
Grasshopper Basics And Concepts

Release 2.2

IKV++ GmbH
Bernburger Strasse 24-25
10963 Berlin, Germany
http://www.grasshopper.de

Copyright © 1998 IKV++ GmbH Informations- und Kommunikationssysteme

All Rights Reserved.

Grasshopper, Release 2.2, Basics and Concepts (Revision 1.0), March 2001.

The Grasshopper Basics and Concepts manual is copyrighted and all rights are reserved. Informa-
tion in this document is subject to change without notice and does not represent a commitment on
the part of IKV++ GmbH. The document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form without prior
consent, in writing, from IKV++ GmbH.

A Reader’s Comment form is included as part of the distribution. Please complete this form to assist
IKV++ in preparing future documentation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Mi-
crosystems, Inc. in the U.S. and other countries.
Microsoft, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Cor-
poration in the U.S. and other countries.
All other names are used for identification purposes only and are trademarks or registered trade-
marks of their respective companies.

IKV++ GmbH
Informations- und Kommunikationssysteme
Bernburger Str. 24-25
D-10963 Berlin
Germany
Email: ikv++@ikv.de
URL: http://www.ikv.de

CONTENTS

I

Contents

Contents ... I

List of Figures... III

List of Tables ..V

1 Preface ...1

1.1 About this Document ..1

1.2 Document Structure...1

1.3 Related Documents ...2

1.4 Notational Conventions...2

1.4.1 Fonts ...2

1.4.2 Icons ...3

1.5 How to Get in Contact...4

2 What is Grasshopper?..5

3 Concepts...7

3.1 Distributed Agent Environment ..7

3.1.1 Agents...8

3.1.1.1 Mobile Agents...8

3.1.1.2 Stationary Agents ..9

3.1.1.3 Agent States ..9

3.1.2 Agencies ...10

3.1.2.1 Core Agency..10

3.1.2.2 Places...13

3.1.3 Regions...13

3.1.3.1 Region Registries ..13

3.2 MASIF...14

3.3 Communication Concepts ...15

3.3.1 Multi-protocol Support...15

3.3.2 Location Transparency...18

BASICS AND CONCEPTS

II

3.3.3 Communication Modes .. 19

3.3.3.1 Synchronous Communication 20

3.3.3.2 Asynchronous Communication......................... 20

3.3.3.3 Dynamic Communication 21

3.3.3.4 Multicast Communication................................. 22

3.3.4 Grasshopper URL .. 25

3.4 Security Concepts ... 27

3.4.1 Cryptography.. 29

3.4.1.1 Symmetric Algorithms...................................... 30

3.4.1.2 Asymmetric Algorithms.................................... 30

3.4.1.3 One-Way Hash Functions 31

3.4.2 Authentication.. 32

3.4.3 X.509 Certificates .. 32

3.4.4 Access Control ... 34

3.4.4.1 Protection of Resources 34

3.4.4.2 Access Control Policies 34

3.4.5 Security in Grasshopper ... 35

3.4.5.1 External Security... 35

3.4.5.2 Internal Security.. 37

3.5 Persistence .. 38

4 Frequently Asked Questions.. 41

4.1 Mobility... 41

4.2 Communication... 41

4.3 Security ... 42

4.3.1 Certificates and Encryption.. 42

4.3.2 Permissions and Access Control 46

4.4 Installation .. 49

4.5 Platform Usage ... 50

LIST OF FIGURES

III

List of Figures

FIGURE 1: HIERARCHICAL COMPONENT STRUCTURE... 7

FIGURE 2: MULTI-PROTOCOL SUPPORT ... 16

FIGURE 3: SECURE VS. INSECURE PROTOCOLS... 18

FIGURE 4: LOCATION TRANSPARENT COMMUNICATION .. 19

FIGURE 5: SYNCHRONOUS COMMUNICATION... 20

FIGURE 6: ASYNCHRONOUS COMMUNICATION .. 21

FIGURE 7: MULTICAST COMMUNICATION .. 23

FIGURE 8: OR TERMINATION... 23

FIGURE 9: AND TERMINATION.. 24

FIGURE 10: INCREMENTAL TERMINATION.. 25

FIGURE 11: POTENTIAL SECURITY ATTACKS ... 28

FIGURE 12: PROVIDING CONFIDENTIALITY USING PUBLIC KEY ALGORITHMS 31

FIGURE 13: PROVIDING AUTHENTICATION USING PUBLIC KEY ALGORITHMS 32

FIGURE 14: AN X.509 CERTIFICATION TREE ... 33

LIST OF TABLES

V

List of Tables

TABLE 1: NOTATIONAL CONVENTIONS .. 3

TABLE 2: ICONS ... 4

TABLE 3: SUPPORTED COMMUNICATION PROTOCOLS.. 27

CHAPTER 1: PREFACE

1

1 Preface

This chapter provides information about this document itself as well as about
the remaining parts of the Grasshopper manual.

1.1 About this Document

This document describes Basics and Concepts of mobile agent technology
in general and of the Grasshopper platform in particular. However, it is as-
sumed that the principles of mobile agent technology are not completely new
to the reader, since this document is not meant as a mobile agent tutorial.
The intention is just to give the reader some fundamental background infor-
mation before using the Grasshopper platform.

1.2 Document Structure

This document is subdivided into the following seven chapters.

CHAPTER 1, Preface, this part of the document, gives an overview of this
manual and its background.

CHAPTER 2, What is Grasshopper?, gives a very brief description of the
Grasshopper platform.

CHAPTER 3, Concepts, describes the basic terms associated with the Grass-
hopper environment, such as agents, agencies, and regions. Besides,
the Grasshopper communication, security, and persistence mecha-
nisms are explained in detail.

CHAPTER 4, Frequently Asked Questions

ANNEX A, Acronyms

ANNEX B, Glossary

ANNEX C, Index

BASICS AND CONCEPTS

2

1.3 Related Documents

The whole Grasshopper manual comprises four parts:

Basics and Concepts. This part comprises an introduction to mobile agent
technology and to the Grasshopper platform.

User’s Guide. This part describes the platform installation and its usage via
graphical and command line interfaces.

Programmer’s Guide. This part explains how to realise mobile and station-
ary agents on top of the Grasshopper platform.

Release Notes. This part lists modifications and enhancements compared to
the previous release of Grasshopper.

1.4 Notational Conventions

Several notational conventions are used throughout the whole document in
order to improve the readability and to support the reader in finding specific
information.

1.4.1 Fonts

The following font types are used through this manual:

Font Description

Proportional Font Used for standard text

Proportional Italic Font Used to emphasise words or to indicate
the first appearance of new terms that
can be found in the glossary (Annex 0 of
this manual) or in background informa-
tion boxes marked with the correspond-
ing icon (cf. Section 1.4.2)

Fixed Font Used to identify source code, email ad-
dresses and http addresses.

CHAPTER 1: PREFACE

3

Font Description

Fixed Italic Font

<same font with <>
around>

Indicates commands that a user has to
type.

Indicates parts of the command that the
user has to substitute by concrete values,
e.g. a file name

Fixed Bold Font Indicates output of the system that is
printed into a console window or com-
ments within a source code listing.

Table 1: Notational Conventions

1.4.2 Icons

The following icons are placed at the page margins in order to indicate cer-
tain types of information:

This icon indicates information that is specific for Unix
operating systems.

This icon indicates information that is specific for Win-
dows operating systems.

This icon indicates paragraphs that provide some back-
ground information about a specific topic. This informa-
tion is not required for the understanding of the respec-
tive section and may be skipped by the reader. However,
it may be interesting for readers who want to know more
about the concepts realised by the Grasshopper platform.
This background information is additionally highlighted
by means of a shaded frame.

This icon indicates useful tips and tricks that facilitate
the usage of Grasshopper.

This icon indicates paragraphs that are of particular im-
portance and that should be read in any case, even if you
want to go through the document as fast as possible.

BASICS AND CONCEPTS

4

This icon is used to indicate examples.

Table 2: Icons

1.5 How to Get in Contact

To make suggestions, critics, or even compliments, please send an email to
grasshopper2@ikv.de

In order to retrieve the comments of other Grasshopper users and participate
in discussions, please consult the Grasshopper community discussion board
at http://www.grasshopper.de/community.

Additional information can be retrieved from http://ww.grasshopper.de/.

CHAPTER 2: WHAT IS GRASSHOPPER?

5

2 What is Grasshopper?

Mobile agent technology is a relatively new area in the field of distributed
applications. Mobile agents are software components which are able to mi-
grate actively from one physical network location to another. By moving to
locations where required information or logic is hosted, mobile agents are
able to take advantage of local communication instead of interacting re-
motely via the network.

Grasshopper is a mobile agent platform that is built on top of a distributed
processing environment. In this way, an integration of the traditional cli-
ent/server paradigm and mobile agent technology can be achieved.

Grasshopper is developed compliant to the first mobile agent standard of the
Object Management Group (OMG), i.e. the Mobile Agent System
Interoperability Facility (MASIF). The MASIF standard has been initiated in
order to achieve interoperability between mobile agent platforms of different
manufacturers.

CHAPTER 3: CONCEPTS

7

3 Concepts

This chapter provides background information about the concepts of the
Grasshopper platform. Among others, this background information com-
prises the Grasshopper agent environment as well as realised communication
and security mechanisms.

3.1 Distributed Agent Environment

This section describes the structure of the Grasshopper Distributed Agent
Environment (DAE). The DAE is composed of regions, places, agencies and
different types of agents. Figure 1 depicts an abstract view of these entities.

Agency

Core Agency Communication

Registration

Transport

Security

Management

Persistence

MAF
AgentSystem

M

S

M M

S

Place

Region

MAF
Finder Communication

Management

Region Registry

Figure 1: Hierarchical Component Structure

BASICS AND CONCEPTS

8

3.1.1 Agents

Up to now, there is no unique definition of a (software) agent. However,
agents can be characterised by a set of attributes. The only attribute that is
commonly accepted is autonomy. Taking this into account, an agent is a
computer program that acts autonomously on behalf of a person or organisa-
tion.

Two types of agents act in the Grasshopper context, i.e. stationary agents and
mobile agents.

3.1.1.1 Mobile Agents

Mobile agents are able to move from one physical network location to an-
other. In this way, they can be regarded as an alternative or enhancement(!)
of the traditional client/server paradigm. While client/server technology re-
lies on remote procedure calls across a network, mobile agents can migrate
to the desired communication peer and take advantage of local interactions.
In this way, several advantages can be achieved, such as a reduction of net-
work traffic or a reduction of the dependency of network availability. Note
that mobile agent technology is often regarded as a replacement of the cli-
ent/server paradigm. In contrast to this, by building Grasshopper upon a dis-
tributed, object-oriented middleware, an integration of both approaches is
achieved.

Note that an integration of mobile agent technology and client/server tech-
nology includes that an agent may be realised either as client or as server. By
doing this it is possible for a client agent to migrate to a (traditional) server
or for a server agent to migrate to a (traditional) client, thus taking advantage
of local interactions instead of communicating via RPC. On the other hand it
is possible for two mobile agents to communicate remotely, i.e. not to meet
at a common location. It is very important to evaluate for each scenario both
possibilities, i.e. to decide whether to use migration plus local interactions or
to use remote interactions instead.

There is a significant difference between mobile agents and simple "tradi-
tional" mobile code. This difference can be described by two kinds of mo-
bility, i.e. remote execution and migration.

CHAPTER 3: CONCEPTS

9

Remote Execution

Remote execution, known from traditional mobile code, means that a pro-
gram is sent to a remote location before its activation. The program remains
at this location during its entire life time.

Migration

Migration means that a program (a mobile agent) is able to change its loca-
tion during its execution. A mobile agent may start its execution at location
A, migrate to location B, and continue its execution at location B exactly at
the point at which it has been interrupted before the migration.

3.1.1.2 Stationary Agents

In contrast to mobile agents, stationary agents do not have the ability to mi-
grate actively between different network locations. Instead, they are associ-
ated with one specific location.

3.1.1.3 Agent States

During their life cycle, agents can reside in different states. Grasshopper
compliant agents can normally be in one of the following states: active, sus-
pended, or flushed.

Active

An agent is active if it is currently performing its task. An active agent can
be suspended or deactivated.

Suspended

An agent is suspended if its task execution is temporarily interrupted. How-
ever, the agent remains instantiated and continues its task execution when it
is resumed. A suspended agent is unable to communicate and thus not reach-
able by other parties.

Flushed

A flushed agent is not active any more. Instead, all relevant internal infor-
mation is permanently stored, e.g. on a hard disk. A flushed agent can be
activated again. This means, a new instance of the agent is created, this new
instance is supplied with the execution-relevant data, and the agent continues
its task execution. In contrast to the suspended state, a flushed agent behaves

BASICS AND CONCEPTS

10

the same way as an active one from the viewpoint of other agent. On in-
coming communication requests the agent will be reactivated automatically.

3.1.2 Agencies

An agency is the actual runtime environment for mobile and stationary
agents. At least one agency must run on each host that shall be able to sup-
port the execution of agents. A Grasshopper agency consists of two parts, i.e.
the core agency and one or more places.

3.1.2.1 Core Agency

Core Agencies represent the minimal functionality required by an agency in
order to support the execution of agents. The following services are provided
by a Grasshopper core agency:

Communication Service

This service is responsible for all remote interactions that take place between
the distributed components of Grasshopper, such as location-transparent in-
ter-agent communication, agent transport, and the localisation of agents by
means of the region registry. All interactions can be performed via CORBA
IIOP, Java RMI, or plain socket connections. Optionally, RMI and plain
socket connections can be protected by means of the Secure Socket Layer
(SSL) which is the de-facto standard Internet security protocol. The commu-
nication service supports synchronous and asynchronous communication,
multicast communication, as well as dynamic method invocation.

For detailed information about the Grasshopper communication service,
please refer to Section 3.3.

Registration Service

Each agency must be able to know about all currently hosted agents and
places, on the one hand for external management purposes and on the other
hand in order to deliver information about registered entities to hosted
agents. The registration service is developed to achieve this.

Besides, the registration service of each agency is connected to the region
registry (cf. Section 3.1.3) which maintains information of agents, agencies
and places in the scope of a whole region.

CHAPTER 3: CONCEPTS

11

Management Service

Management services are developed to allow the monitoring and control of
agents and places of an agency by external (human) users. Among others, the
following functionality is supported:

� Create, remove, suspend and resume agents and places

� Get information about specific agents and places

� List all agents residing in a specific place

� List all places of an agency

Apart from this, configuration management enables human users to specify
system, trace, security and communication properties. For detailed informa-
tion about the configuration of the Grasshopper platform, please refer to the
User’s Guide.

Transport Service

This service supports the migration of agents from one agency to another. At
the destination agency, the agent continues its task processing exactly at the
point where it has been interrupted before the migration. The transport serv-
ice handles the externalisation and internalisation of agents, and the co-
ordination of the actual transfer which is performed by the communication
service.

Security Service

Grasshopper supports two kinds of security mechanisms, i.e. external and
internal security.

External security protects remote interactions between the distributed
Grasshopper components, i.e. agencies and region registries. For this pur-
pose, X.509 certificates and the Secure Socket Layer (SSL) are used. SSL is
an industry standard protocol that makes substantial use of both symmetric
and asymmetric cryptography. By using SSL, confidentiality, data integrity,
and mutual authentication of both communication partners can be achieved.

Internal security protects agency resources from unauthorised access by
agents. Besides, it is used to protect agents from each other. This is achieved
by authenticating and authorising the user on whose behalf an agent is exe-
cuted. Due to the authentication/authorisation results, access control policies

BASICS AND CONCEPTS

12

are activated. Internal security within Grasshopper is mainly based on the
security mechanisms provided by JDK.

For detailed information about the Grasshopper security service, please refer
to Section 3.4.

Persistence Service

The Grasshopper persistence service enables the storage of agents and
places, i.e. the internal information maintained inside these components, on a
persistent medium. In this way it is possible to recover agents or places when
needed, e.g. when an agency is restarted after a system crash. Two types of
persistence are distinguished, namely implicit and explicit persistence.

Implicit persistence: When the persistence service is activated, places are
automatically persistent when they are created. That means, a place exists
even after the agency has been shut down, and the place will be available
again after restarting the agency. The agency owner may also enable the
automatic saving of all agents when the agency shuts down. Note that im-
plicit persistence is not visible for agent programmers. Instead, it is config-
ured and activated by agency administrators.

Explicit persistence: Three mechanisms can be distinguished:

An agent is persistently stored periodically after a certain time interval with-
out suspending its task execution. The time interval is specified by the agent
itself, and after this the agent need not care about the maintenance of its in-
formation, since this is done automatically by the persistence service. This
mechanism is useful to enable the recovery of agents when an agency is re-
started, e.g. after a system crash.

Agents may order the persistence service to terminate them after a certain
time of idle processing, i.e. after they have not been used by other entities for
a certain period of time. However, the agents remain registered within the
agency and the region registry, so that they can be restarted if other entities
try to access them. This mechanism is useful to save agency resources.

Agents can be stored explicitly at any time on their own behalf or on behalf
of a human user, e.g. the agency administrator. This is useful e.g. if the
agency has to be temporarily terminated.

The core functionality explained above can be enhanced in a comfortable
way by means of that agents can be created in (or move to) places of an
agency.

CHAPTER 3: CONCEPTS

13

3.1.2.2 Places

A place provides a logical grouping of functionality inside an agency. For
example, there may exist a communication place offering sophisticated
communication features, or there may be a trading place where agents offer
or buy information or service access. The name of the place should reflect its
purpose. For example, in every agency exists by default a place named "In-
formationDesk". Every agent with no determined place is transported to the
"InformationDesk" where it can look for further information.

3.1.3 Regions

The region concept facilitates the management of the distributed components
in the Grasshopper environment, i.e. agencies, places, and agents. Agencies
as well as their places can be associated with a specific region, i.e. they are
registered within one region registry (cf. Section 3.1.3.1). Each registry
automatically registers each agent that is currently hosted by an agency asso-
ciated with the region. If an agent moves to another location, the corre-
sponding registry information is automatically updated. A region may com-
prise all agencies belonging to a specific company or organisation, thus fa-
cilitating its management.

3.1.3.1 Region Registries

A region registry maintains information about all components that are asso-
ciated with a specific region. When a new component (i.e. an agency, place,
or agent) is created, it is automatically registered within the corresponding
region registry. While agencies and their places are associated with a single
region for their entire life time, mobile agents are able to move between the
agencies of different regions. The current location of mobile agents, i.e. the
agency and place in which they are residing, is updated in the corresponding
region registry after each migration. By contacting the region registry, other
entities (including agents and human users) are at any time able to locate
agents, places, and agencies residing in a region. Besides, a region registry
facilitates the connection establishment between agencies or agents. For in-
stance, agent A which wants to communicate with agent B is able to estab-
lish a connection just by knowing the identifier of agent B. The Grasshopper
communication service automatically determines the current location of
agent B by contacting the region registry and establishes the connection. The
same applies to agent migration: An agent is able to migrate just by knowing
the name of the desired destination agency. The host name, port number, and

BASICS AND CONCEPTS

14

supported transport protocol of the destination is automatically detected by
the source agency by contacting the region registry.

Note that the Grasshopper environment can be established even without a
region registry. However, in this case agents and agencies must know all in-
formation that is required for remote interactions, such as host name, port
numbers, communication protocols, etc.

If the Grasshopper environment shall be established with a region registry
(what is strongly recommended), the registry must be started before the first
agency is created. The registry is not able to register agencies which have
been created before the creation of the registry.

3.2 MASIF

Mobile agents represent a relatively new technology. Today, a large number
of mobile agent platforms exist which differ widely in architecture and im-
plementation. These differences prevent any interoperability between MA
platforms. However, interoperability between systems of different vendors or
manufacturers is a fundamental requirement in order to fulfil the needs of the
upcoming open service market. Since the basis for interoperability is the
standardisation of the used technology, one requirement regarding mobile
agent platforms is standard compliance.

Currently, the most important standardisation body in the area of mobile
agents is the Object Management Group (OMG) with its Mobile Agent Sys-
tem Interoperability Facility (MASIF) specification. The MASIF standard
has been adopted as new OMG technology in February 1998. It comprises
several important aspects, such as agent management, mobility, naming, and
tracking. Probably, further agent standards will be initiated by the OMG
which will all together build a widely accepted standardisation framework
for mobile agent technology.

In order to meet future requirements and to provide openness to platforms of
different vendors, Grasshopper is developed compliant to the OMG MASIF
standard. To do so, you will have to download the Grasshopper MASIF Add-
on from http://www.grasshopper.de/.

CHAPTER 3: CONCEPTS

15

3.3 Communication Concepts

This section explains the communication concepts of the Grasshopper plat-
form. These concepts are realised by means of the Grasshopper communica-
tion service (CS) which is an essential part of each core agency (cf. Section
3.1.2.1). The communication service allows location-transparent interactions
between agents, agencies, and non-agent-based entities.

Alternatively to the communication service, Grasshopper can use its OMG
MASIF-compliant CORBA interfaces for remote interactions (cf. Section
3.2). For this purpose, each agency provides the interface MAFAgentSystem,
and each region registry provides the interface MAFFinder. Both are defined
in the MASIF standard which is available on the OMG FTP server. Note that
the following sections only describe the Grasshopper communication serv-
ice. Detailed information about MASIF can be found in the standard itself.

3.3.1 Multi-protocol Support

Remote interactions are generally achieved by means of a specific protocol.
The CS supports communication via the Internet Inter-ORB Protocol (IIOP),
Java’s Remote Method Invocation (RMI), and plain socket connections. To
achieve a secure communication, RMI and the plain socket connection can
optionally be protected with the Secure Socket Layer (SSL) (cf. Section 3.4).

RMI Plain
Socket

Plain
Socket/

SSL

RMI Plain
Socket/

SSL

Communication Service Communication Service

IIOP

Agency Agency

Communication Channel

Figure 2: Multi-Protocol Support

BASICS AND CONCEPTS

16

� CORBA IIOP: The CORBA 2.0-compliant Internet Inter-ORB Protocol
can be used in all environments which support CORBA, independent of a
vendor-specific ORB implementation. It uses the standard-compliant
mechanism to connect to an object using a CORBA Naming Service.
Note that CORBA IIOP communication is possible only if both client and
server are running in a CORBA-enabled environment (see the Installation
chapter in the User’s Guide).

� MAF IIOP: This protocol is a specialisation of CORBA IIOP developed
for agent system interaction. It is introduced in the MASIF standard and
provides the connectivity between agent systems of different vendors.
Thus, MAF IIOP does not use the Grasshopper communication service
and connects to the MASIF interface of the peer agency directly. MAF
IIOP has the same requirements as CORBA IIOP. Note that MAF IIOP
communication is possible only if both client and server are running in a
CORBA-enabled environment (see the Installation chapter in the User’s
Guide).

� RMI: Java Remote Method Invocation (RMI), introduced in JDK 1.1,
enables Java objects to invoke methods of other Java objects running on
another Virtual Machine (VM). Since this protocol is included in every
JDK1.1-compliant VM, all Grasshopper agencies support this protocol by
default without any further installation or configuration effort.

� RMI with SSL: Using this protocol, RMI is running over sockets pro-
tected with the Secure Socket Layer (SSL) protocol. SSL provides secure
transport of all data. To run this protocol, the user probably needs to have
an additional security package installed (see the Installation Chapter in
the User’s Guide). For detailed information about the Grasshopper secu-
rity concepts, please refer to Section 3.4 or additional documents if avail-
able on the Grasshopper website.

� Plain Sockets: The fastest way of remote interactions is the communica-
tion via plain sockets to a specific port of the target host. This technique
is robust and avoids the overhead of a distributed object model (apart
from the Grasshopper model). Plain socket communication is possible in
each Internet-enabled environment, and it is the default protocol used by
Grasshopper agencies.

� Plain Sockets with SSL: Using this protocol, plain socket connections
are protected via SSL. The preconditions for usage are the same as those
mentioned for RMI/SSL. For detailed information about the Grasshopper
security concepts, please refer to Section 3.4.

CHAPTER 3: CONCEPTS

17

Inside a region, Grasshopper is dynamically able to determine the protocols
supported by a desired communication peer and to select the most suitable
protocol for the remote interactions.

Since the supported communication protocols are realised via a plugin inter-
face, developers can easily integrate new communication protocols by writ-
ing their own protocol plugins. In this way Grasshopper is open for future
requirements that may come up in the changing communication world.

As an example how to combine several protocols to fulfil specific require-
ments consider a network in a large company. Usually, this network is con-
nected with the Internet via a router and protected with a firewall running on
this router. Thus, only a fixed number of ports are visible to users outside the
company’s network (called intranet). Grasshopper can use this intranet strat-
egy to protect users from malicious agents by providing one single agency as
access point to the intranet, allowing only secure interactions to the outer
world. Inside the intranet, agencies may interact by taking advantage of fast
(but insecure) connections. Figure 3 shows this example network configura-
tion.

Agency 1 Socket SSLSocket

Agency 3

Socket

6789 9000

Agency 2

Figure 3: Secure vs. Insecure Protocols

In this example, agency 2 has started two communication receivers. The first
one, a plain socket receiver, listens on port 6789 for incoming communica-
tion requests. This port is protected by the firewall, i.e. only hosts from in-
side the company can connect to this port. The second receiver uses the SSL-
socket protocol and listens on port 9000 which is accessible to all Internet
hosts world wide. Because the owner of agency 2 cannot be sure which
Internet user will send an agent to its agency, Internet users are able to send
agents with the SSL protocol only. This protocol provides the authentication
of the client, so that the owner of agency 2 can decide whether the communi-
cation should be permitted or not. If, for example, an attacker tries to send an
agent by using an insecure socket-protocol, the attempt fails at the firewall.
On the other side, the agency 2 owner trusts all clients from inside the com-
pany. Thus, clients from the intranet can use the faster socket-protocol.

BASICS AND CONCEPTS

18

3.3.2 Location Transparency

On the one hand the communication service is used by the Grasshopper sys-
tem, e.g. for agent transport or for locating entities within the DAE. On the
other hand, agents can use the CS to invoke methods on other agents. This is
done location-transparently, i.e. the agent need not care about the location of
the desired communication peer. Within the agent code, remote method in-
vocations look exactly like local method invocations on objects residing on
the same Java Virtual Machine.

This is achieved by means of so-called proxy objects (or stubs) that are di-
rectly accessed by a client. The proxy object forwards the call via the ORB to
the remote target object, i.e. the server. In this way, these proxy objects are
equivalent to the client stubs used by CORBA implementations. Figure 4
shows this concept on a rather abstract level.

Client Agent

Server Proxy

Communication
Service

Protocol
ModulesAgency 1

Server Agent

Communication
Server

Agency 2

Communication Channel

Remote Interfaces
for supported Protocols

1

2

3

4

1, 2, 4 Local Java method invocation

3 Remote method invocation via one of the supported protocols

Figure 4: Location Transparent Communication

The usage of the local proxy object offers a simple API to agent program-
mers and hides all internal negotiations and requests. Please note that loca-
tion-transparent communication requires a running region registry and works
inside the same region only. Communication between agents running in the
same agency is not constrained to this pre-condition, i.e. without a region

CHAPTER 3: CONCEPTS

19

this is still possible. For communication with an object outside the client re-
gion, the client has to specify the target location in a URL syntax. This func-
tionality is equivalent to the functionality of current CORBA implementa-
tions.

3.3.3 Communication Modes

In the context of Grasshopper, inter-agent communication may be performed
in several modes. Grasshopper supports the following communication
modes:

� synchronous communication

� asynchronous communication

� dynamic communication

� multicast communication

3.3.3.1 Synchronous Communication

Usually, when a client invokes a method on a server, the server executes the
called method and returns the result to the client which then continues its
work. This style is called synchronous because the client is blocked until the
result of the method is sent back. Figure 5 illustrates this concept.

Sender Receiver

Figure 5: Synchronous Communication

BASICS AND CONCEPTS

20

3.3.3.2 Asynchronous Communication

When using asynchronous communication, the client does not have to wait
for the server executing the method. Instead the client continues performing
its own task. There are several possibilities for the client to get the result of
the invoked method: It can periodically ask the server whether the method
execution has been finished, wait for the result whenever it is required, or
subscribe to be notified when the result is available. Figure 6 shows these
three possibilities.

Sender Receiver
Result

Storage Sender Receiver
Result

Storage

Blocking Polling

waiting ask

ask

get

Sender Receiver
Result

Storage

Call Back

subscribe

notify

Figure 6: Asynchronous Communication

CHAPTER 3: CONCEPTS

21

3.3.3.3 Dynamic Communication

This mechanism is useful if the client does not have access to a server proxy.
The client is able to construct a message at runtime by specifying the signa-
ture of the server method that shall be invoked. Dynamic messaging can be
used both synchronously and asynchronously.

3.3.3.4 Multicast Communication

Multicast communication enables clients to use parallelism when interacting
with server objects. By using multicast communication, a client is able to
invoke the same method on several servers in parallel.

Group proxies provide a framework for designing and implementing parti-
tioned concurrent activities in Java. A Group consists of an arbitrary number
of members. Group proxies maintain some kind of collection by enabling
objects to join and leave groups dynamically. They also encapsulate the
thread-based mechanisms needed to implement Java analogues of execution
constructs found in concurrent, parallel languages. Internally, concurrent
communication is implemented by the creation of parallel running threads
where each of them performs a specific communication task. For this pur-
pose, the group request is split and addressed to the appropriate server in the
first phase, the so-called scatter phase. In the case that all the threads per-
form invocations without return values, only the scatter part firing up the
tasks applies. But when actions must be synchronised or results must be col-
lected, a co-termination policy is required. The policy depends on the se-
mantics of the communication of interest. Three common policies are:

� OR Termination

� AND Termination

� Incremental Termination

A policy characterises how the results returned by the server objects are col-
lected and how the group client can access these results. This phase is called
gather phase. Figure 7 shows the roles involved in a multicast communica-
tion.

BASICS AND CONCEPTS

22

Sender Receiver1
Group
Proxy Receiver2 Receiver3

Figure 7: Multicast Communication

OR Termination

Figure 7 also depicts the gather policy problem of multicast communication:
May the client continue its execution while the server methods are running?
If not, at which point shall the client be restarted? The first possibility is to
suspend the client until a result arrives, i.e. the client continues processing its
task when any communication thread terminates. The client does not care
about which server has sent the result. All results related to this communica-
tion session that arrive after the first one are discarded (cf. Figure 8).

Sender Receiver1
Group
Proxy Receiver2 Receiver3

Figure 8: OR Termination

CHAPTER 3: CONCEPTS

23

AND Termination

Another possibility is to suspend the client until all results have arrived. In
this case, all communication tasks must be terminated before the client can
continue its execution. A timeout duration specifies the maximum time for
waiting. This avoids the death of the client in the case that a server does not
send a result. After restart, the client can access the results sent by the group
members.

Sender Receiver1
Group
Proxy Receiver2 Receiver3

Figure 9: AND Termination

Incremental Termination

The policies described above suspend the client during the communication
session. The communication service also supports a policy that allows the
execution of the client immediately after sending a request to the group. Like
the polling concept in asynchronous communication (cf. Figure 6), the client
can check whether a reply from a specific server is available or not.

BASICS AND CONCEPTS

24

Sender Receiver1
Group
Proxy Receiver2 Receiver3

ask

ask

ask

ask

Figure 10: Incremental Termination

3.3.4 Grasshopper URL

Generally, a Grasshopper location is specified in a URL-like notation of the
form

<protocol>://<host>:<port>/<agency>/<place>

protocol: acronym of the desired protocol (cf. Table 3)
host: name or IP address of the destination host
port: number of the port at the destination site (optional)
agencyName: name of the destination agency
placeName: name of the destination place (optional)

Name Acronym Default Port Range

Plain socket socket 7000 – 70201

Java RMI rmi 70502

1 Note that each socket communication receiver requires its own port on each host.
If the default port is already in use, the port number is automatically incremented
with 2.

CHAPTER 3: CONCEPTS

25

Name Acronym Default Port Range

CORBA IIOP iiop depends on CORBA implementa-
tion

Plain socket with SSL socketssl 8000 – 80201

Java RMI with SSL rmissl 80502

MAFIIOP mafiiop depends on CORBA implementa-
tion

Table 3: Supported Communication Protocols

Because of RMI internal reasons it is not possible to run RMI and RMI-SSL
interactions at the same time within the same agency.

The place name as well as the port number are optional. If no place is speci-
fied, the default place "InformationDesk" is contacted which exists within
each agency. The default port number depends on the desired protocol (see
Table 3). Note that the port number of CORBAIIOP and MAFIIOP depend
on the used CORBA implementation. Thus, if one of these protocols shall be
used, a port number must be specified.

The location of a region registry is specified in a corresponding way:

protocol://host:port/registryName

The registryName should be set to name of the region registry if the
MASIF compliant parts of Grasshopper are used. Otherwise the regis-
tryName has no meaning.

The location specification explained above requires that the communication
client knows which protocols are supported at the server (i.e. destination)
site. If the client does not have this information, the meta-protocol grass-
hopperiiop may be used. In this case, the communication service auto-
matically contacts the region registry in order to get information about the
protocols that are supported at the destination site. Of course, these addi-

2 This number specifies the port of the RMI registry within an agency. Note that
more than one RMI or RMI-SSL receivers from several agencies can register to the
same RMI registry. If the agency in which the RMI registry is running terminates,
all registered RMI receivers lose their communication ability.

BASICS AND CONCEPTS

26

tional interactions are time consuming. Thus, if possible, a concrete protocol
should be specified when constructing a location.

3.4 Security Concepts

This chapter introduces the basic concepts necessary to understand the secu-
rity concepts of the Grasshopper platform.

In open distributed environments such as Grasshopper a number of serious
security threats exist that must be considered when designing an effective
security policy.

Access Control

System A

Access Control

System B

Authentication &
Access Control

?

Confidentiality

Integrity

Figure 11: Potential Security Attacks

To address these threats, the Grasshopper security services must provide the
following features:

� Confidentiality: When an agent transports confidential data, it should
not be of any potential use for anybody else than the communication
partners. Disclosure or eavesdropping of the data can be fatal. Since the
transmission often takes place over communication media that cannot be
physically secured or that are out of the control of the communicating
partners, the transmitted agent must be encrypted while in transit. Thus it
is made useless for anybody, except for someone who knows how to de-
crypt the agent (which should be only the designated server).

� Integrity: Upon reception, it must be obvious if the agent was modified
or corrupted, be it by means of transmission errors or intentional acts of
vandalism. An attacker must not be able to modify agents without the
server noticing it. If in doubt, the server can try to reconstruct the agent
or ask the client to repeat the transmission.

CHAPTER 3: CONCEPTS

27

� Authentication: In a communication session, authenticity of the ex-
changed data requires authentication of the communication partners. If
important data is transmitted, each communication party should be aware
of the real identity of the communication peer. The nature of computer
networks makes it much easier for an impostor to pretend to be someone
else than in real life, where "authentication" is straightforward. Scenarios,
where an attacker pretends to have the identity of someone else are called
masquerading. Once successful, the attacker can easily pass further secu-
rity checks. Therefore, authentication is one of the key requirements to
securing distributed systems. Another attack that can be covered by an
authentication service is the replay of previously intercepted data.

� Access Control: An agent system generally has access to a certain
amount of resources, such as file system, network, CPU time, memory,
etc. These resources must be protected from unauthorised access. Usually
this is achieved through an access policy that grants access to system re-
sources based upon different levels of trust. When an agent manages to
get unauthorised access, it can destroy data or perform so-called denial-
of-service attacks, where agent system resources are allocated again and
again until the system is overloaded and breaks down.

� Auditing: In order to get an overview about security relevant events, the
security services mentioned above, especially authentication and the ac-
cess control service, should be able to keep track of whenever agents try
to access system resources or the system itself, as well as authentication
failures or when transmission faults occur. These events should be logged
to a file so they can be analysed later.

3.4.1 Cryptography

Most scenarios where cryptography is deployed involve a sender and a re-
ceiver of a message. The sender wants to send the message securely and
make sure that an eavesdropper cannot read it. Before it is sent, i.e. in its
actual clear form, the message is plain text. The process of rendering the
message unreadable, i.e. converting it to cipher text, is called encryption.
The reverse procedure, i.e. converting cipher text into plain text, is called
decryption. The term "plain text" should not be confused with "plain ASCII
text". The plain text messages can have any form, e.g. a text file, a video
stream, or, in the case of software agents, simply binary data.

A cryptographic algorithm, or cipher, is a mathematical function used for
encryption and decryption. However, keeping the cipher secret would be

BASICS AND CONCEPTS

28

rather ineffective. Therefore, in addition to the algorithm, a key is used and
kept secret. Both encryption and decryption use this key in combination with
the cipher. Now the algorithm can be published, analysed and standardised.
This can be compared to a door lock. Everybody can get the technical speci-
fications of a door lock, but without the key this knowledge is useless.

3.4.1.1 Symmetric Algorithms

Symmetric algorithms are algorithms where the key used for decryption can
be calculated from the key used for encryption and vice versa. Usually en-
cryption and decryption key are the same. This presupposes that sender and
receiver agreed on a key before securely exchanging messages. Here comes
the problem inherent to symmetric algorithms. In a scenario, where sender
and receiver are located relatively close, they can easily exchange the key
physically prior to the actual communication, e.g. on a floppy disk. But in a
larger networked application, this prerequisite is often not given. Key ex-
change must be done via other "more trusted" media like telephone or mail.
Even worse, if the receiver does not know the sender, how can the receiver
be sure of receiving the correct key? Furthermore, in a scenario with many
secure point-to-point transmissions, the number of keys grows exponentially,
thus adding a vast overhead to the application.

3.4.1.2 Asymmetric Algorithms

Asymmetric or public-key algorithms use two different keys for encryption
and decryption: a public and a private key. For each communication partner
there exists such a key pair, where the private key is kept secret while the
public key is made available to the public, e.g. through a directory service or
public-key certificates. This requires that the private key cannot be calcu-
lated from the public key, at least not in a reasonable amount of time. The
keys act as a sort of one-way lock, i.e. once a message is encrypted using the
public key of a person, it can only be decrypted by the corresponding private
key. Therefore, only that person can convert the cipher text back to plain text
(presumed no one else knows the private key). That way, the problem of key
distribution can be solved and the overhead is reduced since public and pri-
vate key can be used several times.

As a matter of fact, public-key algorithms are generally a thousand times
slower than symmetric algorithms, so in real-life applications a combination
of both techniques, called hybrid crypto-systems is often used: public-key
algorithms are used first to exchange a symmetric session key, which is then
used to encrypt and decrypt the actual message.

CHAPTER 3: CONCEPTS

29

Sender Receiver

ABC ? ? ABC
Encryption Decryption

Receiver’s
Public
Key

Receiver’s
Private
Key?

Figure 12: Providing Confidentiality Using Public Key Algorithms

3.4.1.3 One-Way Hash Functions

One-way hash functions, often also called digital fingerprint, message digest
or message checksum, are central to modern crypto-systems. They operate on
a message and produce an output of fixed length. Their importance for
cryptography is based upon the following common characteristics:

� Given a message M, it is relatively easy to compute h(M).

� Given h(M), it is hard to compute M. Hard means mathematically infea-
sible in a reasonable amount of time.

� Given M, it is hard to find another message M’, such that h(M) = h(M’).

Therefore it can be determined when a message was modified or corrupted
during transmission.

3.4.2 Authentication

Not only privacy and integrity can be ensured through the use of crypto-
systems, but also authentication. If sender and receiver share a common se-
cret, only known to them, the secret acts as the authentication information, as
a proof of the other communication party’s identity. In the case of symmetric
algorithms, this would be the session key. However, much more popular is
the use of public-key algorithms to ensure authentication. If the sender wants
to prove that it is really it who sends the agent, it digitally signs it prior to
transmission. In most cases this denotes the act of encrypting the agent with
the private key. Now anyone who receives the agent but is not sure if it really
comes from the actual sender can decrypt it with the sender’s public key. If
the decryption succeeds, the receiver can be sure that only the sender could
have encrypted it. This is called verifying a digital signature.

BASICS AND CONCEPTS

30

In practical implementations, public-key algorithms are not used to sign the
whole agent. Instead, it is far more efficient to generate a one-way hash of
the agent together with a timestamp, sign them and transmit them separately.
The receiver again generates a hash from the agent and compares it with the
received hash.

Sender Receiver

ABC ABC ABC ABC
Sign Verify

Sender’s
Private
Key

Sender’s
Public
KeyABC

Figure 13: Providing Authentication Using Public Key Algorithms

3.4.3 X.509 Certificates

The ITU-T authentication framework introduces the notion of public-key
certificates, data structures for storing and exchanging public keys. A trusted
third party, called certification authority (CA), assigns a unique distinguished
name to each user and issues a digitally signed certificate, consisting of:

� Version number: Identifier for the certificate format.

� Serial number: Unique to each user of a CA.

� Algorithm identifier: Identifies the algorithm used to sign the certificate.

� Issuer: The distinguished name of the CA.

� Period of validity: A time period, consisting of a Not-Before and Not-
After date, between the certificate is valid.

� Subject: The distinguished name of the user.

� Subject’s public key: The public key of the user.

� Signature: The signature of the CA.

By signing the certificate, the certification authority states that the personal
data, contained in the distinguished name of the subject, corresponds to the

CHAPTER 3: CONCEPTS

31

public key. Now, what happens during an authentication scenario using
X.509 certificates? Prior to the communication, the receiver gets the sender’s
certificate from a public database and verifies the signature. If both sender
and receiver share the same certification authority, this is trivial. The re-
ceiver knows that the sender certificate is issued by a trusted instance and
therefore trusts the certificate itself. If not, it is more complicated. The re-
ceiver can either trust the sender’s CA anyway or check if it is certified by
yet other certification authorities. Thus, a tree-like structure of trust is built.
CAs certified by higher-level CAs can again certify other CAs. The receiver
can walk up the tree until reaching a certification authority that is well-
known and trusted.

Sender

CA 1

CA 3

Receiver

CA 2

Figure 14: An X.509 Certification Tree

3.4.4 Access Control

Access Control denotes the process of controlling access of an entity to a
system or to resources within that system. If access to a specific resource is
denied, it is the task of auditing to log this for further evaluation. Access
control is closely linked to authentication, i.e. the actual access decision is
often based upon the identity of the entity performing the access. Within the
system where the access occurs, the initiator’s identity can be associated with
a set of access rights. Therefore, if an attacker succeeds in masquerading as
another user, it obtains the access permissions granted to that user. In this
case, the attacker has unauthorised access to system resources and can sub-
sequently invoke denial-of-service attacks or destroy data.

3.4.4.1 Protection of Resources

The resources of a distributed system that must be protected include:

BASICS AND CONCEPTS

32

� CPU time: In a multi-user and multitasking operating system, a single
user or process must not be able to get hold of the complete CPU, other-
wise the work of other users or processes may be disturbed.

� Memory: The amount of allocated memory to each process should be
limited. Furthermore, the address spaces of different processes must be
protected from one another.

� File system: Obviously, in multi-user environments, such as UNIX, files
must be protected from unauthorised access.

� Networking capabilities: Since networking resources such as sockets rep-
resent the connection of a system to the outside world, they are vulner-
able and subject to access control.

3.4.4.2 Access Control Policies

Access control policies represent the security requirements in a certain secu-
rity domain. They usually consist of a set of rules acted upon by Access
Control Decision Functions whenever a check is performed. There can be
different categories of access control policies, as identified by ITU Recom-
mendation X.800. A rule-based access control policy applies to all users of a
system, regardless of any privileges or access levels. In contrast, identity-
based access control policies assign different access rights to different iden-
tities. Of course this presupposes proper authentication. Identity-based ac-
cess control policies are often implemented using Access Control Lists
(ACL), where an identity is associated with a set of permissions it is granted.
Two particular types of identity-based policies are group-based and role-
based access control policies. In the former, the respective permissions are
valid for a group of people, e.g. an organisation or enterprise, while in the
latter, access rights are assigned to specific roles that can be held by different
users at different times, e.g. database administrator or super user. Further-
more, one can distinguish between administratively imposed or dynamically
selected access control policies.

3.4.5 Security in Grasshopper

This section describes the realisation of a Grasshopper Security Service in-
tended to meet the requirements stated above.

CHAPTER 3: CONCEPTS

33

3.4.5.1 External Security

To provide the required security, Grasshopper makes use of X.509 certifi-
cates (see above) and the Secure Sockets Layer (SSL). SSL is an industry-
standard protocol that makes substantial use of both symmetric and asym-
metric cryptography. Widely deployed in client-server products of leading
vendors, including Netscape, Microsoft and IBM, SSL provides confidenti-
ality, data integrity and mutual authentication of client and server.

� Confidentiality: All communication between client and server will be
handled over a secure socket, encrypted with a symmetric key and an en-
cryption algorithm negotiated in a handshake prior to the actual SSL ses-
sion. Although the IP packets can still be intercepted, encryption renders
them useless for eavesdroppers. Currently, Grasshopper is able to use any
available encryption algorithm.

� Integrity: Message Authentication Codes (MACs) can prove that a mes-
sage was not modified during transport, be it by vandals or transmission
errors. These MACs are calculated for each SSL packet using hash func-
tions.

� Authentication: The purpose of authentication is that both communica-
tion parties convince each other of their identity. During the SSL hand-
shake, client and server exchange personal data and their public keys
packaged together in the form of X.509 certificates. The authentication
process requires both parties to digitally sign protocol data with their pri-
vate keys. The certificate itself does not authenticate, but the combination
of certificate and correct private key does. Currently, Grasshopper is able
to use every available X.509 compliant certificate type.

So what are the prerequisites for doing secure communication? Each agency
should have at least a personal certificate and a private key. The key is re-
quired for signing data during the SSL handshake (512 bit). This data is hold
in the Grasshopper security context that is loaded and initialised at start-up.

Now, how can agencies specify their desire to communicate securely? The
receiver agency does so by running only secure servers (Socket/SSL or
RMI/SSL), which are configured in the communication preferences, while
the sender/client can selecting a appropriate protocol if it wants to communi-
cate securely or not. If both agencies specified the same, everything is fine.
If the sender specified secure communication, but the receiver is only run-
ning insecure servers, the communication fails and a security exception is
thrown on the sender side. If the sender wants to communicate insecurely,
but the receiver has only secure servers, this fails, too.

BASICS AND CONCEPTS

34

What happens next? In the SSL handshake, sender and receiver exchange
their personal certificates containing the public key. When the Grasshopper
agency receives a chain of certificates (this includes a single certificate
where the chain has length 1), it verifies the consistency of the chain, checks
if each certificate is within its validity period and searches in its database of
known signers, to check whether the subject belonging to the certificate is
known. If yes, the SSL session is handled as specified in the associated be-
haviour (see above). If it is not known, the next certificate is taken from the
chain and examined the same way. If the algorithm reaches the end of the
chain without encountering a known certificate, the connection is rejected, if
not configured otherwise.

If this step is passed on both sides, sender and receiver agency mutually
authenticate each other by signing random data with the private key and
sending it to the peer, who verifies the signature with the public key. After
this, the SSL handshake has been successfully completed, and the secure
channel established, meaning that sender and receiver are authenticated and
a session key was exchanged. Subsequently, all data transmitted through the
socket is encrypted and decrypted using this key and secured by MACs, thus
providing confidentiality and integrity for the remaining session.

But what does this mean? A secure session between two agencies is estab-
lished. This session can be cached and reused later. In this context, it is of
vital importance to understand the fact that it is not agents which are authen-
ticated but the agency administrator, or at least the person who specified the
personal certificate used for authentication. Different agents from different
owners and creators can travel through the same authenticated secure socket.
However, in typical applications this can be considered as a minor drawback.

3.4.5.2 Internal Security

Internal security is all about protecting resources of the agency from unau-
thorised access by agents. Furthermore, it is useful to protect agents from
one another. But why is access control so important? Well, think of malevo-
lent agents as viruses. If you do not protect yourself against them, they could
destroy data, shut down your agency, kill other agents and so on.

Regarding access control, Grasshopper is strongly oriented towards the secu-
rity mechanisms of JDK 1.2. It makes use of an codesource-based and iden-
tity-based access control policy, which is initialised at start-up. In Grasshop-
per, an access control policy is an access control list comprising several en-
tries, one for each subject treated in this policy, where a subject can be a
codebase or a principal. With each subject, there is associated a set of per-
missions, granting access to all important parts of the Grasshopper agency.

CHAPTER 3: CONCEPTS

35

Note that it is not possible to explicitly deny permissions. Only "positive"
permissions are allowed.

You might ask, how the agent is linked to the name of the subject in the
policy? When an agent tries to make a system access, e.g. by opening a file
using the java.io package, an access controller is consulted to make the
access decision. In fact, each time a system access happens the access con-
troller is invoked, but it is capable of distinguishing whether the access was
made by an agent or by trusted system code, e.g. the Grasshopper core. If the
access came from an agent, the access controller extracts the agent’s origin
and owner from the agent itself. With this information, it contacts the Access
Controller to extract the set of permissions valid for this subject. It is then
checked if the permission to perform the access is contained in the set of
permissions granted to the subject. If not, an access control exception is
thrown.

It follows that effective access control presupposes authentication and secure
transmission of the agent. Why is this so? When an agent from a remote
agency makes a system access, the agent’s signature is taken as a token to
retrieve the proper permissions from your local access control policy. This
signature is set at the agent’s creation time in the remote agency, and it must
be ensured that it was not modified during agent transport to your agency.
Otherwise, for example, some attacker could masquerade as a friend to
whom you have granted read/write access to your home directory.

Grasshopper uses the notion of protection domains, first introduced in JDK
1.2. Each agent is loaded by a class loader associated to a protection domain,
thus properly separating different security domains. Classes from your
CLASSPATH variable are considered as system classes and therefore trusted.
They are not subject to any permission checks and therefore run outside the
"sandbox". It is of utmost importance to always keep this in mind. If you let
someone tamper with your CLASSPATH variable, the access control mecha-
nisms can be tricked. Only agent classes loaded from a codebase, such as
file:// or http:// , are subject to access control.

When programming your own agents that perform access to resources,
please take care to enclose the code where the access happens in try-catch
blocks in order to catch the access control exception if the necessary permis-
sion is not granted. If, for example, for performance optimisation, access
control is not desired it can be disabled via a command-line option.

BASICS AND CONCEPTS

36

3.5 Persistence

Persistence is a very important topic regarding distributed applications. Ob-
jects are sent from one computer to another and often have a long life span.
That is especially true for mobile agents. The following undesirable scenar-
ios have to be taken into account:

� An agent moves from one agency to another. The transmission fails for
some reason so that the agent never arrives at its destination.

� An agent is residing within an agency whose host computer crashes or
shuts down unexpectedly (e.g. due to a power failure).

� There are many agents residing within an agency, with most of them
waiting for external events without performing any task, thus just wasting
system resources. The host computer could run out of resources (espe-
cially memory) if more agents want to migrate into that agency.

While the first scenario can be avoided by buffering the agent until the arri-
val has been confirmed, the remaining two need another approach. A copy of
the agent object has to be maintained on a durable (i.e. persistent) medium,
e.g. a hard disk. If the agency system crashes, persistent agents can be re-
loaded from this medium after the agency has been restarted (keyword: sav-
ing). Besides, idle agents (i.e. agents just waiting for an event without exe-
cuting any task), need not remain instantiated. Instead, they could be stored
permanently and then removed from the agency’s RAM in order to save re-
sources (keyword: flushing). If a request for a flushed agent arrives, the
agent can be re-instantiated in order to handle the request.

Grasshopper handles all the topics mentioned above if persistence is enabled.

CHAPTER 4: FREQUENTLY ASKED QUESTIONS

37

4 Frequently Asked Questions

This chapter contains answers for some Frequently Asked Questions. The
chapter is organised to help the Grasshopper user to find answers in different
usage areas. Note that additional information is provided in the Glossary (cf.
Annex A).

4.1 Mobility

How can agents move?

Grasshopper agents are implemented in Java. Thus, their code can be exe-
cuted on every host that supports Java - independent of the hardware archi-
tecture. Grasshopper agents can either use the Grasshopper-specific commu-
nication service or optionally a CORBA 2.0 compliant ORB for MASIF con-
formant migration. To move an agent to another agency residing on the same
or another host can be initiated by invoking the move() method of an agent.
This method can be invoked by the moving agent itself or even by other en-
tities. A detailed description can be found in the Programmer’s Guide.

4.2 Communication

How does inter-agent communication work?

Grasshopper agents can invoke methods of other agents in a location-
transparent way. Therefore, agents need not know the actual location of their
communication peer. For the agent programmer, a method invocation of a
remote object can be implemented like a method invocation of an object re-
siding in the same Java Virtual Machine (JVM). Grasshopper supports syn-
chronous, asynchronous, and multicast communication.

What communication protocols are supported?

The Grasshopper communication service supports the following protocols:

� CORBA IIOP

� Java Remote Method Invocation (RMI)

BASICS AND CONCEPTS

38

� Plain Socket Protocol

� RMI with SSL

� Plain Socket Protocol with SSL

4.3 Security

Questions associated with Grasshopper security are separated into the fol-
lowing sections:

� Certificates and Encryption (Section 4.3.1)

� Permissions and Access Control (Section 4.3.2)

4.3.1 Certificates and Encryption

Does Grasshopper support strong cryptography?

Yes. Communication in Grasshopper can be secured using the Secure Socket
Layer (SSL) protocol. By default, 1024 bit RSA keys are used for key ex-
change and authentication and 128 bit RC4 keys are used for encryption and
decryption of the actual data.

What’s the deal with U.S. export restrictions and patents?

The U.S. government restricts the use of U.S. products which secure their
data with strong cryptography to U.S. citizens only. Export versions of U.S.
products using cryptography are constrained to weak cryptography. Grass-
hopper uses an Austrian toolkit named IAIK that supports both weak and
strong cryptography. RSA and RC4 are patented by RSA Security Corp.
Please keep this in mind when using Grasshopper in the U.S.

What are symmetric key algorithms?

In symmetric key algorithms, the keys for encrypting and decrypting the data
are identical. Although much faster than asymmetric key algorithms, they
raise the problem of exchanging the key prior to a communication session.
The most prominent members of this family are DES and RC2/RC4.

CHAPTER 4: FREQUENTLY ASKED QUESTIONS

39

What are asymmetric key algorithms?

Invented in 1976 by Diffie and Hellman, asymmetric or public key algo-
rithms solve the problem of key distribution by having a key pair: private and
public key. The public key can be published, while the private key should be
kept secret. Once data is encrypted with the public key of a person, it can be
only decrypted with the corresponding private key. Although overcoming the
key exchange problem, asymmetric key algorithms are much slower than
symmetric. A well-known example is RSA.

What is RSA?

Named after its inventors, Rivest, Shamir and Adleman, the RSA public key
algorithm works for both encryption and digital signatures. It is based upon
the difficulty of factoring very large numbers. Although RSA’s security has
been never fully proven by crypt-analysts, it is widely used and very popular.

Suppose Alice wants to send Bob a message, then there are two ways of us-
ing RSA:

� For encrypting data: Alice takes Bob’s public key and encrypts the
data. Now, only Bob can decrypt the data with his private key.

� For digitally signing data: Alice takes her private key and encrypts
the data. When Bob gets the message and succeeds in decrypting it
with Alice’s public key, he can be sure that it could only have been
encrypted by Alice, given the fact that only Alice knows her private
key. Note that everybody else can decrypt the message with Alice’s
public key and read it.

In real life scenarios, a combination of both techniques is often used.

What is RC4?

RC4 is a variable-key-size symmetric cipher developed in 1987 by Ron
Rivest for RSA Data Security, Inc. For several years it was proprietary until
the source code was posted anonymously to a mailing list and quickly spread
throughout the Internet. It is about 10 times faster than the popular DES
(Data Encryption Standard) cipher.

What is SSL?

The Secure Sockets Layer (SSL) is an industry-standard protocol that makes
substantial use of both asymmetric and symmetric cryptography. It delegates
encryption and authentication procedures from the application to the trans-
port layer. Widely deployed in client-server products of leading vendors in-

BASICS AND CONCEPTS

40

cluding Netscape, Microsoft and IBM, SSL provides privacy, data integrity
and mutual authentication of client and server.

� Privacy: All communication between client and server goes over a
secure socket, encrypted with a symmetric key and an encryption
algorithm negotiated in a handshake prior to the actual SSL session.
Although the IP packets can still be intercepted, encryption renders
them useless for eavesdroppers.

� Integrity: Message Authentication Codes (MACs) can prove that a
message was not modified during transport, be it by vandals or
transmission errors. These MACs are calculated for each SSL
packet using hash functions.

� Authentication: The purpose of authentication is that both communi-
cation parties convince each other of their identity. During the SSL
handshake, client and server exchange personal data and their pub-
lic keys packaged together in the form of X.509 certificates. The
authentication process requires both parties to digitally sign proto-
col data with their private keys. The certificate itself does not
authenticate, but the combination of certificate and correct private
key does.

What is a X.509 certificate?

A X.509 certificate is a data structure containing personal data about an en-
tity (person or organisation), such as name, e-mail address, location, country
and the public key. Furthermore it contains a digital signature of an issuing
entity, testifying that the certificate data belongs to that entity. Usually, cer-
tificates are issued by so-called certification authorities (CAs) and are valid
only for a certain time. Thus, certificates act as a digital version of an ID,
passport or driver’s license. The combination of certificate and correspond-
ing private key (which is NOT inside the certificate) authenticates you to
someone who needs proof of your identity.

What is a certificate chain?

Certificates can build a tree-like structure, where each node certificate issued
its child certificates. In an authentication process, usually the verifier gets a
chain of certificates. If he does not trust a leaf certificate, he goes up the tree
until he finds a well-known certificate. The so-established trust model is
transitive, i.e. if there is one certificate that is considered trusted, all child
and grandchild certificates are, too.

CHAPTER 4: FREQUENTLY ASKED QUESTIONS

41

What is a certification authority (CA)?

A certification authority issues certificates to users, thus guaranteeing that
the personal data and the public key in that certificate belong together. A CA
usually has the reputation of being a trustworthy entity, so it acts as a trusted
third party in authentication processes.

What is a self-signed certificate?

A certificate chain normally ends at a top-level CA certificate. This certifi-
cate is self-signed since it has no ancestors.

How does authentication work in Grasshopper?

Each Grasshopper agency has a list of certificates which are associated to a
certain behaviour. If, in an SSL handshake, the agency receives a chain of
certificate, this chain is traversed from bottom to top using the following
algorithm:

1. Take the current certificate from the received chain.

2. Check if the certificate was signed by the next one in the chain.

3. Check if the certificate is already/still valid.

4. Check if the certificate owner is found in the list of known signers.

5. If yes, accept, reject or ask user, based upon the specified behaviour.

6. If not, take next certificate and go back to step 2.

7. If last certificate is reached, reject automatically or ask user about un-
known top-level certificate. The user can accept or reject it. It may optionally
be saved in the database of known signer certificates.

Who is authenticated?

Since SSL sessions are established between agencies, the agency owner or
administrator is authenticated with his certificate. He can differ from the per-
son who wrote the agent code or instantiated the agent. This is an important
fact to keep in mind!

Does Grasshopper support X.509v3 certificates?

Yes.

BASICS AND CONCEPTS

42

How can I get a personal certificate chain?

You can use the standard keytool shipped with the JDK.

Can I have more than one personal certificate chain?

Yes. In your private keystore you can import several personal certificate
chain. However, in authentication processes during SSL handshakes, only
one of these chains is taken.

Where are Grasshopper security relevant files stored?

Grasshopper uses your private keystore and Java policy file. They are stored
in your home directory by default.

� .java.policy: The access control policy for Grasshopper (see
below).

� .keystore: All private keys and certificates.

Are private keys stored password encrypted?

Yes. They are packaged together with a personal certificate chain and can be
exported password protected.

4.3.2 Permissions and Access Control

Why is access control important?

Without access control, an agent executing in your agency can easily change
or destroy your files, influence agency system threads, establish network
connections, shutdown the agency. Therefore, access to these system re-
sources must be protected.

What is an access control policy?

An access control policy is a database or a file with different entries con-
taining a subject and a set of associated permissions. E.g. it could contain an
entry granting user Bob access to the file /tmp/foo.

Who is identified by the subject in the policy?

When an agent tries to access a resource, it does so on behalf of its user.
Upon creation, each agent is associated with an owner, currently one certifi-

CHAPTER 4: FREQUENTLY ASKED QUESTIONS

43

cate of the user who started the agency, i.e. the agency owner or administra-
tor. So if user Bob starts agency A and creates an agent that travels to agency
B and writes a file to the remote file system, there should be an entry in the
policy file of agency B granting Bob permission to write to that specific file.

When is access control effective?

Although access control should also work when SSL is disabled, it is im-
portant to keep in mind, that an effective access control presupposes authen-
tication, confidentiality and data integrity. To illustrate this, suppose you
have granted Alice the right to access every single file in your file system.
When an agent from Alice enters your agency, it must be ensured that it is
really Alice who sent you the agent. Otherwise an impostor could masquer-
ade as Alice and delete your home directory!

What is a permission?

A permission is associated with a user or subject and usually contains three
entries:

� type: the type of the permission

� target: the resource that is to be accessed

� actions: the actions that are invoked on this resource, e.g. read/write

What is a protection domain and what do class loaders have to do with
it?

To provide a sort of "sandbox", each agent in Grasshopper has its own class
loader. This distinguishes agent classes from system classes loaded from
CLASSPATH. When the access controller is invoked, it examines the cur-
rent execution context and checks for class loaders. If no class loader is
found, only system classes are in the stack, and the access controller returns
quietly. If there are class loaders, access from within another protection do-
main is performed. A protection domain is a construct that can be used to
encapsulate and groups different set of permissions. For example, there can
be a system domain which has unlimited access, while a domain representing
all agents of Bob has restricted access.
The algorithm for the access decision is as follows:

� Iterate through each class loader, and determine its associated protection
domain.

� Check if the necessary permission to complete the access is contained in
the protection domain’s set of permissions.

BASICS AND CONCEPTS

44

� If there is one protection domain in the stack that does not have the nec-
essary permissions, throw an AccessControlException.

What’s the deal with $CLASSPATH?

Classes from the system’s CLASSPATH are considered trustworthy in
Grasshopper, i.e. they have access to all resources. It is very important to
always be aware of this fact. An agent executed from your CLASSPATH has
system privileges and can do everything, from deleting your files to shutting
down your agency or deleting other agents.

What should I care about when writing own code?

When you write agents accessing system resources, please be sure to enclose
the code parts performing the access in a try-catch block, in case the access
is denied.

How can I use the access controller within my own code?

The Grasshopper access control policy can be extended in the form of intro-
ducing new permissions, which can be checked in your own code. Suppose
you write an agent offering services to other agents. While service A should
be accessible by all agents, service B should only be accessible by agents
from Alice or Bob. You can easily define a security permission "access.B"
and grant Alice and Bob this permission in your policy. At the beginning of
the method(s) realising service B, you invoke

AccessController.checkPermission(new
de.ikv.grasshopper.security.Se-
curityPermission("access.B"))

Now, only agents from Alice or Bob can pass beyond this point.

4.4 Installation

On what platforms Grasshopper is available?

Grasshopper is implemented entirely in Java. It can run on every platform
that supports JDK 1.2 or higher. The Grasshopper package is delivered with
installation procedures developed for UNIX and Windows 95/98/NT/2000.
Since version 2.1 there is additionally a PersonalJava version.

CHAPTER 4: FREQUENTLY ASKED QUESTIONS

45

What additional software packages are required to run Grasshopper ?

� Java Development Kit (JDK) or Runtime Environment 1.2 or higher.

� optional: security packages (e.g. IAIK iSaSiLk 3.0).

� optional: CORBA 2.0 compliant runtime environment. Without this envi-
ronment, no IIOP communication is possible.

Where I can get these additional packages ?

� JDK 1.2 or higher from JavaSoft: http://www.javasoft.com/

� optional: the Java security package IAIK iSaSiLk 3.0 from the Technical
University of Graz: http://www.iaik.at/

How is the installation process started ?

Grasshopper is delivered by means of a self-extracting file. For starting the
installation procedure, please run the downloaded script (UNIX users) or the
executable (Windows users). For PersonalJava you will have to copy the cab
file to your device and start it afterwards.

Can I run Grasshopper on other operating systems than Solaris, like
Linux or BSD Unix ?

Yes, but Grasshopper has been tested only on Solaris. When you use a
UNIX-like operating system, you should try the Solaris distribution.

4.5 Platform Usage

How can I start an agency?

Use the start-up assistant bin/Grasshopper without any argument ans
select Agency as the system type to start. Try the -h option to get more help.

How can I start a region registry?

Use the start-up assistant running bin/Grasshopper without any argu-
ment and select Region as the system type to start. Try the -h option to get
more help.

BASICS AND CONCEPTS

46

Is it necessary to start a region registry?

Grasshopper 2 agencies can also be executed without a running region reg-
istry. This does not influence the creation and transport of agents. But with-
out a region registry location-transparent communication is not possible, i.e.
you have to explicitly specify a complete URL, including the desired proto-
col as well as host name and port number of the communication peer.

What is the meta-protocol grasshopperiiop?

By using this meta-protocol when specifying a location (URL), the Grass-
hopper system will automatically determine the communication protocol.
Note that this is only possible if a region registry is available.

Does every agency need a separate region registry ?

No, each new region registry establishes a new region. If a region registry is
still running in your environment, specify the host name and port number of
this registry when starting a new agency.

What is the agent catalogue ?

The agent catalogue offers a user-friendly agent creation tool. It is similar to
Bookmarks/Favourites known from Web browsers. After an agent is
created for the first time, the code base and the class of the agent can be
stored in the catalogue. When a user wants to create the agent again, he/she
only has to select the corresponding catalogue entry.

Where can I find example agents ?

Grasshopper comprises several example agents in order to allow the user to
verify the correct installation of the platform.
The source code of documented example agents is included in the exam-
ples directory of the Grasshopper installation. By using the agent cata-
logue, one can run these examples in an easy way. Additionally, several un-
supported examples can be found on the Grasshopper web-site.

ANNEX A: ACRONYMS

A-1

A Acronyms

CGI Common Gateway Interface
CORBA Common Object Request Broker Architecture
CS Communication Service
DAE Distributed Agent Environment
DPE Distributed Processing Environment
IIOP Internet Inter-ORB Protocol
ISO International Standardisation Organisation
JDK Java Development Kit
JFC Java Foundation Classes
JRE Java Runtime Environment
MA Mobile Agent
MASIF Mobile Agent System Interoperability Facility
OMG Object Management Group
ORB Object Request Broker
OS Operating System
RMI Remote Method Invocation
RPC Remote Procedure Call
SSL Secure Socket Layer
VM Virtual Machine

ANNEX B: GLOSSARY

B-1

B Glossary

activation
the procedure in which the Å deactivation of an Å service is re-
voked. After its activation, a service is instantiated again and contin-
ues its task execution. Regarding the implementation, the object(s) as-
sociated with the service are created anew, and the corresponding
Java thread is activated.

active
one possible Å state of a Å service that results out of the service’s Å
usage state. A service is active if it is currently executing its task, i.e.
if the corresponding Java thread is active. The other resulting state
values are Å suspended and Å deactivated.

agency
the runtime environment for mobile and stationary Å agents. Each
agency runs on its own Java virtual machine. An agency consists of a
Å core agency and one or more Å places. Agents execute their tasks
within a place, and Å mobile agents are able to migrate from one
place to another. A set of agencies can be grouped into a Å region.
Associated with each agency is a unique Å agency identifier. In the
context of Grasshopper, agencies are regarded as Å services.

agency identifier
enables the unique identification of an Å agency. It is generated
automatically during the creation of an agency and remains valid for
the agency’s entire lifetime. For information about its structure, please
refer to Å identifier.

agent
a self-contained software element which is responsible for autono-
mously carrying out one or multiple tasks. An agent acts actively in a
Å distributed agent environment on behalf of a human user or other
software components. Associated with each agent is a unique Å
agent identifier. In general, agents run within a Å place of an Å
agency. In the context of Grasshopper, two kinds of agents are distin-
guished: Å mobile agents are able to move actively from one place to
another, whereas Å stationary agents can only be moved to another
place by human users. The active movement of a mobile agent is
called Å migration. Grasshopper agents are realised as Java threads.
In the context of Grasshopper, agents are regarded as Å services.

BASICS AND CONCEPTS

B-2

agent class
A Grasshopper agent consists of one or more Java classes. One of
these classes builds the core of the agent and is referred to as agent
class. Among others, the agent class contains the method Å live()
which specifies the actual task of the agent.

agent identifier
enables the unique identification of an Å agent. It is generated auto-
matically during the creation of an agent and remains valid for the
agent’s entire lifetime. For information about its structure, please refer
to Å identifier.

agent state
the mode of existence of an Å agent. This mode is specified by
means of the Å state attribute of the agent. An agent can be Å active,
Å suspended, or Å deactivated.

asynchronous communication
a communication mechanism between clients and servers. After in-
voking a method of the server, the client does not have to wait for the
server executing the method. Instead the client continues performing
its own task. There are several possibilities for the client to get the re-
sult of the invoked method: It can periodically ask the server whether
the method execution has been finished, wait for the result whenever
it is required, or subscribe to be notified when the result is available.
The counterpart is Å synchronous communication.

autonomy
one of the most fundamental characteristics of an Å agent. Once acti-
vated by a human user or another software component, an agent is
able to execute its task more or less independently, after this returning
the demanded results to its initiator.

clone
To clone an Å agent means to create an exact copy of an already ex-
isting agent instance, i.e. to create a clone of this agent. This clone
comprises the same internal information, e.g. the same Å execution
state, and thus it starts its task execution exactly at the point that the
original agent instance had reached when the clone was created. Each
agent is able to create a clone of itself. Note that the clone is always
created within the same Å place in which the original agent is cur-
rently executing. (see also Å copy)

Common Object Request Broker Architecture
the Common Object Request Broker Architecture of the Object Man-

ANNEX B: GLOSSARY

B-3

agement Group (OMG). CORBA is probably the best known archi-
tecture for Å object request broker s. For further information, please
refer to http://www.omg.org.

communication service
a Å core service provided by each Grasshopper Å agency. The
communication service enables Å agents to communicate with each
other in a location-transparent way. Currently, the communication
service supports synchronous and asynchronous method invocations.

copy
Each Å agent is able to create a copy of itself. This copy comprises
the same internal information, e.g. the same Å execution state, and
thus it starts its task execution exactly at the point that the original
agent instance had reached when the copy was created. Note that, in
contrast to a Å clone, a copy need not be created in the same Å place
in which the original agent is currently residing. It can be created even
in remote places.

CORBA
cf. Å Common Object Request Broker Architecture

core agency
the part of an Å agency that comprises the functionality which is in-
evitably required for the execution and management of Å agents.
Apart from this core, each agency comprises one or more Å places.

core service
the services that are comprised by the Å core agency. These services
realise the functionality which is inevitably required for the execution
and management of Å agents.

DAE
cf. Å distributed agent environment

deactivated
one possible Å state of a Å service that results out of the service’s Å
usage state. If a service is deactivated, it does not exist anymore in
form of a real "living" object. Instead the service, i.e. its code and (if
the concrete service is a Å mobile agent) its Å execution state are
permanently stored, e.g. on a hard disk. If a deactivated service shall
be instantiated again in order to continue its task execution, its Å
activation has to be initiated. If a service is deactivated, its Å usage
state is set to US_UNKNOWN. The other resulting values of a serv-
ice’s state are Å suspended and Å active.

BASICS AND CONCEPTS

B-4

deactivation
the procedure in which a Å service is halted. The object(s) associated
with the service are removed and (is the service is an agent) the exe-
cution state is permanently stored. To revoke the deactivation the
service has to be activated again (cf. Å activation), i.e. the corre-
sponding object(s) are instantiated anew.

de-registration
the procedure in which an Å agency, Å agent, or Å place entry is
removed from the Å region registry.

distributed agent environment (DAE)
the environment in which Å agents execute their tasks. The DAE
consists of various agencies (cf. Å agency) that are distributed
throughout a network. Agencies can be grouped to Å regions, and
each single agency comprises one or more Å places. Å mobile
agents are able to migrate from one place to another place of the same
or a different agency.
The Grasshopper DAE is built on top of a Å distributed processing
environment . In this way, an integration of Å mobile agent technol-
ogy and the traditional client/server paradigm is achieved.

distributed processing environment (DPE)
supports the remote interaction between distributed software compo-
nents. These software components can be divided into the categories
client and server. During an interaction, a client invokes a service of-
fered by a server. It is possible that a single component takes the cli-
ent and the server role relative to distinguished other components.

DPE
cf. Å distributed processing environment

dynamic method invocation
a mechanism for client/server communication. This mechanism is use-
ful if the client does not have access to a specific server Å proxy. The
client is able to construct a message at runtime by specifying the sig-
nature of the server method that shall be invoked. Dynamic messaging
can be used both synchronously and asynchronously.

execution block
one code segment within the method Å live() of a Å mobile agent.
Each execution block is completely executed in one Å place, and the
last statement of each block is the Å move() method. That means, af-
ter performing a complete execution block, the agent migrates to an-
other place. After the Å migration the next execution block is per-

ANNEX B: GLOSSARY

B-5

formed. This concept has been introduces by Grasshopper since Java
does not support the transfer of an agent’s execution stack.

execution state
indicates which part of an Å agent’s code is currently executed. Be-
sides, the execution state comprises values of important variables of
the agent’s code. The execution state is especially important for Å
mobile agents. When a mobile agent migrates from one place to an-
other, its code and its execution state is transferred to the destination
location. After its arrival, the agent is instantiated again and supplied
with its execution state. This enables the agent to continue its task
execution exactly at the point where it has been interrupted before the
migration.
Note: Do not mix up the meaning of an agent’s execution state with a
service’s Å state, i.e. its mode of existence.

identifier
enables the unique identification of distinguished entities within the
Å distributed agent environment . In the context of Grasshopper, es-
pecially Å agents and agencies (cf. Å agency) are supplied with a
unique identifier. An identifier consists of the following five compo-
nents:
- the prefix "Agent", "Service", "Listener", or "Unknown" (Note that
in this context an agency is regarded as a service.)
- the Internet address of the host on which the identifier has been cre-
ated
- the date on which the identifier has been created: "yyyy-mm-dd"
- the time at which the identifier has been created:
"hh:mm:ss:msmsms"
- the number of clones of the identifier

IIOP
cf. Å Internet Inter-ORB Protocol

InformationDesk
the "default" Å place that exists within each Grasshopper Å agency.
If an agent migrates from one agency to another without specifying
the desired destination place, it is sent to the information desk place of
the target agency.

Internet Inter-ORB Protocol
IIOP has been specified by the Object Management Group (OMG) in
the context of the Å Common Object Request Broker Architecture

BASICS AND CONCEPTS

B-6

(CORBA). IIOP enables interactions between objects implemented in
different languages and residing in distinguished environments.

live()
the most fundamental method of each Grasshopper agent. This
method specifies the actual task of the agent. In case of a Å mobile
agent, the live() method is subdivided into several Å execution
blocks.

localisation
the process in which an Å agency, Å agent, or Å place entry is re-
quested from the Å region registry. The localisation of these compo-
nents is essential for the management of the Å distributed agent envi-
ronment and for the task execution of Å mobile agents.

location
specifies a physical address within the Å distributed agent environ-
ment . For instance, the location of an Å place comprises a host
name, a port number , the name of the agency to which the place be-
longs, and the place name. A location consists of the following five
components:
- the protocol scheme
- the IP address of the host
- the port (omitted by default)
- the name of the Å agency
- the name of the Å place (omitted for agency locations)

MASIF
cf. Å Mobile Agent System Interoperability Facility

migration
the procedure in which a Å mobile agent moves from one Å place of
the Å distributed agent environment to another. In contrast to Å
remote execution, migration allows an agent to continue its task exe-
cution at the destination location exactly at the point where it has been
interrupted before the migration. For this purpose, not only the agent’s
code, but also its Å execution state is transferred.

mobile agent
an Å agent that is able to migrate from one Å place of the Å
distributed agent environment to another. (cf. Å migration). In con-
trast to mobile agents, Å stationary agents cannot migrate by them-
selves. they are more or less associated with a single place, and they
can only be moved by their owner.

ANNEX B: GLOSSARY

B-7

Mobile Agent System Interoperability Facility
the Mobile Agent System Interoperability Facility. The MASIF speci-
fication is the first Å mobile agent standard of the Object Manage-
ment Group (OMG). It has been initiated in November 1995 by means
of a request for proposal, and it has been accepted as new OMG tech-
nology in February 1998. MASIF has been developed by Crystaliz,
General Magic, GMD FOKUS, IBM Japan, and the Open Group.
The idea behind MASIF is to enable interoperability between mobile
agent platforms of distinguished manufacturers. One main objective
was to specify interfaces that can easily be integrated into already ex-
isting platforms. Currently, MASIF only provides a minimal set of
functionality. However, further requests for proposal will probably be
initiated in order to continue mobile agent standardisation.

mobile agent technology
the way to realise distributed software applications by means of Å
mobile agents. Mobile agent technology can be regarded as an alter-
native to or as an enhancement of the traditional client/server para-
digm. While the client/server paradigm is mainly based on remote
communication between components that are distributed throughout a
network (i.e. clients and servers), mobile agent technology allows to
move service logic dynamically and on-demand to the network loca-
tions where it is currently needed. Since the mobile agent platform
Grasshopper is built on top of an Å object request broker , it achieves
an integration of both technologies.

mobility
the fundamental capability of a Å mobile agent. Mobility allows a
mobile agent to migrate from one Å place of the Å distributed agent
environment to another. (cf. Å migration).

move()
the method of a Grasshopper Å mobile agent that initiates its Å
migration from one Å place to another.

object request broker (ORB)
supports remote communication via RPC between distributed soft-
ware components. Each communicating component belongs either to
the category client or server. Naturally, in distinguished communica-
tion scenarios one single component can switch between the client
and the server role. The object request broker manages the connection
establishment between a client and a server. Usually an ORB can be
regarded as basis of a Å distributed processing environment .

BASICS AND CONCEPTS

B-8

ORB
cf. Å object request broker

place
one specific area within an Å agency. Each agency consists of a core
(cf. Å core agency) and one or more places. At least the place Å
InformationDesk exists in each agency, representing the default entry
point for Å mobile agents. A place can be defined in order to group
specific agency capabilities. For instance, a telecommunication place
could provide adapter services for the access of telecom hardware de-
vices such as switches, or a post place could comprise email or fax
services. Thus places represent more or less logical, conceptual enti-
ties. Note that the functionality of a specific place can only be ac-
cessed by an agent if this agent currently resides within this place.

proxy
Regarding remote client/server interactions, a proxy (object) is re-
sponsible for the connection establishment between clients and serv-
ers. The proxy is created at the client’s site, and its methods are in-
voked locally by the client. The proxy connects itself with the server
site and invokes the corresponding methods remotely on the server
object, eventually via a sort of communication service.

region
a subset of the complete Å distributed agent environment . A region
is a logical entity that groups a set of agencies (cf. Å agency) that
belong to a certain authority, e.g. a company or administrative do-
main. Associated with each region is a Å region registry that allows
the Å registration, Å de-registration, and Å localisation of Å
agents, agencies (cf. Å agency), and Å places.

region registry
a component within the Å distributed agent environment that allows
the Å registration, Å de-registration, and Å localisation of Å
agents, agencies (cf. Å agency), and Å places. A region registry is
associated with each Å region within the DAE. Each registry runs on
its own Java virtual machine.

registration
the procedure in which an Å agency, Å agent, or Å place entry is
added to the Å region registry. The registration of these entities is the
precondition for their Å localisation.

remote execution
allows to create and activate an object on a remote host. It is even

ANNEX B: GLOSSARY

B-9

possible that, during its task execution, the object itself initiates its
own execution on another host. That means that the object is removed
from the current host and created on the remote one. However, note
that the task execution starts on each new host from the beginning on.
In contrast to this, Å migration allows to execute different parts of
the object’s (Å mobile agent’s) task on distinguished hosts.

remote method invocation
Java RMI enables remote interactions between Java objects residing
on different virtual machines, possibly running on different hosts. A
Java program can make a call on a remote object once it obtains its
reference. This can be achieved by looking up the remote object in the
bootstrap-naming service provided by RMI. RMI is part of the Java
Development Kit (JDK) provided by Sun.

resumption
the procedure in which the Å suspension of a Å service revoked.
After its resumption the service thread is activated anew, i.e. the
service continues its task execution.

RMI
cf. Å remote method invocation

secure socket layer
SSL is the de facto standard Internet security protocol. Originally, it
has been designed by Netscape. SSL is one of the most widely used
security protocols on the Internet, and currently it is even gaining
momentum in the International Standards Organisation (ISO). It can
be used to protect almost all traffic over TCP/IP networks. (See also
Å socket)

service
a software component that offers certain functionality to other entities.
Usually a Grasshopper service consists of one or more (Java) objects
and is realised by means of a Java thread. Å agents as well as agen-
cies (cf. Å agency) are regarded as services, derived from the super
class service. At each point of its life time, a service resides in a
specific Å state.

socket
Sockets represent the lowest level of programming to the TCP/IP
layer of a network. In many ways they are similar to file handles in
traditional programming languages. Within a program you open a
socket, read from the socket, write to the socket, and close the socket.
The main difference is that instead of a file handle being associated

BASICS AND CONCEPTS

B-10

with a file on a disk drive, a socket is associated with another program
that is also reading and writing data on the socket. The communicat-
ing programs may run on different hosts.

SSL
cf. Å secure socket layer

state
the mode of existence of a Å service. A service can be Å active (i.e.
the service objects are instantiated and the service thread is running),
Å suspended (i.e. the service objects are instantiated and the service
thread has been stopped) or Å deactivated (i.e. the service objects are
not instantiated).
 Note: Do not mix up the meaning of a service’s state with the mean-
ing of the Å execution state of a Å mobile agent.

stationary agent
an Å agent that is more or less associated with a single Å agency. In
contrast to a Å mobile agent, a stationary agent is not able to migrate
actively from one Å place of the Å distributed agent environment to
another. However, even a stationary agent can change its Å location
if this is initiated by an external entity, such as the agent owner.

stub generator
a separate tool of Grasshopper for the generation of Å proxy classes.
Instances of these classes, the so-called proxies (or proxy objects) are
accessed locally by a client in order to invoke methods of a remote
server.

suspended
one possible Å state of a Å service that results out of the service’s Å
usage state. If a service is suspended, the associated object(s) are still
existing, but their task execution is temporarily interrupted, i.e. the
service thread is stopped. If a suspended service shall continue its task
execution, its Å resumption has to be initiated. If a service is sus-
pended, its Å usage state is set to US_SUSPENDED. The other val-
ues of an service’s state are Å deactivated and Å active.

suspension
the procedure in which the task execution of a Å service is temporar-
ily interrupted. In contrast to the Å deactivation of a service, the as-
sociated object(s) are not removed. Instead, only the service thread is
stopped. To revoke the suspension the service has to be resumed again
(cf. Å resumption), i.e. the thread has to be activated anew.

ANNEX B: GLOSSARY

B-11

synchronous communication
a communication mechanism between clients and servers. The client
invokes a method of the server and is blocked until the execution of
the method is finished. After retrieving the result of the method, the
client continues its own task. The counterpart is Å asynchronous
communication.

usage state
The usage state can have the value US_ACTIVE, US_SUSPENDED,
US_FLUSHED or US_UNKNOWN. The usage state indicate whether
a service is currently Å active (usage state = US_ACTIVE), Å
suspended (usage state = US_SUSPENDED), or Å usage state =
US_UNKNOWN).

ANNEX C: INDEX

C-1

C Index

A

activationB-1
active...9, B-1
agency10, B-1
agency identifierB-1
agent..8, B-1
agent class.....................................B-2
agent identifierB-2
agent state9, B-2
AND Termination...........................24
asynchronous communication 20, B-2
autonomyB-2

C

clone..B-2
Common Object Request Broker

ArchitectureB-3
Communication Concepts...............15
communication service10, B-3
Protocols

iiop ...26
mafiiop26
rmi ..26
rmissl......................................26
socket25
socketssl26

copy...B-3
CORBA ..B-3
core agency10, B-3
core serviceB-3

D

DAE..B-3
deactivatedB-3
deactivation...................................B-4
de-registrationB-4
distributed agent environment7, B-1,

B-3, B-4, B-5, B-6, B-7, B-8, B-9,
B-10

distributed processing environmentB-
4, B-8

DPE.. B-4
dynamic communication................ 21
dynamic method invocation......... B-5

E

execution block............................ B-5
execution state B-5

F

FAQ ... 41
flushed.. 9
Fonts .. 2
Frequently Asked Questions 41

Communication 41
Installation 49
Mobility 41
Platform Usage 50
Security...................................... 42

G

Grasshopper URL 25

I

Icons... 3
identifier....................................... B-5
IIOP.. B-6
Incremental Termination................ 24
information desk B-6
Internet Inter-ORB Protocol......... B-6

L

live B-2, B-5, B-6
localisation................................... B-6
location .. B-6
Location Transparency................... 18

M

management service....................... 11
MASIF 5, 14, B-6
migration.................................. 9, B-6
mobile agent............................. 8, B-7

BASICS AND CONCEPTS

C-2

Mobile Agent System Interoperability
Facility B-7 Siehe MASIF

mobile agent technologyB-7
mobility ..B-7
move..................................... B-5, B-8
multicast communication22
Multi-protocol Support...................15

N

Notational Conventions....................2

O

object request broker B-3, B-7, B-8
OR Termination23
ORB..B-8

P

Persistence......................................38
persistence service..........................12
place 13, B-8
Programmer’s Guide.........................2
proxy...B-8

R

region...................................... 13, B-8
region registry......................... 13, B-9
registration....................................B-9
registration service10
remote execution 9, B-9
remote method invocation............B-9
resumption....................................B-9
RMI ..B-9

S

secure socket layer......................B-10
Security Concepts...........................27

Access Control29, 34
Access Control Policies34
Asymmetric Algorithms.............30
Auditing29
Authentication......................29, 32
Confidentiality28
Cryptography..............................29
Integrity28
One-Way Hash Functions31
Securiry in Grasshopper

Internal Security.....................37
Security in Grasshopper35

External Security35
Symmetric Algorithms...............30
X.509 Certificates32

security service11
service...B-10
socket..B-10
SSL...B-10
state...B-10
stationary agent.......................9, B-10
stub generatorB-11
suspended9, B-11
suspensionB-11
synchronous communication 20, B-11

T

transport service11

U

URL..25
usage state...................................B-11

