
Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

DEVELOPING AGENT-ORIENTED INFORMATION SYSTEMS
FOR THE ENTERPRISE

Jaelson Castro* Manuel Kolp‡ John Mylopoulos‡

* Universidade Federal de Pernambuco, Recife PE, Brazil; email: jbc@di.ufpe.br
‡ University of Toronto, Department of Computer Science, Toronto, Canada; email;

{mkolp,jm@cs.toronto.edu}

Abstract. Enterprise information systems have traditionally suffered from an impedance
mismatch. Their operational environment is best understood in terms of agents, responsibilities,
objectives, tasks and resources, while the information system itself is conceived as a collection of
(software) modules, data structures and interfaces. This paper explores a software development
methodology which eliminates this mismatch by treating the concepts of agent and goal as primitives
during requirements analysis and design. In particular, our proposal adopts Eric Yu's i* framework
[1], a modeling framework for early requirements, and uses it to model not just early, but also late
requirements, as well as architectural and detailed design. The proposed framework, named Tropos,
seems to complement nicely current research on agent-oriented programming platforms.

Keywords: software development, software requirements analysis and design, agent-oriented systems, software
architectures.

1. Introduction

Enterprise information systems have
traditionally suffered from an impedance
mismatch. Their operational environment is
best understood in terms of agents,
responsibilities, objectives, tasks and
resources, while the information system itself
is conceived as a collection of (software)
modules, data structures and interfaces. This
mismatch is one of the factors for the poor
quality of enterprise information systems, also
the frequent failure of enterprise information
system development projects.

The main objective of this paper is to explore
a software development methodology which is
founded on the concepts of agent and goal.
The methodology makes it possible to use the
same concepts to describe the organizational

environment within which a software system
will eventually operate, as well as the system
itself.

The proposed methodology supercedes
traditional software development techniques,
such as structured [2, 3] and object-oriented
ones [4, 5] in the sense that it is tailored to
software systems that will operate within an
organizational context.

The software development framework is
named Tropos (derived from the Greek
“tropé”, which means “easily changeable”,
also “easily adaptable”), and is founded on
concepts used during early requirements
analysis. To this end, we adopt the concepts
offered by i* [1], a modeling framework
offering concepts such as actor, agent,
position and role, as well as social

dependencies among actors, including goal,
softgoal, task and resource ones.
The proposed methodology spans four phases
of software development:

• Early requirements, concerned with the
understanding of a problem by studying
an existing organizational setting; the
output of this phase is an organizational
model which includes relevant actors and
their respective goals;
• Late requirements, where the system-to-
be is described within its operational
environment, along with relevant
functions and qualities;
• Architectural design, where the system’s
global architecture is defined in terms of
subsystems, interconnected through data
and control flows;
• Detailed design, where each
architectural component is defined in
further detail in terms of inputs, outputs,
control, and other relevant information.

Section 2 describes a use case for an e-
commerce web application. Section 3
introduces the primitive concepts offered by i*
and illustrates their use with an example.
Sections 4, 5, and 6 sketch how the technique
might work for late requirements, architectural
design and detailed design respectively.
Finally, section 7 summarizes the
contributions of the paper, offers an initial self
assessment of the proposed development
technique, and outlines directions for further
research.

2. A Use Case Specification Example

The case description has been adopted from
[6]. Flower Shop is a store selling and
shipping different varieties of flowers. Flower
Shop customers (on-site or remote) can use a
catalogue describing available products to
make their order. The catalogue is updated
regularly and mailed out to the shop’s
customer base. Flower Shop is supplied with

quality flowers by Flower Supplier. To
increase market share, Flower Shop has
decided to open up a retail sales front on the
internet. With the new setup, a customer can
order Flower Shop products in person, by
phone, or through the internet. The internet
system has been named FlowerAlive!

2.1 Project Objective

The basic objective for the new system is to
allow an on-line customer to examine the
different kinds of flowers in the FlowerAlive!
internet catalogue, also to place orders.

2.2 Description

The system is supposed to be available to any
potential customer with internet access and a
web browser. There are no registration
restrictions, or identification procedures to
navigate the catalogue. Even if she is not
purchasing anything, an anonymous visitor is
considered an on-line customer of
FlowerAlive!.

Potential customers can search the on-line
store by either browsing the catalogue or
querying the flower database. The catalogue
groups flower varieties into hierarchies so that
potential customers can view and compare
similar types of flowers.

An on-line search engine allows customers
with particular flowers in mind to search
variety names and descriptions through
keywords. Other internet visitors are just
expected to navigate the catalogue by
browsing FlowerAlive! offerings.

Details about flowers include name, short
description, breeder name, year introduced,
cost, and sometimes pictures (when available).

When the customer decides what flower
variety to buy, she can add the item to her
shopping cart. At any time, the customer can
decide to check out and purchase the items in

the shopping cart. Once items have been
checked out, the customer can complete the
transaction by giving out relevant information
(name, address, credit card number, bank
account, delivery address and date, personal
message, etc.) by phone or by internet using
standard forms or encrypted secure forms.

3. Early Requirements with i*

During early requirements analysis, the
requirements engineer is supposed to capture
and analyze the intentions of stakeholders.
These are modeled as goals which, through
some form of a goal-oriented analysis,
eventually lead to the functional and non-
functional requirements of the system-to-be
[7]. In i* (which stands for “distributed
intentionality’’), early requirements are
assumed to involve social actors who depend
on each other for goals to be achieved, tasks to
be performed, and resources to be furnished.
The i* framework includes the strategic
dependency model for describing the network
of relationships among actors, as well as the
strategic rationale model for describing and
supporting the reasoning that each actor goes
through concerning its relationships with other
actors. These models have been formalized
using intentional concepts from AI, such as
goal, belief, ability, and commitment (e.g.,
[8]). The framework has been presented in
detail in [1] and has been related to different
application areas, including requirements
engineering [9], business process
reengineering [10], and software processes
[11].

A strategic dependency model is a graph,
where each node represents an actor, and each
link between two actors indicates that one
actor depends on the other for something in
order that the former may attain some goal.
We call the depending actor the depender and
the actor who is depended upon the dependee.
The object around which the dependency
centers is called the dependum. By depending

on another actor for a dependum, an actor is
able to achieve goals that it is otherwise
unable to achieve on its own, or not as easily,
or not as well. At the same time, the depender
becomes vulnerable. If the dependee fails to
deliver the dependum, the depender would be
adversely affected in its ability to achieve its
goals. Figure 1 shows the beginning of an i*
model consisting of two relevant actors
coming from the Flower Shop use case
described in Section 2.

Figure 1: “Customers want to buy flowers, while
the Flower Shop wants to increase market share,

handle orders and keep customers happy”

The two actors are named respectively
Customer and Flower Shop. The customer has
one relevant goal Buy Flowers (represented as
an oval-shaped icon), while the flower store
has goals Handle Customer Orders, Happy
Customer, and Increase Market Share. Since
the last two goals are not well-defined, they
are represented in terms of softgoals (shown
as cloudy shapes).

Once the relevant stakeholders and their goals
have been identified, a means-ends analysis
determines how these goals (including
softgoals) can actually be fulfilled through the
contributions of other actors. Let’s focus on
one such goal, namely the softgoal Increase
Market Share.

As shown in figure 2, the analysis is carried
out from the perspective of the Flower Shop
actor, who has the (soft)goal Increase Market
Share in the first place. The analysis begins
with that softgoal and postulates a task Run
Shop (represented in terms of a hexagonal

Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

Figure 2: Means-ends analysis for the goal Increase Market Share

icon) through which the goal can be fulfilled.
Tasks are partially ordered sequences of steps
intended to accomplish some (soft)goal.
Tasks, in turn, can be decomposed into goals,
whose collective fulfilment can complete the
task. In the figure, the root task Run Shop is
decomposed into goals Handle Billing,
Handle Customer Orders and Handle Stock
which together accomplish the top-level task.
In turn, the goal Handle Customer Orders
might be fulfilled through tasks
OrderByPhone, OrderInPerson or
OrderByInternet. Decompositions continue

until the means-ends analysis can identify an
actor who can accomplish a goal, carry out a
task, or deliver on some needed resource. An
example of such a dependency in figure 2 is
the resource dependency on the actor Flower
Supplier for supplying flowers.

To complete the analysis, the task
OrderInPerson can be further decomposed
into sub-tasks Show Catalogue, Determine
Amount and Determine Items which together
accomplish the task of ordering flowers in
person.

Figure 3: Strategic dependency model for a flower shop

4. Late Requirements Analysis

Late requirements analysis results in a
requirements specification document which
describes all functional and non-functional
requirements for the system-to-be. In Tropos,
the software system is represented as one or
more actors which participate in a strategic
dependency model, along with other actors
from the system’s operational environment. In
other words, the system comes into the picture
as one or more actors which contribute to the
fulfilment of stakeholder goals. For our
example, the FlowerAlive! web system is
introduced as an actor in the strategic
dependency model depicted in figure 3.

According to this model, the customer
depends on the flower shop to buy flowers
while the flower shop depends on the
customer to increase market share. The flower
supplier is expected to provide the flower shop
with good quality flowers because of his
dependence on the latter for continued long-

term business. As indicated earlier, the flower
shop depends on the FlowerAlive! web system
for processing internet orders. The customer,
in turn, depends on the FlowerAlive! actor to
order flowers through the internet, to search
the flower database for keywords or simply to
browse the on-line catalogue. Moreover, the
web system needs to be usable and secure
with respect to the customers’ personal needs.

Although a strategic dependency model
provides hints about why processes are
structured in a certain way, it does not
sufficiently support the process of suggesting,
exploring, and evaluating alternative
solutions. That is the role of the Strategic
Rationale model. A strategic rationale model
is a graph with four main types of nodes --
goal, task, resource, and softgoal -- and two
main types of links -- means-ends links and
process decomposition links. A strategic
rationale graph describes the criteria in terms
of which each actor selects among alternative
dependency configurations.

Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

Figure 4: Strategic rational model for the FlowerAlive! system actor

The analysis in figure 4 postulates a root task
Internet Shop Managed contributing
positively (++) to the softgoal Increase
Market Share, associated during early
requirement analysis with the Flower Shop
actor. Of course, as late requirements analysis
proceeds, the FlowerAlive! system is given
additional responsibilities, and ends up as the
depender of several dependencies. Moreover,
the system is decomposed into several sub-
actors which take on some of these
responsibilities. This is done using the same
kind of means-ends analysis along with the
kind of strategic rationale analysis illustrated
in figure 2. The task Internet Shop Managed
consists then of goals Internet Order Handled
and Product Searching Handled, as well as
softgoals Get Internet Customer, Secure and
Usable. The goal Internet Order Handled is

achieved through the task Shopping Cart
which is, in turn, decomposed into sub-tasks
Add Item and Check Out, and goal Get
Delivery Detail. This goal can be
accomplished through subgoals Phone
Handled or Internet Handled. The latter goal
is achieved through tasks Phone dealing with
phone orders and also Standard form or
Secure form managing internet orders. The
goal Product Searching Handled might
alternatively be fulfilled through tasks On-line
Database or On-line Catalogue. In addition,
figure 4 models positive (+) or negative (-)
contributions to softgoals:

• Task Secure form contributes positively to
softgoal Secure, while the task Standard
form contributes negatively;

Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

Figure 5: The web system consists of four inside actors, each with external dependencies

• Task dependencies Keyword Search and
Place Order contribute negatively to
softgoal Secure;

• Softgoal Secure contributes negatively to
softgoal Usable;

• Task On-line Catalogue contributes
positively to softgoal Get Internet
Customer;

• As already mentioned, the root task
Internet Shop Managed contributes
positively to softgoal Increase market
share.

The result of this analysis is a set of (system
and human) actors who are dependees for
some of the dependencies that have been
generated. Figure 5 suggests one possible
assignment of responsibilities. The
FlowerAlive! system is decomposed into four
sub-actors: Store Front, Billing Processor,
Service Quality Manager and Back Store. To
complete the figure, we have also identified
two sub-actors of the flower shop (not
discussed further) interacting with the system:
Flower Manager deals with the daily
management of the shop and Flower Delivery
carries out physical deliveries to customers.
Store Front principally interacts with the
Customer actor and provides her with a usable
front-end web application. Back Store keeps

track of all web information about customers,
products, sales, bills and other data of strategic
importance to Flower Shop. Billing Processor
is in charge of the secure management of bills,
and other financial data; also of interactions
with financial stakeholders (not represented
here), such as banks or credit card companies.
Quality Manager is introduced in order to
contribute to the fulfilment of the Security and
Usability softgoals. This actor is responsible
for security, confidentiality, integrity and
accuracy issues, and is continuously looking
for problems. Of course, all four sub-actors
need to communicate and collaborate in
running the system. For instance, Store Front
communicates to Billing Processor relevant
customer information required to process bills.
Store Front and Billing Information are
supervised by Service Quality Manager who
monitors transactions looking for security
gaps and usability bottlenecks. Back Store
organizes, stores and backs up all information
coming from Store Front and Billing
Processor in order to produce statistical
analyses, historical charts and marketing data.

For the rest of the discussion, we focus on
Store Front. This actor is in charge of
catalogue browsing and flower database
searching, also provides on-line customers

with detailed information about flowers. We
assume that different flower shops working
with FlowerAlive! may want to provide their
customers with various forms of information
retrieval (Boolean, keyword, thesaurus,
lexicon, full text, indexed list, simple
browsing, hypertext browsing, SQL queries,
etc.).

Store Front is responsible for supplying a
customer with a web shopping cart to keep
track of items the customer is buying when
visiting FlowerAlive!. We assume that
different flower shops using the FlowerAlive!
system may want to provide customers with
different kinds of shopping carts with respect
to their internet browser, plug-ins
configuration or platform (e.g., java mode
shopping cart, simple browser shopping cart,
frame-based shopping cart, CGI shopping cart,
enhanced CGI shopping cart, shockwave-
based shopping cart,…)

Store Front also decides what kind of
processing will be done for a given order
(phone/fax, internet standard form or secure
encrypted form) and how the order will be
concretely delivered to the customer. We
assume that different flower shop managers
using the FlowerAlive! web system may be
processing various types of orders, such as
those listed above differently. Also, the sub-
actor Store Front relies on the Flower
Delivery department to physically deliver
orders. We postulate that orders can be
delivered in different ways according to
customers’ wishes (UPS, FedEx, DHL,
express mail, normal mail, groom service, VIP
service, overseas service, …).

As discussed in Section 5, Store Front could
be further decomposed during architectural
design into more specific system actors like
Product Browser, Shopping Cart and Order
Processor respectively taking in charge each
of the responsibilities described above, i.e.,
the flower database navigation, the items
selection and the processing of orders.

Resource, task and softgoal dependencies
correspond naturally to functional and non-
functional requirements. Leaving (some) goal
dependencies between system actors and other
actors is a novelty. Traditionally, functional
goals are “operationalized” during late
requirements [7], while quality softgoals are
either operationalized or “metricized” [12].
For example, Billing Processor may be
operationalized during late requirements
analysis into particular business processes for
processing bills. Likewise, a security softgoal
might be operationalized by defining
interfaces which minimize input/output
between the system and its environment, or by
limiting access to sensitive information.
Alternatively, the security requirement may be
metricized into something like “No more than
X unauthorized operations in the system-to-be
per year”.

Leaving goal dependencies with system actors
as dependees makes sense whenever there is a
foreseeable need for flexibility in the
performance of a task on the part of the
system. For example, consider a
communication goal “communicate X to Y”.
According to conventional software
development techniques, such a goal needs to
be operationalized before the end of late
requirements analysis, perhaps into some sort
of a user interface through which user Y will
receive message X from the system. The
problem with this approach is that the steps
through which this goal is to be fulfilled
(along with a host of background
assumptions) are frozen into the requirements
of the system-to-be. This early translation of
goals into concrete plans for their fulfilment
makes software systems fragile and less
reusable.

In our example, we have left two goals in the
late requirements model. The first goal is
Usability because we propose to implement
Store Front and Service Quality Manager as
agents able to automatically decide at run-time
which product browser, shopping cart and

Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

Figure 6: Canonical Web Architecture

order processor architecture fit better to the
customer’s needs or browser/platform
specifications. Moreover, we would like to
include different kinds of search engine
reflecting search techniques proposed in
information brokering or retrieval and let the
system dynamically chooses the most
appropriate with respect to the customer’s
needs. The second goal in the late
requirements specification is Security. To
fulfil this goal, we propose to provide in the
system’s architecture a number of security
strategies and let the system decide at run-time
which one is the most appropriate, taking into
account environment configurations, web
browser specifications and network protocols
used.

So, instead of operationalizing these goals
during requirements analysis, we propose to
do so during architectural design.

5. Architectural Design

Architectural design has emerged as a crucial
phase of the design process consisting of a
number of structural elements and their
interfaces. A software architecture constitutes
a relatively small, intellectually manageable
model of system structure, and how system
components work together. For our internet
flower shop example, the task is to define (or
choose) a web application architecture. The
canonical web architecture consists of a web

server, a network connection, HTML/XML
documents on one or more clients
communicating with a Web server via HTTP,
and an application server which enables the
system to manage business logic and state (see
figure 6). This architecture is not intended to
imply that a web application cannot use
distributed objects or Java applets; nor does it
imply that the web server and application
server cannot be located on the same machine.

Indeed, software architects have developed
catalogues of web architectural style (see,
for example, [6]). The three most common
styles are the Thin Web Client, Thick Web
Client and Web Delivery. The Thin Web Client
is most appropriate for internet-based web
applications, in which the client has minimal
computing power or no control over its
configuration. The client requires only a
standard forms-capable web browser. All the
business logic is executed on the server during
the fulfilment of page requests for the client
browser. The Thick Web Client style extends
the Thin Web Client style with the use of
client-side scripting and custom objects, such
as ActiveX controls and Java applets. A
significant amount of business logic can be
executed on the client machine. Finally, in the
Web Delivery style, the web is used primarily
as a delivery mechanism for an otherwise
traditional client/server system. The client
communicates directly with object servers,
bypassing HTTP. This style is appropriate
when there is significant control over client
and network configuration.

Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

Figure 7: A strategic rationale model, from the perspective of the FlowerAlive! actor

During architectural design we concentrate on
the key system actors, defined during late
requirements analysis, and their
responsibilities. These include the desired
functionality of the system-to-be, as well as a
number of quality requirements related to
usability, security, performance, portability,
availability, reusability, testability, etc.

Functional requirements can be accomodated
using one of several standard methodologies,
such as structured analysis and design, or
object-oriented design methods. However,
quality requirements are generally not
addressed by such techniques [13]. For
example, as we are building an Internet
application, security is certainly an important
concern. Indeed, this was captured by the
Security software goal dependency between
the Customer and FlowerAlive! actors (see
figure 3). The software application should do
only what it is supposed to do, without
compromising the integrity of the data by
exposing them to unauthorised users.
Likewise, Usability is a concern, since

customers may have little internet experience.
Interfaces needs to be carefully crafted to
handle in a user-friendly manner the
communication between the customer and the
system, as well as the flow of activities of the
business process. To deal with this softgoal,
we have introduced a Usability softgoal
dependency between Customer and
FlowerAlive! actors (see figure 3).

To cope with these goals, the software
architect, who is another (external) actor, goes
through a means-ends analysis comparable to
what was discussed earlier. In this case, the
analysis involves refining the softgoals to sub-
goals that are more specific (and more
precise!) and then evaluating alternative
architectural styles against them, as shown in
figure 7. This analysis is intended to make
explicit the space of alternatives for fulfilling
the top-level quality softgoals. Moreover, the
analysis allows the evaluation of several
alternative architectural styles. The styles are
represented as operationalized softgoals
(saying, roughly, “make the architecture of the

new system Web Delivery-/Thin Web-/Thick
Web-based”) and are evaluated with respect to
the alternative non-functional softgoals as
shown in figure 7. The evaluation results in
contribution relationships from the
architectural goals to the quality softgoals,
labelled “+’, “-“, “++”, etc.

The Usability softgoal has been AND-
decomposed into subgoals Portability and
Sophisticated Interface. From the customer
point of view it is important for the
FlowerAlive! application to be portable across
browser implementations. Equally important
is the quality of the interface. Note that not all
HTML browsers support scripting, applets,
controls and plug-ins. These technologies
make the client itself more dynamic, and
capable of animation, fly-over help, and
sophisticated input controls. When only
minimal business logic needs to be run on the
client, scripting is often an easy and powerful
mechanism to use. When truly sophisticated
logic needs to run on the client, building Java
applets, Java beans, or ActiveX controls is
probably a better approach. ActiveX,
however, is an option only when the client
computers are Windows-based.

The Security softgoal has initially been AND-
decomposed into subgoals Availability and
client Confidentiality. The former guards
against interruption of service, the latter
guards against unauthorised disclosure of
information. Network communication may
not be very reliable causing sporadic loss of
the server. Clients, especially those on the
internet are, like servers, at risk in web
applications. It is possible for web browsers to
unknowingly download content and programs
that could open up the client system to
crackers and automated agents all over the net.
JavaScript, Java applets, ActiveX controls,
and plug-ins all represent a certain degree of
risk to the client and the information it
manages.

The Thin Web Client architecture is useful for
internet-based applications, for which only the
most basic client configuration can be
guaranteed. Hence, this architecture does well
for portability (figure 7). However, it has a
limited ability to support sophisticated user
interfaces. The browser acts as the entire user
interface delivery mechanism and in most
common browsers these are limited to a few
text entry fields and button. Moreover, this
architecture relies on a connectionless
protocol such as HTTP, which contributes
positively to availability of the system since
the sporadic loss of a server might not pose a
serious problem. Pure HTTP, without client-
side scripting, is rather secure.

On the other hand, the Thick Web Client
architecture is generally not portable across
browser implementations. Not all HTML
browsers support JavaScript or VBScript.
Additionally, only Microsoft Windows base
clients can use ActiveX controls. However,
these technologies contribute very positively
to the goal of having sophisticated interfaces.
As in the Thin Web Client architecture, all
communication between client and server is
done with HTTP. Since HTTP is a
“connectionless” type of protocol, most of the
time there is no open connection between
client and server. Only during page requests
does the client send information. Hence its
positive contribution to availability (figure 7).
On the negative side, client-side scripting and
custom objects, such as ActiveX controls and
Java applets may pose risks to the client
confidentiality.

Last but not least, the Web Delivery
architecture is highly portable, since the
browser has some built-in capabilities to
automatically download the needed
components from the server. However, this
architecture requires a reliable network.
Connections between client and server objects
last much longer than do HTTP connections,
and so sporadic loss of the server, poses a

serious problem that has to be addressed for
this architecture.

As with late requirements, an interesting
feature of the proposed analysis method is that
it is goal-oriented. Goals are introduced and
analysed during architectural design, and
guide the design process.

Apart from goal analysis, this phase involves
the introduction of other system actors which
will take on some of the responsibilities of the
key system actors introduced earlier. For
example, to accommodate the responsibilities
of the Store Front actor of figure 5, the
architect may want to introduce actors for
placing and tracking orders, browsing the
catalogue and managing customer profile. Of
course, other actors may be included to deal,
for example, with notification of the arrival of
new items and recommendation (prediction
based on profile and “business intelligence”,
possibly derived through data-mining
techniques).

An interesting decision that comes up during
architectural design is whether fulfilment of
an actor’s obligations will be accomplished
through assistance from other actors, through
delegation (“outsourcing”), or through
decomposition of the actor into component
actors. Going back to our running example,
the introduction of other actors described in
the previous paragraph amounts to a form of
delegation in the sense that Store Front retains
its obligations, but delegates subtasks,
subgoals etc. to other actors. An alternative
architectural design would have Store Front
outsourcing some of its responsibilities to
some other actors, so that Store Front removes
itself from the critical path of obligation
fulfilment. Lastly, Store Front may be refined
into an aggregate of actors which, by design,
work together to fulfil Store Front’s
obligations. This is analogous to a committee
being refined into a collection of members
who collectively fulfil the committee’s
mandate. It is not clear, at this point, how the

three alternatives compare, nor what are their
respective strengths and weaknesses.

6. Detailed Design

The detailed design phase is intended to
introduce additional detail for each
architectural component of a software system.
In our case, this includes actor communication
and actor behaviour. To support this phase, we
may be adopting agent communication
languages, message transportation
mechanisms, ontology communication, agent
interaction protocols, etc. from the agent
programming community. One possibility,
among admittedly many, is to adopt one of the
extensions to UML proposed by the FIPA
(Foundation for Intelligent Agents) and the
OMG Agent Work group [14, 15]. For our
example, let’s concentrate on the Buy
Flowers goal dependency, which might
involve a detailed design of an agent
interaction protocol (AIP). To define such a
protocol, we use AUML - the Agent Unified
Modeling Language [15], which supports
templates and packages to represent the
protocol as an object, but also in terms of
sequence and collaborations diagrams. In
AUML inter- and intra-agent dynamics are
also described in terms of activity diagrams
and state charts.

Figure 8 depicts a customisation of the FIPA
Contract Net protocol to a particular scenario
involving Customer and Store Front actors.
Such a protocol describes a communication
pattern among actors as an allowed sequence
of messages, as well as constraints on the
contents of those messages.

When a Customer actor needs to buy some
flowers, a request for proposal message
(Store Front-rfp) is sent to the Store Front
actor. The Store Front actor can then choose
to respond to the Customer before a given
deadline: by refusing to provide a proposal,
submitting a proposal, or informing that it did

Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

Figure 8. Agent Interaction Protocol for buying flowers

not understand (the diamond symbol indicates
a decision that can result in zero or more
communications being sent – depending on
the conditions it contains; the “x” in the
decision diamond indicates an exclusive or
decision). If a proposal is offered, the
Customer has a choice of either accepting or
rejecting the proposal. When the Store Front
actor receives proposal acceptance, it will
inform the Customer about the proposal’s
execution. Additionally, the Customer actor
can cancel the execution of the proposal at any
time.

Of course the sequence diagram of figure 8
only provides a basic specification for an
agent claim processing protocol. More
processing details are required. For example, a
Customer actor requests a call for proposals

(CFP) from a Store Front actor. However, the
diagram stipulates neither the procedure used
by the Customer to produce the CFP request,
nor the procedure employed by the Store
Front actor to respond the CFP. Yet, these are
clearly important details at this stage of the
software development process.

Such details can be provided by using
levelling, i.e., by introducing additional
interaction and other diagrams which describe
some of the primitive action shown on
figure 8. Each additional level can express
intra-actor or inter-actor activities. At the
lowest level, specifications of an actor
protocol requires spelling out the detailed
processing that takes place within an actor in
order to implement the protocol.

Proceedings Second International Conference
On Enterprise Information Systems,

Stafford, UK, July 4-7, 2000

Figure 9: An activity diagram that specifies the order processing behaviour for Store Front Actor

State charts and activity diagrams can also be
used to specify the internal processing of
actors who are not aggregates. For example
figure 9 depicts the detailed processing of
orders by the Store Front actor. The diagram
indicates that the actor process is triggered by
placing a flower order and ends with the order
completed. The internal processing is
expressed as an activity diagram, where the
Store Front actor is responsible for accepting,
assembling, customer profiling and closing the
flower order. The dotted operation boxes
represent interfaces processes carried out by
external actors. For example, the diagram
indicates that when the flower order has been
assembled, three actions are triggered
concurrently. Furthermore, when both the
payment has been accepted and the flowers
shipped, the Close Order process can be
invoked.

7. Conclusions and Discussion

We have argued in favour of a software
development methodology which is founded
on intentional concepts, such as those of actor,
goal, (goal, task, resource, softgoal)
dependency, etc. Our argument rests on the
claim that enterprise software should be
organized the same way enterprises are.
Moreover, we have argued that current
software development techniques lead to

inflexible and non-generic software. This is
the case because the elimination of goals
during late requirements, freezes into the
design of a software system a variety of
assumptions which may or may not be true in
its operational environment. Given the ever-
growing demand for generic, component-ized
software that can be downloaded and used in a
variety of computing platforms around the
world, we believe that the use of intentional
concepts during late software development
phases will become prevalent and should be
further researched.

The Tropos project is only beginning and
much remains to be done. We will be working
towards a modeling framework which views
software from four complementary
perspectives:

• Social -- who are the relevant actors, what
do they want? What are their obligations?
What are their capabilities?…

• Intentional -- what are the relevant goals
and how do they interrelate? How are they
being met, and by whom?…

• Process-oriented -- what are the relevant
business/computer processes? Who is
responsible for what?…

• Object-oriented – what are the relevant
objects and classes, along with their inter-
relationships?

In this paper, we have focused the discussion
on the social and intentional perspectives
because they are novel. As hinted earlier, we
propose to use UML-type modeling
techniques for the others.

Of course, diagrams are not complete, nor
formal as software specifications. To address
this deficiency, we propose to offer three
levels of software specification. The first is
strictly diagrammatic, as discussed in this
paper. The second involves formal annotations
which complement diagrams. For example,
annotations may specify that some obligation
takes precedence over another. These could be
used as a basis for simple forms of analysis.
Finally, we propose to include within Tropos a
formal specification language for all built-in
constructs, to support deeper forms of
analysis. Turning to the organization of
Tropos models, the concepts of i* will be
embedded in a modeling framework which
supports generalization, aggregation,
classification, materialization and
contextualization.

Acknowledgements

Many colleagues contributed to the ideas that led
to this paper. Special thanks to Eric Yu, whose
insights helped us focus our research on intentional
and social concepts. The Tropos project includes as
co-investigators Eric Yu (University of Toronto)
and Yves Lesperance (York University); also Alex
Borgida (Rutgers University), Matthias Jarke and
Gerhard Lakemeyer (Technical University of
Aachen.) The Canadian component of the project
is supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of
Canada, and the CITO Centre of Excellence,
funded by the Province of Ontario. This work was
carried out while the first author was visiting the
Department of Computer Science, University of
Toronto (partially supported by the CNPq –
Brazil grant 203262/86-7).

References

[1] Yu, E., Modelling Strategic Relationships
for Process Reengineering, Ph.D. thesis,
Department of Computer Science,
University of Toronto, 1995.

[2] DeMarco, T., Structured Analysis and
System Specification, Yourdon Press, 1978.

[3] Yourdon, E. and Constantine, L.,
Structured Design: Fundamentals of a
Discipline of Computer Program and
Systems Design, Prentice-Hall, 1979.

[4] Wirfs-Brock, R., Wilkerson, B., Wiener, l.,
Designing Object-Oriented Software.
Englewood Cliffs, NJ; Prentice-Hall, 1990.

[5] Booch, G., Rumbaugh, J., Jacobson, I.,
The Unified Modeling Language User
Guide, The Addison-Wesley Object
Technology Series, Addison-Wesley,
1999.

[6] Conallen, J., Building Web Applications
with UML, The Addison-Wesley Object
Technology Series, Addison-Wesley, 2000.

[7] Dardenne, A., van Lamsweerde, A., and
Fickas, S., “Goal–directed Requirements
Acquisition,” Science of Computer
Programming, 20, 3-50, 1993.

[8] Cohen, P. and Levesque, H. “Intention is
Choice with Commitment”. Artificial
Intelligence, 32(3).

[9] Yu, E., “Modeling Organizations for
Information Systems Requirements
Engineering,” Proceedings First IEEE
International Symposium on Requirements
Engineering, San Jose, January 1993, pp.
34-41.

[10] Yu, E., and Mylopoulos, J., “Using
Goals, Rules, and Methods to Support
Reasoning in Business Process
Reengineering”, International Journal of
Intelligent Systems in Accounting, Finance
and Management 5(1), January 1996.

[11] Yu, E. and Mylopoulos, J.,
“Understanding 'Why' in Software Process
Modeling, Analysis and Design,”
Proceedings Sixteenth International
Conference on Software Engineering,
Sorrento, Italy, May 1994.

[12] Davis, A., Software Requirements:
Objects, Functions and States, Prentice
Hall, 1993.

[13] Chung, L. K., Nixon, B. A., Yu, E.,
Mylopoulos, J., Non-Functional
Requirements in Software Engineering,
Kluwer Publishing, 2000.

[14] Odell, J., Bock, C., Suggested UML
Extensions for Agents. OMG document
ad/99-12-01; Submitted to the OMG’s
Analysis and Design Task Force (ADTF)
in response to the Request of Information
(RFI) entitled “UML2.0 RFI”. December
1999.

[15] Bauer, B., Extending UML for the
Specification of Agent Interaction
Protocols. OMG document ad/99-12-03.
FIPA submission to the OMG’s Analysis
and Design Task Force (ADTF) in
response to the Request of Information
(RFI) entitled “UML2.0 RFI”. Dec. 1999.

