JACK Intelligent Agentsl] — Summary of an

Agent Infrastructure

Nick Howden, Ralph Rénnquist, Andrew Hodgson, Andrew Lucas
Agent Oriented Software Pty. Ltd.
221 Bouverie St, Carlton
Victoria 3053, Australia
+61 3 9349 5055
http://www.agent-software.com

<firstname.surname>@agent-software.com

ABSTRACT

Intelligent Agents are being used for modelling simple rationa
behaviours in a wide range of distributed applicaions. In
particular, multi-agent architedures based on the Belief-Desire-
Intention model have been used succesully in situations where
modelling of human reasoning and tean behaviour are needed,
such as smulating tadicd dedsion-making in defence operations
and command and control structures. Other applicaions include
intelli gent web appli cations, manufaduring control, telephore cdl
centres, and air traffic management.

The JACK Intelligent Agentsdl framework by Agent Oriented
Software brings the ncept of inteligent agents into the
mainstream of commercia software engineaing and Java. JACK
Intelligent Agents™ is a third generation agent framework,
designed as a set of lightweight comporents with high
performance and strong data typing.

We present the design approach and mgor technicd
charaderistics of JACK Intelligent Agentsll, with a focus on
some of the more recent developments — moduar structuring
elements cdled Capabilities and the team-based reasoning model
cdled SmpleTeam. Two example gplicaions, in dedsion
suppat and defence simulation are described. Also, we discuss
the benefits of the mporent-based approach, both for the
software egineea developing sophisticaed dstributed
applications, and for the reseacher exploring agent models and
architedures.

Keywords
Intelli gent Agents, Infrastructure, JACK, BDI, Java, Multi-agent
Systems.

1. INTRODUCTION

Intelligent Agents are being used for modelling simple rational
behaviours in a wide range of distributed applicaions. Intelli gent
agents have receved various, if not contradictory, definitions; by
general consensus, they must show some degree of autonomy,
socia ability, and combine pro-adive axd readive behaviour [1].
One of the better known and most successul architedures for
agents is the so-cdled BDI (Belief-Desire-Intention) architedure,
which has e anumber of acalemic and industria applications.

Agent Oriented Software Pty. Ltd. (AQS), based in Melbourne,
Australia, has built JACK Intelligent Agentsl], a framework in
Java for multi-agent system development. The company’s aim is

to provide a platform for commercial, industrial and reseach
applications. To this end, its framework supdies a high
performance lightweight implementation d the BDI architedure,
and can be eaily extended to suppat different agent models or
spedfic goplicaion requirements. For brevity, we will refer to
JACK Intelli gent Agentsd simply as‘JACK'.

This paper is organised as follows. Sedion 2 introduces JACK
Intelli gent Agents™, presenting the gproac taken by AOS to its
design, and oulining its major engineaing charaderistics. The
BDI model is discussd lriefly in Sedion 3. Sedions 4 & 5
describe some of the more interesting comporents of the JACK
infrastructure and Sedion 6 gives ©me example gplications built
with JACK Intelligent Agents™. The JACK comporents and
toods and the future reseach and development diredion is
described in Sedions 7 & 8. Findly, in Sedion 9 we discusshow
the use of this framework can be beneficial to bah enginees and
reseachers.

2. JACK Intelligent Agentsld

In this :dion, we present JACK by first highlighting the goals st
by its designers, then we provide an overview of the engineaing
charaderistics of the framework.

2.1 Approach
Major design goalsfor JACK were:

= to provide developers with a robust, stable, light-weight
product;

= tosatisfy avariety of pradicd applicaion reedls;
= toeaetechndogy transfer from reseach to industry; and
= to enable further applied reseach.

Whil st applications can be built from the ground upadopting an
agent oriented methoddogy and an appropriate framework, most
organisations arealy posess and depend upon large legacy
software systems. Thus, JACK agents have been designed
spedficdly for use & comporents of larger environments.
Consequently, an agent must coexist and be visible & smply
ancother objed by nonagent software. Conversely, a JACK
programmer must be dlowed to eaily access any other
comporent of a system. Type safeness when accessng data,
reliability, and suppat for proper engineeaing processes are then
key requirementsin thiskind d environment.

For similar reasons, JACK agents are not boundto any spedfic
agent communications language. Nothing prevents the aloption

of high-level symbdlic protocol such as KQML or FIPA's Agent
Communicaion Language (ACL); possbly by integrating
software drealy existing in the public domain. However, JACK
has been geaed towards industrial objed-oriented middeware
(such as CORBA) and messge pasdng infrastructures (for
instance, HLA or DIS in simulation environments). In addition,
JACK provides a native lightweight communications
infrastructure for situations where high performanceis required.

JACK itsdlf has been designed for extension by properly trained
engineas, familiar with agent concepts and with a sound
understanding of concurrent objed-oriented programming.

2.2 Overview of the framework

From an engineeing perspedive, JACK consists of architedure-
independent fadlities, plus a set of plug-in comporents that
addressthe requirements of spedfic agent architecdures. The plug-
ins suppied with version 30, released in February 2001, include
suppat for the BDI model, and the model for building teams of
agents cdled SmpleTeam.

To an applicaion programmer, JACK currently consists of three
main extensions to Java. The first is a set of syntadicd additions
to its host language. These alditions, in turn, cen be divided as
follows:

= asmall number of keywords for the identification o the main
comporents of an agent (such as agent, plan and event);

= aset of statements for the dedaration o attributes and ather
charaderistics of the mporents (for instance the
information contained in beliefs or caried by events). All
atributes are strongly typed;

= aset of statements for the definition o static relationships
(for instance which plans can be adopted to read to a cetain
event);

= aset of statements for the manipulation o an agent's gate
(for instance, additions of new goals or sub-goals to be
adhieved, changes of beliefs, interadion with other agents).

Furthermore, the programmer can use Java statements within the
comporents of an agent.

For the convenience of programmers, in particular those with a
badkgroundin Artificial Intelligence JACK also suppats logicd
variables and cursors. These ae particularly helpful when
querying the state of an agent’s beliefs. Their semantics is mid-
way between logic programming languages (with the aldition o
type cheding Java style) and embedded SQL.

The seand extension to Java is a mmpiler that converts the
syntadic additions described above into pue Java dasses and
statements that can be loaded with, and be cdled by, other Java
code. The compiler also partially transforms the @de of plansin
order to oltain the @rred semantics of the BDI architedure.

Finaly, a set of classes (cdled the kernel) provides the required
rur-time suppart to the generated code. Thisincludes:

= automatic management of concurrency among tasks being
pursued in paralée (Intentionsin the BDI terminology);

= default behaviour of the ayent in readion to events, fail ure of
adions andtasks, and so or and

= native lightweight, high performance ©mmunicaions
infrastructure for multi -agent applications.

Importantly, the JACK kernel suppats multiple agents within a
single process multiple aents aaqoss many processes, and any
mix of the two. This is particularly convenient for saving system
resources. For instance agents that perform only short
computations or share most of their code or data can be grouped
together.

A JACK programmer can extend a change the achitedure of an
agent by providing new plug-ins. In most cases, this smply means
overriding the default Java methods provided by the kernel or
supdying new classs for runtime suppat. However, it is
possble to add further syntadic extensions to be handled hy the
JACK compiler.

Similarly, a different communicaions infrastructure can be
supdied by overriding the gpropriate run-time methods.

Future versions of JACK will extend the base BDI model with
new plug-ins and will add a number of development and
monitoring tools.

3. Bdief-Desire-Intention Agents

The BDI agent model suppated by JACK has its roats in
phil osophy and cognitive science and in particular in the work of
Bratman on rational agents [2]. A rational agent has boundd
resources, limited understanding and incomplete knowledge of
what happens in the ewvironment in which it lives. Such an agent
has beliefs abou the world and desires to satisfy, driving it to
form intentions to ad. An intention is a mmitment to perform a
plan. In genera, aplan isonly partialy spedfied at the time of its
formulation since the exad steps to be performed may depend on
the state of the ewvironment when they are eventually exeauted.
The adivity of arationa agent consists of performing the adions
that it intended to exeaute without any further reasoning, urtil itis
forced to arevision d its own intentions by changes to its beliefs
or desires. Bdliefs, Desires and Intentions are cdled the mental
attitudes (or mental states) of an agent.

Observe that BDI agents depart from purely deductive systems
and aher traditional Artificial Intelli gence models becaise of the
concept of intentionality, which significantly reduces the extent of
deliberation required. BDI has demonstrated itself to be well
suited to modelling certain types of behaviour, such as the
applicaion d standard operational procedures by trained staff. It
has been successully adopted in fields as diverse & smulation o
milit ary tadics, applicaions of businessrules in workflows, and
diagnostics in telecoms networks.

Based on pevious reseach and pradicd applicaion, Rao and
Georgeff [3] have described a momputational model for a generic
software system implementing a BDI agent. Such a system is an
example of event-driven programs. In readion to an event, for
instance a Gange in the ewironment or its own beliefs, a BDI
agent adopts a plan as one of its intentions. Plans are precompil ed
procedures that depend on a set of condtions for being
applicable. The process of adopting a plan as one of the aggent's
intentions may require aseledion among multiple candidates.

The agent exeautes the steps of the plans that it has adopted as
intentions until further deliberation is required; this may happen
becaise of new events or the failure or succesful conclusion o
existing intentions.

A step of aplan can consist of adding a god (that is, a desire to
adhieve a cetain oljedive) to the ggent itself, changing its beliefs,

interading with other agents, and any other atomic adion onthe
agent's own state or the externa world.

The astrad BDI architedure has been implemented in a number
of systems. Of these, two are of particular relevance to JACK
since they represent its immediate predecessors. The first
generation is typified by the Procedura Reasoning System (PRS)
[4], developed by SRI International in the mid-198%. dMARS
[5], built i n the mid-199Gs by the Australian Artificia Intelligence
Ingtitute in Melbourne, Austraiia, is a semond generation system.
dMARS has been used as a development platform for a number of
techndogy demonstrator applications, including simulations of
tadicd dedsionrmaking in air operations and air traffic
management.

4. Team Oriented Programmingin JACK

In addition to the BDI extension, JACK provides an extension to
suppat Team Oriented programming, cdled SmpleTeam. Tean
Oriented programming is a nuance of Agent Oriented
programming wherein agent collaboration is gedfied from the
abstrad viewpoaint of the group as a whole. The mncept behind
this approach is that coordinated behaviour is sedfied o
programmed from a high-level (‘bird's-eye’) perspedive and that
the underlying machinery maps such spedficdions into the
individual adivities of the agents concerned.

Within Artificial Intelligence reseach, teamwork as an agent
programming adivity has been studied since the ealy 199Gs [6],
and is a rapidly developing field. Many different theories and
types of teams (ranging from strictly hierarchicdly structured
teams to collaborating teams without formal structure) have been
propcsed in the literature. Also, theories have been proposed
regarding mutual beliefs and goals, where individual members of
atean attempt to achieve what they believe theteam asawhoaleis
attempting to achieve.

The SimpleTean extension is neutral to the nature of the structure
of a tean (i.e. hierarchicd and imposed ‘from the top’, or
resulting from sportaneous coll aboration ‘from the bottom’), and
to how tean formation is achieved. The only assumption is that it
is passhle to classfy the members of ateam in terms of abstrad
roles. The goad of SimpleTean is to provide a software
infrastructure for the spedficaion o coordinated behaviour,
which can then be used for pursuing applied studies on socia
organisation.

SimpleTean suppats the most valuable aad pradicd asped
regarding teams: the centralised spedficaion d coordinated
behaviour, and its redisation through adua coordinated adivity.
To adhieve this, it adds svera concepts to the base JACK kerndl,
including Team & Role. It also adds svera statements to the
JACK language to allow the management and manipulation d
these mncepts by the programmer, including statements to hande
paral elism, team plans, and team cgpabiliti es.

5. Modular Development & Software Reuse

Development of complex agent-based systems requires conceptua
and software toadls that allow moduar development and software
reuse. A substantial amourt of experience on this topic has been
aqquired by the design and development team at Agent Oriented
Software during the implementation and use of JACK in customer
projeds. The most important isaues that have been faced include:
the definition d a methoddogy that enables incrementa

development of agents and a high level of code reuse; and, what
type of tools best suppat such amethoddogy.

Originating from that experience, the concept of Capabilities was
developed and added to JACK. Capabiliti es represent a duster of
functional comporents that can be used as building blocks during
the development of agent systems; they bring sound software
engineaing pradices to agent development.

Capabilities are used as an integra part of the agent design
methoddogy. They alow the manipulation d high level padkages
of agent functionality from the spedficaion stage, through the
design stages and orto dired suppat within the JACK code.

6. Applicationsusing JACK

Below we describe two applicaions that have been developed
with JACK; one in dedsion suppat and another in Defence
simulation for analysis.

6.1 Decision Support

The Intelligence Preparation for the Battlefield (IPB) processin
the Australian Army is $milar to that of the US Army and UK
forces 0 a universa approach to managing information on the
battlefield. DSTO's Land Operations Division has a long-term
program to provide toodls to the Army to assst with the IPB
process and to provide ahigher level of situation awarenessto the
field commander. A key step in this processis the dlocaion o
surveill ance and recmnreissance &sts to provide timely, relevant
information on the oppgaition's intentions and movements.
Currently, the generation d Information Colledion Plans relies
on human planners working without computer assstance Having
recaved the Commander's Criticd Information Requests
(CCIRs), the staff planners must then dedde on the options they
have to conduct surveill ance and reconreissance They must take
into acourt alarge number of facors, including:

= Thenumber and priority of the CCIRs.

= The nature of the surveill anceremnnaissance necessry to
satisfy a CCIR. For example, an UGS (unmanned ground
sensor array able to deted movement) would be ale to
deted an intrusion, but could na confirm this withou the
ned for further recnraissance

= The survelllance a@wts at the disposa of the planners,
including their capabiliti es, mohility, current commitments,
scarcity and vulnerability.

= The ongoing availability of assts to condwct surveill ance
taking into acourt other priorities, maintenance
requirements, etc.

= The developing tadicd stuation duing the planning
process A plan that does nat consider this is out of date
before it can be mnsidered.

The outcome is a number of optional plans that can be evaluated
in collaboration with the cmmander, and a dedsion can then be
taken to implement one. As the plan is then pu in place ad the
assts deployed, the evolving awareness of changes in the
situation will result in the plan being modified, often several
times. Asthese changes occur, the planners have the difficult task
of rapidly re-deploying assts as efficiently as the drcumstances
permit.

Consequently, the Colledion Plan Management System (CPMYS)
[7] is being developed in Land Operations Division, as a toadl to

improve dStuation awareness through better management of
surveillance and remnraissance asts. CPMS is comprised of
the foll owing major componrents.

= ThePlanning Modue, (Figure 1) based onJACK agents.

= A visudisation modue cntaining a Geographic Information
System (GIS), to provide the necessary terrain analysis and a
variety of custom Graphicd User Interfaces (GUIs). These
GUls interad with the GIS map overlays to provide an
intuitive user interface for planning and information
disemination.

= A database modue mntaining terrain data, the Commander’s
Criticd Information Requests (CCIRs) and the surveill ance
assets to be tasked, such as their capabiliti es, avail abiliti es,
etc.

The Planning Modue tekes a list of CCIRSs, the Order of Battle
(ORBAT) containing the Command and Control structure and
available aswts for tasking as inpu, and pesents a set of
dternative mlledion dans as output to the commander. Each
aternative plan is a suggestion d how the avail able surveill ance
and recmnreissance axts may be used to servicethe input CCIRs
in a mlledively ‘best’ way, on the basis of a given range of
evaluation dmensions. The design of the Planning Modue
recognises that there is rarely a single, optimal colledion dan to
be formed, and, in any case, a pre-programmed evaluation will
always be incomplete with resped to an adual situation.

JACK agents

Database brigade

module
—L\

company

CPMS

Situation
Awareness
Y Picture

Figure 1: The CPMS Planning Modue uses JACK Intelli gent
Agents™

The olledion fdans presented are formed in the mntext of the
current C2 structure including the airrent surveill ance a&sts and
their status. This badgroundinformation is part of the avareness
picture, and can be overlayed with manual variations; for instance,
for investigating what-if scenarios. The badground information
further includes a aurrent surveill ance plan asinpu, and considers
the st of re-tasking already tasked asts in forming aternative
plans.

As noted above, the CPMS planning modue is implemented as a
multi-agent sub-system, which dredly refleds the arrent C2
structure. There is one gyent for ead ‘node’ in the C2 structure,
and eath agent plans for the assets that the unit it represents
possesss or controls. This planning is then combined with the
plans suggested by the gents planning for subardinate units. This
design approach was chosen as a means to minimise or avoid the
conceptual gap between a software implementation and the end-
user's understanding of the planning process

Due to the inherent algorithmic complexity of the problem, the
planning agents operate with lists of task options for CCIRs,
deding with eady CCIR independently. The dternative tasks
within a list are @mpared with resped to several evaluation
dimensions, including task duration, quality of outcome, and a
qualitative mst measure. The list is then ordered with preferred
asst tasks at the head of the list. The top-level agent receves the
full set of task lists, and processes this %t in order to produce the
aternative mlledion gans. In this process the agent applies al
inter-dependency constraints between the tasks: common-sense
congtraints (e.g. that an indivisible asst canna be & more than
one place & a time); doctrinal constraints (e.g. limiting the
dispersion d a unit’s assts). Consistent with the given inter-
dependency constraints, the ajent then generates plans that
include the best task for eadr CCIR under the given task
comparison dmensions.

6.2 Modelling Human Behaviour in Defence

Simulation

Historicdly, computer simulation in Defence has been used for
the evaluation o aauisitions and d force development options.
But modelling and simulation for this purpose is becming
increasingly complex as multi-role, multi-platform and multi-
system aspeds are taken into consideration. The @mplexity of
this task is further increased by the difficulty in modelling human
dedsion-making with sufficient fidelity using conventional
software gproacies. Current implementations of Computer
Generated Forces within Simulations sich as CAEN or ModSAF
have proven to be very useful, but do nd model human reasoning
and canna easily model tean behaviour. Early applicaions of
intelli gent agents in simulations to represent operationa military
reasoning have proved highly effedive. This siccess comes from
the cgpability of agentsto represent individual reasoning and from
the achitedural advantages of that representation to the user due
to the eae of setting up and modifying operational reasoning or
tadics for various dudies. In addition, JACK SimpleTeam
extends the modelling of reasoning to explicitty mode the
communicaions and coordination d joint adivities required for
team behaviour.

The emphasis on timely, acairate information in modern warfare,
and the availability of modern communications, have led to the
development of more and more cmplex command and control
systems. It is important to uncerstand the behaviour of these C3
systems under a variety of circumstances. However, as they are
difficult to analyse manually, advanced modelling and simulation
todls for C3 systems development are required. The chalenge in
C3 systems is to model the reasoning asociated with dfferent
rolesin the mmand and control hierarchy. Intelli gent agents can
represent the reasoning and command cgpabiliti es asciated with
their assgned roles in the hierarchy, allowing different command
and control strategies to be quickly evaluated under varying
circumstances. This power comes from the suitability of the JACK
architedure for representing individual and teamn objedives and
roles.

DSTO's Land Operation Division and Agent Oriented Software
have developed a Simulation Agent Infrastructure (SAl), which
conreds JACK Inteligent Agents™ into the Close Action
Environment ssimulator (CAEN). The purpose is to enhance the
war-gaming cgpability offered by CAEN with agent based
behaviour modelling, so as to simplify and speed up the

simulation scenario development processand as aresult be életo
provide better analysisin a shorter time.

The SAl offers a modern war-gaming solution with a dean-cut
separation between simulation models, simulation engine, and
simulation scenario, which incresses the reusability and
maintainability of the software @& well as verifiability of
individual scenarios.

With CAEN alone, ead war game is a fully scripted scenario in
which the adivity of ead entity is pre-programmed in isolation
with resped to the dock. It offers only atrivial level of situation
awareness such that an entity may fire or not fire his wegpon
depending on whether or not another entity is dghted. More
complex behavioural variations, such as choosing where or
whether to cross a road, canna be epressd within the one
scenario. This means that effediveness sudies that involve
variationsin the tadics are pradicaly impossble.

The introdwction o JACK Intelligent Agents™ and SimpleTean
within SAl adds the caability of modelling entity and group
behaviour based on situation awareness By this, it becomes
feasible and even easy to express tadics where aentity adivity is
determined onthe basis of the atual situations occurring.

DSTO and Agent Oriented Software ae arrently working on
generdising SAl to be used with ather simulation systems such as
ModSAF and Stage.

Although SAI was originaly developed for acuisition and tadics
analysis in Defence simulation, it can be gplied equally well as a
model for Computer Generated Forces within Civilian and
Defence training systems, and even within commercial gaming
environments.

Within Defence, the mntemporary trend towards the integration
of multi-role forces, together with the high cost of live exercises,
has required the development of more redistic training
environments. However, these synthetic environments have not
been able to model the behaviour of the humans involved, other
than in a very simple manner. In particular, they have not
modelled team behaviour, with the result that trainees quickly
lean the range of simulated behaviours. Rather than pradising
their military skill's, instead they lean to predict the training
system'’s resporse. JACK agents alow the Computer Generated
Forces in training systems to behave in a more human-like
manner, with a much richer set of behaviours, including tean
resporses and dynamic role re-allocdion. The result is a more
effedive training environment with redistic tadicd behaviour
represented, whilst avoiding the expense of having humans-in-
the-loopinvolved to provide this.

7. JACK Componentsand Tools
JACK Intelligent Agents™ is distributed as the following
modues:

= JACK Runtime Environment: The kernel suppats the
exeaition o JACK agents, handing multi-threading
and concurrency isaes, etc. It aso includes a
communicaions layer with a simple aent naming
service

= JACK Compiler: This compiles the JACK Agent
Language @de into pue Java, and cdls the Java
compil er to generate exeautables.

= BDI Agent Mode: This adds suppat for BDI
reasoning, with additi ons to the language syntax and the
runtime kernel.

= SimpleTeam Model: This adds suppat for team-based
ressoning, with language etensions and kernel
additions.

= Agent Development Environment: The Development
Environment is a GUI for viewing and manipulating
JACK applications.

= Agent Debugging Environment: This consists of an
Agent Interadion Display for viewing messaging
between agents along with switches to the kernel for
displaying internal exeaution states.

= JACOB: The JACK Objed Modeller is a powerful
objea modelli ng todlkit to suppat objed transport and
interadion with existing applicaions in Java axd C++.
It will strean objeds in a human readable textua
format, afast binary format andin XML.

8. TheFuture

Agent Oriented Software is pursuing an aggressve releae
schedule for JACK, and is constantly extending the software suite
with new fedures and tods. In order to suppat these
developments, Agent Oriented Software is involved in multiple
reseach projeds working towards the alvancement of JACK and
agent systems in genera. These projeds include ollaboration
with the University of Melboune, RMIT University, and the
Cooperative Reseach Centre for Smart Internet in Austraia,
Cambridge University in the United Kingdom, and the Italian
reseach ingtitute IRST. This reseach covers aress sich as
Naturali stic dedsion making within agent ressoning; Agent-based
manufaduring cortrollers; Intelligent agent Internet assstants;
Agent development methoddogies and the simplificaion o
agent-based software development; Enhancements to team-based
reasoning in simulation.

9. Benefitsof JACK

The gproach taken by JACK has a number of advantages in
comparison with other agent frameworks coming from the
artificial intelligence world and standard oljed-oriented
architedures.

The aopion d Java guarantees a widely available, well-
suppated exeation environment. In addition to the promises of
the language (summarised by the well-known slogan ‘compile
once run everywhere by Sun Microsystems), an increasing
number of software comporents, todls and trained engineas are
becoming avail able.

To the A.l. reseacher, the aoption d an imperative, relatively
low-level language such as Jva means losing some of the
expressve power offered by frameworks based on logic or
functional languages. However this is compensated, not only by
the universal availability mentioned above, but aso by the
moduar approach of JACK. As dated in the previous dions,
most comporents of the framework can be tuned and tail ored.
This makes JACK particularly suited to experimentation with new
agent architedures in order to try out new functionaity (new
mental attitudes, different semantics, additional types of
knowledge bases, and so on) or to study performance
charaderisticsin spedfic contexts.

Moreover, when compared with frameworks based on traditional
A.l. languages, JACK has distinctive alvantages due to a proper
utilisation o the intrinsic charaderistics of Java. The most
important is grong typing, which reduces the cances of
programming errors introduced by simple typos. It also provides a
very basic version control by making sure that interfaces are
compatible & runtime. Next is performance, which makes the
exeadtion speed of agent code written in JACK comparable to a
direa implementationin C or C++.

For the egineag developing a sophisticaed dstributed
application, JACK offers sveral useful aspeds. For instance

= It isan efficient way to expresshigh level procedura logic
within an oljed-oriented environment. This also helps in
rapid application development by alowing a dea distinction
between abstrad data types and their operations on the one
side and, applicaion-spedfic behaviour requiring fine-
tuning or evolution when the system is arealy operationd
on the other side. While the former shoud be based on high
performance, well tested, highly reusable and Jtimately
expensive mde, the latter is better expressed as plans which
can be eaily modified;

= The ontext sensitivity and sophisticated semantics of mental
attitudes of the BDI architedure. These charaderistics enable
some levels of adaptability to changing conditions.

= The eae of integration with legacy systems. This enables,
among other things, an incremental approach to dstributed
system development.

When compared with frameworks originating from reseach
environments, JACK has the dea advantages of being
lightweight, of industrial strength and accessble to a large
community of engineastrained in oljed-oriented programming.

10. Conclusions

JACK Inteligent Agents™ is a multi-agent framework that
extends the Java language. The arrent version suppats the BDI
model and SimpleTean, an extension to suppat team-based
ressoning. JACK’s moduarity enables extensions and further
modelsto be eaily suppated.

JACK isan industry-strength product, providing a framework that
takes a solution founded in artificial intelligence reseach into
pradicd use. Compared with its ‘predecesrs’, e.g. the PRS and
dMARS systems mentioned above and aher similar agent
frameworks avail able in the acaemic world, JACK isnct a‘pure
A.l. system. Insted, it constitutes a successul marriage between
the vison d agent reseach and the neels of software
engineaing, bringing the power of agent techndogy to and
enriching the host language, Java.

We ae onfident that JACK provides benefits both to the
software enginee developing distributed systems and to the
acalemic reseacher.

11. References

[1] M. Wooldridge and N. R. Jennings, “Intelligent Agents:
Theory and Pradice”, The Knowledge Engineering Review,
vol. 10, no 12 pp 115152, 1995

[2] Michad E. Bratman, “Intention, Plans, and Pradicd
Reasoning”, Harvard University Press Cambridge, MA
(USA), 1987

[3] A.S.RaoandM. P. Georgeff, “An Abstrad Architecure for
Rational Agents’, Proceedings of the Third International
Conference on Principles of Knowledge Representation and
Reasoning (KR'92), C. Rich, W. Swartout and B. Nebel
(editors), Morgan Kaufmann Publi shers, 1992

[4] M. P. Georgeff and F. F. Ingrand, "Dedsion - Making in an
embedded reasoning system”, Proceedings of the
International Joint Conference on Artificial Intelligence,
Detroit, M1l (USA), 1989

[5] M. dInverno, D. Kinny, M. Luck, M. Woadldrige, "A Formal
Spedficaion d dMARS', INTELLIGENT AGENTS 1V:
Agent Theories, Architectures, and Languages, M. Singh, M.
Wooldrige, and A. Rao (editors), LNAI 1365 Springer-
Verlag, 1998

[6] Cohen, P.R., and Levesgue, H. “Teanwork. Nous’, Special
Issue on Cognitive Science and Artificial Intelligence,
25(4):487--512, 1991

[71 Vozzo, A., and Haub, J., “Military Asst Tasking Simulation
Using Intelligent Agents’, in Proceedings of the Fourth
International SmTecT Conference, Melboune, Australia,
1999

