
JACK Intelli gent Agents – Summary of an
Agent Infrastructure

Nick Howden, Ralph Rönnquist, Andrew Hodgson, Andrew Lucas
Agent Oriented Software Pty. Ltd.

221 Bouverie St, Carlton
Victoria 3053, Australia

+61 3 9349 5055
http://www.agent-software.com

<firstname.surname>@agent-software.com

ABSTRACT
Intelli gent Agents are being used for modelli ng simple rational
behaviours in a wide range of distributed applications. In
particular, multi -agent architectures based on the Belief-Desire-
Intention model have been used successfully in situations where
modelli ng of human reasoning and team behaviour are needed,
such as simulating tactical decision-making in defence operations
and command and control structures. Other applications include
intelli gent web applications, manufacturing control, telephone call
centres, and air traff ic management.

The JACK Intelli gent Agents framework by Agent Oriented
Software brings the concept of intelli gent agents into the
mainstream of commercial software engineering and Java. JACK
Intelli gent Agents™ is a third generation agent framework,
designed as a set of lightweight components with high
performance and strong data typing.

We present the design approach and major technical
characteristics of JACK Intelli gent Agents, with a focus on
some of the more recent developments – modular structuring
elements called Capabilities and the team-based reasoning model
called SimpleTeam. Two example applications, in decision
support and defence simulation are described. Also, we discuss
the benefits of the component-based approach, both for the
software engineer developing sophisticated distributed
applications, and for the researcher exploring agent models and
architectures.

Keywords
Intelli gent Agents, Infrastructure, JACK, BDI, Java, Multi -agent
Systems.

1. INTRODUCTION
Intelli gent Agents are being used for modelli ng simple rational
behaviours in a wide range of distributed applications. Intelli gent
agents have received various, if not contradictory, definitions; by
general consensus, they must show some degree of autonomy,
social abilit y, and combine pro-active and reactive behaviour [1].
One of the better known and most successful architectures for
agents is the so-called BDI (Belief-Desire-Intention) architecture,
which has seen a number of academic and industrial applications.

Agent Oriented Software Pty. Ltd. (AOS), based in Melbourne,
Australia, has built JACK Intelli gent Agents, a framework in
Java for multi -agent system development. The company’s aim is

to provide a platform for commercial, industrial and research
applications. To this end, its framework supplies a high
performance, lightweight implementation of the BDI architecture,
and can be easily extended to support different agent models or
specific application requirements. For brevity, we will refer to
JACK Intelli gent Agents simply as ‘JACK’ .

This paper is organised as follows. Section 2 introduces JACK
Intelli gent Agents™, presenting the approach taken by AOS to its
design, and outlining its major engineering characteristics. The
BDI model is discussed briefly in Section 3. Sections 4 & 5
describe some of the more interesting components of the JACK
infrastructure and Section 6 gives some example applications built
with JACK Intelli gent Agents™. The JACK components and
tools and the future research and development direction is
described in Sections 7 & 8. Finally, in Section 9 we discuss how
the use of this framework can be beneficial to both engineers and
researchers.

2. JACK Intelligent Agents
In this section, we present JACK by first highlighting the goals set
by its designers, then we provide an overview of the engineering
characteristics of the framework.

2.1 Approach
Major design goals for JACK were:

� to provide developers with a robust, stable, light-weight
product;

� to satisfy a variety of practical application needs;
� to ease technology transfer from research to industry; and
� to enable further applied research.

Whilst applications can be built from the ground up adopting an
agent oriented methodology and an appropriate framework, most
organisations already possess and depend upon large legacy
software systems. Thus, JACK agents have been designed
specifically for use as components of larger environments.
Consequently, an agent must coexist and be visible as simply
another object by non-agent software. Conversely, a JACK
programmer must be allowed to easily access any other
component of a system. Type safeness when accessing data,
reliabilit y, and support for proper engineering processes are then
key requirements in this kind of environment.

For similar reasons, JACK agents are not bound to any specific
agent communications language. Nothing prevents the adoption

of high-level symbolic protocol such as KQML or FIPA’s Agent
Communication Language (ACL); possibly by integrating
software already existing in the public domain. However, JACK
has been geared towards industrial object-oriented middleware
(such as CORBA) and message passing infrastructures (for
instance, HLA or DIS in simulation environments). In addition,
JACK provides a native lightweight communications
infrastructure for situations where high performance is required.

JACK itself has been designed for extension by properly trained
engineers, famili ar with agent concepts and with a sound
understanding of concurrent object-oriented programming.

2.2 Overview of the framework
From an engineering perspective, JACK consists of architecture-
independent faciliti es, plus a set of plug-in components that
address the requirements of specific agent architectures. The plug-
ins supplied with version 3.0, released in February 2001, include
support for the BDI model, and the model for building teams of
agents called SimpleTeam.

To an application programmer, JACK currently consists of three
main extensions to Java. The first is a set of syntactical additions
to its host language. These additions, in turn, can be divided as
follows:

� a small number of keywords for the identification of the main
components of an agent (such as agent, plan and event);

� a set of statements for the declaration of attributes and other
characteristics of the components (for instance, the
information contained in beliefs or carried by events). All
attributes are strongly typed;

� a set of statements for the definition of static relationships
(for instance, which plans can be adopted to react to a certain
event);

� a set of statements for the manipulation of an agent's state
(for instance, additions of new goals or sub-goals to be
achieved, changes of beliefs, interaction with other agents).

Furthermore, the programmer can use Java statements within the
components of an agent.

For the convenience of programmers, in particular those with a
background in Artificial Intelli gence, JACK also supports logical
variables and cursors. These are particularly helpful when
querying the state of an agent’s beliefs. Their semantics is mid-
way between logic programming languages (with the addition of
type checking Java style) and embedded SQL.

The second extension to Java is a compiler that converts the
syntactic additions described above into pure Java classes and
statements that can be loaded with, and be called by, other Java
code. The compiler also partially transforms the code of plans in
order to obtain the correct semantics of the BDI architecture.

Finally, a set of classes (called the kernel) provides the required
run-time support to the generated code. This includes:

� automatic management of concurrency among tasks being
pursued in parallel (Intentions in the BDI terminology);

� default behaviour of the agent in reaction to events, failure of
actions and tasks, and so on; and

� native lightweight, high performance communications
infrastructure for multi -agent applications.

Importantly, the JACK kernel supports multiple agents within a
single process, multiple agents across many processes, and any
mix of the two. This is particularly convenient for saving system
resources. For instance, agents that perform only short
computations or share most of their code or data can be grouped
together.

A JACK programmer can extend or change the architecture of an
agent by providing new plug-ins. In most cases, this simply means
overriding the default Java methods provided by the kernel or
supplying new classes for run-time support. However, it is
possible to add further syntactic extensions to be handled by the
JACK compiler.

Similarly, a different communications infrastructure can be
supplied by overriding the appropriate run-time methods.

Future versions of JACK will extend the base BDI model with
new plug-ins and will add a number of development and
monitoring tools.

3. Belief-Desire-Intention Agents
The BDI agent model supported by JACK has its roots in
philosophy and cognitive science, and in particular in the work of
Bratman on rational agents [2]. A rational agent has bounded
resources, limited understanding and incomplete knowledge of
what happens in the environment in which it li ves. Such an agent
has beliefs about the world and desires to satisfy, driving it to
form intentions to act. An intention is a commitment to perform a
plan. In general, a plan is only partially specified at the time of its
formulation since the exact steps to be performed may depend on
the state of the environment when they are eventually executed.
The activity of a rational agent consists of performing the actions
that it intended to execute without any further reasoning, until it i s
forced to a revision of its own intentions by changes to its beliefs
or desires. Beliefs, Desires and Intentions are called the mental
attitudes (or mental states) of an agent.

Observe that BDI agents depart from purely deductive systems
and other traditional Artificial Intelli gence models because of the
concept of intentionality, which significantly reduces the extent of
deliberation required. BDI has demonstrated itself to be well
suited to modelli ng certain types of behaviour, such as the
application of standard operational procedures by trained staff . It
has been successfully adopted in fields as diverse as simulation of
milit ary tactics, applications of business rules in workflows, and
diagnostics in telecoms networks.

Based on previous research and practical application, Rao and
Georgeff [3] have described a computational model for a generic
software system implementing a BDI agent. Such a system is an
example of event-driven programs. In reaction to an event, for
instance a change in the environment or its own beliefs, a BDI
agent adopts a plan as one of its intentions. Plans are precompiled
procedures that depend on a set of conditions for being
applicable. The process of adopting a plan as one of the agent's
intentions may require a selection among multiple candidates.

The agent executes the steps of the plans that it has adopted as
intentions until further deliberation is required; this may happen
because of new events or the failure or successful conclusion of
existing intentions.

A step of a plan can consist of adding a goal (that is, a desire to
achieve a certain objective) to the agent itself, changing its beliefs,

interacting with other agents, and any other atomic action on the
agent's own state or the external world.

The abstract BDI architecture has been implemented in a number
of systems. Of these, two are of particular relevance to JACK
since they represent its immediate predecessors. The first
generation is typified by the Procedural Reasoning System (PRS)
[4], developed by SRI International in the mid-1980s. dMARS
[5], built i n the mid-1990s by the Australian Artificial Intelli gence
Institute in Melbourne, Australia, is a second generation system.
dMARS has been used as a development platform for a number of
technology demonstrator applications, including simulations of
tactical decision-making in air operations and air traff ic
management.

4. Team Oriented Programming in JACK
In addition to the BDI extension, JACK provides an extension to
support Team Oriented programming, called SimpleTeam. Team
Oriented programming is a nuance of Agent Oriented
programming wherein agent collaboration is specified from the
abstract viewpoint of the group as a whole. The concept behind
this approach is that coordinated behaviour is specified or
programmed from a high-level (‘bird's-eye’) perspective and that
the underlying machinery maps such specifications into the
individual activities of the agents concerned.

Within Artificial Intelli gence research, teamwork as an agent
programming activity has been studied since the early 1990s [6],
and is a rapidly developing field. Many different theories and
types of teams (ranging from strictly hierarchically structured
teams to collaborating teams without formal structure) have been
proposed in the literature. Also, theories have been proposed
regarding mutual beliefs and goals, where individual members of
a team attempt to achieve what they believe the team as a whole is
attempting to achieve.

The SimpleTeam extension is neutral to the nature of the structure
of a team (i.e. hierarchical and imposed ‘ from the top’ , or
resulting from spontaneous collaboration ‘ from the bottom’) , and
to how team formation is achieved. The only assumption is that it
is possible to classify the members of a team in terms of abstract
roles. The goal of SimpleTeam is to provide a software
infrastructure for the specification of coordinated behaviour,
which can then be used for pursuing applied studies on social
organisation.

SimpleTeam supports the most valuable and practical aspect
regarding teams: the centralised specification of coordinated
behaviour, and its realisation through actual coordinated activity.
To achieve this, it adds several concepts to the base JACK kernel,
including Team & Role. It also adds several statements to the
JACK language to allow the management and manipulation of
these concepts by the programmer, including statements to handle
parallelism, team plans, and team capabiliti es.

5. Modular Development & Software Reuse
Development of complex agent-based systems requires conceptual
and software tools that allow modular development and software
reuse. A substantial amount of experience on this topic has been
acquired by the design and development team at Agent Oriented
Software during the implementation and use of JACK in customer
projects. The most important issues that have been faced include:
the definition of a methodology that enables incremental

development of agents and a high level of code reuse; and, what
type of tools best support such a methodology.

Originating from that experience, the concept of Capabilities was
developed and added to JACK. Capabiliti es represent a cluster of
functional components that can be used as building blocks during
the development of agent systems; they bring sound software
engineering practices to agent development.

Capabiliti es are used as an integral part of the agent design
methodology. They allow the manipulation of high level packages
of agent functionality from the specification stage, through the
design stages and onto direct support within the JACK code.

6. Applications using JACK
Below we describe two applications that have been developed
with JACK; one in decision support and another in Defence
simulation for analysis.

6.1 Decision Support
The Intelli gence Preparation for the Battlefield (IPB) process in
the Australian Army is similar to that of the US Army and UK
forces a universal approach to managing information on the
battlefield. DSTO’s Land Operations Division has a long-term
program to provide tools to the Army to assist with the IPB
process, and to provide a higher level of situation awareness to the
field commander. A key step in this process is the allocation of
surveill ance and reconnaissance assets to provide timely, relevant
information on the opposition’s intentions and movements.
Currently, the generation of Information Collection Plans relies
on human planners working without computer assistance. Having
received the Commander’s Critical Information Requests
(CCIRs), the staff planners must then decide on the options they
have to conduct surveill ance and reconnaissance. They must take
into account a large number of factors, including:

� The number and priority of the CCIRs.
� The nature of the surveill ance/reconnaissance necessary to

satisfy a CCIR. For example, an UGS (unmanned ground
sensor array able to detect movement) would be able to
detect an intrusion, but could not confirm this without the
need for further reconnaissance.

� The surveill ance assets at the disposal of the planners,
including their capabiliti es, mobilit y, current commitments,
scarcity and vulnerabilit y.

� The ongoing availabilit y of assets to conduct surveill ance,
taking into account other priorities, maintenance
requirements, etc.

� The developing tactical situation during the planning
process. A plan that does not consider this is out of date
before it can be considered.

The outcome is a number of optional plans that can be evaluated
in collaboration with the commander, and a decision can then be
taken to implement one. As the plan is then put in place and the
assets deployed, the evolving awareness of changes in the
situation will result in the plan being modified, often several
times. As these changes occur, the planners have the diff icult task
of rapidly re-deploying assets as eff iciently as the circumstances
permit.

Consequently, the Collection Plan Management System (CPMS)
[7] is being developed in Land Operations Division, as a tool to

improve situation awareness through better management of
surveill ance and reconnaissance assets. CPMS is comprised of
the following major components.

� The Planning Module, (Figure 1) based on JACK agents.
� A visualisation module containing a Geographic Information

System (GIS), to provide the necessary terrain analysis and a
variety of custom Graphical User Interfaces (GUIs). These
GUIs interact with the GIS map overlays to provide an
intuitive user interface for planning and information
dissemination.

� A database module containing terrain data, the Commander’s
Critical Information Requests (CCIRs) and the surveill ance
assets to be tasked, such as their capabiliti es, availabiliti es,
etc.

The Planning Module takes a list of CCIRs, the Order of Battle
(ORBAT) containing the Command and Control structure and
available assets for tasking as input, and presents a set of
alternative collection plans as output to the commander. Each
alternative plan is a suggestion of how the available surveill ance
and reconnaissance assets may be used to service the input CCIRs
in a collectively ‘best’ way, on the basis of a given range of
evaluation dimensions. The design of the Planning Module
recognises that there is rarely a single, optimal collection plan to
be formed, and, in any case, a pre-programmed evaluation will
always be incomplete with respect to an actual situation.

unit

unit

unit unit

C2

assets

assets

assets

Database
module

M ap-based
interface

JACK agents

CPM S

company

platoon

brigade

Situation
Awareness

Picture

Figure 1: The CPMS Planning Module uses JACK Intelli gent
Agents™

The collection plans presented are formed in the context of the
current C2 structure including the current surveill ance assets and
their status. This background information is part of the awareness
picture, and can be overlayed with manual variations; for instance,
for investigating what-if scenarios. The background information
further includes a current surveill ance plan as input, and considers
the cost of re-tasking already tasked assets in forming alternative
plans.

As noted above, the CPMS planning module is implemented as a
multi -agent sub-system, which directly reflects the current C2
structure. There is one agent for each ‘node’ in the C2 structure,
and each agent plans for the assets that the unit it represents
possesses or controls. This planning is then combined with the
plans suggested by the agents planning for subordinate units. This
design approach was chosen as a means to minimise or avoid the
conceptual gap between a software implementation and the end-
user's understanding of the planning process.

Due to the inherent algorithmic complexity of the problem, the
planning agents operate with li sts of task options for CCIRs,
dealing with each CCIR independently. The alternative tasks
within a list are compared with respect to several evaluation
dimensions, including task duration, quality of outcome, and a
qualitative cost measure. The list is then ordered with preferred
asset tasks at the head of the list. The top-level agent receives the
full set of task lists, and processes this set in order to produce the
alternative collection plans. In this process, the agent applies all
inter-dependency constraints between the tasks: common-sense
constraints (e.g. that an indivisible asset cannot be at more than
one place at a time); doctrinal constraints (e.g. limiting the
dispersion of a unit’s assets). Consistent with the given inter-
dependency constraints, the agent then generates plans that
include the best task for each CCIR under the given task
comparison dimensions.

6.2 Modelling Human Behaviour in Defence
Simulation
Historically, computer simulation in Defence has been used for
the evaluation of acquisitions and of force development options.
But modelli ng and simulation for this purpose is becoming
increasingly complex as multi -role, multi -platform and multi -
system aspects are taken into consideration. The complexity of
this task is further increased by the diff iculty in modelli ng human
decision-making with suff icient fidelity using conventional
software approaches. Current implementations of Computer
Generated Forces within Simulations such as CAEN or ModSAF
have proven to be very useful, but do not model human reasoning
and cannot easily model team behaviour. Early applications of
intelli gent agents in simulations to represent operational milit ary
reasoning have proved highly effective. This success comes from
the capabilit y of agents to represent individual reasoning and from
the architectural advantages of that representation to the user due
to the ease of setting up and modifying operational reasoning or
tactics for various studies. In addition, JACK SimpleTeam
extends the modelli ng of reasoning to explicitl y model the
communications and coordination of joint activities required for
team behaviour.

The emphasis on timely, accurate information in modern warfare,
and the availabilit y of modern communications, have led to the
development of more and more complex command and control
systems. It is important to understand the behaviour of these C3
systems under a variety of circumstances. However, as they are
diff icult to analyse manually, advanced modelli ng and simulation
tools for C3 systems development are required. The challenge in
C3 systems is to model the reasoning associated with different
roles in the command and control hierarchy. Intelli gent agents can
represent the reasoning and command capabiliti es associated with
their assigned roles in the hierarchy, allowing different command
and control strategies to be quickly evaluated under varying
circumstances. This power comes from the suitabilit y of the JACK
architecture for representing individual and team objectives and
roles.

DSTO’s Land Operation Division and Agent Oriented Software
have developed a Simulation Agent Infrastructure (SAI), which
connects JACK Intelli gent Agents™ into the Close Action
Environment simulator (CAEN). The purpose is to enhance the
war-gaming capabilit y offered by CAEN with agent based
behaviour modelli ng, so as to simpli fy and speed up the

simulation scenario development process and as a result be able to
provide better analysis in a shorter time.

The SAI offers a modern war-gaming solution with a clean-cut
separation between simulation models, simulation engine, and
simulation scenario, which increases the reusabilit y and
maintainabilit y of the software as well as verifiabilit y of
individual scenarios.

With CAEN alone, each war game is a fully scripted scenario in
which the activity of each entity is pre-programmed in isolation
with respect to the clock. It offers only a trivial level of situation
awareness, such that an entity may fire or not fire his weapon
depending on whether or not another entity is sighted. More
complex behavioural variations, such as choosing where or
whether to cross a road, cannot be expressed within the one
scenario. This means that effectiveness studies that involve
variations in the tactics are practically impossible.

The introduction of JACK Intelli gent Agents™ and SimpleTeam
within SAI adds the capabilit y of modelli ng entity and group
behaviour based on situation awareness. By this, it becomes
feasible and even easy to express tactics where entity activity is
determined on the basis of the actual situations occurring.

DSTO and Agent Oriented Software are currently working on
generalising SAI to be used with other simulation systems such as
ModSAF and Stage.

Although SAI was originally developed for acquisition and tactics
analysis in Defence simulation, it can be applied equally well as a
model for Computer Generated Forces within Civili an and
Defence training systems, and even within commercial gaming
environments.

Within Defence, the contemporary trend towards the integration
of multi -role forces, together with the high cost of li ve exercises,
has required the development of more realistic training
environments. However, these synthetic environments have not
been able to model the behaviour of the humans involved, other
than in a very simple manner. In particular, they have not
modelled team behaviour, with the result that trainees quickly
learn the range of simulated behaviours. Rather than practising
their milit ary skill s, instead they learn to predict the training
system’s response. JACK agents allow the Computer Generated
Forces in training systems to behave in a more human-like
manner, with a much richer set of behaviours, including team
responses and dynamic role re-allocation. The result is a more
effective training environment with realistic tactical behaviour
represented, whilst avoiding the expense of having humans-in-
the-loop involved to provide this.

7. JACK Components and Tools
JACK Intelli gent Agents™ is distributed as the following
modules:

� JACK Runtime Environment: The kernel supports the
execution of JACK agents, handling multi -threading
and concurrency issues, etc. It also includes a
communications layer with a simple agent naming
service.

� JACK Compiler: This compiles the JACK Agent
Language code into pure Java, and calls the Java
compiler to generate executables.

� BDI Agent Model: This adds support for BDI
reasoning, with additions to the language syntax and the
runtime kernel.

� SimpleTeam Model: This adds support for team-based
reasoning, with language extensions and kernel
additions.

� Agent Development Environment: The Development
Environment is a GUI for viewing and manipulating
JACK applications.

� Agent Debugging Environment: This consists of an
Agent Interaction Display for viewing messaging
between agents along with switches to the kernel for
displaying internal execution states.

� JACOB: The JACK Object Modeller is a powerful
object modelli ng toolkit to support object transport and
interaction with existing applications in Java and C++.
It will stream objects in a human readable textual
format, a fast binary format and in XML.

8. The Future
Agent Oriented Software is pursuing an aggressive release
schedule for JACK, and is constantly extending the software suite
with new features and tools. In order to support these
developments, Agent Oriented Software is involved in multiple
research projects working towards the advancement of JACK and
agent systems in general. These projects include collaboration
with the University of Melbourne, RMIT University, and the
Cooperative Research Centre for Smart Internet in Australia,
Cambridge University in the United Kingdom, and the Italian
research institute IRST. This research covers areas such as:
Naturalistic decision making within agent reasoning; Agent-based
manufacturing controllers; Intelli gent agent Internet assistants;
Agent development methodologies and the simpli fication of
agent-based software development; Enhancements to team-based
reasoning in simulation.

9. Benefits of JACK
The approach taken by JACK has a number of advantages in
comparison with other agent frameworks coming from the
artificial intelli gence world and standard object-oriented
architectures.

The adoption of Java guarantees a widely available, well -
supported execution environment. In addition to the promises of
the language (summarised by the well -known slogan ‘compile
once, run everywhere’ by Sun Microsystems), an increasing
number of software components, tools and trained engineers are
becoming available.

To the A.I. researcher, the adoption of an imperative, relatively
low-level language such as Java means losing some of the
expressive power offered by frameworks based on logic or
functional languages. However this is compensated, not only by
the universal availabilit y mentioned above, but also by the
modular approach of JACK. As stated in the previous sections,
most components of the framework can be tuned and tailored.
This makes JACK particularly suited to experimentation with new
agent architectures in order to try out new functionality (new
mental attitudes, different semantics, additional types of
knowledge bases, and so on) or to study performance
characteristics in specific contexts.

Moreover, when compared with frameworks based on traditional
A.I. languages, JACK has distinctive advantages due to a proper
utili sation of the intrinsic characteristics of Java. The most
important is strong typing, which reduces the chances of
programming errors introduced by simple typos. It also provides a
very basic version control by making sure that interfaces are
compatible at run-time. Next is performance, which makes the
execution speed of agent code written in JACK comparable to a
direct implementation in C or C++.

For the engineer developing a sophisticated distributed
application, JACK offers several useful aspects. For instance:

� It is an eff icient way to express high level procedural logic
within an object-oriented environment. This also helps in
rapid application development by allowing a clear distinction
between abstract data types and their operations on the one
side and, application-specific behaviour requiring fine-
tuning or evolution when the system is already operational
on the other side. While the former should be based on high
performance, well tested, highly reusable and ultimately
expensive code, the latter is better expressed as plans which
can be easily modified;

� The context sensitivity and sophisticated semantics of mental
attitudes of the BDI architecture. These characteristics enable
some levels of adaptabilit y to changing conditions.

� The ease of integration with legacy systems. This enables,
among other things, an incremental approach to distributed
system development.

When compared with frameworks originating from research
environments, JACK has the clear advantages of being
lightweight, of industrial strength and accessible to a large
community of engineers trained in object-oriented programming.

10. Conclusions
JACK Intelli gent Agents™ is a multi -agent framework that
extends the Java language. The current version supports the BDI
model and SimpleTeam, an extension to support team-based
reasoning. JACK’s modularity enables extensions and further
models to be easily supported.

JACK is an industry-strength product, providing a framework that
takes a solution founded in artificial intelli gence research into
practical use. Compared with its ‘predecessors’ , e.g. the PRS and
dMARS systems mentioned above and other similar agent
frameworks available in the academic world, JACK is not a ‘pure’
A.I. system. Instead, it constitutes a successful marriage between
the vision of agent research and the needs of software
engineering, bringing the power of agent technology to and
enriching the host language, Java.

We are confident that JACK provides benefits both to the
software engineer developing distributed systems and to the
academic researcher.

11. References
[1] M. Wooldridge and N. R. Jennings, “ Intelli gent Agents:

Theory and Practice”, The Knowledge Engineering Review,
vol. 10, no 12, pp 115-152, 1995.

[2] Michael E. Bratman, “ Intention, Plans, and Practical
Reasoning” , Harvard University Press, Cambridge, MA
(USA), 1987.

[3] A. S. Rao and M. P. Georgeff , “An Abstract Architecture for
Rational Agents” , Proceedings of the Third International
Conference on Principles of Knowledge Representation and
Reasoning (KR'92), C. Rich, W. Swartout and B. Nebel
(editors), Morgan Kaufmann Publishers, 1992.

[4] M. P. Georgeff and F. F. Ingrand, "Decision - Making in an
embedded reasoning system", Proceedings of the
International Joint Conference on Artificial Intelligence,
Detroit, MI (USA), 1989.

[5] M. d'Inverno, D. Kinny, M. Luck, M. Wooldrige, "A Formal
Specification of dMARS", INTELLIGENT AGENTS IV:
Agent Theories, Architectures, and Languages, M. Singh, M.
Wooldrige, and A. Rao (editors), LNAI 1365, Springer-
Verlag, 1998.

[6] Cohen, P.R., and Levesque, H. “Teamwork. Nous” , Special
Issue on Cognitive Science and Artificial Intelligence,
25(4):487--512, 1991.

[7] Vozzo, A., and Haub, J., “Milit ary Asset Tasking Simulation
Using Intelli gent Agents” , in Proceedings of the Fourth
International SimTecT Conference, Melbourne, Australia,
1999.

