for the software industry,
robust and easy-to-use methodologies and tools
have to be developed.

But first, let us explain what an agent is. An agent,
also called a software agent or an intelligent agent,
is a piece of autonomous software, the words intel-
ligent and agent describe some of its characteristic
features. Intelligent is used because the software can
have certain types of behavior (“Intelligent behavior
is the selection of actions based on knowledge”), and
the termagenttells something about the purpose of
the software. An agent is“one who is authorized to
act for or in the place of another”(Merriam Web-
ster’s Dictionary).

Examples of software agents

1. The animated paperclip agent in Microsoft Of-
fice

2. Computer viruses (destructive agents)

∗http://www.elcomag.com/amund/

3. Artificial players or actors in computer games
and simulations (e.g. Quake)

4. Trading and negotiation agents (e.g. the auction
agent atEBay)

5. Web spiders (collecting data to build indexes
to used by a search engine, i.e.Google)

A common classification scheme of agents is
the weak and strong notion of agency [32]. In the
weak notion of agency, agents have their own will
(autonomy), they are able to interact with each
other (social ability), they respond to stimulus
(reactivity), and they take initiative (pro-activity).
In the strong notion of agencythe weak notions of
agency are preserved, in addition agents can move
around (mobility), they are truthful (veracity), they
do what they’re told to do (benevolence), and they
will perform in an optimal manner to achieve goals
(rationality).

Due to the fact that existing agents have more in
common with software than with intelligence, they
will be referred to as software agents or agents in
this context.

1.1 Terminology

Being a relatively new research field, agent-based
software engineering currently has a set of closely
related terms used in research papers, I will thus try
to clarify and explain the terms and their relations
below.

Agent-Oriented Programming(AOP)[29, 30] is
seen as an improvement and extension of Object-
Oriented Programming (OOP). Since the word
“Programming” is attached, it means that both
concepts are close to the programming language and
implementation level. The term “Agent-Oriented
Programming” was introduced by Shoham in 1993
[28].

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.jfipa.org/amund/index.php?fp
mailto:amund.tveit@idi.ntnu.no
http://www.ebay.com/
http://www.google.com
http://www.csgsc.org/


Agent-Oriented Development(AOD) [8] is an
extension of Object-Oriented Development (OOD).
The word “Development” is sometimes interpreted
as “Programming”, on the other hand it is frequently
interpreted to include the full development process
that covers the requirement specification and design,
in addition to the programming itself.

Software Engineering with Agents[33], Agent-
Based Software Engineering[12], Multi-agent
Systems Engineering(MaSE) [3, 31] and
Agent-Oriented Software Engineering(AOSE)
[22, 20, 35, 15] are semantically equivalent terms,
but MaSE refers to a particular methodology and
AOSEseems to be the most widely used term. The
difference between AOSE and AOD, is that AOSE
also covers issues such as re-use and maintenance
of the agent-system in addition to the development
of the system itself. However, to be on the safe side,
one should omit the use of the term AOD since it
can easily be misinterpreted as pointed out earlier
(due to the different interpretations).

The termAgent-Based Computing[16] can be ap-
plied to describe all issues related to agent-oriented
software engineering, but it also covers issues re-
gardinghowandwhatagents compute.

1.2 Scope and limitations

In this paper we will present a topical overview of
recent advances of methodologies for development
of agent-based systems. The focus is both on
general high-level methodologies and on more
specific design methodologies related to software
engineering. This means that specialized agent
methodologies, e.g. to improve coordination, coop-
eration, communication and artificial intelligence
in agents and agent systems, are outside the scope
of this paper. Suggested readings that give good
overviews of other aspects of the agent research
field are presented in the work by Jennings et al.
[11] and by Nwana et al. [27].

This paper is organized as follows: section 2
describes aspect of Agent-Oriented Software Engi-
neering, section 3 gives a description of high-level
methodologies, section 4 describes design meth-
ods inspired by well-known software engineering
methods and standards (e.g. UML, components
and design patterns), section 5 describes problems,
methodologies and tools for agents in industrial con-
text.

2 Agent-Oriented Software En-
gineering

The main purposes of Agent-Oriented Software En-
gineering are to create methodologies and tools that
enables inexpensive development and maintenance
of agent-based software. In addition, the software
should be flexible, easy-to-use, scalable [5] and of
high quality. In other words quite similar to the re-
search issues of other branches of software engineer-
ing, e.g. object-oriented software engineering.

How are agents distinguished from objects?

Agent-oriented programming (AOP) can be seen
as an extension of object-oriented programming
(OOP), OOP on the other hand can be seen as
a successor of structured programming [29, 30].
In OOP the main entity is the object. An object
is a logical combination of data structures and
their corresponding methods (functions). Objects
are successfully being used as abstractions for
passiveentities (e.g. a house) in the real-world,
and agents are regarded as a possible successor
of objects since they can improve the abstractions
of active entities. Agents are similar to objects,
but they also support structures for representing
mental components, i.e. beliefs and commitments.
In addition, agents support high-level interaction
(using agent-communication languages) between
agents based on the “speech act” theory as opposed
to ad-hoc messages frequently used between objects
[22], examples of such languages areFIPA ACL
and KQML [21].

Another important difference between AOP and
OOP is that objects are controlled from the outside
(whitebox control), as opposed to agents that have
autonomous behavior which can’t be directly con-
trollable from the outside (blackbox control). In
other words, agents have the right to say “no” [9]

Can agents solve all software problems?

Since this is a new and rapidly growing filed, there is
a danger that researchers becomeoverly optimistic
regarding the abilities of agent-oriented software
engineering.

Wooldridge and Jennings [7, 33] discuss the po-
tential pitfalls of agent-oriented software engineer-
ing. They have classified pitfalls in five groups: po-
litical, conceptual, analysis and design, agent-level,
and society-level pitfalls.Political pitfalls can occur
if the concept of agents is oversold or sought applied
as atheuniversal solution.Conceptual pitfallsmay

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.fipa.org/
http://www.csgsc.org/


occur if the developer forgets that agents are soft-
ware, in fact multithreaded software.Analysis and
design pitfallsmay occur if the developer ignores
related technology, e.g. other software engineering
methodologies.Agent-level pitfallsmay occur if the
developer tries to use too much or too little artifi-
cial intelligence in the agent-system. And finally,
society-level pitfallscan occur if the developer sees
agents everywhere or applies too few agents in the
agent-system

The problem with hype

Being aware of the failing promises of the closely
related field of Artificial Intelligence in the 1980s,
Jennings, a prominent researcher of the agent field,
points out that the failure of keeping promises and
becoming an offer of media hype and then “slaugh-
ter”, could perfectly well happen to the field of agent
research [16].

3 High-level Methodologies

This section describes methodologies that provide a
top-down and iterative approach towards modeling
and developing agent-based systems.

3.1 The Gaia Methodology

Wooldridge, Jennings and Kinny [10, 8] present
the Gaia methodology for agent-oriented analysis
and design. Gaia is a general methodology that
supports both the micro-level (agent structure) and
macro-level (agent society and organization struc-
ture) of agent development, it is however no “silver
bullet” approach since it requires that inter-agent
relationships (organization) and agent abilities are
static at run-time. The motivation behind Gaia is
that existing methodologies fail to represent the
autonomous and problem-solving nature of agents;
they also fail to model agents’ ways of performing
interactions and creating organizations. Using
Gaia, software designers can systematically develop
an implementation-ready design based on system
requirements.

The first step in the Gaiaanalysisprocess is to
find the roles in the system, and the second is to
model interactionsbetween the roles found. Roles
consist of four attributes: responsibilites, permis-
sions, activities and protocols.Responsibilitesare of
two types: liveness properties- the role has to add
something good to the system, andsafety properties
- prevent and disallow that something bad happens
to the system.Permissionsrepresents what the role
is allowed to do, in particular, which information

it is allowed to access.Activities are tasks that a
role performs without interacting with other roles.
Protocols are the specific patterns of interaction,
e.g. a seller role can support different auction
protocols, e.g. “English auction”. Gaia has formal
operators and templates for representing roles and
their belonging attributes, it also has schemas that
can be used for the representation of interactions.

In the Gaiadesignprocess, the first step is to map
roles intoagent types, and then to create the right
number ofagent instancesof each type. The second
step is to determine theservices modelneeded
to fulfill a role in one or several agents, and the
final step to is create theacquaintance modelfor
the representation of communication between the
agents.

Due to the mentioned restrictions of Gaia, it is
of less value in the open and unpredictable domain
of Internet applications, on the other hand it has
been proven as a good approach for developing
closed domain agent-systems. As a result of the
domain restrictions of the Gaia method, Zambonelli,
Jennings et al. [35] proposes some extensions and
improvements of it with the purpose of supporting
development of Internet applications.

Other sources for the discussion of micro and
macro aspects of agent modeling include work by
Chaib-draa [2]

3.2 The Multiagent Systems Engineer-
ing Methodology

Wood and DeLoach [3, 31] suggest the Multiagent
Systems Engineering Methodology (MaSE). MaSE
is similar to Gaia with respect to generality and the
application domain supported, but in addition MaSE
goes further regarding support for automatic code
creation through the MaSE tool. The motivation
behind MaSE is the current lack of proven method-
ology and industrial-strength toolkits for creating
agent-based systems. The goal of MaSE is to lead
the designer from the initial system specification to
the implemented agent system. Domain restrictions
of MaSE is similar to those of Gaia’s, but in addition
it requires that agent-interactions are one-to-one and
not multicast.

The MaSE methodology are divided into seven
sections (phases) in a logical pipeline.Capturing
goals, the first phase, transforms the initial sys-
tem specification into a structured hierarchy of sys-
tem goals. This is done by first identifying goals
based on the initial system specification’s require-
ments, and then ordering the goals according to im-

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.csgsc.org/


portance in a structured and topically ordered hierar-
chy. Applying Use Cases, the second phase, creates
use cases and sequence diagrams based on the ini-
tial system specification. Use cases presents the log-
ical interaction paths between various roles in and
the system itself. Sequence diagrams are used to de-
termine the minimum number of messages that have
to be passed between roles in the system. The third
phase isrefining roles, it creates roles that are re-
sponsible for the goals defined in phase one. In gen-
eral each goal is represented by one role, but a set
of related goals may map to one role. Together with
the roles a set of tasks are created, the tasks defines
how to solve goals related to the role. Tasks are de-
fined as state diagrams. The fourth phase,creating
agent classes, maps roles to agent classes in an agent
class diagram. This diagram resemble object class
diagrams, but the semantic of relationships is high-
level conversation as opposed to the object class dia-
grams’ inheritance of structure. The fifth phase,con-
structing conversations, defines a coordination pro-
tocol in the form of state diagrams that define the
conversation state for interacting agents. In the sixth
phase,assembling agent classes, the internal func-
tionality of agent classes are created. Selected func-
tionality is based on five different types of agent ar-
chitectures: Belief-Desire-Intention (BDI), reactive,
planning, knowledge based and user-defined archi-
tecture. The final phase,system design, create actual
agent instances based on the agent classes, the final
result is presented in a deployment diagram.
Visions of the future for MaSE is to provide com-
pletely automatic code generation based on the de-
ployment diagram.

3.3 Modeling database information sys-
tems

Wagner [29, 30] suggests the Agent-Object Rela-
tionship (AOR) modeling approach in the design of
information systems. AOR is inspired by the two
widely applied models of databases, i.e. the Entity-
Relationship (ER) meta-model and the Relational
Database (RDB) model.

The purpose of the ER meta-model is to ease
the transformation of relations between different
types of data (entities) into an implementation-ready
(database) information system design. This trans-
formation is well-supported forstatic entities or
objects, but falls short in modellingactiveentities or
agents in an information system; the purpose of the
AOR-model is to extend the ER-model by providing
the ability to model relations between agents in
addition to static entities.

In AOR, entities can be of six types: agents,

events, actions, commitments, claims and objects.
Commitments and claims are dualistic, commit-
ments of one agent are seen as claims against other
agents. Organizations are modeled as a group of
sub-agents. Each of the sub-agents has theright to
perform certain actions, but they are also commited
to dutiessuch as monitoring claims and events rel-
evant for the agent-organization. The interpretation
of duties and permissions seems to correspond with
services and permissions found in the Gaia method-
ology [10]. An example of an agent-based database
information system can be found in Magnanelli et.
al [23].

4 Design Methods

This section describes methodologies that are
mainly inspired by the methodologies and standards
of the object-oriented software engineering field.

4.1 UML

The Universal Modeling Language (UML) is a
graphical representation language originally devel-
oped to standardize the design of object classes.
It has later been greatly extended with support
for designing sequences, components etc., in fact
all parts of an object-oriented information system
design.

Yim et al. [34] suggest an architecture-centric
design method for multi-agent systems. The method
is based on standard extensions of UML using
on the Object Constraints Language (OCL), and
it supports the transformation of agent-oriented
modeling problems into object-oriented modeling
problems. In the transformation process, relations
between agents are transformed to design patterns,
these patterns are then used as relations between
object classes, in contrast to the more commonly
applied relation types between object classes such
as inheritance. The result of this method is that
designers and developers are able to use existing
UML-based tools in addition to knowledge and ex-
perience from developing object-oriented systems.

Odell, Parunak and Bauer [14] suggested a three-
layer representation of Agent-Interaction Protocols
(AIP). AIP are defined as patterns representing both
the message communication between agents, and to
the corresponding constraints on the content of such
messages. In contrast to Yim et al.’s UML-based
architecture [34], Odell et al.’s approach requires
changes of the UML visual language and not
only the expressed semantics. The representation
requires changes of the following UML represen-

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.csgsc.org/


tations: packages, templates, sequence diagrams,
collaboration diagrams, activity diagrams and
statecharts. In thefirst layer, the communication
protocol (i.e. type of interaction) is represented in a
reusable manner applying UML packages and tem-
plates. Thesecond layerrepresents interactions (i.e.
which type of agents can communicate with whom)
between agents using sequence, collaboration and
activity diagrams as well as statecharts. In thethird
layer, the internal agent processing (i.e. why and
how the agent acts) is represented using activity
diagrams and statecharts.

In “Extending UML for Agents” [13], Odell
et al. suggests further extensions to UML called
Agent UML (AUML) to be able to represent all
aspects of agents using AUML. AUML has been
submitted to the UML standardization committee
as a proposal for inclusion in the forthcoming UML
2.0 [17]. According to the suggestion, UML has
to include richer role specificationthat requires
modification of the UML sequence diagram format.
To be able to represent agents instead of operations
as interface points, the UML package definition has
to modified. Agents have the ability to be mobile
in the sense that they can move between different
agent systems autonomously. In order to represent
this in UML, the deployment diagram definition has
to be changed.

Bergenti and Poggi [15] suggest the application
of four agent-oriented UML diagrams at the high-
est abstraction level of Agent-Oriented Software
Engineering, namely the agent level. It is similar
to Yim’s approach in the sense that there are no
required changes of the UML standard itself. The
first is the ontology diagram, it is used to model
the world as relations between entities using the
UML static class diagram format. The second is the
architecture diagramthat is used in modeling the
configuration of a multi-agent system by applying
the UML deployment format. Diagram three is
the protocol diagram, it is used to represent the
language of interaction, and is based on the UML
collaboration diagram format. Thisprotocol dia-
gram corresponds to Odell et al.’s [14] first layer
model of the communication protocol. The fourth is
the role diagrambased on the UML class diagram,
it is used to represent the functionalities each agent
role has.

Parunak and Odell [9] combine existing organiza-
tional models for agents in a UML-based framework
in order to model and represent social structures in
UML. This work is an improvement oo the Agent
UML extensions to UML.

4.2 Design Patterns

Design patterns are reoccuring patterns of program-
ming code or components software architecture.

Aridor and Lange [1] suggest a classification
scheme for design patterns in a mobile agent
context. In addition they suggest patterns belonging
to each the classes. The purpose is to increase
re-use and quality of code and at the same time
reduce the effort of development of mobile agent
systems. The classification scheme has three
classes: traveling, task and interaction. Patterns
in the traveling classspecify features for agents
that move between various environments, e.g. the
forwarding pattern that specifies how newly arrived
agents can be forwarded to another host. Patterns
of the task classspecify how agents can perform
tasks, e.g. the plan pattern specifies how multiple
tasks can be performed on multiple hosts. Patterns
of the interaction class, specify how agents can
communicate and cooperate. An example of an
interaction class pattern is the facilitator, it defines
an agent that provides services for identifying and
finding agents with specific capabilities.

Other approaches for design patterns for mobile
agents include the approach of Rana and Biancheri
[26] applying Petri Nets to model the meeting
pattern of mobile agents.

Kendall et al. [6] ([19, 18]) suggest a seven-layer
architecture pattern for agents, and sets of patterns
belonging to each of the layers. The seven layers
are: mobility, translation, collaboration, actions,
reasoning, beliefs and sensory. The three lowest
layers have patterns that select the mental model of
the agent, e.g. if the agent is to respond to stimulus
the reactive agent pattern should be selected, if it
is to interact with human users the interface agent
pattern should be selected. Selecting patterns as
a methodology for agent development is being
justified by referring to the previous successes of
applying patterns in traditional software technology.

Compared to the previously mentioned pattern
classification scheme in the work by Aridor and
Lange, the layered architecture has a similar logical
grouping of patterns. The mobility layer together
with the translation layer corresponds to the class
of traveling, the collaboration layer corresponds to
the class of interaction, and the actions layer corre-
sponds to the class of task. The main difference be-
tween this and the previously mentioned approaches
for mobile agents, is that this one aims to cover all
main types of agent design patterns.

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.csgsc.org/


4.3 Components

Components are logical groups of related objects
that can provide certain functionalities. This might
sound quite similar to agents, but in fact compo-
nents are not autonomous as opposed to agents. By
grouping related objects, components allow more
coarse-grained re-use than the combination of single
classes from scratch, this has shown to an effective
and popular development approach in the software
industry.

Erol, Lang and Levy [5] suggest a three-tier ar-
chitecture that enables composition of agents by ap-
plying reusable components. The first tier isinterac-
tions, it is built up by agent roles and utterances. The
second tier islocal information and expertise, that
enables the storage of information such as execution
state, plan and constraints of the agent.Information-
content, the third tier, is passive and often domain-
specific, since it is often used to wrap legacy sys-
tems, e.g. a mainframe database application.

4.4 Graph Theory

Depke and Heckel [4] apply formal graph theory on
requirement specifications for agent-systems in or-
der to maintain consistency when the requirements
are transformed into a design model.

5 Agents in the real-world

The agent-oriented approach is increasingly being
applied in industrial applications, but it is far from
as widespread as the object-oriented approach. This
section describes where and how agents have been
applied with success in the manufacturing industry.

Parunak [25] defines agenthood, a taxonomy
and a maturity metric in an industrial context.
His purpose is to improve the understanding and
utilization of agent-oriented software engineering in
industry.

Agenthood, i.e. agent-oriented programming,
is explained as an iterative improvement of the
industry-strength methodology of object-oriented
programming.

The taxonomyclassifies agent systems as belong-
ing to one of the followingenvironments: digital
(i.e. software and digital hardware), social (involv-
ing human users) or electromechanical (non-digital
hardware, e.g. a motor). Thereafter the taxonomy
classifies agents according to theinterfacethey sup-
port. Interface types are similar to the environments:

digital (e.g. communication protols), social (e.g.
user interfaces) and electromechanical (e.g. motor
control interfaces).

Few business users, as opposed to researchers, are
early-adapters of new and immature technology, as
a result of this amaturity metricof agent-based sys-
tems is developed to be able to measure the level of
agent technology and systems. The maturity met-
ric has six degrees ranging from modeled applica-
tions to products.Modeled applications, the least
mature, are theoretical applications in the form of ar-
chitectural descriptions or analyses. The metric con-
tinues withemulated applicationsthat are relatively
immature due to the fact that they are simulations
in a lab environment.Prototype applicationsrep-
resent the next maturity degree, they run in a non-
commercial environment but on real hardware.Pi-
lot applicationsare relatively mature applications,
however they are not expected to be completely bug-
free, and after a certain period they usually become
more mature and becomeproduction applications.
A production application is being applied in sev-
eral businesses, but they require support for instal-
lation and maintenance. The most mature applica-
tions areproducts, they are usually shrink-wrapped
and sold over desk, and they can usually be installed
and maintained by the non-expert user.

5.1 Agents in the industry - where and
how?

Parunak [24] presents a review of industrial agent
applications. Application areas considered are:
manufacturing scheduling, control, collaboration
and agent simulation. Thereafter tools, method-
ologies, insights and problems for development of
agent systems are presented and discussed.

Manufacturing schedulingis the ordering and
timing of processes in a production facility. The
purpose is to optimize the production by maximiz-
ing the number of units produced per time slot and
keep good quality of the product, and minimize
the resource requirements per unit and the risk
of failures. Processes and machinery has to be
controlled in order to operate as scheduled. The
control can range from simple regulation of the
power level for a piece of machinery to advanced
real-time cybernetic control of processes. For
many industries, humancollaboration is needed to
solve complex problems, e.g. in a design process
engineers and designers have to collaborate in
order to guarantee that products are pleasent to
look in addition to being safe. In industries such
as electronics production, there are tremendous
setup costs for production facilities, consequently

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.csgsc.org/


there is a need for cost-efficientsimulationof the
manufacturing processes.

Agent methodologies in the industry

Methodologiesfor creating industrial agent systems
presented areRockwell’s Foundation Technology
and DaimlerChrysler’s Agent Design for agent-
based control [24].

In Rockwell’s Foundation Technology four issues
are considered in the development of agent-based
control architectures, the first isflexibility related
to fault-tolerance in a multi-objective environment,
the second isself-configuration for the support
of new products and rapidly changing old ones,
without much manual reconfiguration, the third is
productivity- how to at least maintain and hopefully
improve productivity by applying agents, and the
final issue isequipment life span cost- how to
keep the agent in sync with life-cycle costs of the
operating equipment.

Similar to Rockwell’s approach, Daimler-
Chrysler’s Agent Design approach is also divided
in four steps. The first step is to analyze and create
a model of the manufacturing task, the second is
to further investigate the model to identify and
classify the roles that are needed, the third is to
specify interactions between roles, and the final step
is to specify agents that will fill these roles. This
approach has much in common with the Gaia [10]
and MaSE [31] methodologies with respect to role
identification and interaction between roles.

6 Conclusion

This paper has sought to give a topical overview of
recent progress of agent-oriented software engineer-
ing methodologies. Further work should include a
more thorough analysis of the field in addition to
practical testing of and experiments with the meth-
ods.

References
[1] Aridor Y. and Lange D. B. Agent Design Patterns:

Elements of Agent Application Design. InProc. of
the second international conference on Autonomous
agents, pages 108–115, 1998.

[2] Chaib-draa B. Connection between micro and macro
aspects of agent modeling. InProc. of the first in-
ternational conference on Autonomous agents, pages
262–267, 1997.

[3] DeLoach S. A. Multiagent Systems Engineering
A Methodology and Language for Designing Agent
Systems. In Proc. of Agent Oriented Information
Systems, pages 45–57, 1999.

[4] Depke R. and Heckel R. Formalizing the De-
velopment of Agent-Based Systems Using Graph
Processes. InProc. of the ICALP’2000 Satellite
Workshops, Workshop on Graph Transformation and
Visual Modelling Techniques (GTVMT’00), pages
419–426, 2000.

[5] Erol K., Lang J. and Levy R. Designing Agents from
Reusable Components. InProc. of the fourth inter-
national conference on Autonomous agents, pages
76–77, 2000.

[6] Kendall E. A., Krishna P. V. M., Pathak C. V. and
Suresh C. B. Patterns of intelligent and mobile
agents. InProc. of the second international confer-
ence on Autonomous agents, pages 92–99, 1998.

[7] Wooldridge M. J.and Jennings N. R. Pitfalls of
agent-oriented development. InProc. of the sec-
ond international conference on Autonomous agents,
pages 385–391, 1998.

[8] Wooldridge M. J., Jenning N. R. and Kinny D. A
methodology for agent-oriented analysis and design.
In Proc. of the third international conference on Au-
tonomous agents, pages 69–76, 1999.

[9] Parunak H. V. D.and Odell J. Representing Social
Structures in UML. InProc. of the fifth interna-
tional conference on Autonomous agents, Forthcom-
ing, 2001.

[10] Wooldridge M. J., Jennings N. R. and Kinny D. The
Gaia methodology for agent-oriented analysis and
design. Autonomous Agents and Multi-Agent Sys-
tems, 3(3):285–312, September 2000.

[11] Jennings N. R., Sycara K. and Wooldridge M. J. A
Roadmap of Agent Research and Development.Au-
tonomous Agents and Multi-Agent Systems, 1(1):7–
38, 1998.

[12] Jennings N. R.On agent-based software engineer-
ing. Artificial Intelligence, 2000.

[13] Odell J., Parunak H. V. D. and Bauer B. Extending
UML for Agents. InProc. of the Agent-Oriented In-
formation Systems (AOIS) Workshop at the 17th Na-
tional conference on Artificial Intelligence (AAAI),
2000.

[14] Odell J., Parunak H. V. D. and Bauer B. Represent-
ing Agent Interaction Protocols in UML. The First
International Workshop on Agent-Oriented Software
Engineering (AOSE-2000), 2000.

[15] Bergenti F.and Poggi A. Exploiting UML in the
Design of Multi-Agent Systems. InProc. of the
ECOOP - Workshop on Engineering Societies in
the Agents’ World 2000 (ESAW’00), pages 96–103,
2000.

[16] Jennings N. R.Agent-Based Computing: Promise
and Perils. InProc. 16th Int. Joint Conf. on Artificial
Intelligence (IJCAI-99), pages 1429–1436, 1999.

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.rockwell.com
http://www.rockwell.com
http://www.rockwell.com
http://www.daimlerchrysler.com/
http://www.daimlerchrysler.com/
http://www.jfipa.org/publications/adr.php?l=AA1998Aridor
http://www.jfipa.org/publications/adr.php?l=AA1998Aridor
http://www.jfipa.org/publications/adr.php?l=AA1998Aridor
http://www.jfipa.org/publications/adr.php?l=AA1997Chaib
http://www.jfipa.org/publications/adr.php?l=AA1997Chaib
http://www.jfipa.org/publications/adr.php?l=AOIS1999DeLoach
http://www.jfipa.org/publications/adr.php?l=AOIS1999DeLoach
http://www.jfipa.org/publications/adr.php?l=AOIS1999DeLoach
http://www.jfipa.org/publications/adr.php?l=GT2000Depke
http://www.jfipa.org/publications/adr.php?l=GT2000Depke
http://www.jfipa.org/publications/adr.php?l=AA2000Erol
http://www.jfipa.org/publications/adr.php?l=AA2000Erol
http://www.jfipa.org/publications/adr.php?l=AA1998Kendall
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.jfipa.org/publications/adr.php?l=AA1998WoolJen
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.acm.org/pubs/contents/proceedings/ai/280765/
http://www.jfipa.org/publications/adr.php?l=AA1999WoolJen
http://www.acm.org/pubs/contents/proceedings/ai/301136/
http://www.acm.org/pubs/contents/proceedings/ai/301136/
http://www.jfipa.org/publications/adr.php?l=AA2001ParunakOdell
http://www.csc.liv.ac.uk/~agents2001/
http://www.csc.liv.ac.uk/~agents2001/
http://www.jfipa.org/publications/adr.php?l=AAMAS2000WoolJenKinny
http://www.jfipa.org/publications/adr.php?l=AAMASJenSycaraWool1998
http://www.jfipa.org/publications/adr.php?l=AI2000Jen
http://www.jfipa.org/publications/adr.php?l=AOIS2000Odell
http://www.jfipa.org/publications/adr.php?l=AOSE2000OdellParunakBauer
http://www.jfipa.org/publications/adr.php?l=ESAW2000Bergenti
http://www.jfipa.org/publications/adr.php?l=IJCAI1999Jen
http://www.csgsc.org/


[17] Odell J.and Bock C. Suggested UML Extensions for
Agents, December 1999.

[18] Kendall E. A., Malkoun M. and Jiang C. Multia-
gent systems design based on object oriented pat-
terns. Journal of Object Oriented Programming,
June 1997.

[19] Kendall E. A., Malkoun M. and Jiang C. The ap-
plication of object-oriented analysis to agent based
systems.Journal of Object Oriented Programming,
February 1997.

[20] Jennings N. R. Building Complex Software Sys-
tems: The Case for an Agent-based Approach.Com-
munications of the ACM, Forthcoming, 2001.

[21] Labrou Y., Finin T. and Peng Y. Agent Communi-
cation Languages: The Current Landscape.IEEE
Intelligent Systems, 14(2), March/April 1999 1999.

[22] Lind J. Issues in Agent-Oriented Software Engineer-
ing. The First International Workshop on Agent-
Oriented Software Engineering (AOSE-2000), 2000.

[23] Magnanelli M. and Norrie M. C. Databases for
Agents and Agents for Databases. In Proc. of 2nd
International Bi-Conference Workshop on Agent-
Oriented Information Systems, June 2000.

[24] Parunak H. V. D. A Practitioner’s Review of In-
dustrial Agent Applications. Autonomous Agents
and Multi-Agent Systems, 3(4):389–407, December
2000.

[25] Parunak H. V. D. Agents in Overalls: Experiences
and Issues in the Development and Deployment of
Industrial Agent-Based Systems.International Jour-
nal of Cooperative Information Systems, 9(3):209–
227, 2000.

[26] Rana O. F. and Biancheri C. A Petri Net Model of the
Meeting Design Pattern for Mobile-Stationary Agent
Interaction. InProc. of the 32nd Hawaii Interna-
tional Conference on System Sciences, 1999.

[27] Nwana H. S. and Ndumu D. A perspective on soft-
ware agents research.The Knowledge Engineering
Review, 14(2):1–18, 1999.

[28] Shoham Y. Agent-oriented programming.Artificial
Intelligence, (60):51–92, 1993.

[29] Wagner G. Agent-Object-Relationship Modeling.
In Proc. of Second International Symposium - from
Agent Theory to Agent Implementation together with
EMCRS 2000, April 2000.

[30] Wagner G. Agent-Oriented Analysis and Design
of Organizational Information Systems. InProc.
of Fourth IEEE International Baltic Workshop on
Databases and Information Systems, Vilnius (Lithua-
nia), May 2000.

[31] Wood M. F. and DeLoach S. A. An Overview of
the Multiagent Systems Engineering Methodology.
The First International Workshop on Agent-Oriented
Software Engineering (AOSE-2000), 2000.

[32] Wooldridge M. J. and Jennings N. R. Intelligent
Agents: Theory and Practice.The Knowledge En-
gineering Review, 2(10):115–152, 1995.

[33] Wooldridge M. J. and Jennings N. R. Software En-
gineering with Agents: Pitfalls and Pratfalls.IEEE
Internet Computing, 3(3):20–27, May/June 1999.

[34] Yim H., Cho K., Jongwoo K. and Park S.
Architecture-Centric Object-Oriented Design
Method for Multi-Agent Systems. InProc. of the
Fourth International Conference on MultiAgent
Systems (ICMAS-2000), 2000.

[35] Zambonelli F., Jennings N. R., Omicini A. and
Wooldridge M. J. Coordination of Internet Agents:
Models, Technologies and Applications, chapter 13.
Springer-verlag, 2000. Agent-Oriented Software En-
gineering for Internet Applications.

First NTNU CSGSC, May 2001 www.csgsc.org

http://www.jfipa.org/publications/adr.php?l=OMG1999OdellBock
http://www.jfipa.org/publications/adr.php?l=OOP1997KendallMalkounJiangb% 
http://www.jfipa.org/publications/adr.php?l=OOP1997KendallMalkounJiang
http://www.wkap.nl/oasis.htm/264732
http://www.wkap.nl/oasis.htm/264732
http://www.csgsc.org/

	1 Introduction
	1.1 Terminology
	1.2 Scope and limitations

	2 Agent-Oriented Software Engineering
	3 High-level Methodologies
	3.1 The Gaia Methodology
	3.2 The Multiagent Systems Engineering Methodology
	3.3 Modeling database information systems

	4 Design Methods
	4.1 UML
	4.2 Design Patterns
	4.3 Components
	4.4 Graph Theory

	5 Agents in the real-world
	5.1 Agents in the industry - where and how?

	6 Conclusion

