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Abstract.
A Multi-Agent System is an organization of coordinated autonomous agents that

interact in order to achieve common goals. Considering real world organizations as an
analogy, this paper proposes architectural styles for MAS which adopt concepts from
organizational theories. The styles are modeled using the i* framework which offers
the notions of actor, goal and actor dependency and specified in Formal Tropos.
They are evaluated with respect to a set of software quality attributes, such as
predictability and adaptability. In addition, we conduct a comparative study of or-
ganizational and conventional software architectures using the mobile robot control
example from the Software Engineering literature. The research is conducted in the
context of Tropos, a comprehensive software system development methodology.

1. Introduction

Software architectures describe a software system at a macroscopic
level in terms of a manageable number of subsystems, components and
modules inter-related through data and control dependencies.

System architectural design has been the focus of considerable re-
search during the last fifteen years that has produced well-established
architectural styles and frameworks for evaluating their effectiveness
with respect to particular software qualities. Examples of styles are
pipes-and-filters, event-based, layered, control loops and the like [21].
Examples of software qualities include maintainability, modifiability,
portability etc [1]. We are interested in developing a suitable set of
architectural styles for multi-agent software systems. Since the funda-
mental concepts of a Multi-Agent System (MAS) are intentional and
social, rather than implementation-oriented, we turn to theories which
study social structures for motivation and insights. But, what kind of
social theory should we turn to? There are theories that study group
psychology, communities (virtual or otherwise) and social networks.
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Such theories study social structure as an emergent property of a social
context. Instead, we are interested in social structures that result from a
design process. For this, we turn for guidance to organizational theories,
namely Organization Theory and Strategic Alliances. Organizational
styles from organization theory describe the internal structure and
design of an organization, while strategic alliances model the strategic
cooperation of independent organizational actors that pursue shared
goals.

In this paper, we describe some of these styles, adapt two of them –
the structure-in-5 and the joint venture – for multi-agent architectural
design, model them using the strategic dependency model of i* [64],
and propose a specification in Formal Tropos [19].

This research is being conducted in the context of Tropos [5, 24, 45],
a project developing a requirements-driven methodology for software
systems. The Tropos methodology adopts ideas from MAS technologies,
mostly to define the detailed design and implementation phase, and
ideas from requirements engineering, where agents/actors and goals
have been used heavily for early requirements analysis [9, 64]. In partic-
ular, the Tropos project adopts Eric Yu’s i* model which offers actors
(agents, roles, or positions), goals, and actor dependencies as primi-
tive concepts for modelling an application during early requirements
analysis. The key assumption which distinguishes Tropos from other
methodologies is that actors and goals are used as fundamental concepts
for analysis and design during all phases of software development, not
just requirements analysis.

The paper is structured as follows. Section 2 introduces the styles
identified in organization and strategic alliance theories. Section 3 de-
tails two of them – the structure-in-5 and the joint venture – based on
real-word examples of organizations. These two styles are modeled in
terms of social and intentional concepts using the i* framework. A semi-
formal specification language founded on i* is also proposed for each
style. Section 4 presents a set of software quality attributes for these
styles in terms of which one can evaluate architectural alternatives.
Section 5 proposes fragments of the mobile robot case study1 adopted
from the Software Engineering literature to illustrates the use of our
styles and compares them to conventional ones. Section 6 presents a
framework for selecting architectural styles with respect to software
quality attributes while Section 7 overviews the Tropos methodology.
Finally, Section 8 discusses related research while Section 9 summarizes
the contributions and outlines future work.

1 Although we have worked out other, e-business case studies using the styles
describes in this paper (see, e.g., [5, 45]), we have decided to use a simpler and more
pedagogical example in this paper for understandability purposes.
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2. Structuring Organizations

Since the origins of civilization, people have been designing, partici-
pating in, and sharing the burdens and rewards of organizations. The
early organizations were primarily military or governmental in nature.
In the Art of War, Sun Tzu describes the need for hierarchical struc-
ture, communications, and strategy. In the Politics, Aristotle wrote
of governmental administration and its association with culture. To
the would-be-leader, Machiavelli advocated in the Prince power over
morality. The roots of organizational theories, then, can be traced to
antiquity, including thinkers from around the world who studied alter-
native organizational structures. Such structures consist of stakeholders
– individuals, groups, physical or social systems – that coordinate and
interact with each other to achieve common goals. Today, organiza-
tional structures are primarily studied by two disciplines: Organization
Theory (e.g., [41, 49, 63]), that describes the structure and design of an
organization and Strategic Alliances (e.g., [26, 42, 50, 14]), that model
the strategic collaborations of independent organizational stakeholders
who have agreed to pursue a set of agreed upon business goals.

Both disciplines aim to identify and study organizational patterns.
These are not just modeling abstractions or structures, rather they
can be seen, felt, handled, and operated upon. They have a manifest
form and lie in the objective domain of reality as part of the concrete
world. A pattern is however not solely a set of execution behaviors.
Rather, it exists in various forms at every stage of crystallization (e.g.,
specification), and at every level of granularity in the organization. The
more manifest is its representation, the more the pattern emerges and
becomes recognizable – whether at a high or low level of granularity.

At the lowest level of granularity, we find information patterns and
service patterns that represent the ”nitty-gritty” of business that an
organization must deal with on a day-to-day basis. When we move
to an upper level, we find business patterns – the mix of products
and markets that flows from organizational styles. The highest level of
granularity is the organizational styles that addresses the mix of socio-
technical context and organizational constructs: they are manifestation
of organization invariants, layers of organizational constructs, organiza-
tion molecules, and complex arrangements of molecules, the collection
of which constitutes organizational structures.

Many organizational styles are fully formed patterns with definite
characteristics as the ones we present in the rest of this section. In
contrast, many other organizational styles are not very explicit, that
is, not easily specified, operationalized, and measured. Michael Porter’s
generic strategies [46] are examples of such patterns. Each strategy type
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is characterized by general properties that distinguish one strategy from
another. For the most part, however, the distinguishing characteristics
of each style are only partially described in terms of an organization’s
architecture.

In this paper, we are interested to identify and use as system ar-
chitectural styles, organizational styles that have been already well-
understood and precisely defined in organizational theories. Our pur-
pose is not to categorize them exhaustively nor to study them on a
managerial point of view. The following sections will thus only insist
on styles that have been found, due to their nature, interesting candi-
dates for MAS architectural design also considering the fact that they
have been studied in great detail in the organizational literature and
presented as fully formed patterns.

2.1. Organization Theory

“An organization is a consciously coordinated social entity, with a rel-
atively identifiable boundary, that functions on a relatively continuous
basis to achieve a common goal or a set of goals” [42]. Organization
theory is the discipline that studies both structure and design in such
social entities. Structure deals with the descriptive aspects while design
refers to the prescriptive aspects of a social entity. Organization theory
describes how practical organizations are actually structured, offers
suggestions on how new ones can be constructed, and how old ones
can change to improve effectiveness. To this end, since Adam Smith,
schools of organization theory have proposed models patterns to try to
find and formalize recurring organizational structures and behaviors.

In the following, we briefly present organizational styles identified
in Organization Theory. The structure-in-5 will be studied in detail in
Section 3.

The Structure-in-5. An organization can be considered an aggre-
gate of five sub-structures, as proposed by Minztberg [41]. At the base
level sits the Operational Core which carries out the basic tasks and
procedures directly linked to the production of products and services
(acquisition of inputs, transformation of inputs into outputs, distri-
bution of outputs). At the top lies the Strategic Apex which makes
executive decisions ensuring that the organization fulfils its mission in
an effective way and defines the overall strategy of the organization in
its environment. The Middle Line establishes a hierarchy of authority
between the Strategic Apex and the Operational Core. It consists of
managers responsible for supervising and coordinating the activities
of the Operational Core. The Technostructure and the Support are
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separated from the main line of authority and influence the operating
core only indirectly. The Technostructure serves the organization by
making the work of others more effective, typically by standardizing
work processes, outputs, and skills. It is also in charge of applying
analytical procedures to adapt the organization to its operational en-
vironment. The Support provides specialized services, at various levels
of the hierarchy, outside the basic operating work flow (e.g., legal
counsel, R&D, payroll, cafeteria). We describe and model examples
of structures-in-5 in Section 3 .

The pyramid style is the well-know hierarchical authority structure.
Actors at lower levels depend on those at higher levels. The crucial
mechanism is the direct supervision from the Apex. Managers and
supervisors at intermediate levels only route strategic decisions and
authority from the Apex to the operating (low) level. They can coor-
dinate behaviors or take decisions by their own, but only at a local level.

The chain of values merges, backward or forward, several actors en-
gaged in achieving or realizing related goals or tasks at different stages
of a supply or production process. Participants who act as intermedi-
aries, add value at each step of the chain. For instance, for the domain of
goods distribution, providers are expected to supply quality products,
wholesalers are responsible for ensuring their massive exposure, while
retailers take care of the direct delivery to the consumers.

The matrix proposes a multiple command structure: vertical and hor-
izontal channels of information and authority operate simultaneously.
The principle of unity of command is set aside, and competing bases of
authority are allowed to jointly govern the work flow. The vertical lines
are typically those of functional departments that operate as ”home
bases” for all participants, the horizontal lines represents project groups
or geographical arenas where managers combine and coordinate the
services of the functional specialists around particular projects or areas.

The bidding style involves competitivity mechanisms, and actors be-
have as if they were taking part in an auction. An auctioneer actor runs
the show, advertises the auction issued by the auction issuer, receives
bids from bidder actors and ensures communication and feedback with
the auction issuer who is responsible for issuing the bidding.
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2.2. Strategic Alliances

A strategic alliance links specific facets of two or more organizations. At
its core, this structure is a trading partnership that enhances the effec-
tiveness of the competitive strategies of the participant organizations
by providing for the mutually beneficial trade of technologies, skills,
or products based upon them. An alliance can take a variety of forms,
ranging from arm’s-length contracts to joint ventures, from multina-
tional corporations to university spin-offs, from franchises to equity
arrangements. Varied interpretations of the term exist, but a strategic
alliance can be defined as possessing simultaneously the following three
necessary and sufficient characteristics:

− The two or more organizations that unite to pursue a set of agreed
upon goals remain independent subsequent to the formation of the
alliance.

− The partner organizations share the benefits of the alliances and
control over the performance of assigned tasks.

− The partner organizations contribute on a continuing basis in one
or more key strategic areas, e.g., technology, products, and so forth.

In the following, we briefly present organizational styles identified
in Strategic Alliances. The joint venture will be studied in details in
Section 3.

The joint venture style involves agreement between two or more
intra-industry partners to obtain the benefits of larger scale, partial
investment and lower maintenance costs. A specific joint management
actor coordinates tasks and manages the sharing of resources between
partner actors. Each partner can manage and control itself on a local
dimension and interact directly with other partners to exchange re-
sources, such as data and knowledge. However, the strategic operation
and coordination of such an organization, and its actors on a global
dimension, are only ensured by the joint management actor in which
the original actors possess equity participations. We describe and model
examples of joint ventures in Section 3.

The arm’s-length style implies agreements between independent and
competitive, but partner actors. Partners keep their autonomy and
independence but act and put their resources and knowledge together
to accomplish precise common goals. No authority is lost, or delegated
from one collaborator to another.
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The hierarchical contracting style identifies coordinating mecha-
nisms that combine arm’s-length agreement features with aspects of
pyramidal authority. Coordination mechanisms developed for arm’s-
length (independent) characteristics involve a variety of negotiators,
mediators and observers at different levels handling conditional clauses
to monitor and manage possible contingencies, negotiate and resolve
conflicts and finally deliberate and take decisions. Hierarchical relation-
ships, from the executive apex to the arm’s-length contractors restrict
autonomy and underlie a cooperative venture between the parties.

The co-optation style involves the incorporation of representatives
of external systems into the decision-making or advisory structure and
behavior of an initiating organization. By co-opting representatives of
external systems, organizations are, in effect, trading confidentiality
and authority for resource, knowledge assets and support. The initiat-
ing system has to come to terms with the contractors for what is being
done on its behalf; and each co-optated actor has to reconcile and adjust
its own views with the policy of the system it has to communicate.

3. Modeling Organizational Styles

We will define an organizational style as a metaclass of organizational
structures offering a set of design parameters to coordinate the assign-
ment of organizational objectives and processes, thereby affecting how
the organization itself functions. Design parameters include, among
others, goal and task assignments, standardization, supervision and
control dependencies and strategy definitions.

This section describes two of the organizational styles presented in
Section 2: the structure-in-5 and the joint-venture.

3.1. Structure-in-5

To detail and specify the structure-in-5 as an organizational style, this
section presents two case studies: Agate Ltd [2] and GMT [25]. They
will serve to propose a model and a semi-formal specification of the
structure-in-5.

Agate. Agate Ltd is an advertising agency located in Birmingham,
UK, that employs about fifty staff, as detailed in Table I [2].

The Direction – four directors responsible for the main aspects
of Agate’s Global Strategy (advertising campaigns, creative activities,
administration, and finances) – forms the Strategic Apex. The Mid-
dle Line, composed of the Campaigns Management staff, is in charge



8

of finding and coordinating advertising campaigns (marketing, sales,
edition, graphics, budget, . . . ). It is supported in these tasks by the
Administration and Accounts and IT and Documentation departments.
The Administration and Accounts constitutes the Technostructure han-
dling administrative tasks and policy, paperwork, purchases and bud-
gets. The Support groups the IT and Documentation departments. It
defines the IT policy of Agate, provides technical means required for
the management of campaigns, and ensures services for system support
as well as information retrieval (documentation resources). The Oper-
ational Core includes the Graphics and Edition staff in charge of the
creative and artistic aspects of realizing campaign (texts, photographs,
drawings, layout, design, logos).

Table I. Organization of Agate Ltd

Direction
1 Campaigns Director
1 Creative Director
1 Administrative Director
1 Finance Director

Campaigns Manage-
ment
2 Campaign managers
3 Campaign marketers
1 Editor in Chief
1 Creative Manager

Graphics
6 Graphic designers
2 Photographers

Edition
2 Editors
4 Copy writers

Documentation
1 Media librarian
1 Resource librarian
1 Knowledge worker

Administration
3 Direction assistants
4 Manager Secretaries
2 Receptionists
2 Clerks/typists
1 Filing clerk

IT
1 IT manager
1 Network administrator
1 System administrator
1 Analyst
1 Computer technician

Accounts
1 Accountant manager
1 Credit controller
2 Accounts clerks
2 Purchasing assistants

Figure 1 models Agate in structure-in-5 using the i* strategic de-
pendency model. i* is a modeling framework for early requirements
analysis [64], which offers goal- and actor-based notions such as actor,
agent, role, position, goal, softgoal, task, resource, belief and different
kinds of social dependency between actors. Its strategic dependency
model describes the network of social dependencies among actors. It is
a graph, where each node represents an actor and each link between two
actors indicates that one actor depends on the other for some goal to be
attained. A dependency describes an “agreement” (called dependum)
between two actors: the depender and the dependee. The depender is the
depending actor, and the dependee, the actor who is depended upon.
The type of the dependency describes the nature of the agreement.
Goal dependencies represent delegation of responsibility for fulfilling a
goal; softgoal dependencies are similar to goal dependencies, but their
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fulfillment cannot be defined precisely (for instance, the appreciation is
subjective or fulfillment is obtained only to a given extent); task depen-
dencies are used in situations where the dependee is required to perform
a given activity; and resource dependencies require the dependee to
provide a resource to the depender. As shown in Figure 1, actors are
represented as circles; dependums – goals, softgoals, tasks and resources
– are represented as ovals, clouds, hexagons and rectangles; respectively,
and dependencies have the form depender → dependum → dependee.

Figure 1. Agate as a Structure-in-5

GMT is a company specialized in telecom services in Belgium. Its lines
of products and services range from phones & fax, conferencing, line
solutions, internet & e-business, mobile solutions, and voice & data
management. As shown in Figure 2, the structure of the commercial
organization follows the structure-in-5. An Executive Committee con-
stitutes the Strategic Apex. It is responsible for defining the general
strategy of the organization. Five chief managers (finances, operations,
divisions management, marketing, and R&D) apply the specific as-
pects of the general strategy in the area of their competence: Finances
& Operations is in charge of Budget and Sales Planning & Control,
Divisions Management is responsible for Implementing Sales Strategy,
and Marketing and R&D define Sales Policy and Technological Policy.
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Figure 2. GMT’s Sales Organization as a Structure-in-5

The Divisions Management groups managers that coordinate all
managerial aspects of product and service sales. It relies on Finance &
Operations for handling Planning and Control of products and services,
it depends on Marketing for accurate Market Studies and on R&D for
Technological Awareness.

The Finances & Operations departments constitute the technostruc-
ture in charge of management control (financial and quality audit) and
sales planning including scheduling and resource management.

The Support involves the staff of Marketing and R&D. Both de-
partments jointly define and support the Sales Policy. The Marketing
department coordinates Market Studies (customer positionment and
segmentation, pricing, sales incentive, . . . ) and provides the Operational
Core with Documentation and Promotion services. The R&D staff is
responsible for defining the technological policy such as technological
awareness services. It also assists Sales people and Consultants with
Expertise Support and Technology Training.

Finally, the Operational Core groups the Sales people and Line con-
sultants under the supervision and coordination of Divisions Man-
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agers. They are in charge of selling products and services to actual
and potential customers.

Figure 3. The Structure-in-5 Style

Figure 3 abstracts the structures explored in the case studies of
Figures 1 and 2 as a Structure-in-5 style composed of five actors. The
case studies also suggested a number of constraints to supplement the
basic style:

− the dependencies between the Strategic Apex as depender and the
Technostructure, Middle Line and Support as dependees must be
of type goal

− a softgoal dependency models the strategic dependence of the
Technostructure, Middle Line and Support on the Strategic Apex

− the relationships between the Middle Line and Technostructure
and Support must be of goal dependencies

− the Operational Core relies on the Technostructure and Support
through task and resource dependencies

− only task dependencies are permitted between the Middle Line (as
depender or dependee) and the Operational Core (as dependee or
depender).
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To specify the formal properties of the style, we use Formal Tropos
[19], which extends the primitives of i* with a formal language com-
parable to that of KAOS [9]. Constraints on i* specifications are thus
formalized in a first-order linear-time temporal logic. Formal Tropos
provides three basic types of metaclasses: actor, dependency, and en-
tity [22]. The attributes of a Formal Tropos class denote relationships
among different objects being modeled.

Metaclasses
Actor := Actor name [attributes] [creation-properties] [invar-properties] [actor-
goal]

With subclasses:
Agent(with attributes occupies: Position, play: Role)
Position(with attributes cover: Role)
Role

Dependency := Dependency name type mode Depender name Dependee
name [attributes] [creation-properties] [invar-properties] [fulfill-properties]

Entity:=Entity name [attribute] [creation-properties][invar-properties]

Actor-Goal := (Goal|Softgoal) name mode FulFillment(actor-fulfill-property)

Classes: Classes are instances of Metaclasses.

In Formal Tropos, constraints on the lifetime of the (meta)class
instances are given in a first-order linear-time temporal logic (see [19]
for more details). Special predicates can appear in the temporal logic
formulas: predicate JustCreated(x) holds in a state if element x ex-
ists in this state but not in the previous one; predicate Fulfilled(x)
holds if x has been fulfilled; and predicate JustFulfilled(x) holds if
Fulfilled(x) holds in this state, but not in the previous one.

In the following, we only present some specifications for the Strategic
Management and Operational Management dependencies.

Actor StrategicApex
Actor MiddleLine
Actor Support
Actor Technostructure
Actor OperationalCore

Dependency StrategicManagement
Type SoftGoal
Depender te: Technostructure, ml: MiddleLine, su: Support
Dependee sa: StrategicApex
Invariant

∀dep : Dependency (JustCreated(dep) → Consistent(self, dep))
∀ag : Actor −Goal (JustCreated(ag) → Consistent(self, ag))



13

Fulfillment
∀dep : Dependency (dep.type = goal ∧ dep.depender = sa∧

(dep.dependee = te ∨ dep.dependee = ml ∨ dep.dependee = su))∧
Fulfilled(self) → ¨Fulfilled(dep)

[Invariant properties specify, respectively, that the strategic management softgoal
must be consistent with any other dependency of the organization and with any
other goal of the actors in the organization. The predicate Consistent depends on
the particular organization we are considering and it is specified in terms of goals’
properties to be satisfied. The fulfillment of the dependency necessarily implies that
the goal dependencies between the Middle Line, the Technostructure, and the Support
as dependees, and the Strategic Apex as depender have been achieved some time in
the past]

Dependency OperationalManagement
Type Goal
Mode achieve
Depender sa: StrategicApex
Dependee ml: MiddleLine
Invariant

Consistent(self, StrategicManagement)
∃c : Coordination (c.type = task ∧ c.dependee = ml ∧ c.depender =

OperationalCore ∧ ImplementedBy(self, c))
Fulfillment

∀ts : Technostructure, dep : Dependency (dep.type = goal∧
dep.depender = ml ∧ dep.dependee = ts) ∧ Fulfilled(self))
→ ¨Fulfilled(dep)

[The fulfillment of the Operational management goal implies that all goal dependen-
cies between the Middle Line as depender and the Technostructure as dependee have
been achieved some time in the past. Invariant properties specifies that Operational
Management goal has to be consistent with Starategic Management softgoal and that
there exists a coordination task (a task dependency between MiddleLine and Opera-
tional Core) that implement (ImplementedBy) the OperationalManagaemnt goal.]

In addition, the following structural (global) properties must be
satisfied for the Structure-in-5 style:

− ∀ inst1, inst2 : StrategicApex → inst1 = inst2

[There is a single instance of the Strategic Apex (the same constraint also holds
for the Middle Line, the Technostructure, the Support and the Operational
Core)]

− ∀sa : StrategicApex, te : Technostructure, ml : MiddleLine,
su : Support, dep : Dependency

(dep.dependee = sa ∧ (dep.depender = te ∨ dep.depender = ml
∨dep.depender = su) → dep.type = softgoal)

[Only softgoal dependencies are permitted between the Strategic Apex as de-
pendee and the Technostructure, the Middle Line, and the Support as depen-
ders]
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− ∀sa : StrategicApex, te : Technostructure, ml : MiddleLine,
su : Support, dep : Dependency :

(dep.depender = sa ∧ (dep.dependee = te ∨ dep.dependee =
ml ∨ dep.dependee = su) → dep.type = goal)

[Only goal dependencies are permitted between the Technostructure, the Middle
Line, and the Support as dependee, and the Stategic Apex as depender]

− ∀su : Support, ml : MiddleLine, dep : Dependency
((dep.dependee = su ∧ dep.depender = ml) → dep.type = goal)

[Only task dependencies are permitted between the Middle Agency and the
Operational Core]

− ∀te : Technostructure, oc : OperationalCore, dep : Dependency
((dep.dependee = te ∧ dep.depender = oc) →

(dep.type = task ∨ dep.type = resource))

[Only resource or task dependencies are permitted between the Technostructure
and the Operational Core (the same constraint also holds for the Support)]

− ∀a : Actor, ml : MiddleLine,
(∃dep : Dependency(dep.depender = a ∧ dep.dependee =
ml) ∨ (dep.dependee = a ∧ dep.depender = ml) →
((∃sa : StrategicApex(a = sa)) ∨ (∃su : Support(a = su)∨
(∃te : Technostructure(a = te)) ∨ (∃op : OperationalCore

(a = op))

[No dependency is permitted between an external actor and the Middle Agency
(the same constraint also holds for the Operational Core)]

This specification can be used to establish that a certain i* model
does constitute an instance of the Structure-in-5 style. For example,
the i* model of Figure 1 can be shown to be such an instance, in
which the actors are instances of the Structure-in-5 actor classes (e.g.,
Direction and IT&Documentation are instances of the Strategic Apex
and the Support, respectively), dependencies are instances of Structure-
in-5 dependencies classes (e.g., Agency Global Strategy is an instance
the Strategic Management), and all above global properties are enforced
(e.g., since there are only two task dependencies between Campaigns
Management and Graphics&Edition, the fourth property holds).

3.2. Joint Venture

We describe here two alliances – Airbus and Eurocopter – [14] that will
serve to model the joint venture structure as an organizational style
and propose a semi-formal specification.

Airbus. The Airbus Industrie joint venture coordinates collaborative
activities between European aeronautic manufacturers to built and
market airbus aircrafts. The joint venture involves four partners: British
Aerospace (UK), Aerospatiale (France), DASA (Daimler-Benz Aerospace,



15

Germany) and CASA (Construcciones Aeronauticas SA, Spain). Re-
search, development and production tasks have been distributed among
the partners, avoiding any duplication. Aerospatiale is mainly respon-
sible for developing and manufacturing the cockpit of the aircraft and
for system integration. DASA develops and manufactures the fuselage,
British Aerospace the wings and CASA the tail unit. Final assembly
is carried out in Toulouse (France) by Aerospatiale. Unlike produc-
tion, commercial and decisional activities have not been split between
partners. All strategy, marketing, sales and after-sales operations are
entrusted to the Airbus Industrie joint venture, which is the only inter-
face with external stakeholders such as customers. To buy an Airbus,
or to maintain their fleet, customer airlines could not approach one
or other of the partner firms directly, but has to deal with Airbus
Industrie. Airbus Industrie, which is a real manufacturing company,
defines the alliance’s product policy and elaborates the specifications
of each new model of aircraft to be launched. Airbus defends the point
of view and interests of the alliance as a whole, even against the partner
companies themselves when the individual goals of the latter enter into
conflict with the collective goals of the alliance.

Figure 4. The Airbus Industrie Joint Venture

Figure 4 models the organization of the Airbus Industrie joint ven-
ture using the i* strategic dependency model. Airbus assumes two roles:
Airbus Industrie and Airbus Joint Venture. Airbus Industrie deals with
demands from customers, Customer depends on it to receive airbus
aircrafts or maintenance services. The Airbus Joint Venture role en-
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sures the interface for the four partners (CASA, Aerospatiale, British
Aerospace and DASA) with Airbus Industrie defining Airbus strategic
policy, managing conflicts between the four Airbus partners, defending
the interests of the whole alliance and defining new aircrafts specifica-
tions. Airbus Joint Venture coordinates the four partners ensuring that
each of them assumes a specific task in the building of Airbus aircrafts:
wings building for British Aerospace, tail unit building for CASA, cock-
pit building and aircraft assembling for Aerospace and fuselage building
for DASA. Since Aerospatiale assumes two different tasks, it is modeled
as two roles: Aerospatiale Manufacturing and Aerospatiale Assembling.
Aerospatiale Assembling depends on each of the four partners to receive
the different parts of the planes.

Eurocopter. In 1992, Aerospatiale and DASA decided to merge all
their helicopter activities within a joint venture Eurocopter. Marketing,
sales, R&D, management and production strategies, policies and staff
were reorganized and merged immediately; all the helicopter models,
irrespective of their origin, were marketed under the Eurocopter name.
Eurocopter has inherited helicopter manufacturing and engineering fa-
cilities, two in France (La Courneuve and Marignane), one in Germany
(Ottobrunn). For political and social reasons, each of them has been
specialized rather than closed down to group production together at a
single site. The Marignane plant manufactures large helicopters, Ot-
tobrunn produces small helicopters and La Courneuve concentrates
on the manufacture of some complex components requiring a specific
expertise, such as rotors and blades.

Figure 5 models the organization of the Eurocopter joint venture in
i*. As in the Airbus joint venture, Eurocopter assumes two roles. The
Eurocopter role handles helicopter orders from customers who depend
on it to obtain the machines. It also defines marketing, sales, produc-
tion and R & D strategies and policy. The Eurocopter joint venture
role coordinates the manufacturing operations of the two partners –
DASA and Aerospatiale – and depends on them for the production
of small helicopters (DASA Ottobrunn), large ones (La Courneuve)
and complex components (Marignane) such as rotors and blades. Since
Aerospatiale assumes two different responsibilities, it is considered two
roles: Aerospatiale Marignane and Aerospatiale La Courneuve. DASA
Ottobrunn and Aerospatiale Marignane depends on La Courneuve to
be supplied with complex helicopter parts.

Figure 6 abstracts the joint venture structures explored in the case
studies of Figures 4 and 5. The case studies suggest a number of
constraints to supplement the basic style:
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Figure 5. The Eurocopter Joint Venture

Figure 6. The Joint Venture Style

− Partners depend on each other for providing and receiving re-
sources.

− Operation coordination is ensured by the joint manager actor which
depends on partners for the accomplishment of these assigned
tasks.

− The joint manager actor must assume two roles: a private interface
role to coordinate partners of the alliance and a public interface
role to take strategic decisions, define policy for the private in-
terface and represents the interests of the whole partnership with
respect to external stakeholders.
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Part of the Joint Venture style specification is in the following:

Role JointManagerPrivateInterface
Goal CoordinateStyles

Role JointManagerPublicInterface
Goal TakeStrategicDecision
SoftGoal RepresentPartnershipInterests

Actor Partner

and the following structural (global) properties must be satisfied:

− ∀jmpri1, jmpri2 : JointManagerPrivateInterface
(jmpri1 = jmpri2)

[Only one instance of the joint manager]

− ∀p1, p2 : Partner, dep : Dependency
(((dep.depender = p1 ∧ dep.dependee = p2) ∨ (dep.depender =
p2 ∧ dep.dependee = p1)) → (dep.type = resource))

[Only resource dependencies between partners]

− ∀jmpri : JointManagerPrivateInterface, p : Partner,
dep : Dependency((dep.dependee = p ∧ dep.depender = jmpri)

→ dep.type = task)

[Only task dependencies between partners and the joint manager, with the joint
manager as depender]

− ∀jmpri : JointManagerPrivateInterface,
jmpui : JointManagerPublicInterface, dep : Dependency
((dep.depender = jmpri ∧ dep.dependee = jmpui)
→ (dep.type = goal ∨ dep.type = softgoal))

[Only goal or softgoal dependencies between the joint manager roles]

− ∀dep : Dependency, p1 : Partner
((dep.depender = p1 ∨ dep.dependee = p1) →

((∃p2 : Partner(p1 6= p2
∧(dep.depender = p2 ∨ dep.dependee = p2))
∨(∃jmpi : JointManagerPrivateInterface
((dep.depender = jmpi ∨ dep.dependee = jmpi))))

[Partners only have relationships with other partners or the joint manager
private interface]

− ∀dep : Dependency, jmpi : JointManagerPrivateInterface
((dep.depender = jpmi ∨ dep.dependee = jpmi) →
((∃p : Partner((dep.depender = p ∨ dep.dependee = p)))∨
(∃jmpui : JointManagerPublicInterface
((dep.depender = jmpui ∨ dep.dependee = jmpui))))

[The joint manager private interface only has relationships with the joint man-
ager public interface or partners]
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4. Software Qualities for Multi-Agent Systems

Generally the following software qualities are addressed to character-
ized multi-agent system architectures:

Predictability [60]. Autonomous components like agents have a high
degree of autonomy [61] in the way that they undertake action and com-
munication in their domains. It can be then difficult to predict individ-
ual characteristics as part of determining the behavior of a distributed
and open system at large. Generally, predictability of multi-agent sys-
tems is in contrast with the agents capabilities to be adaptive [27]
and responsive [13]: agents must be predictable enough to anticipate
and plan actions while being responsive and adaptive to unexpected
situations.

Security. Agents are often able to identify their own data and knowl-
edge sources and they may undertake additional actions based on these
sources [60]. Protocols and strategies for verifying authenticity for these
data sources by individual agents are an important concern in the eval-
uation of overall system quality since, in addition to possibly misleading
information acquired by agents, there is the danger of hostile external
entities spoofing the system to acquire information accorded to trusted
domain agents.

Important issues on multi-agent systems security concern [3, 29, 7]:
authentication, network security, data security, and protection from ma-
licious hosts. Authentication of agents makes it possible for an agent
to ascertain an origin of received messages, so that intruders are not
able to masquerade as some one else. Network security services ensure
that network packets do not get improperly read and modified by unau-
thorized intruders: an agent is able to verify that a received messages
has not been modified in transit. Data security allows an agent to hide
some of its data and capabilities from the other agents. The problem
of malicious hosts involves attacks on the mobile agents from malicious
hosts or intermediaries: if a host is to execute a process, the process
can have no secrets from that host and there is nothing to prevent the
host from analyzing the program and running an altered form of the
program.

Adaptability. Agents may be required to adapt to modifications in
their environment. They may include changes to the component’s com-
munication protocol or possibly the dynamic introduction of a new
kind of component previously unknown or the manipulations of existing
agents.
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Generally, adaptability of multi-agent systems depends on the ca-
pabilities of the single agents to learn and predict the changes of the
environments in which they act [59], and also their capability to make
diagnosis [30], that is being able to detect and determine the causes of
a fault based on its symptoms. However, successful multi-agent systems
tend to balance the degree of reactivity and predictability of the single
agents with their capabilities to be adaptive.

Coordinability. Agents are not particularly useful unless they are able
to coordinate with other agents (see [43] for recent contributions). In
multi-agent systems coordination is generally [32] used to distribute
expertise, resources or information among the agents (agents may have
different capabilities, specialized knowledge, different sources of in-
formation, resources, responsibilities, limitations, charges for services,
etc.), solve interdependencies between agents’ actions (interdependence
occur when goal undertaken by individual agents are related), meet
global constraints (when the solution being developed by a group of
agents must satisfy certain conditions if is to be deemed successful),
and to make the system efficient (even when individuals can function
independently, thereby obviating the need for coordination, information
discovered by one agent can be of sufficient use to another agent that
both agents can solve the problem twice as fast).

Coordination can be realized in two ways:

− Cooperativity. Agents must be able to coordinate with other en-
tities to achieve a common purpose or simply their local goals. Co-
operation can either be communicative in that the agents commu-
nicate (the intentional sending and receiving of signals) with each
other in order to cooperate or it can be non-communicative [12].
In the latter case, agents coordinate their cooperative activity by
each observing and reacting to the behaviour of the other. In delib-
erative communicating systems, agents jointly plan their actions
so as to cooperate with each other.

− Competitivity. Deliberative negotiating systems [12] are like
deliberative systems, except that they have an added dose of com-
petition. The success of one agent implies the failure of others.

Availability. Agents that offer services to other agents/humans (see
for instance the FIPA standards [17]) must implicitly or explicitly guard
against the interruption of offered services. Availability must actually
be considered a sub-attribute of security [8]. Nevertheless, we deal
with it as a top-level software quality attribute due to its increasing
importance in multi-agent system design.
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Fallibility-Tolerance. A failure of one agent (e.g., the inaccessibil-
ity to broker agents in [34]) does not necessarily imply a failure of
the whole system. The system then needs to check the completeness
and the accuracy of data, information and knowledge transactions and
flows. To prevent system failure, different agents can have similar or
replicated capabilities and refer to more than one component for a
specific behavior.

Typically, in multi-agent systems failures of agents depends on co-
ordination and interaction with external systems. For instance, inter-
fering among agents’ activities [32], the increasing number of incoming
agents [6], and different standards adopted [17].

Modularity [52] increases efficiency of task execution, reduces com-
munication overhead and usually enables high flexibility. On the other
hand, it implies constraints on inter-module communication.

Aggregability. Some agent components are parts of other agent com-
ponents. They surrender to the control of the composite entity. This
control results in efficient tasks execution and low communication over-
head, however prevents the system to benefit from flexibility [48].

5. Architectures for Mobile Robot Control: A Case Study

This section presents the application of the structure-in-5 and joint
venture styles and compares them to some conventional architectures.
We illustrate the comparison with the classical mobile robot case study
often used in the software engineering literature (see e.g., [51]) for its
simplicity and pedagogical aspects.

Mobile robot control systems must deal with external sensors and
actuators. They must respond in time commensurate with the activities
of the system in its environment. Consider the following activities [51]
an office delivery mobile robot typically has to accomplish: acquiring
the input provided by sensors, controlling the motion of its wheels and
other moveable part, planning its future path. In addition, a number
of factors complicate the tasks: obstacles may block the robot’s path,
sensor inputs may be imperfect, the robot may run out of power, me-
chanical limitations may restrict the accuracy with which the robot
moves, the robot may manipulate hazardous materials, unpredictable
events may leave little time for responding.
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5.1. Agent Software Qualities for Mobile Robot

With respect to the activities and factors enumerated above, the follow-
ing agent software qualities can be stated for an office delivery mobile
robot’s architecture [51].

− SQ1 - Coordinativity. A mobile robot has to coordinate the ac-
tions it deliberately undertakes to achieve its designated objective
(e.g., collect a sample of objects) with the reactions forced on it
by the environment (e.g., avoid an obstacle).

− SQ2 - Predictability. Never will all the circumstances of the
robot’s operation be fully predictable. The architecture must pro-
vide the framework in which the robot can act even when faced
with incomplete or unreliable information (e.g., contradictory sen-
sor readings).

− SQ3 - Failability-Tolerance. The architecture must prevent
the failure of the robot’s operation and its environment. Local
problems like reduced power supply, dangerous vapors, or unex-
pectedly opening doors should not necessarily imply the failure of
the mission.

− SQ4 - Adaptability. Application development for mobile robots
frequently requires experimentation and reconfiguration. Moreover,
changes in robot assignments may require regular modification.

5.2. Classical Styles

For sample classical solutions, we examine three major conventional
architectures – the layered architecture [54], control loops [40] and task
trees [53] – that have been implemented on mobile robots.

− Layered Architecture. A classical layered architecture is de-
picted in Figure 7. At the lowest level, reside the robot control
routines (motors, joints, ...). Levels 2 and 3 deal with the in-
put from the real world. They perform sensor interpretation (the
analysis of the data from one sensor) and sensor integration (the
combined analysis of different sensor inputs). Level 4 is concerned
with maintaining the robot’s model of the world. Level 5 manages
the navigation of the robot. The next two levels, 6 and 7, schedule
and plan the robot’s actions. Dealing with problems and replan-
ning is also part of level 7 responsibilities. The top level provides
the user interface and overall supervisory functions.
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Supervisor

Global Planning

Control

Navigation

Real-World Modeling

Sensor Integration

Sensor Interpretation

Robot Control

Environment

Figure 7. Mobile robot layered architecture [51]

− Control loop. A controller component initiates the robot actions.
Since mobile robots have responsibilities with respect to their oper-
ational environment, the controller also monitors the consequences
of the robot actions adjusting the future plans based on the return
information (Figure 8).

Actuators
 Sensors


Environment


Controller


Active Robot Components


Figure 8. Mobile robot control loop architecture [40]
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− Task Trees.

The architecture is based on hierarchies of tasks. Parent tasks
initiate child tasks. For instance the task Gather Object initiates
the tasks Go to Position, Grab Object, Lift Object, the task Go to
Position initiates Move Left and Move Forward and so on. The
software designer can define temporal dependencies between pairs
of tasks. An example is: ”Grab Object must complete before Lift
Object starts.” These features permit the specification of selective
concurrency.

5.3. Organizational Styles

We are developing organizational architectures for a miniature office
delivery robot using the Lego r Mindstorms Robotics Invention Sys-
tems [35] and the Legolog programming platform [37] based on the
Golog Planner [38]. Currently, we are testing two architectures work-
ing with abstractions reminiscent of those encountered in the layered
architecture: the structure-in-5 and the joint-venture.

− Structure-in-5. Figure 9 depicts a structure-in-5 robot archi-
tecture in i*. The moveable parts controller component is the
operational core managing the robot motors, joints, wheels, etc.
The Global Planner is the strategic apex planning and scheduling
the robot’s mission. The sensors compose the support component
capturing real world raw information from hardware multiple sen-
sors and integrating it into a coherent real-time interpretation for
the Navigator component. It also gives direct external feedback
to the Moveable Parts Controller. The Real World Modeler is
the technostructure concerned with planning the mission paths,
establishing and maintaining the robot’s model of the world and
checking the robot’s mission environment to ensure predictability
management. The Navigator is the middle agency component, the
central intermediate module coordinating the movements of the
robot to assume failability tolerance and adaptability manage-
ment.

− Joint Venture. Following the style depicted in Figure 6, the robot
architecture in Figure 10 is organized around a joint manager
assuming two roles: the control interface role defines the robot’s
mission and quality strategies, i.e., predictability, adaptability and
failability tolerance; the coordinator deals with coordinativity su-
pervising the other agent components: a planner defining the mis-
sion planning, a monitors observing and checking the environment
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Figure 9. A structure-in-5 mobile robot architecture

for landmarks, a motor controller to run the robot’s parts and a
perceptor subsystem that receives sensors data and interprets it.
Each of these components also interact directly with each other to
exchange information: the Motor Controller receives direct feed-
back from the perceptor, planning updates from the planner and
adjust dynamically the robot’s moves with respect to information
provided by the Monitor that is also providing the perceptor with
real-time mission information.

5.4. Evaluation

In this section, we evaluate each of the five styles - control loop, layered
architecture, task trees, structure-in-5 and joint-venture described in
Sections 5.2 and 5.3 with respect to the four agent software quality
attributes identified in Section 5.1.

− Coordinativity.

The simplicity of the control loop is a drawback when dealing
with complex tasks since it gives no leverage for decomposing the
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Figure 10. A joint venture mobile robot architecture

software into more precise cooperative agent components.
The layered architecture style suggests that services and requests
are passed between adjacent agent layers. However, information
exchange is actually not always straight-forward. Commands and
transactions may often need to skip intermediate layers to establish
direct communication and coordinate behavior.
A task tree permits a clear-cut separation of action and reaction.
It also allows incorporation of concurrent agents in its model that
can proceed at the same time to. Unfortunately, components have
little interaction with each other.
Unlike the previous architectures, the structure-in-5 separates the
data (sensor control, interpreted results, world model) from con-
trol (motor control, navigation, scheduling, planning and user-level
control). The architecture improves coordinativity among compo-
nents by differentiating both hierarchies - data is implemented by
the support component, while control is implemented by the op-
erational core, technostructure, middle agency and strategic apex
- as shown in Figure 9.
In the joint venture, each partner component interacts via the
joint manager for strategic decisions. Components indicate their
interest, and the joint manager returns them such strategic infor-
mation immediately or mediates the request to some other partner
component.
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− Predictability.

The control loop only reduces the unpredictable through iteration.
Actions and reactions eliminate possibilities at each turn. Unfor-
tunately, more subtle steps are needed, the architecture offers no
framework for delegating them to separate agent components.
In the layered architecture, the existence of abstraction layers ad-
dresses the need for managing unpredictability. What is uncertain
at the lowest level become clear with the added knowledge in the
higher layers. How task trees address predictability is less clear.
If imponderables exist, a tentative task tree can be built, to be
adapted by exception handlers when the assumptions it is based
on turn out to be erroneous. Like in the layered architecture, the
existence of different abstraction levels in the structure-in-5 ad-
dresses the need for managing unpredictability. Besides, contrary
to the layered architecture, higher levels are more abstract than
lower levels: lower levels only involve resources and task depen-
dencies while higher ones propose intentional (goals and softgoals)
relationships. In the joint-venture, the central position and role of
the joint manager is a means for resolving conflicts and prevent
unpredictability in the robot’s world view and sensor data inter-
pretation.

− Failability-Tolerance.

In the control loop, it is supported in the sense that its simplicity
makes duplication of components and behavior easy and reduces
the chance of errors creeping into the system.
In the layered architecture, failability-tolerance could be served,
when the robot architect strives not do something, by incorporat-
ing many checks and balances at different levels into the system.
Again the drawback is that control commands and transactions
may often need to skip intermediate layers to check the system
behavior.
In the task trees, exception, wiretapping and monitoring features
can be integrated to take into account the needs for integrity,
reliability and completeness of data.
In the structure-in-5, checks and control mechanisms can be inte-
grated at different abstractions levels assuming redundancy from
different perspectives. Contrary to the layered architecture, checks
and controls are not restricted to adjacent layers. Besides, since the
structure-in-5 permits to separate the data and control hierarchies,
integrity of these two hierarchies can also be verified independently.
The jointure venture, through its joint manager, proposes a central
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message server/controller. Like in the task trees, exception mech-
anism, wiretapping supervising or monitoring can be supported
by the joint manager to guarantee non-failability, reliability and
completeness.

− Adaptability.

In the control loop, the robot components are separated from each
other and can be replaced or added independently. Unfortunately,
precise manipulation has to take place inside the components, at
a level detail the architecture does not show.
In the layered architecture, the interdependencies between layers
prevent the addition of new components or deletion of existing
ones. The fragile relationships between the layers can become more
difficult to decipher with change.
Task trees, through the use of implicit invocation, make incremen-
tal development and replacement of component straightforward: it
is often sufficient to register new components, no existing one feels
the impact.
The structure-in-5 separates independently each typical compo-
nent of the robot architecture isolating them from each other and
allowing dynamic manipulation. The structure-in-5 is restricted to
no more than 5 major components then, as in the control loop,
more refined tuning has to take place inside the components.
In the joint venture, manipulation of partner components can be
done easily by registering new components to the joint manager.
However, since partners can also communicate directly with each
other, existing dependencies should be updated as well. The joint
manager cannot be removed due to its central position.

Table II summarizes the strengths and weaknesses of the five re-
viewed architectures.

Table II. Strengths and Weaknesses of Robot Architectures

Loop Layers Task Tree S-in-5 Joint-Vent.

Coordinativity - - +- ++ ++

Predictability +- + +- + ++

Failability-Tol. + +- + + +

Adaptability +- +- + + +-
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The layered architecture gives precise indications as to the compo-
nents expected in a robot. The other two classical architectures (control
loop and task trees) define no functional components and concentrate
on the dynamics. The organizational styles (Structure-in-5 and Joint
Venture) focus on how to organize components expected in a robot
but also on the intentional and social dependencies governing these
components. Exhaustive evaluations are difficult to be established at
that point. But, considering preliminary results we can deduce in Ta-
ble II, from the discussion in the present section, we can argue that the
Structure-in-5 and the Joint-Venture, since they are patterns governed
by organizational characteristics, fit better systems and applications
that need open and cooperative components like the mobile robot
example.

6. Selecting an Architecture

To cope with software quality attributes and select the architecture
of the system, we go through a means-ends analysis using the non
functional requirements (NFRs) framework2. We refine the identified
attributes to sub-attributes that are more precise and evaluates al-
ternative architectural styles against them, as shown in Figure 11.
The analysis is intended to make explicit the space of alternatives
for fulfilling the top-level attributes. The styles are represented as
operationalized attributes (saying, roughly, “make the architecture of
the multi agent system pyramid, structure-in-5, joint venture, arm’s-
length-based, . . . ”).

The evaluation results in contribution relationships from the archi-
tectural styles to the quality attributes, labeled “+”, “++”, “–”, “–
–”. Design rationale is represented by claims drawn as dashed clouds.
They make it possible for domain characteristics (such as priorities) to
be considered and properly reflected into the decision making process,
e.g., to provide reasons for selecting or rejecting possible solutions (+,
–). Exclamation marks (! and !!) are used to mark priority attributes
while a check-mark “

√
” indicates an accepted attribute and a cross

“×” labels a denied attribute.
Eventually, the analysis shown in Figure 11 allows us to choose the

structure-in-5 architectural style for our mobile robot example (the
operationalized attribute is marked with a “

√
”). The analysis uses the

correlation catalogue depicted in Table II and the top level quality
attributes identified.

2 In the NFR framework, software quality attributes are called non functional
requirements represented as softgoals (cloudy shapes).
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Figure 11. Partial Architecture Evaluation for Organizational Styles

Relationships types (AND, OR, ++, +, –, and – –) between quality
attributes are formalized to offer a tractable proof procedure. AND/OR
relationships corresponds to the classical AND/OR decomposition rela-
tionships: if attribute A0 is AND-decomposed (respectively, OR-decom-
posed) into A1, A2, . . . , An then all (at least one) of the attributes must
be satisfied for the attribute A0 to be satisfied. So for instance, in
Figure 11 attribute Coordinativity is AND-decomposed into attributes
Distributivity, Participability, and Commonality. Relationships “+” and
“– ” model respectively a situation where an attribute contributes
positively or negatively towards the satisfaction of another attribute.
for instance, in Figure 11, Joint Venture contributes positively to the
satisfaction of Distributivity attribute and negatively to the Reliability.
In addition, relationships “++” and “– –” model a situation where the
satisfaction of an attribute implies the satisfaction or denial of another
goal. In Figure 11, for instance, the satisfaction of attribute Structure
in 5 implies the satisfaction of attributes Reliability and Redundancy.

The analysis for selecting an architecture is based on propagation
algorithms presented in [23]. Basically, the idea is to assign a set of
initial labels for some attributes of the graph, about their satisfiability
and deniability, and see how this assignment leads to the labels prop-
agation for other attributes. In particular, we adopt from [23] both
qualitative and a numerical axiomatization for goal (attributes) mod-
eling primitives and label propagation algorithms that are shown to be
sound and complete with respect to their respective axiomatization. In
the following, a brief description of the qualitative algorithm.
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To each attribute A, we associate two variables Sat(A), Den(A)
ranging in {F, P, N} (full, partial, none) such that F > P > N ,
representing the current evidence of satisfiability and deniability of
the attribute A. E.g., Sat(Ai) ≥ P states there is at least a partial
evidence that Ai is satisfiable. Starting from assigning an initial set of
input values for Sat(Ai), Den(Ai) to (a subset of) the attributes in
the graph, we propagate the values through the propagation rules of
Table III. Propagation rules for AND (respectively OR) relationship
are min-value function for satisfiability (max-value function) and max-
value function (min-value function) for deniability. A dual table is given
for deniability propagation.

Table III. Propagation rules for satisfiability in the qualitative framework. A
dual table is given for deniability propagation.

G2
+7−→ G1 G2

−7−→ G1 G2
++7−→ G1 G2

−−7−→ G1

Sat(G1) min{Sat(G2), P} N Sat(G2) N
Den(G1) N min{Sat(G2), P} N Sat(G2)

The schema of the algorithm is described in Figure 12. Initial,
Current and Old are arrays of pairs 〈Sat(Ai), Den(Ai)〉, one for each
Ai of the graph, representing respectively the initial, current and pre-
vious labeling status of the graph.

The array Current is first initialized to the initial values Initial
given in input by the user. At each step, for every attribute Ai, 〈Sat(Ai),
Den(Ai)〉 is updated by propagating the values of the previous step.
This is done until a fixpoint is reached, that is, no updating is mode
possible (Current == Old).

The updating of 〈Sat(Ai), Den(Ai)〉 works as follows. For each rela-
tion Ri incoming in Gi, the satisfiability and deniability values satij and
denij derived from the old values of the source attributes are computed
by applying the rules of Table III. Then, it is returned the maximum
value between those computed and the old values.

We are currently working on applying different techniques, such as
Dempster Shafer theory [44], to take into consideration the sources of
information in the propagation algorithms. This will allow us to con-
sider, for instance, the reliability and/or the competence of a evidence
source.
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1 Current=Initial;
2 do
3 Old=Current;
4 for each Ai do
5 Current[i] = Update label(i, Old);
6 until not (Current==Old);
7 return Current;
8 for each Rj s.t. target(Rj) == Ai do
9 satij = Apply Rules Sat(i, Rj , Old);
10 denij = Apply Rules Den(Ai, Rj , Old);
11 return 〈 max(maxj(satij), Old[i].sat),
12 max(maxj(denij), Old[i].den) 〉;

Figure 12. Schema of the label propagation algorithm.

7. A Requirements-Driven Methodology

This research is conducted in the context of the architectural design
phase of Tropos [4], a software system development methodology which
is founded on the concepts of actor and goal.

Tropos describes in terms of the same concepts the organizational
environment within which a system will eventually operate, as well
as the system itself. The proposed methodology supersedes traditional
development techniques, such as structured and object-oriented ones
in the sense that it is tailored to systems that will operate within an
organizational context and is founded on concepts used during early
requirements analysis. To this end, we adopt the concepts offered by
i* [64]. Tropos spans four phases of software development:

− Early requirements, concerned with the understanding of a prob-
lem by studying an organizational setting; the output is an orga-
nizational model which includes relevant actors, their goals and
dependencies.

− Late requirements, in which the system-to-be is described within
its operational environment, along with relevant functions and
qualities.

− Architectural design, in which the system’s global architecture
is defined in terms of subsystems, interconnected through data,
control and dependencies.

− Detailed design, in which behaviour of each architectural compo-
nent is defined in further detail.
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8. Related Work

Literature on MAS offers many contributions on using organization
theory concepts to model and design MAS.

In [18] Fox introduces the idea of using organization as a metaphor
that can be useful in helping to describe, study, and design distributed
software systems. In particular, he studies results from managements
science to identify efficient agent organizations. The motivation of our
work is similar: we focus on how to use concepts from organization
theory to model multi-agent organization and how to apply successful
organization structures for designing MAS.

The organizational perspective has been increasingly accepted within
MAS community, and mathematical and computational methods have
been progressively used to develop a better understanding of the fun-
damental principles of organizing MAS [36].

Among others, TAEMS (Task Analysis, Environment Modeling and
Simulation) [11, 10] is a modeling framework for representing coordina-
tion problems in a formal, domain-independent way. A TAEMS model
can be used for both the analysis and simulation of coordination algo-
rithms, and also to design organizational structures. Although, TAEMS
can be extremely useful for detailed design (modeling sophisticated
capabilities, alternative methods, activity-related effects, and complex
interactions), it is not suitable for architectural design, where more
abstract concepts, such as actor, goal and strategic dependencies are
needed.

Other research work on multi-agent systems offers contributions on
using organization concepts such as agent (or agency), group, role,
goals, tasks, relationships (or dependencies) to model and design system
architectures.

Aalaadin [15] uses concepts such as agent, group, and role to model
the organizational structure of multi-agent systems. By this model,
different types of organizational behavioral requirement patterns have
been defined and formalized [16]. Similarly, in Gaia methodology [62],
role and interaction models are used for analyzing the understanding of
the system and its structure. The organization of the system is viewed
as a collection of roles, that stand in certain relationship on another,
and take part in systematic, institutionalized patterns of interactions
with other roles. The main difference with our approach is that in both
Gaia and Aalaadin, the organization description does not includes the
goals associated to the agents, groups, and roles, namely goals are not
part of the organization description.

Multi-agent organization theory [33] uses components such as sce-
nario, organizational position, goals, plans, membership, and constraints
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to specify organizational structure. Although, the theory can be used
for designing multi-agent systems, its principle aim is extending orga-
nization theory to the design and control of multi-agent systems. In
particular, a theory that allows the designer to embed the design of
intelligent agents and multi-agents systems into the theory of organi-
zational design.

Finally, other research results in multi-agent organizational design
includes Self-organization Design [31] and Teamwork Models [39].

Self-organization Design is based on the idea to have an organiza-
tion in which one or more members can monitor the organizational
structure’s effectiveness in directing organizational activities, design
new organizational structures appropriate to new situation, evaluate
possible organizations and select the best one, and implement and exe-
cute the new structure over the network while preserving the network’s
problem solving activities. [55, 56, 57] propose a predictive model of
Task-Organization-Performance, which, given a task, allows one to gen-
erate the possible organizations to solve the problem, and evaluate each
organization.

Teamwork models [58], based on the joint intentions framework in-
troduced by Levesque et al. [39], allow to design multi-agent systems in
which individual agents are provided with an explicit representation of
the team goals and plans, an underlying explicit model of team activity.

9. Conclusion

We are working towards the definition of a collection of specific orga-
nizational architecture styles for designing agent-based systems. Since
the fundamental concepts of agent systems are intentional and orga-
nizational, rather than implementation-oriented, multi-agent systems
(MAS) can be viewed as organizational structures composed of au-
tonomous and proactive agents that interact to achieve common or
private goals.

We propose to use human organizations as a metaphor to sug-
gest a set of generic styles for agent systems, with a preference for
organizational design theories over social emergence theories.

To this end, the paper has proposed architectural styles for MAS
inspired from organization theory that describes the internal structure
and design of organizations and from theories for strategic alliances
that model the collaboration of independent organizations that pursue
agreed goals.

In particular we have detailed and adapted the structure-in-5, a well-
understood organizational style used by organization theorists and the
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joint venture, used to describe cooperative strategies in the business
world. Both styles have been modeled in term of intentional and so-
cial primitives from case studies describing real world organizations. A
semi-formal specification has been also given for each of them in Formal
Tropos.

The contribution also includes the presentation and evaluation of
software qualities identified for these styles and a comparison of orga-
nizational and conventional styles conducted on a mobile robot case
study taken from the Software Engineering literature. We have also
presented a framework to select architectural styles with respect to
identified software quality attributes.

Future research directions will extend and formalize precisely the
catalogue of organizational styles and characterize specifically how a
particular model can be seen as an instance of a style.

We are also interpreting and formalizing in the same intentional
and social way the lower-level conventional architectural elements in-
volving (software) components, ports, connectors, interfaces, libraries
and configurations.

The organizational styles should eventually constitute an architec-
tural macro level. At a micro level we will focus on the notion of social
agent patterns. Many existing patterns can be incorporated into system
architecture, such as those identified in [20, 47]. For agent inherent
characteristics, patterns for distributed, and open architectures like
the broker, matchmaker, embassy, mediator, wrapper, mediator are
more appropriate [28, 60]. They will detail how goals and dependencies
identified in an organizational style can be refined and achieved.
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