
Mobile Objects and Mobile Agents:
The Future of Distributed Computing?1

Danny B. Lange

General Magic, Inc.
Sunnyvale, California, U.S.A

danny@acm.org, http://www.acm.org/~danny

Abstract. This paper will lead you into the world of mobile agents, an
emerging technology that makes it very much easier to design, implement, and
maintain distributed systems. You will find that mobile agents reduce the
network traffic, provide an effective means of overcoming network latency, and
perhaps most importantly, through their ability to operate asynchronously and
autonomously of the process that created them, helps you to construct more
robust and fault-tolerant. Read on and let us introduce you to software agents -
the mobile as well as the stationary ones. We will explain all the benefits of
mobile agents and demonstrate the impact they have on the design of
distributed systems before concluding this paper with a brief overview of some
contemporary mobile agent systems.

1 What's a Software Agent?

So what is a software agent? Well, what actually constitutes an agent, and how it
differs from a normal program, has been heavily debated for several years now. While
this debate is by no means over, we more and more often see agents loosely defined
as programs that assist people and act on their behalf. This is what we prefer to call
the “end-user perspective” of software agents.

Definition of an Agent (End-User Perspective)
An agent is a program that assists people and acts on their behalf. Agents function by
allowing people to delegate work to them.

While this definition is basically correct, it does not really get under the hood.
Agents come in myriad different types and in many settings. They can be found in
computer operating systems, networks, databases, and so on. What properties do these
agents share that constitute the essence of being an agent?

1 This paper is based on a chapter of a book by Lange and Oshima entitled Programming and

Deploying Java™ Mobile Agents with Aglets™ , Addison-Wesley, 1998.
(ISBN: 0-201-32582-9).

This is not the place to examine the characteristics of the numerous agent systems
made available to the public by many research labs. But if you looked at all these
systems, you would find that a property shared by all agents is that fact that they live
in some environment. They have the ability to interact with their execution
environment, and to act asynchronously and autonomously upon it. No one is required
either to deliver information to the agent or to consume any of its output. The agent
simply acts continuously in pursuit of its own goals.

In contrast to software objects of object-oriented programming, agents are active
entities that work according to the so-called Hollywood Principle: "Don't call us, we'll
call you!"

Definition of an Agent (System Perspective)
An agent is a software object that

- is situated within an execution environment;
- possesses the following mandatory properties:

- Reactive - senses changes in the environment and acts accordingly to
those changes;
- Autonomous - has control over its own actions;
- Goal driven - is pro-active;
- Temporally continuous - is continuously executing;

- and may possess any of the following orthogonal properties:
- Communicative - able to communicate with other agents;
- Mobile - can travel from one host to another;
- Learning - adapts in accordance with previous experience;
- Believable - appears believable to the end-user.

2 What's a Mobile Agent?

Mobility is an orthogonal property of agents. That is, all agents do not necessarily
have to be mobile. An agent can just sit there and communicate with the surroundings
by conventional means. These include various forms of remote procedure calling and
messaging. We call agents that do not or cannot move stationary agents.

Definition of a Stationary Agent
A stationary agent executes only on the system where it begins execution. If it needs
information that is not on that system, or needs to interact with an agent on a different
system, it typically uses a communication mechanism such as remote procedure calling
(RPC).

In contrast, a mobile agent is not bound to the system where it begins execution.
The mobile agent is free to travel among the hosts in the network. Created in one
execution environment, it can transport its state and code with it to another execution
environment in the network, where it resumes execution.

By the term "state," we typically understand the agent attribute values that help it
determine what to do when it resumes execution at its destination. By the term

"code," we understand, in an object-oriented context, the class code necessary for the
agent to execute.

Definition of a Mobile Agent
A mobile agent is not bound to the system where it begins execution. It has the unique
ability to transport itself from one system in a network to another. The ability to travel,
allows a mobile agent to move to a system that contains an object with which the agent
wants to interact, and then to take advantage of being in the same host or network as the
object.

3 Seven Good Reasons for Using Mobile Agents

Although mobile agent technology sounds exciting, our interest in mobile agents
should not be motivated by the technology per se, but rather by the benefits they
provide for the creation of distributed systems. So here are seven good reasons for
you to start using mobile agents.

They reduce the network load. Distributed systems often rely on communications
protocols that involve multiple interactions to accomplish a given task. This is
especially true when security measures are enabled. The result is a lot of network
traffic. Mobile agents allow you to package a conversation and dispatch it to a
destination host where the interactions can take place locally, see Figure 1. Mobile
agents are also useful when it comes to reducing the flow of raw data in the network.
When very large volumes of data are stored at remote hosts, these data should be
processed in the locality of the data, rather that transferred over the network. The
motto is simple: move the computations to the data rather than the data to the
computations.

App Service

App Service

RPC-based approach

Mobile Agent-based
approach

Host A Host B

Fig. 1. Mobile Agents Reduce Network Load

They overcoming network latency. Critical real-time systems such as robots in
manufacturing processes need to respond to changes in their environments in real

time. Controlling such systems through a factory network of a substantial size
involves significant latencies. For critical real-time systems, such latencies are not
acceptable. Mobile agents offer a solution, since they can be dispatched from a central
controller to act locally and directly execute the controller's directions.

They encapsulate protocols. When data are exchanged in a distributed system, each
host owns the code that implements the protocols needed to properly code outgoing
data and interpret incoming data, respectively. However, as protocols evolve to
accommodate new efficiency or security requirements, it is a cumbersome if not
impossible task to upgrade protocol code properly. The result is often that protocols
become a legacy problem. Mobile agents, on the other hand, are able to move to
remote hosts in order to establish "channels" based on proprietary protocols.

They execute asynchronously and autonomously. Often mobile devices have to
rely on expensive or fragile network connections. That is, tasks that require a
continuously open connection between a mobile device and a fixed network will most
likely not be economically or technically feasible. Tasks can be embedded into mobile
agents, which can then be dispatched into the network. After being dispatched, the
mobile agents become independent of the creating process and can operate
asynchronously and autonomously, see Figure 2. The mobile device can reconnect at
some later time to collect the agent.

App Service

App Service
Send agent

Disconnect

App Service
Reconnect
and return

Fig. 2. Mobile Agents Allow Disconnected Operation

They adapt dynamically. Mobile agents have the ability to sense their execution
environment and react autonomously to changes. Multiple mobile agents possess the
unique ability to distribute themselves among the hosts in the network in such a way
as to maintain the optimal configuration for solving a particular problem.

They are naturally heterogeneous. Network computing is fundamentally
heterogeneous, often from both hardware and software perspectives. As mobile agents
are generally computer- and transport-layer-independent, and dependent only on their
execution environment, they provide optimal conditions for seamless system
integration.

They are robust and fault-tolerant. The ability of mobile agents to react
dynamically to unfavorable situations and events makes it easier to build robust and
fault-tolerant distributed systems. If a host is being shut down, all agents executing on
that machine will be warned and given time to dispatch and continue their operation
on another host in the network.

4 Network Computing Paradigms

Our experience shows us that mobile agents provide a very powerful uniform
paradigm for network computing. Mobile agents can revolutionize your design and
development of distributed systems. To put this claim into perspective, we will
provide a brief overview and comparison of three programming paradigms for
distributed computing: client-server, code-on-demand, and mobile agents. Note that
we put more emphasize on how the paradigm is perceived by the developer than on
the underlying hardware-software architecture.

Client-Server Paradigm. In the client-server paradigm, see Figure 3, a server
advertises a set of services that provide access to some resources (e.g., databases).
The code that implements these services is hosted locally by the server. We say that
the server holds the know-how. Finally, it is the server itself that executes the service,
and thus has the processor capability. If the client is interested in accessing some
resource hosted by the server, it will simply use one or more of the services provided
by the server. Note that the client needs some "intelligence" to decide which of the
services it should use. The server has it all, the know-how, resources, and processor.
So far, most distributed systems have been based on this paradigm. We see it
supported by a wide range of technologies such as remote procedure calling, object
request brokers (CORBA), and Java remote method invocation (RMI).

Client

Server

Know
how

Fig. 3. Client-server Paradigm

Code-on-Demand Paradigm. Accordingly to the code-on-demand paradigm, see
Figure 4, you first get the know-how when you need it. Say one host (A) initially is
unable to execute its task due to a lack of code (know-how). Fortunately, another host

(B) in the network provides the needed code. Once the code is received by A, the
computation is carried out in A. Host A holds the processor capability as well as the
local resources. Unlike in the client-server paradigm, A does not need knowledge
about the remote host, since all the necessary code will be downloaded. We say that
one host (A) has the resources and processor, and another host (B) has the know-how.
Java applets and servlets are excellent practical examples of this paradigm. Applets
get downloaded in Web browsers and execute locally, while servlets get uploaded to
remote Web servers and execute there.

Client

Server

Know
how

Know
how

Download
(applet)

Fig. 4. Code-on-demand Paradigm

Mobile Agent Paradigm. A key characteristic of the mobile agent paradigm, see
Figure 5, is that any host in the network is allowed a high degree of flexibility to
possess any mixture of know-how, resources, and processors. Its processing
capabilities can be combined with local resources. Know-how (in the form of mobile
agents) is not tied to a single host but available throughout the network.

Agent

Know
how

Host Host

Agent

Know
how

Network

Fig. 5. Mobile Agent Paradigm

If you compare these three paradigms, you will see the chronological trend toward
greater flexibility. The client and the server have merged and become a host. The
applet and the servlet, while serving as client and server extenders, respectively, have
been combined and improved with the emergence of mobile agents.

5 Mobile Agent Applications

We will now take a closer look at some applications that benefit particular from the
mobile agent paradigm. Please note that this is by no means intended to be an
exhaustive list.

Electronic commerce. Mobile agents are well suited for electronic commerce. A
commercial transaction may require real-time access to remote resources such as
stock quotes and perhaps even agent-to-agent negotiation. Different agents will have
different goals, and will implement and exercise different strategies to accomplish
these goals. We envision agents that embody the intentions of their creators, and act
and negotiate on their behalf. Mobile agent technology is a very appealing solution to
this kind of problem.

Personal assistance. The mobile agent's ability to execute on remote hosts makes it
suitable as a "assistant" capable of performing tasks in the network on behalf of its
creator. The remote assistant will operate independently of its limited network
connectivity, and the creator can feel free to turn his or her computer off. To schedule
a meeting with several other people, a user could send a mobile agent to interact with
the representative agents of each of the people invited to the meeting. The agents
could negotiate and establish a meeting time.

Secure brokering. An interesting application of mobile agents is in collaborations
where not all the collaborators are trusted. In this case, the involved parties could let
their mobile agents meet on a mutually agreed secure host, where collaboration can
take place without the risk of the host taking the side of one of the visiting agents.

Distributed information retrieval. Information retrieval is an often-used example of
a mobile agent application. Instead of moving large amounts of data to the search
engine so that it can create search indexes, you dispatch agents to remote information
sources, where they locally create search indexes that can later be shipped back to the
origin. Mobile agents are also able to perform extended searches that are not
constrained by the hours during which the creator's computer is operational.

Telecommunication networks services. Support and management of advanced
telecommunication services are characterized by dynamic network reconfiguration
and user customization. The physical size of these networks and the strict
requirements under which they operate call for mobile agent technology to form the
"glue" that keeps such systems flexible yet effective.

Workflow applications and groupware. It is in the nature of workflow to support
the flow of information between co-workers. The mobile agent is particular useful
here since, in addition to mobility, it provides a degree of autonomy to the workflow
item. Individual workflow items fully embody the information and behavior needed
for them to move through the organization independent of any particular application.

Monitoring and notification. This is one of the "classical" mobile agent applications
that highlight the asynchronous nature of mobile agents. An agent is able to monitor a
given information source without being dependent on the location from which it
originates. Agents can be dispatched to wait for certain kinds of information to
become available. It is often important that monitoring agents have life spans that
exceed or are independent of the computing processes that create them.

Information dissemination. Mobile agents embody the so-called Internet "push"
model. Agents are able to disseminate information such as news and automatic
software updates for vendors. The agents will bring the new software components as
well as the installation procedures directly to the customer's personal computer and
will autonomously update and manage the software on the computer.

Parallel processing. Given that mobile agents can create a cascade of clones in the
network, one potential use of mobile agent technology is to administer parallel
processing tasks. If a computation requires so much processor power as to that it must
be distributed among multiple processors, an infrastructure of mobile agent hosts
could be a plausible way to get the processes out there.

6 Contemporary Mobile Agent Systems

So what kind of mobile agent systems are available for you? Fortunately, Java has
generated a flood of experimental mobile agent systems. Numerous systems are
currently under development, and most of them are available for evaluation on the
Web.

The field is developing so dynamically and so fast that any attempt to map the
agent systems will be outdated before this book goes to press. We will, however,
mention a few interesting Java-based mobile agent systems: Aglets, Odyssey,
Concordia, and Voyager.

Aglets. This system, created by the authors of this book, mirror the applet model in
Java. The goal was to bring the flavor of mobility to the applet. The term aglet is
indeed a portmanteau word combining agent and applet. We attempted to make
Aglets an exercise in "clean design," and it is our hope that applet programmers will
appreciate the many ways in which the aglet model reflects the applet model.

Odyssey. General Magic Inc. invented the mobile agent and created the first
commercial mobile agent system called Telescript. Being based on a proprietary
language and network architecture, Telescript had a short life. In response to the
popularity of the Internet and later the steamrollering success of the Java language,
General Magic decided to re-implement the mobile agent paradigm in its Java-based
Odyssey. This system effectively implements the Telescript concepts in the shape of

Java classes. The result is a Java class library that enables developers to create their
own mobile agent applications.

Concordia. Mitsubishi’s Concordia is a framework for the development and
management of mobile agent applications which extend to any system supporting
Java. Concordia consists of multiple components, all written in Java, which are
combined together to provide a complete environment for distributed applications. A
Concordia system, at its simplest, is made up of a standard Java VM, a Server, and a
set of agents.

Voyager. ObjectSpace's Voyager is a platform for agent-enhanced distributed
computing in Java. While Voyager provides an extensive set of object messaging
capabilities it also allows object to move as agents in the network. You can say that
Voyager combines the properties of a Java-based object request broker with those of a
mobile agent system. In this way Voyager allows Java programmers to create network
applications using both traditional and agent-enhanced distributed programming
techniques.

We would like to note that the Java-based mobile agent systems have a lot in
common. Beside the programming language they all rely on standard versions of the
Java virtual machine and Java’s object serialization mechanism. A common server-
based architecture permeates all the systems. Agent transport mechanisms and the
support for interaction (messaging) varies a lot.

Although a majority of the contemporary mobile agent systems are based on the
Java language system, you will also be able to find other languages in use. Most
significant languages are Tcl and Python.

Agent Tcl. This is a mobile agent system whose agents can be written in Tcl.
Dartmouth College’s Agent Tcl has extensive navigation and communication
services, security mechanisms, and debugging and tracking tools. The main
component of Agent Tcl is a server that runs on each machine and that allows the
entire execution state including local variables and instruction pointer to move. When
an agent wants to migrate to a new machine, it calls a single function, agent_jump,
which automatically captures the complete state of the agent and sends this state
information to the server on the destination machine. The destination server starts up
a Tcl execution, loads the state information into this execution environment, and
restarts the agent from the exact point at which it left off.

Ara. Tcl-based Ara from University of Kaiserslautern is a platform for the portable
and secure execution of mobile agents in heterogeneous networks. The research
project is primarily concerned with system support for general mobile agents
regarding secure and portable execution, and much less with application-level features
of agents, such as agent cooperation patterns, intelligent behavior, and user modeling.

TACOMA. The TACOMA project focuses on operating system support for agents
and how agents can be used to solve problems traditionally addressed by operating
systems. The TACOMA system is based on UNIX and TCP. The system supports
agents written in C, Tcl/Tk, Perl, Python, and Scheme (Elk). The system itself is
implemented in C.

Common for a number of the Tcl-based projects is that they anticipate a move
toward support for multiple language which essentially means added support for Java.

We recommend the following Web sites for more information on the specific agent
systems and projects:

• Aglets at www.trl.ibm.co.jp/aglets.
• Odyssey at www.genmagic.com/agents.
• Concordia at www.meitca.com/HSL/Projects/Concordia.
• Voyager at www.objectspace.com/voyager.
• Agent Tcl at www.cs.dartmouth.edu/~agent.
• Ara at www.uni-kl.de/AG-Nehmer/Ara.
• TACOMA at www.cs.uit.no/DOS/Tacoma.

7 Mobile Agent Standardization: MASIF

Let us conclude this paper with a brief overview of ongoing standardization efforts
in the mobile agent field.

Clearly, the above mentioned systems differ widely in architecture and
implementation, thereby impeding interoperability and rapid deployment of mobile
agent technology in the marketplace. To promote interoperability, some aspects of
mobile agent technology must be standardized. The companies Crystaliz, General
Magic Inc., GMD Fokus, IBM Corporation, and the Open Group have jointly
developed a proposal for a Mobile Agent System Interoperability Facility (MASIF)
and brought it to the attention of the Object Management Group (OMG).

MASIF addresses the interfaces between agent systems, not between agent
applications and agent systems. Even though the former seems to be more relevant for
application developers, it is the latter that allows mobile agents to travel across
multiple hosts in an open environment. MASIF is clearly not about language
interoperability. Language interoperability for mobile objects is very difficult and
MASIF is limited to interoperability between agent systems written in the same
language, but potentially by different vendors. Furthermore, MASIF does not attempt
to standardize local agent operations such as agent interpretation, serialization, or
execution. You can that say MASIF defines the interfaces at the agent system level
rather than at the agent level.

MASIF standardizes the following four areas:

− Agent Management. There is interest in the mobile agent community to
standardize agent management. It is clearly desirable that a system administrator
who manages agent systems of different types can use the same standard

operations. It should be possible to create an agent given a class name for the
agent, suspend an agent’s execution, resume its execution, or terminate it in a
standard way.

− Agent Transfer. It is desirable that agent applications can spawn agents that can
freely move among agent systems of different types, resulting in a common
infrastructure.

− Agent and Agent System Names. In addition to standardizing operations for
interoperability between agent systems, the syntax and semantics of various
parameters must be standardized too. Specifically, agent name, and agent system
name should be standardized. This allows agent systems and agents to identify
each other, as well as applications to identify agents and agent systems.

− Agent System Type and Location Syntax. The location syntax must be
standardized so that an agent can access agent system type information from a
desired destination agent system. The agent transfer can only happen if the
destination agent system type can support the agent. Location syntax also needs to
be standardized so that agent systems can locate each other.

8 Summary

With agent mobility being the focus of this paper we defined a mobile agent as an
agent that is not bound to the system where it begins execution. It has the unique
ability to transport itself from one system in a network to another. The ability to
travel, allows a mobile agent to move to a system that contains an object with which
the agent wants to interact, and then to take advantage of being in the same host or
network as the object. We gave you seven good reasons for you to start using mobile
agents: they reduce the network load, they overcoming network latency, they
encapsulate protocols, they execute asynchronously and autonomously, they adapt
dynamically, they are naturally heterogeneous, and they are robust and fault-tolerant.

Among some of the application domains that benefits from mobile agent
technology are: electronic commerce, personal assistance, secure brokering,
distributed information retrieval, telecommunication networks services, workflow
applications and groupware, monitoring and notification, information dissemination,
and parallel processing.

Several Java-based mobile agent systems exist: Aglets, Odyssey, Concordia,
Voyager, and many more. Although these Java-based mobile agent systems have a lot
in common they do not interoperate. To promote interoperability, some aspects of
mobile agent technology has been standardized by OMG’s MASIF. It will be
interesting to see what impact increased standardization activities will have on the
mobile agent field.

References

1. Lange, D.B. and Oshima, M.: Programming and Deploying Java™ Mobile Agents with
Aglets™ , Addison-Wesley, 1998.

2. Aridor, Y. and Lange, D.B.: Agent Design Patterns: Elements of Agent Application
Design, In Proceedings of the Second International Conference on Autonomous Agents
(Agents '98), ACM Press, 1998, pp. 108-115.

3. Karjoth, G., Lange, D.B., and Oshima, M.: A Security Model for Aglets, IEEE Internet
Computing 1, 4, 1997, pp. 68-77.

4. The Object Management Group: The Mobile Agent System Interoperability Facility,
OMG TC Document orbos/97-10-05, The Object Management Group, Framingham, MA.,
1997.

5. White, J.: Mobile Agents, In Software Agents, Bradshaw, J. Ed., MIT Press, 1997.

