
A New Internet Agent Scripting Language Using XML

Danny B. Lange
Tom Hill

Mitsuru Oshima

General Magic, Inc.
Sunnyvale, California, U.S.A.

danny@acm.org

Abstract
Java and other system programming languages are not
ideal for software agent development on the Internet. We
have found it very challenging to produce reliable yet
lightweight agent systems. Even basic agents often require
colossal amounts of highly complex code. We are
addressing this issue by new agent scripting language and
an associated execution environment. Taken together,
these two developments provide a number of benefits to
agent developers and users. Once the user learns the
scripting language, he or she will be able to produce
personal and enhanced agents. The scripting language
supports rapid development since it allows programming
at a much higher level than Java. It makes it easy to
manipulate information in the XML format. Since the
language is open-ended, it can also be easily extended
with new tags written in the Java programming language.

Introduction
Experience gained from agent development projects
(Lange and Oshima 1998) has led us to conclude that Java
(Arnold and Gosling 1998) and other system
programming languages are not ideal for software agent
development on the Internet. We have found it very
challenging to produce reliable yet lightweight agent
systems. Even very basic agents often require colossal
amounts of highly complex code. Perhaps most
importantly, programming in these languages requires a
skill set that most agent users do not posses, thereby
preventing them from developing their own Internet
agents.

We have taken steps to address this issue by developing a
new agent scripting language and an associated execution
environment. This new scripting language is based on the
XML Internet standard (Harold 1998). It is optimized for
manipulating and producing XML data and it is itself
represented in the XML format. Drawing ideas from the
popular Tcl (Ousterhout 1994) and LISP (Graham 1996),
it is an extensible, persistent, and adaptive scripting
language for creating agent-based applications. The

execution environment consists of a network of
communicating agent servers based on the HTTP and
TCP/IP protocols. Agents can safely be hosted in this
environment, which has been built to support long-term
hosting of agents. The environment also provides a
graphical agent workbench for developing and testing
agents. The execution environment is entirely written in
Java for optimal portability.

Taken together, these two developments provide a number
of benefits to agent developers and users. Once the user
learns the scripting language, he or she will be able to
produce personal and enhanced agents. The scripting
language supports rapid development since it allows
programming at a much higher level than Java. Like
HTML allows people to create personal Web pages, we
anticipate that agent users with a technical flair can script
personal and productive agents. It makes it easy to
manipulate information in the XML format. Since the
language is open-ended, it can also be easily extended
with new tags written in the Java programming language.

Software Agents
Software agents are different from conventional software
in a number of important ways. Most notably, they are
personalized software objects that are continuously
running, semiautonomous, and able to communicate with
their surroundings.

Personalized. An agent is a personal software object
acting on behalf of a specific user (we will use the term
principal to denote the owner of an agent). Not only are
data unique and local to each agent, but its behavior
may also be personalized directly or indirectly by its
principal. E.g., the principal may change the script of
the agent to better fit her particular needs.
Continuously Running. Agents are long-lived software
objects running 7 by 24 hours. Hosted on one or more
computers in a network, agents are always ready to
respond to events. For example an agent may try to find
its principal whenever someone leaves her a voicemail.

Semiautonomous. Agents may hold enough
information about their principals to act as proxies in e-
commerce transactions. E.g., a principal may have
provided an agent her user id and password for it to
place proxy bids in an Internet auction.
Communicating. Agents are communicating with
agents, network services, and their principals. Agents
may retrieve product information from Web sites,
exchange price information, and via a phone call,
confirm an e-commerce transaction with the principal.

Useful agents are usually well-connected agents. We
believe that agents should reside as an integral part of
computer networks. Agents residing in the network are
able to monitor local and remote information services
ranging from the principals' private calendars to public
Web sites, receive and process information, and deliver it
to their principals whether they are on the road, watching
television, or working in the office.

Agent Definition Format
The Agent Definition Format (ADF) is an agent scripting
language developed by General Magic and based on the
XML Internet standard. Taken together they provide a
programming system for developing and using Internet
agents. ADF has been designed that agent users with a
technical flair can use ADF to script personal and
productive agents.

Overview
ADF is a tag language similar to HTML (Musciano and
Kennedy 1998). It provides generic programming tags for
variables (cells), procedures (handlers), and flow of
control.
Cell. Cells are the variables of ADF. Cells can be placed
anywhere in the agent and can store XML data structures.
A cell is defined as follows:

<cell name=”meeting”>
 <month>March</month>
 <day>4</day>
</cell>

Other tags include <set>, <unset>, and <recall>.
Handlers. Handlers are the procedures of ADF. Handlers
are activated by via agent references (URLs). Handlers can
also use the call tag to activate handlers in other agents.

<handler name=”next-meeting”>
 Next meeting is in
 <recall name="meeting.month"
</handler>

Here is an example of the call tag:
<call aref=”#next-meeting”/>

Other handler tags include the asynchronous <send> with
<callback> and <schedule>.

Flow of Control. ADF supports a number of tags to
control the execution of handlers. Among those tags are
the conditional tag (if) and the loop tag (foreach):

<if cond=”$next-meeting.month == May”>
 Other meetings in May are ...
</if>

ADF is an extensible scripting language very much like
Tcl. The generic programming tags in ADF are realized as
a set of tag handlers. New tag handlers can be written in
Java and easily added to the Agent Server. A set of tag
handlers can be grouped into a wrapper.

Hello World with ADF
This sample agent consists of a single handler named
index, see Example 1. The index handler is set to return
data of the text/html mime type. The body of the
handler defines an html name space with html tags
(body and center), and the Hello World greeting.
The handler is activated from a Web browser with a url
like this: http://server.net/hello.adf#index.
The greeting Hello World will show up in the
browser's window.

<adf version="0.1">
 <handler name="index" mimeType="text/html">
 <html xmlns="http://www.w3.org/TR/REC-html40">
 <body>
 <center>
 Hello World!
 </center>
 </body>
 </html>
 </handler>
</adf>

Example 1. The "Hello World" Example.

Web Site Access with ADF
In the second example we use an agent to retrieve the
ranking of Danny and Mitsuru's book on Aglets from the
Amazon Web site (www.amazon.com).
This agent uses two handlers. The first one (index) is the
one that returns the html and the second handler
(update) is the handler that retrieves the ranking
number from the Aglets book's Web page at Amazon.

The index handler demonstrates the use of the aref
attribute in the call tag (agent references similar to
href attribute in the anchor tag in HTML). The agent
reference allows agent to activate local handlers as well as
handlers in other possible remotely located agents. The
update handler demonstrates the use of an extension tag,
post, from the Web wrapper. The Web wrapper is given
a logic name in the XML name space expression in the
first line of the agent. The actual ranking number is
retrieved by a regular expression and is the result of
activating the update handler.

<adf version="0.1" xmlns:url="adf:svc:web">
 <handler name="index" mimeType="text/html">
 <html xmlns="http://www.w3.org/TR/REC-html40">
 <body>
 Aglet book is ranked <call aref="#update"/>.
 </body>
 </html>
 </handler>
 <handler name="update">
 <url:post action="http://www.amazon.com/query"
 value="keyword-query=Aglets"
 result="page"/>
 <regexp pattern="Rank:.*?>(.*?)<"
 result="rank">
 $page
 </regexp>
 $rank
 </handler>
</adf>

Example 2. The "Aglet Book Ranking" Example.

Figure 1. The Agent Server Architecture

Agent Server
The Agent Server is our implementation of an execution
environment for ADF agents. The implementation consists
of a core-ADF interpreter, an agent execution manager,
an agent storage manager, and an HTTP server, see
Figure 1.

The architecture is open to ADF language extensions.
New wrappers (collections of tag handlers) can be added
to the Agent Server. Each wrapper defines an additional
set of tag handlers that extend the ADF language. We use
the term wrapper because it often provides access to
services and applications external to the Agent Server. We
have developed wrappers that support extra ADF tags for

email, calendar, Web access, telephony, and many more
services and applications, see Figure 2.

Figure 2. The Agent Server Wrappers.

Applications
As an example of a real-world agent application, we will
briefly describe the Auction Agent. This wholly scripted
agent is capable of monitoring its principal's auction
portfolio at the eBay's Internet auction site
(www.eBay.com).
The Auction Agent is what term a voice agent. That is,
the agent is using a combination of text-to-speech, pre-
recorded prompts, and advanced speech recognition in
order to communicate with its principal via a telephone.
The entire dialog scheme is scripted in a Dialog Definition
Language based on XML.

The Auction Agent is a powerful tool for bidders and
sellers. Internet auctions are very time sensitive and the
Auction Agent offers online auction users ubiquitous and
instantaneous voice access to their auction portfolios from
regular as well as cell phones.

Here follows a brief sample dialog from the Auction
Agent. The principal has been outbid on an eBay auction.
She is in her car on her way home and is being called on
her cell phone:

Agent: Hello this is your Auction Agent. I have a
notification for you. Please say your pass code.
Principal: 123456
Agent: Hi there. You have been outbid on an item in
your eBay portfolio. Here it is: Antique radio from
1923. Highest bid is 125 Dollars. Do you want to bid
130 Dollars?
Principal: No, bid 150 Dollars.
Agent: Did you say 150 Dollars?
Principal: Yes.

Storage
Agent

Storage
Manager

Agent
Execution
Manager

Core-ADF
Interpreter

HTTP
Server

Agent
Server

Email
Wrapper

Calendar
Wrapper

Web Access
Wrapper

Phone
Wrapper

Mail protocol

Calendar
Database

WWW

Telephony
network

Agent: Just a moment while I place your bid at the
eBay Web site. [on-hold music…] I successfully placed
your bid. Is there anything else I can do for you?
Principal: No thanks.
Agent: Looking forward to hearing from you soon, bye.

Conclusion
We have presented a quick overview of General Magic’s
ongoing effort to create a viable agent technology platform
for the Internet. This platform is designed to function as
“glue” between many services and media. The Auction
Agent demonstrates an entirely new way of interacting
with Internet services. Accessible via voice from any
phone, the Auction Agent brings an entirely meaning to
the term ubiquitous Internet access. We believe that is an
example of agent technology that will change the
landscape of Internet services and e-commerce.

References
1. Lange, D.B. and Oshima, M. 1998. Programming and

Deploying Java™ Mobile Agents with Aglets™ ,
Addison-Wesley.

2. Ousterhout, J.K. 1994. Tcl and the Tk Toolkit, Addison-
Wesley.

3. Graham, P. 1996. The ANSI Common Lisp, Prentice
Hall.

4. Harold, E.R. 1998. Xml: Extensible Markup Language,
IDG Book Worldwide.

5. Arnold, K. and Gosling, J. 1998. The Java™
Programming Language, Addison-Wesley.

6. Musciano, C. and Kennedy, B. 1998. HTML The
Definitive Guide, O'Reilly.

