
Extreme Programming of Multi-Agent Systems

Holger Knublauch
Research Institute for Applied Knowledge Processing (FAW)

Helmholtzstr. 16, 89081 Ulm, Germany

Holger.Knublauch@faw.uni-ulm.de

ABSTRACT
The complexity of communication scenarios between agents
make multi-agent systems difficult to build. Most of the ex-
isting Agent-Oriented Software Engineering methodologies
face this complexity by guiding the developers through a
rather waterfall-based process with a series of intermediate
modeling artifacts. While these methodologies lead to ex-
ecutable prototypes relatively late and are expensive when
requirements change, we explore a rather evolutionary ap-
proach with explicit support for change and rapid feedback.
In particular, we apply Extreme Programming, a modern
agile methodology from object-oriented software technology,
for the design and implementation of multi-agent systems.
The only modeling artifacts that are being maintained in our
approach are a process model with which domain experts
and developers design and communicate agent application
scenarios, and the executable agent source code including
automated test cases. We have successfully applied our ap-
proach for the development of a prototypical multi-agent
system for clinical information logistics.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.2 [Design Tools

and Techniques]: Evolutionary prototyping; D.2.5 [Testing

and Debugging]

General Terms
Design, Experimentation, Human factors

Keywords
Agent-Oriented Software Engineering

1. INTRODUCTION
An agent is an encapsulated computer system that is sit-

uated in some environment, and that is capable of flexible,
autonomous action in that environment in order to meet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

its design objectives [7]. Agents differ from conventional
software particularly in their complex interaction and com-
munication scenarios. While the properties of agents make
multi-agent systems a very natural and efficient approach
for solving many types of problems, the complex commu-
nication scenarios and the emerging system behaviors often
lead to situations that are difficult to predict and plan [11].
Any development methodology for multi-agent systems must
take these difficulties into account.
The currently discussed Agent Oriented Software Engi-

neering (AOSE) [3] approaches face the complexity of agent
development by defining modeling languages, processes and
tools to systematically divide complexity into a collection
of inter-related models. AOSE approaches follow the tradi-
tional Software Engineering paradigm, in which a relatively
large chunk of project resources in spent on up-front analysis
and design while implementation and evaluation are moved
to phases when the requirements are thought to be suffi-
ciently understood.
Recent years, however, have provided evidence that alter-

natives to systematic engineering approaches exist in soft-
ware development, in particular when requirements are un-
clear or prone to change. These so-called agile methodolo-
gies focus on producing executable code early and on ex-
posing this code to evolution in the face of customer feed-
back. Instead of putting resources into well-defined model-
ing phases and artifacts, agile methodologies focus on keep-
ing code easy to change. While agile approaches like Ex-
treme Programming (XP) [2] are rapidly gaining industrial
acceptance for conventional types of software [13], it still re-
mains to feed the ideas of these approaches into the agent
community. In this document, we describe an XP approach
for the development of multi-agent systems and report on
an encouraging case study in which we have applied it.
This document is organized as follows. Section 2 pro-

vides a brief review of current Agent-Oriented Software En-
gineering methodologies. Section 3 gives a short introduc-
tion to XP in general. Section 4 gives an overview of our
methodology of applying XP to multi-agent systems. Sec-
tion 5 reports on a case study in which a prototypical multi-
agent system has been successfully implemented using our
approach. Section 6 discusses strengths and weaknesses of
XP for agent development, followed by a conclusion in sec-
tion 7.

2. AGENT-ORIENTED SOFTWARE ENGI-
NEERING

Research in Agent-Oriented Software Engineering [3] aims

at defining methods, techniques, tools, and modeling lan-
guages for the construction and maintenance of multi-agent
systems. AOSE tries to overcome the limitations of general-
purpose development methods which fall short of adequate,
intuitive and natural modeling techniques for agents, as well
as the implementation of complex communication.
In most of the existing AOSE methodologies, the devel-

opers are supplied with new notations, like extensions of
UML for agents [1], so that the transition from a high-
level requirements document to executable code can be sup-
ported by an adequate series of intermediate modeling ar-
tifacts. The Gaia methodology [15], which is a representa-
tive state-of-the-art AOSE methodology, guides developers
through various analysis and design activities, which result
in a design that can serve as a starting point for traditional
object-oriented design and implementation techniques. As
illustrated in figure 1, a basic model of Gaia is the roles
model, in which responsibilities, permissions, activities and
life-cycles of the later defined agents are specified. Gaia
suggests various formal and semi-formal languages for this
specification. Other phases of Gaia result in models which
specify interactions, agent types and instances, services, and
the communication channels between agents.

Requirements
statement

Roles
model

Interactions
model

Agent
model

Services
model

Acquaintance
model

Analysis

Agent Design

Traditional (object−oriented) design models
(Class diagrams, etc.)

Implemented System

System Design

Implementation
and Test

Figure 1: The Gaia methodology for AOSE.

Gaia can be characterized as a rather waterfall-based ap-
proach with relatively many steps to follow prior to imple-
mentation and test. The same holds for most of the other
AOSE methods. Multiagent Systems Engineering [4], for
example, is divided into seven successive phases with inter-
mediate models between each phase. Advantages of build-
ing such models are that development processes become re-
producible and (at least apparently) planable, and that de-
sign models are not constrained by implementation details.
However, the general weakness of such waterfall-based ap-
proaches is the overhead when models need to be changed.
Gaia’s design model is relatively decoupled from the imple-
mentation, i.e. the entire design (perhaps even the analysis)
has to be revised in order to develop a model that can ac-
tually be implemented [11]. Customer feedback is available
late, so that systematic AOSE methods are suitable only if
requirements are relatively stable. In our opinion, this is
often unrealistic, because the complexity of potential agent
interaction scenarios and the emerging behaviors within a
multi-agent system can make pre-planning very difficult [11].

3. EXTREME PROGRAMMING
In this document, we explore alternatives to the waterfall-

based AOSE methods. In particular, we focus on so-called
light-weight or agile methodologies, from which Extreme
Programming (XP) [2] is the most widely-known. XP is be-
ing increasingly used in projects with uncertain or changing
requirements like those typically encountered in the internet
age. Instead of a strict software process with well-defined
activities and modeling artifacts, XP relies on a rather evo-
lutionary style in which the implementation and evaluation
of executable code are given priority over a comprehensive
documentation. In support of evolution, efforts are made to
keep the cost of change as low as possible.
An XP project is guided by four long-term goals, or values,

namely feedback, communication, simplicity, and courage.
These values are put into daily practice by means of twelve
practices. The four values and some of the supporting prac-
tices are briefly described in the following.

Feedback suggests to expose prototypes frequently to
customer feedback and automated test procedures. Feed-
back is ensured by delivering prototypes frequently and hav-
ing a real customer on-site at all times, so that ill-understood
requirements can be detected and eliminated early. Feed-
back is furthermore achieved by forcing the developers to
write test cases together with the production code. Test-
ing tools like JUnit [6] allow to execute tests automatically
to ensure that the planned features work properly and that
changes in one module have not accidentally destroyed other
parts. Designing and writing tests is also a good way of clar-
ifying and documenting requirements.

Communication suggests to encourage direct face-to-
face collaboration instead of collaboration by means of com-
prehensive modeling artifacts. The principle of traveling
light suggests to maintain as few formal models as possible
and to rely on rather direct communication channels instead.
Fluent communication is also expressed in the practice of the
planning game, which suggests to let customers and devel-
opers jointly write and prioritize requirements on so-called
“story cards”. Beside the practice of the on-site customer,
communication is also fostered by the practice of pair pro-
gramming, in which programmers are working in pairs on a
single machine. This helps to detect errors early, improves
creativity, and helps to spread knowledge within the team.

Simplicity suggests to focus on solutions that are easy
to design and implement, so that new features can be built
rapidly when requirements change. The simple solutions are
improved or generalized only on demand, by applying the
practice of refactoring [5], which helps to improve the design
of existing code without altering its functionality.

Courage is often needed to escape modeling dead-ends in
which teams might find themselves after many incremental
changes and refactorings. XP also encourages the single de-
velopers to feel responsible for the project and thus improves
team motivation.
While none of the single values and practices of XP is par-

ticularly new, XP is more than plain hacking under a new
label. As illustrated in figure 2, the practices of XP support
each other, i.e. the weakness of one practice is compensated
by the strength of another. The consequent and disciplined
combination of the practices allows teams to spend less re-
sources on an up-front design while maintaining flexibility
in the face of changing requirements.
XP is not the best choice for projects in which require-

Planning Game

On−Site Customer

40 Hour WeekMetaphor

Refactoring

Pair Programming

Coding Standards
Collective Ownership Continuous Integration

Short Releases

Testing

Simple Design

Figure 2: The practices of XP support each other.

ments are relatively stable and easy to formalize. Further-
more, XP is assumed to be limited to small to medium-sized
projects of about 10 programmers. Finally, it requires man-
agement commitment [2].

4. XP OF MULTI-AGENT SYSTEMS
In this section, we describe an Extreme Programming ap-

proach for developing multi-agent systems. Note that this
approach is one potential process model with XP, while
many other variants of the XP practices are possible and
should be explored in future work. XP does not prescribe
certain tools or models, so we could “invent” our own.
Our approach is guided by the XP values of simplicity,

communication and feedback. In particular, we rely on very
simple models and metamodels so that agent interactions
can be modeled, changed, and communicated quickly. Fol-
lowing the principle of traveling light, we suggest to build
and maintain only two models: The source code of the exe-
cutable agents (including test cases) and a process model.
The process model describes the agents’ application sce-

narios, or – in the XP terminology – the story cards. While
methods like Gaia specify agents from a rather local point
of view, i.e. the agents’ roles are modeled in isolation and
integrated later, our approach takes a bird’s-eye view on
the process. We can thus bundle the information that is
distributed across several Gaia models in a single, graphical
design model. As illustrated in the lower part of figure 3,
this process model is the starting point of the implementa-
tion and test activities. The process model allows to gener-
ate parts of the source code (details below) and serves as a
requirements statement that can be communicated between
the team members. Our approach explicitly assumes that
the initial process model will be incomplete or wrong, so that
it will need to be updated in the face of feedback from the
implementation. We therefore yield a cyclic development
process that allows one to switch between implementation
and model updating arbitrarily.
Optionally, in cases where agents are designed to be in-

troduced into an existing workflow, our XP development
cycle is preceded by an analysis step in which the existing
process is formalized. The resulting model of the existing
process can serve as the base for the “agentified” process

Model of existing
process

(without agents)

Model of new
process

(with agents)

Incrementally generated
template source code

Updates and newly
identified agents

Agent
Source
Code

Agent
Test

Cases

(optional)

Initial "agentification"

Figure 3: An overview of our Extreme Programming

approach for multi-agent system.

model. Both old and new process models are edited in the
same metamodel with the same tool, so that agents can be
introduced incrementally.
The following subsections will provide details on our pro-

cess modeling approach (4.1) and a prototypical implemen-
tation framework that we found to be useful for XP (4.2).

4.1 Process Modeling
Our approach relies on process modeling to capture and

clarify requirements, to visually document agent function-
ality, and to enable communication with domain experts.
The process metamodel was designed to be easy to compre-
hend and use by end users of the agent application, to be
extensible for specific types of agents, and to allow for au-
tomatic and semi-automatic transformation into executable
code. Figure 4 illustrates some modeling symbols.

Figure 4: A process model with two agent activities

and one message.

A schematic overview of our process metamodel is pro-
vided in figure 5. A process is a collection of sub-processes
and activities. An activity is an atomic unit of work that
is performed by an actor who takes a specified role. A role
can be taken either by a human or an agent. Agents rep-
resent types of software agents that can be arranged in an
inheritance hierarchy like object-oriented classes. We found
it useful to adopt the classification by Sycara et al. [14] who
distinguish between interface, task, and information agents.
Of course, completely different types of agents could be used,
too. Activities and processes can be arranged in arbitrary
predecessor/successor sequences, although we use this or-
dering mostly for illustration purposes only.
Activities can read and write media. A medium is either

analog, like a phone call or a letter, or an agent message.
An agent message can be characterized by its command (or
performative) and its ontology. In our Java-based projects,
we found it very comfortable to rely on a Java-based ontol-
ogy and to pass Java objects as message content, so that
it became easy to transfer and process information between

duration:double Role
name:String

<<Composite>>

ProcessObject

name:String*
children

* successors

*

Site
name:String

Medium

name:String

AnalogMedium

input

*

Ontology

predecessors

ontology

performedAt

performedBy

Human Agent

<<Composite>>

Process
<<Composite>>

Activity

AgentMessage
command:String

...
(FIPA attributes, etc.)

KBeansOntology

TaskAgent

InterfaceAgent

InfoAgentPhoneCall

FaxMessage

XMLSchema

KIFOntology

Dialogue

...

...

...

subTypes

superType

*

output

*

Figure 5: A schematic view of our metamodel for

agent-based process models.

agents. In particular, our content objects are KBeans [8]
instances. KBeans is an extension of JavaBeans that allows
to attach semantic constraints to class attributes, so that
agents can automatically reject invalid message content or
perform reasoning.
Figure 6 shows a visual modeling tool, called AGIL-Shell 1 [9],

with which instances of the process metamodel can be edited
by dragging boxes and arrows. Note that various off-the-
shelf tools like Visio could be used for process modeling as
well. AGIL-Shell is able to automatically generate several
types of views in addition to the normal bird’s-eye process
view. For example, it allows to visualize the message flow be-
tween agents in a graph, with agents as nodes and messages
as edges. Another view can be activated in which life-cycle,
input and output of a single role (agent) are shown. By the
way, these views are very similar to the acquaintance and
life-cycle models from the Gaia methodology.

Figure 6: The AGIL-Shell, a process modeling tool

with support for editing and analyzing agent inter-

actions, and code generation features.

Beside the different views, which can help to clarify agent
scenarios and to detect bottlenecks, the AGIL-Shell provides

1Download from http://www.faw.uni-ulm.de/kbeans/
agil

code generation features, with which Java source code can
be created. We have so far only experimented with source
code for our own agent prototyping platform (see below),
but templates for other platforms are in progress. Note
that our metamodel is rather an informal base which can
be custom-tailored for specific needs. It is well possible to
add new attributes or concepts that might be needed to ex-
press specific agent characteristics like beliefs and desires,
or to improve code generation. The AGIL-Shell has a very
open architecture that automatically provides editors when
custom attributes are added to the metamodel classes.

4.2 Implementation and Test
Process modeling as described above aims at identifying

and defining the types of agents, their input and output mes-
sages, and an informal description of their behavior. The
implementation activities in our XP approach lead to ex-
ecutable source code, e.g. Java classes that implement the
agents and the remaining modules. In our experiments with
an XP process for agents, we used a very simple and light-
weight agent platform that focuses on the main character-
istics of agents, in particular their communication through
messages, life-cycle management, and directory services. In
order to make our experiments reproducible by other re-
searchers, the main classes of this platform are illustrated in
figure 7.

<< Interface >>
Agent

+ processMessage(msg:Message)

Message

+ getCommand ():String
+ getContent ():Serializable
+ getReceiverName ():String
+ getSenderName ():String

+ addAgent (agentName:String, agentType:String)
+ agentNames ():Iterator on agent names
+ findAgents (agentType:String):Iterator on agent names
+ getAgentType (agentName:String):String
+ removeAgent (agentName:String)
+ sendMessage (senderName:String, receiverName:String,
 command:String, content:Serializable)

<< Interface >>
AgentEngine

produces
manages uses services

Figure 7: A simple agent engine for prototyping.

The agents on our platform must inherit the Agent in-
terface and thus implement a processMessage method that
handles incoming messages. Each Message encapsulates re-
ceiver and sender, as well as a textual command (or performa-
tive) and a content object (including all referred objects).
The command specifies the type of message that the agent
is ready to handle. The Message class can be extended for
other types of content.
Message passing and agent life-cycles are managed by the

AgentEngine, which provides a collection of service meth-
ods. Agents register themselves in the engine together with
a unique name a type which usually corresponds to the name
of its Java class. When agents intend to start other agents,
to send messages, and to find other agents with given proper-
ties, they need to call the appropriate method in the engine.
The engine thus serves as an abstraction layer of the com-

mon agent platform services so that other platforms can be
encapsulated.
Our engine supports the spirit of XP in so far that it is

extremely simple and can be used to implement and test
agents rapidly. The development of automated test code is
an essential cornerstone of any XP project. XP prescribes
unit tests, which evaluate whether a given module imple-
ments the features it is expected to realize by the other
modules. The development of such test cases is difficult in
completely open and distributed systems such as multi-agent
systems. In order to simplify agent testing despite these dif-
ficulties, we have developed two different implementations
of our agent engine: One is based on the powerful J2EE
platform (here, agents are implemented as Enterprise Java-
Beans), while the second is a test engine that executes on
local machines only but simulates asynchronous message-
passing realistically. The agent source code can execute on
both engine implementations, so that code that is tested on
the test engine should also work on the (distributed) Enter-
prise engine.
In this sense, we are developing test cases for all agents

individually, whereby all adjacent agents and system units
are simulated by “dummy” objects. As illustrated in fig-
ure 8, our agent test case classes extend – as usual in XP
projects – TestCase from JUnit [6]. In addition, each agent
test case implements the AgentEngine interface and is there-
fore able to overload all methods that an agent being tested
invokes in its environment. For example, the test case can
overload the engine’s sendMessagemethod to verify whether
the agent has sent an expected response message.

Test messages

Expected replies

... (see above)

<< Interface >>
AgentEngine

<< Interface >>
Agent

+ processMessage(msg:Message)

MyAgent

+ processMessage(msg:Message)

junit.framework.
TestCase

+ assertXYZ ...

TestAgentEngine

Implements a simple AgentEngine

MyAgentTestCase

Simulates all other agents that
receive messages from the agent

being tested (MyAgent). Overloads
methods to verify the agent’s

interaction with its environment.

Figure 8: Testing agents with JUnit.

Template source code for agents and their test cases can
be incrementally generated from the process models by the
AGIL-Shell. The generated source code includes handling
methods for all types of incoming messages. We generate
abstract interfaces that the agent classes must overload cor-
rectly. The developers thus only need to complete the mes-
sage handling methods and the test cases. This mechanism
makes sure that the agent implementation is kept synchro-
nized with the process models. Whenever the programmers
identify missing features or mistakes in the specification,
they simple update the model, generate the source code and
insert the new method bodies. Some details on the devel-
opment cycle and the application of the XP practices are
provided by the following section.

5. AN XP CASE STUDY
The XP approach described in this paper is a by-product

of the German research project AGIL [10], the goal of which
was the prototypical implementation of a multi-agent system
to optimize the distribution of clinical data for emergency
patients between the various departments and decision-makers.
The project involved a domain expert (an anesthetist) with
experience in the analysis of clinical workflows.
In the beginning of the project it was clear that agents,

with their ability to fulfill autonomous, pro-active, and dis-
tributed tasks, have the potential to optimize clinical infor-
mation exchange. However, the types of agents, as well as
their precise application scenarios were an open issue. Since
we were faced with an existing workflow into which agents
were to be introduced, we started the project with the acqui-
sition of a model of the clinical processes that we could then
modify incrementally by assigning more and more tasks to
agents. This model was built by our clinical domain expert
with the AGIL-Shell tool. It included 34 sub-processes with
144 activities and 26 human roles.
The next task was to derive a new process model that

included an initial set of agents and their communication.
For that purpose, the domain expert and the leading devel-
oper (the author) met for a three-day modeling session in
which the initial application scenarios were defined with the
AGIL-Shell. The direct communication and the highly infor-
mal modeling approach allowed us to visualize our ideas very
quickly. The joint modeling approach furthermore helped to
consider both domain and technical points-of-view, although
we did not spend much time on formal details. Our vision-
ary model equipped each of the human actors in the original
process with interface agents, most of which intended to run
on mobile PDA devices. We removed all human actors from
the design model in order to reduce complexity and because
humans were now represented by their individual interface
agents. The new process included 29 sub-processes with 159
activities and 32 agent roles.
The resulting “agentified” process model was fed into an

XP implementation process. For the implementation, we or-
ganized a practical course for third-year Computer Science
students at the University of Ulm. The course involved eight
students, a coach (the author), and the domain expert. The
domain expert was permanently available to answer ques-
tions and to clarify and weigh requirements. The setting
was a single office with four personal computers arranged in
a circle so that the programming pairs could see each other.
As shown in figure 9, the room was equipped with a beamer
that was connected to the coach’s laptop, so that prototype
demonstrations and process models could be visualized for
everyone to see.
None of the students had any prior experience or training

in XP, some of them were beginners in Java and none of
them had implemented agents before. We therefore used
the first two days of the course to provide the students with
a theoretical introduction to XP and a practical introduction
to the development tools (IntelliJ and CVS). On the second
day, the students learned to implement JUnit test cases for
some rather simple agents. The agent engine, the modeling
framework and the tools proved to be sufficiently easy to
comprehend.

40-hour-week. The practical work itself was done dur-
ing one 40-hour week. The students were explicitly not en-
couraged to work overtime. After the course, the students

Figure 9: Participants of the XP course in which a

multi-agent system has been implemented in pair-

programming style.

reported that they used to be quite exhausted after a full
day of pair programming, but were very disciplined and con-
centrated while in the office. Nevertheless, the atmosphere
was very relaxed and enjoyable and thus stimulated creativ-
ity and open, honest communication. We supported this
atmosphere by providing free coffee and cookies and by or-
ganizing a social evening during the week.

Planning game. At the beginning of each day, the team
jointly followed a planning game approach to define the fea-
tures that were to be implemented next. Since the process
model described the phases of a patient’s treatment on her
way through the hospital in a rather sequential style, we
found it most useful to implement the agents in their or-
der of appearance within the process. We locally focused
on those agents that – according to the domain expert –
promised the most business value.

Pair programming. The agent implementation itself
was then assigned to the developer pairs. The code gener-
ator described above was used to create one package and
template code for each agent. Each pair had to develop
and test their individual agent in isolation, using the test-
ing framework from subsection 4.2. The students found pair
programming very enjoyable and productive. One student
reported later that he felt much more motivated and concen-
trated than if he had to work alone. Most students reported
that they learned many useful programming techniques from
each other during the course. However, due to the differ-
ent experience and background of the team members (e.g.,
some were not knowledgeable of GUI programming), not
all student combinations proved to work equally well. The
students’ individual experience had a significant impact on
code quality, so that the coach tended to delegate difficult
tasks to the advanced programmers.

Testing. Our agents proved to be quite easy to test, be-
cause their behavior and state changes mostly depended on
incoming messages only. Many tests therefore consisted of
sending a test message to the agent and of checking whether
the expected reply message was delivered back. The stu-
dents found testing quite useful to clarify requirements al-

though it was considered to be additional work by some.
During the course, the students have implemented 30 Test-
Case classes with 76 test cases, amounting to 4909 lines of
code, while the 43 agent source code classes amount to 5673
lines (excluding ontology classes). The students enjoyed us-
ing JUnit very much, because the sight of the green bar that
indicates correct test runs improved motivation and trust in
the code. The main problems with testing were that some
refactorings were needed to enable testing of some function-
ality, and that automated tests of visual interface agents are
difficult.

Collective ownership. We applied a relaxed practice
of collective ownership, which allows any team member to
modify any piece of code at any time. Since each pair
only operated on the source package of a single agent, there
was barely any overlapping. Only the ontology classes were
shared among agents and thus modified by various teams.
Coordination of these changes was accomplished very infor-
mally by voice and the CVS.

Coding standards. In the beginning of the project, we
defined a project-wide coding standard that was very easy
to follow, because the Java tool we used provides automated
code layout features. Thus it was very simple to shift im-
plementation tasks between the pairs and to change pair
members regularly.

Simple design. The students were explicitly asked to
focus on programming speed instead of comprehensive up-
front designs. This seemed to be sufficient because the
agents were rather small units with few types of tasks to
solve. Despite the focus on simplicity, experienced students
almost automatically identified some useful generalizations
of agent functionality. Our initial process model underwent
several evolutionary changes, in particular we frequently en-
countered scenarios where agents were unable to fulfill their
task because they did not have access to data or information
that other agents possessed. We therefore had to add some
activities and messages that pass missing data items between
agents. In those cases, we could generate the new source
code and ontology classes quite rapidly and feed them back
into the XP process. Despite the various small changes, the
overall design remained quite stable throughout the project,
so that our process modeling framework proved to be suffi-
cient.

Refactoring. Since the agents were rather small units,
they were very easy to maintain and refactor. Some medium-
sized refactorings, like the introduction of new superclasses
to generalize functionality, were performed. Smaller refac-
torings, like the introduction of temporary variables, were
induced by the coach when he found code too hard to read.
Some other refactorings were necessary to enable the imple-
mentation of automated tests.

Continuous integration and short releases. The
agents were uploaded onto the CVS server and integrated
at least every evening. Since the students were only allowed
to upload those agents that passed all test cases, there were
almost no integration problems. Agent interactions were
tested and presented on the beamer with the help of a small
simulation environment that could trigger external events.
A student later described the integration shows as the daily
highlight, because the agents that were programmed and
evaluated in isolation suddenly interacted with real other
agents.

On-site customer. In the questionnaires that were filled

out by the students after the course, the presence of the do-
main expert was very positively evaluated. He was asked to
provide clinical knowledge regularly, at least once an hour,
so that expensive design mistakes were prevented. His pres-
ence did not even mean an overhead for him, because he
could use the “spare time” for other types of work on his
own laptop. We found that the communication process is
characterized by reciprocities between engineers and the ex-
perts. As the domain expert got more and more used to
the formal view of the developers, he adjusted his modeling
style, and vice-versa.
The XP project resulted in the full implementation of 17

agent types, some of which with complex graphical inter-
faces. These agents cover about the first third of the orig-
inal process model and solve tasks like notification, infor-
mation filtering, and patient monitoring. The agents make
use of 38 ontology classes. Details on the original and fi-
nal scenarios can be found on the course homepage2. In
the implemented excerpt of the overall process, 5 additional
agent types were identified in the coding phase, in particular
agents that provided generic services for other agents. The
agent scenarios, however, underwent much more significant
changes. The implemented model includes almost twice as
many activities and agent messages as originally designed.
The additional activities often concern information transfer
between agents, because many agents lacked access to re-
sources that they required to solve their tasks. About half
of the additional messages, however, add new application
scenarios and functionality that was originally not thought
about. This functionality had emerged from the creativity
of the team members during the implementation phase.

6. DISCUSSION
The significant increase of the process model’s size during

the implementation phase indicates that our initial agent
design was inadequate. This is no surprise, because we in-
tentionally spent only very little time on this pre-modeling
process, so that we were able evaluate XP with a realistic
starting point. However, it is yet unclear whether a tradi-
tional AOSE approach would have produced a better model
more efficiently, because we did not have the opportunity to
run corresponding modeling experiments yet. Such experi-
ments and independent comparisons are certainly necessary
to clarify whether agile approaches like XP are in fact su-
perior to methodologies with a comprehensive up-front de-
sign. We can therefore base our discussion of XP only on
our subjective experience, and by drawing parallels between
multi-agent systems and reports from mainstream software
technology.
Retrospecting on the case study, we are very pleased with

our first XP experience. Although neither the team mem-
bers nor the coach were experienced in XP or agent develop-
ment, the approach has shown to be quite efficient for the de-
velopment of a prototypical, medium-sized multi-agent sys-
tem. All team members reported that XP was in general
much more enjoyable than following a strict, rather bureau-
cratic methodology. Student feedback about the course was
overwhelmingly positive. The team worked highly concen-
trated and disciplined, and the fluent communication within
the team fostered creativity. The personal relationships be-
tween the students were intensified and the team members

2http://www.faw.uni-ulm.de/kbeans/knublauch

felt responsible for “their” agents. Although not all stu-
dents were equally well team players, this clearly indicates
that XP is quite a natural way of developing agents, which
works with people’s instincts and not against them.
Following the successful first XP course, we have con-

ducted a second case study in April, 2002. This project
involved 12 students and completely strengthened our ap-
proach. Additionally, the second XP course demonstrated
that regular code reviews by changing pairs of programmers
can significantly improve code quality. Furthermore, the
course has shown that in addition to unit tests, where agents
are tested in isolation, programmers should write automated
integration tests which verify complex scenarios involving
multiple agents. These tests can be derived from the pro-
cess models.

Our observations about XP are consistent with industrial
reports on the development of “conventional” software [13].
However, care must be taken to simply generalize those pos-
itive reports to the domain of agents, because multi-agent
systems have specific properties that should be reflected in
the methodology. Therefore, a theoretical assessment of
whether and when XP is suitable for multi-agent systems
should be derived from the specific attributes of agent sys-
tems.

• The single agents are typically rather small and loosely-
coupled systems, which solve their tasks in relative
autonomy. As a consequence, writing automated test
cases is quite easy for agents, because the single agents
have a small, finite number of interaction channels with
external system units.

• Simple solutions, like those suggested by XP, appear
to be sufficient for most agents, because the agents
themselves are quite small. Even if an agent evolves
into a performance or quality bottleneck after a series
of refactorings, it is possible to completely rewrite it
from the scratch (following the XP value of courage)
without risking the functionality of the overall system.

• Agents, like those in our clinical scenario, represent
various types of human process participants with in-
dividual goals and knowledge. In order to map those
multi-facet viewpoints onto a consistent system, peo-
ple from the domain must be involved very closely into
the development process – and they must communicate
with each other. In XP processes, domain experts and
end users are neatly integrated with rapid feedback,
fluent communication, and in the requirements plan-
ning cycle.

• The close involvement of real users allows to clarify
misunderstandings and terminology much faster than
in engineering approaches, in which users are compa-
rably excluded from the analysis and design phases.

• It appears to be very probable that the agent require-
ments will change. The agent modeling process itself
often produces new knowledge about potential agent
scenarios, and the self-observation performed during
analysis of the existing work processes into which agents
are to be introduced can lead to new insights [12].
For the new system, process knowledge is being trans-
lated and reorganized, and thus evolves. The existing

work processes are challenged when analyzed (“Re-
design during modeling” [12]).

• Systematic engineering approaches are difficult to ap-
ply to agents, because the resulting analysis and design
models are often based on wrong assumptions. When
agents are intended to solve tasks on behalf of hu-
man stakeholders with all their individual beliefs, de-
sires, and intentions, the humans are required to trans-
parently expose their daily practice. However, this
“practice necessarily operates with deception” [12], so
that mental processes can often only be incrementally
translated into agent programs.

• The autonomy and “intelligence” of agents allows to
characterize many multi-agent systems as distributed
knowledge-based systems. Such systems are best de-
signed in an evolutionary style with rapid feedback [12].

• Frequently, agents are experimental systems, for which
bureaucratic processes are too rigid.

While the above reasons indicate that agile approaches
will have a significant impact in agent technology, methods
like XP are not the best choice for all kinds of projects. In
cases where requirements are quite stable and well-understood,
or where agents are to be introduced into a fixed environ-
ment with only little inter-agent communication, a system-
atic process will most probably be a better choice, because
it is easier to plan and manage. Due to its barely traceable
process, XP is also considered to be not the best option
for the development of highly generic and reusable compo-
nents, and for safety-critical systems [2]. Last but not least,
it is important to note that XP can only be applied if man-
agement and customers are convinced of its benefits. More
positive case studies from industry (e.g., those found in [13])
and progress on the theoretical foundation of XP will help
achieve this commitment easier.

7. CONCLUSION AND FURTHER WORK
This document has provided evidence that agile approaches

like XP are suitable for the development of many multi-agent
systems. Compared to traditional AOSE methods, XP in-
volves end users and multiple viewpoints much closer into
the process, produces feedback and executable systems more
frequently, and puts a stronger emphasis on system evalua-
tion. Last but not least, our case study has shown that an
XP process is very enjoyable and motivating for the devel-
opers, because it works with people’s instincts.
However, further work is needed to strengthen our results

in comparison to traditional AOSE methods. We made sev-
eral simplifying assumptions that need to be removed in
order to generalize our approach. In particular, we have
implemented the agents against our very light-weight agent
platform that simplified testing. We are therefore currently
generalizing our test and code generation approaches for a
FIPA-compliant standard agent platform.

Acknowledgments
The author would like to acknowledge the eager participants
of the XP courses at the University of Ulm in fall, 2001, and
in spring, 2002. Many thanks to Holger Köth, M.D., for
providing valuable clinical domain knowledge in the AGIL
project. AGIL is being funded by the German Research
Foundation (DFG) in the context of multi-agent research.

8. REFERENCES
[1] B. Bauer, J. Mueller, and J. Odell. Agent UML: A

formalism for specifying multiagent software systems.
In P. Ciancarini and M. Wooldridge, editor, First Int.
Workshop on Agent-Oriented Software Engineering
(AOSE-2000), Limerick, Ireland, 2000.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[3] P. Ciancarini and M. Wooldridge, editors.
Agent-Oriented Software Engineering. Springer-Verlag,
Berlin, Heidelberg, New York, 2001.

[4] S. A. DeLoach. Multiagent systems engineering: A
methodology and language for designing agent
systems. In Proc. of Agent Oriented Information
Systems, Seattle, OR, 1999.

[5] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley Longman, 1999.

[6] E. Gamma and K. Beck. JUnit: A regression testing
framework. http://www.junit.org, 2000.

[7] N. Jennings, K. Sycara, and M. Wooldridge. A
roadmap of agent research and development. Int.
Journal of Autonomous Agents and Multi-Agent
Systems, 1(1):7–38, 1998.

[8] H. Knublauch and T. Rose. Round-trip engineering of
ontologies for knowledge-based systems. In Proc. of
the Twelfth International Conference on Software
Engineering and Knowledge Engineering (SEKE),
Chicago, IL, 2000.

[9] H. Knublauch and T. Rose. Tool-supported process
analysis and design for the development of multi-agent
systems. In Proc. of the Third Int. Workshop on
Agent-Oriented Software Engineering (AOSE-02),
Bologna, Italy, 2002.

[10] H. Knublauch, T. Rose, and M. Sedlmayr. Towards a
multi-agent system for pro-active information
management in anesthesia. In Proc. of the
Agents-2000 Workshop on Autonomous Agents in
Health Care, Barcelona, Spain, 2000.

[11] J. Lind. Massive: Software Engineering for Multiagent
Systems. PhD thesis, Universität des Saarlandes,
Saarbrücken, Germany, 2000.

[12] W. Rammert, M. Schlese, G. Wagner, J. Wehner, and
R. Weingarten. Wissensmaschinen: Soziale
Konstruktion eines technischen Mediums. Das Beispiel
Expertensysteme. Campus Verlag, Frankfurt,
Germany, 1998.

[13] G. Succi and M. Marchesi, editors. Extreme
Programming Examined. Addison-Wesley, 2001.

[14] K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Expert,
11(6), 1996.

[15] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
methodology for agent-oriented analysis and design.
Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285–312, 2000.

