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ABSTRACT

This paper describes an agent-based artificial market system whose
underlying interaction protocols provide advanced features. Using
the system, actors (i.e., customers and merchants) can delegate a
variety of tasks to persond intelligent agents that act as their
artificial employees. Contrary to other approaches, where a new
agent is launched when their associated actors intend to perform a
buying or selling transaction and "lives' only while this transaction
is processed, our approach builds on a personalization of agents
that permanently "live" in the market representing their actors
interests. Beyond just requesting and proposing an offer, agents in
our system maintain a profile of their owners, which is updated
upon the actor-agent interaction type. Furthermore, they can
proactively ask their owners' permission to initiate a transaction
(e.g., when a new product, which match one’s profile, appears in
the market). The system is also enabled with a highly interactive
multiple criteria decision making tool that can handle ill-structured
information during a purchase transaction, and perform a
progressive synthesis and comparative evaluation of the existing
proposals.

Keywords
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1. INTRODUCTION

It is broadly admitted that characteristics of software agents such as
autonomy, proactiveness and “intelligence’, together with their
ability to cooperate, make them suitable for the delegation of
traditional commercial transactions [4, 13]. Research work in
agent-mediated electronic commerce has dealt with a diversity of
tasks involved in buying and selling goods and services in an
electronic market (e-market), while there is aready a plethora of
systems automating tasks such as product brokering, merchant
brokering and negotiation [3].

This paper describes an agent-mediated artificial market system
whose underlying interaction protocols provide advanced features.
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Its overall framework is not based on pre-classified ads; instead,
the systems' agents collaborate in rea-time mode. Using the
system, actors (i.e.,, customers and merchants) delegate various
tasks to their personal intelligent agents, which act as artificial
employees. Contrary to the mgjority of the already implemented
systems, the one presented here addresses efficiently many
important issues.

More specifically, our approach builds on the features of
proactiveness and semi-autonomy of all software agents involved.
Agents can take the initiative to contact their actorsin order to start
a transaction that seems “interesting” to them (e.g., when a new
product, which matches one's profile, appears in the market), or
trigger an actor’ s action (e.g., they can inform their merchant that a
specific offer is of no interest in the market for the last month). We
argue that semi-autonomy of agents assures the right level of
control for the actions they could take; a fully autonomous agent
could cause problems in such environments.

Second, our framework is based on a long (or even permanent)
existence of agents in the e-market. In other words, agents do not
“live’ only during a specific transaction but much longer, upon the
subscription paid by their owners at the time they were launched
(i.e., an actor may “hire” an agent for a month, a year, etc.). Thisis
highly associated with the personalization of the agents involved,
through the maintenance of each actor’'s profile. For instance, a
customer’'s agent can be assigned with a number of generd
interests (e.g., classical music, cruises) and preferences (e.g., one
may didike the color black on any product) of its actor, which can
be enriched with more detailed ones each time the customer
initiates a transaction, takes a decision to buy a certain product
from a certain supplier, etc.

Third, our system enables the e-market’s seller agents to refine
(some of) a customer’s purchase criteria during atransaction, argue
in favor or against them, or even bring up new information to
persuade him/her to accept their offers.

Finaly, the approach proposed here is able to handle incomplete,
inconsistent and conflicting information during a purchase
transaction, and perform a progressive synthesis and comparative
evaluation (across a set of attributes) of the existing proposals. This
is performed through the use of a highly interactive tool, based on
multiple criteria decision theory, which enables customers easily
examine aternative scenarios (by selecting which of the proposals
atributes to be taken into account) and recommends the best
solution according to the information at hand.

The remainder of the paper is structured as follows. Section 2
illustrates the architecture of the system’s agents involved. Section



3 describes the set of interactions taking place in the artificial
market, by analyzing activities and messages passed. Section 4
focuses on the multiple criteria decision making process for a
purchase transaction. Finally, Section 5 comments on related work
and outlines application building details and future work
directions. It is made clear at this point that issues such as ordering,
security, payment and delivery, while equally important in
commercia transactions, do not fall in the scope of this paper.

2. AGENTSARCHITECTURE

The development of the software agents proposed in our system is
based on a generic and reusable architecture, conceived after
examining the pros and cons of existing approaches (see, for
instance, [10, 12, 16]). Even if the two agent types involved do not
have the same functionality, they are built on the same basic
architecture principles (see Figures 1 and 2); their constituent
modules are tailored, according to their specific type (e.g., the
decision making module of a seller agent is usually simpler than
that of a purchaser agent). The architecture of each agent type is
described in detail below.

2.1 The purchaser agent

A purchaser agent is composed of three modules (namely, the
communication, coordination and decision making modules),
which run concurrently and intercommunicate by exchanging
internal (i.e., intra-agent) messages. A purchaser agent remainsidle
while no messages arrive at its communication module. As soon as
amessage arrives, the communication module (after transforming it
to an intra-agent message) sends it to the coordination module
using a message queuing mechanism. All modules adopt this
behavior and remain idle while no messages to be processed are
available. The same intra-agent queuing mechanism facilitates al
three modul es.
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Figure 1: Architecture of a purchaser agent.

The communication module of a purchaser agent is responsible for
the agent’ s interaction with its environment, that is the seller agents
and the human user it assists. It sends and receives messages, while
internally interacts with the coordination module. Its functionality
is as follows: an internal receiver transforms each internally
gueued message (produced by the coordination module) to an inter-
agent message and, in the sequel, storesit to the outgoing messages
gueue. In the case of selective communication, it aso adds the

receiving agents addresses. An external receiver handles the
opposite case, by transforming each external message received to
an internal one and adding it to the incoming messages queue.
Finally, a message transmitter monitors the incoming and outgoing
queues, sending the queued messages to its coordination module, to
another agent or to its human user, accordingly.

The coordination module handles the parts of the cooperation
protocol that concern any type of interaction between (i) the
purchaser and the seller agents, and (ii) the purchaser agent and the
customer it assists. The related message types (presented in the next
section) pass through the purchase coordinator component. In
addition, the coordination module keeps track of the agent’'s
finished tasks (that is, the purchase history) and the tasks being
currently processed (e.g., a purchase evauation for a specific
product can be momentarily suspended due to searching for
supplementary information). As shown in Figure 1, the module
interacts with both the communication and the decision making
modules. For instance, each time the decision making module
needs to interact with the customer, it first sends a message to the
coordination module which, in turn, attaches additional information
(if required) and forwards it to the communication module.
Similarly, the coordination module may filter the content of a
received message before forwarding the related data to the decision
making module.

In many cases, the purchaser agent has to access its purchase
database, which contains all necessary information about the
sellers (e.g., the products each seller agent provides), user choices
(e.g., criteria, features, preferences and constrains for products the
customer is interested in) and finaly, purchase categories (the
mSQL relational database is used). Retrieving the appropriate data,
a purchaser agent is aware of which sellers it can buy a product
from, the products each seller agent provides, the customer choices
about a specific product, and the history of the buying transactions
made so far. Moreover, an update of such a purchaser agent's
database can occur asynchronoudly, in that the customer may add,
remove or refine items of the corresponding lists at any time,
independently of the current transaction.

Finally, the decision making module is composed of three
components, namely an inference mechanism, a library of offer
synthesis strategies, and the offers synthesis graph. It actualy
deploys the agent’s reasoning mechanism that: (i) implements the
behavior of the agent by using appropriate rules; for instance, the
agent acts proactively upon the reception of some messages, sent
by seller agents (see Section 3), and (ii) performs a synthesis and a
comparative evaluation of the offers proposed by the seller agents;
this process ultimately aims at finding the best offer (to be then
recommended to the customer), according to the customer's
choices and the information at hand. The inference mechanism is
supplied with the necessary knowledge to perform the above tasks.

Note that a strategy encapsulates the appropriate information in
order for the agent to perform the above comparative evauation. It
prescribes the algorithms to be followed in: (i) conflicting or
inconsistent cases, for instance, stating whether the purchaser agent
should aert its master in case of a conflict, or simply ignore it and
conclude the issue with the consistent parts of the existing
information (semi-autonomy of the agent), (ii) the sequencing of
the evaluation process, that is specifying when to interact with the



customer, whether iterations are alowed, etc., and (iii) the
underlying multiple criteria decision making process.

Due to the variety of the information and mechanisms involved, the
processes of offer synthesis and evaluation are described in detail
in Section 4.

2.2 Theseller agent

The architecture of a seller agent is similar to that of a purchaser
(Figure 2). The communication module has exactly the same
functionality with the homonymous module of the purchaser agent.
The coordination module is responsible for the cooperation
between (i) the seller and the purchaser agents, and (ii) the seller
and its merchant. A selling coordinator manages the exchange of
the related messages (see next section). The selling database keeps
records of the products specification, and potential or regular
customers (based on the history of previous transactions) to be
informed about the release of a new or promoted product.
Merchants may update the related databases of their software
agents at any time.
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Figure 2: Architecture of a seller agent.

Finaly, the decision making module consists of an inference
mechanism and a library of offer building strategies. As in a
purchaser agent, the inference mechanism of a seller aso
implements its proactive behavior (see next section). Furthermore,
it uses the appropriate strategies to build offers for a requested or
promoted product (see Section 4). Each such strategy reflects the
selling policy to be followed by the seller agent, and may depend
on the specific customer, product to be sold, merchant status, and
so on (for instance, a different policy may be adopted when selling
anew than a second-hand car).

3. TOWARDSAN ARTIFICIAL MARKET
The proposed e-market system is based on a network of
communicating agents that act as artificial employees of the actors
involved (i.e.,, customers and merchants), in that agents perform a
series of tasks for them. Due to the diversity and complexity of the
associated transactions, a proper definition of the interactions
between humans and software agents, as well as a provision of
procedures for data processing automation, are of high
importance.

Agents interact by exchanging messages of various types. Each
message type conveys certain semantics associated to a particular
task of an e-market transaction. Each time an agent receives a
message, it immediately knows what reasoning procedure it must
activate in order to set up the most appropriate answer or action (if
any) to the message received, or what kind of update it has to
perform in its domain specific knowledge. In other words, each
message type concerns a specific kind of interaction between the
different kinds of participantsin our framework. Table 1 provides a
list of these messages, together with a short description of them.

Message Type | Sender | Receiver Description

It conveys information about the
seller_Ag  |customer’s specifications for a product
to be purchased

offerRegMsg purchaser_Ag

It concerns an offer proposal; it is
purchaser_Ag | actually a reply to an offer request (see
previous message type)

offerPropMsg seller_Ag

Used to describe customer’s criteria,
purchaser_Ag |preferences and constraints for a
certain product to be purchased

custSpecMsg customer

Used to request and provide,
respectively, supplementary
information regarding the customer’s

custSpecUpdRegMsg| purchaser_Ag customer

opinion about features, preferences and

custSpecUpdAnsMsg| customer | purchaser_Ag |arguments introduced by a seller agent

Initiation of a purchase transaction by a

urchInitMs
P g customer

customer purchaser_Ag

They concern the interaction that is
proactively initiated by a purchaser
agent’s request about whether the

purchInitRegMsg purchaser_Ag customer

customer is interested in purchasing a
purchaser_Ag |(new or promoted) product that
matches his/her interests

purchInitAnsMsg customer

Used to describe a merchant’s
seller_Ag  |products; it conveys their specification
(similar to custSpecMsg above)

merSpecMsg merchant

These concern the interaction that is
proactively initiated by a seller to get
extra information (e.g., when new

merSpecUpdReqMsg seller_Ag merchant

features appear in a related offer
seller_Ag request) or up-date existing one (e.g.,
when its offers get discarded)

merSpecUpdAnsMsg merchant

Sent whenever the database of a seller
purchaser_Ag |agent is updated with a new or
promoted product

newProdMsg seller_Ag

Sent whenever a new seller agent is
purchaser_Ag |yploaded in the market (info about its
coordinates and products)

newSellAgMsg seller_Ag

Sent whenever a new purchaser agent is
seller_Ag  |yploaded in the market (info about its
coordinates and profile)

newPurchAgMsg purchaser_Ag

Sent whenever a merchant wants to
seller_Ag  |jaunch a new offer (for a specific
product, under a certain strategy)

newOfferAnnMsg merchant

Sent as soon as a seller agent receives

seller_Ag the above message

newOfferMsg purchaser_Ag

Used to describe a customer’s decision
about the acceptance or rejection of an
offer (this message type is also
forwarded from a purchaser to a seller
agent, and from the latter to its
associated merchant)

custDecisMsg customer purchaser_Ag

Table 1: Messages passed in the emarket.



The most important human-agent collaboration issues of our
approach are illustrated in the sequel through Figures 3-5. More
specifically, processes performed at each actor/agent’s side are
depicted in the activity diagram of Figure 3, while two
communication patterns (i.e.,, alowed segquences of messages
passed) are shown in the interaction diagrams of Figure 4 and 5
[14].

Actors are logged in the system, “hirg’ their persona agents (by
paying a subscription depending on the time they want them to
“live”), create a profile for them, and launch them in the e-market.
An agent’s profile serves its personalization, that is, the process
with which an actor supplies higher agent with the necessary
information to sketch himself/herself (Fig. 3, place specs activity).
Initially, this information may concern general interests,
preferences and constraints, when speaking about a customer, or
the market area and set of services offered, when speaking about a
merchant. In such a way, a purchaser agent may be aware that its
actor is generally interested in classical music and philosophical
books while a seller agent that its actor commercializes music CDs
and permanently makes offersto itsregular customers.
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Figure 3: Agent-human activity diagram.

The above “genera” knowledge is updated and enriched with more
specific one each time a transaction is taking place (Fig. 3, update
specs activity). For instance, at the time a customer is about to buy
a trip, its purchaser agent will learn that he/she considers some
adventure issues (e.g., the option to dive and rock-climb), prefers
exotic destinations, and is not willing to pay more than a certain
amount for it. This knowledge will be reused when the customer
will buy hig’her next trip. Similarly, a seller agent is able to update
its profile each time it performs a transaction (e.g., by categorizing
a customer as a regular one the second time a purchase agreement
has been made with him/her, in order to send him special offersin
the future, or “keeping a note” that this customer is interested in
diving trips, thus refraining from sending him ski resort offers).

E-market transactions in our system are initiated either by an actor
or an agent (scenarios 1 and 2 in Figures 4 and 5, respectively). In
the first case (see Figures 3 and 4), a customer looking for a certain
good or service contacts his’her purchaser agent and initiates a
purchase transaction (Fig. 4, purchinitMsg message); in turn, the

purchaser agent requests (from all or some seller agents) offers that
may fulfill its actor’ s interests (Fig. 4, offer RegMsg messages).
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Figure 4: Agent-human interaction diagram: scenario 1.

Whenever a match between a purchaser and a seller agent is
established, the latter gets information about the customer’ s buying
criteria, preferences that may hold among them, as well as
congtraints explicitly imposed. By getting such a request, and
presuming that the appropriate information exists in its selling
database, a seller agent can directly build and propose an offer that
is as close as possible to the purchase request (offerPropMsg
message, sent by the seller agent S1). Otherwise (i.e., not enough
information in the database), it has first to contact its merchant for
an update of the related specifications (mer SpecUpdRegMsg and
mer SpecUpdAnsMsg messages, exchanged between the seller agent
Sn and its associated merchant, before the offerPropMsg message,
sent by sn).
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Figure5: Agent-human interaction diagram: scenario 2.

Having collected a bunch of such offers, a purchaser agent has to
consider and evauate them all, the am being to eventualy
recommend the best one to its user. At this stage, messages
custSpecUpdRegMsg and custSpecUpdAnsMsg (see Figure 4) are
used to request and provide, respectively, supplementary
information regarding the customer’'s opinion about features,
preferences and arguments introduced by a seller agent. Finally, the
customer makes a decision about the acceptance or reection of a
proposal, which is forwarded to all interested parties.

We argue at this point that conflicts among the different seller
agents’ points of view are usually inevitable; before responding to a



purchaser agent’s request, each seller agent would have tailored its
offer according to the range of goods at hand. Moreover, each seller
agent may adopt its own strategy and, subsequently, propose an
offer that fulfills (some of) the purchaser agent’s goals at a certain
level. Offers may also differ about the relative values of criteria. In
addition, the purchaser and the seller agents may have arguments
supporting or against alternative solutions. Finally, before making a
decision, the purchaser agent may have to confront the existence of
insufficient information; that is, information that would be useful

begin
1. get of ferRegMsg
2. searchthe selling db for objectType = purchaseObj
3.if not exists then exit,
elsefor each objectType.objToBeSold found do
ifal offerRegMsg.constraints aresatisfied
3.1. create anew of ferPropMsg
3.2. of ferPropMsg. sender < agentID;
offerPropMsg.receiver «- of ferRegMsg. sender,
of ferPropMsg.msgID < of ferPropMsg.msgID + 1,
offerPropMsg.purchaselID < of ferRegMsg.purchaselD,
offerPropMsg.purchaseObj <~ objectType.objToBeSold
3.3. searchin objectType . objToBeSo1d for criteriaand
associated features appear in offerReqMsg.description;
for each match (criterion & associated feature) found do
add in of ferPropMsg.description a New item (cr, £,
fv, imp) where, cr and £ correspond to the match found,
while £v and imp the values of featurevalue and impact,
respectively, of objToBeSold
end for
3.4. for each additional pair of criterion and feature (that not
existsin of ferRegMsg.description)
if the respective impact iSpro (positive)
add in of ferPropMsg.description a new item (cr, f,
fv, imp) where, cr and £ correspond to the additional
match, while £v and imp the corresponding values of
featureValue and impact, respectively, of objToBeSold
end if
end for
3.5.search in objectType . objsSold for
offerRegMsg.preferences,
for each found do
if there exist arguments referring to it
add in offerPropMsg.preferences a New item (cri,
impRel, cr2, listOfArg) where, crl, impRel and cr2
correspond to the match found, while 1istofarg are links
referring to this preference of objToBeso1d;
add in offerPropMsg.arguments a hnew item
(argID,pref,just,imp) where, argID, pref, just
and imp the corresponding values of objToBeSo1d

end if
end for
3.6. for each additional preference of objToBesold (that not exists
in
offerRequg.preferences) do
if there exist arguments referring to this preference
add in offerPropMsg.preferences a NEW item (cri1,
impRel, cr2, 1listOfArg) where, crl, impRel, cr2
and 1istofArg the corresponding values of objToBeso1d;
add in offerPropMsg.arguments a hnew item
(argID,pref,just,imp) where, argID, pref, just
and imp the corresponding values of objToBeSo1d
end if
end for
end if
end for

end

Figure 6: An offer building strategy

for making a decision is missing (these issues are discussed in
detail in the next section).

Figure 5 corresponds to the second scenario mentioned above, that
is an e-market transaction initiated by an agent. A merchant may
ask hig/her seller agent to broadcast or selectively send an offer for
a certain product (see newOfferAnnMsg and newOfferMsg
messages). This is related to the capabilities of our system’s agents
to be proactive and semi-autonomous. More specifically, a
purchaser agent whose profile matches to a merchant’s offer takes
the initiative to contact its actor and ask his’her opinion to go ahead
(either to purchase directly the certain product, as shown in Figure
5, or retrieve related offers and evaluate them together with the
above offer, in the way explained above). Similarly acting, a seller
agent, when noticing that the market's purchaser agents
continuously discard its offers due to their prices, can suggest its
actor to lower them.

4. DECISION MAKING ISSUES

Having defined the architecture of the purchaser and seller agents,
as well as their cooperation and communication protocols, this
section focuses on the multiple criteria decision making process per
se. This process takes place in the decision making module of the
purchaser agent. The tool implemented for the automation of this
processis an extension of the work presented in [6].

Throughout the rest of this paper, we consider the following
example scenario: A customer has uploaded in the e-market his/her
assistant purchaser agent and is now interested in purchasing a new
car. Before asking the agent to initiate a purchase transaction, the
customer has well shaped in hissher mind that the criteria of
performance, cost, and safety (let him/her ignore for the moment
that of firm’'simage) are critical for the buying decision. He/she has
aso ranked the relative importance of performance and safety as
the former being more important than the latter. Moreover, he/she
intends to pay less than 30,000 Euros. He/she could aso desire the
maximum speed of the car to be more than 200 km/h. Note that,
according to the purchaser agent’s strategy, only pieces of that
knowledge can be made transparent to the seller agents, the
rationale being that the less clear the specification of the customer’s
intentions are, the more offers will be finally submitted by the seller
agents.

Concerning the building of an offer by a seller agent, its inference
mechanism gets as input an offerRegMsg message, consults the
selling database and the library of strategies to retrieve the
appropriate data and algorithms, respectively, and produces an
offerPropMsg message as output. The offer building strategy used
in our scenario is sketched in Figure 6.

4.1 Offer synthesis

As soon as a purchaser agent gets a new offer proposal, it integrates
it with the ones already arrived and constructs an offers synthesis
graph, which is presented to the customer through the web
interface shown in Figure 7 (there is an optional time limit, set by
the purchaser, after which no more offers for the specific purchase
transaction are accepted). In this graph instance, there are three
proposals so far, namely offer-12: car-6.1, offer-29: car-A25 and
offer-16: car-XY-34, submitted by sellerAgent-33, sellerAgent-12 and
sellerAgent-3, respectively. Asis the case here, an offer may consist
of:



e criteria (eg., criterion-22.5: safety; criterion-22.8: cost)
together with the associated features, their values and impact
(e.g., (feature-22.5.3: airbag, 2, neutral), (feature-22.8.1:
purchase_price, 25000, pro)), Where the last entity reflects the
opinion of aseller agent about the feature value it provides (it
can be pro (+), con (-), Or neutral; see the related buttons in
Figures 7 and 8);

e preferences brought up either by the purchaser agent when
requesting an offer (e.g., preference-22.13: (performance,
more_important, safety)) or the seller agent itself when
replying to such a request (e.g., preference-33.3: (safety,
more_important, performance));

e arguments in favor (e.g., argument-33.13: (report12: “safety
was the big issue in 1998 car sales”)) or aganst (eg.,
argument-33.11: (if  (maximum_speed > 200) then
(accident_risk, high))) apreference.

An offer synthesis graph also includes the constraints asserted by
the customer. Constraints are of the form (feature, relation,
featureValue), where the desired value may fal into a numerica
range, a set of discrete values, or a list of predicates (eg.,
constraint-22.1: purchase_price, less_than, 30000).

= _ [

purchase-6.1: new car, initiated by purchaserAgent-22
®) offer-12: car-6.1, submitted by sellerAgent-33
@ criterion-22.5: safety
) feature-22.5.3: (airbag, 2)
) feature-33.4.2: (sidebars, double)
@ riterion-22.8: cost
) feature-22.8.1: (purchase_price, 25000)
®) offer-29: car-A25, submitted by sellerAgent-12
€0 criterion-22.3: performance
2 feature-22.3.1: (maximum_speed, 230)
T feature-22.3.3: (acceleration, 10.3)
< criterion-12.8: image
1+ feature-12.8.1: (firm_reputation, high)
®) offer-16: car-XY-34, submitted by sellerAgent-3
< criterion-22.8: cost
%) feature-22.8.1: (purchase_price, 29500)
) feature-3.6.4: (annual_service_cost, low)
€ criterion-22.3: performance
2 feature-22.3.7: (consumption, low)
BT preference-22.13: (performance, more_important, safety), submitted by purchaserAgent-22
@) argument-33.11: (if (maximum_speed > 200) then (accident_risk, high))
P preference-33.3: (safety, more_important, performance), submitted by sellerAgent-33
@b argument-33.12: (if (maximum_speed > 200) then (accident_risk, high))
a9 argument-33.13: (report12: “safety was the big issue in 1998 car sales”)
P preference-12.13: (purchase_price, less_important, firm_reputation), submitted by sellerAgent-12
@b argument-12.21: (if (firm_reputation = high) then ((robustness, high) and (Iife_cyde, long))
@) constraint-22.1: (purchase_price, less_than, 30000), submitted by purchaserAgent-22
I ]

| Jdava Applet Window

Figure7: The offerssynthesis graph.

4.2 Interacting with the user

Preferences and constraints are kept together at the bottom part of
the graph, since these refer to the overall purchase transaction.
Each graph entry has an activation label indicating its current
status (it can be active or inactive). By default, al entries are
initialy active. Viewing the graph through a standard web browser,
the customer is able to inactivate any of its nodes (by using the
mouse and clicking on them), the rationale being that their
corresponding data types do not suit to his/her interests.

Each offer’s feature value is also checked against the existing
congtraints. According to the offer building strategy followed in the
example presented here, the offer proposals sent do not violate

these constraints; however, since the strategy followed by a seller
agent is not known to the purchaser, this check is always performed
a the latter's side. Nodes that violate a constraint become
automatically inactive, that is upon the presentation of the offer
synthesis graph to the customer. He/she may then - at any time -
activate again (some or all of) these nodes (with the mouse) and
test again the outcome of the decision making procedure. In
genera, the manua activation/inactivation of the graph nodes
enables the customer to further elaborate the problem, by
examining various alternative scenarios.

Figure 8 shows the status of the offers synthesis graph after the
customer’s intervention. Inactivation of a node renders al of its
children nodes inactive; for instance, inactivation of preference-
22.13: (performance, more_important, safety) also inactivates
argument-33.11: (if (maximum_speed > 200) then (accident_risk,
high)). Upon inactivation, the color of the associated button for
each node changes (note the darker background color) denoting
that these nodes will not be taken further into account in the
decision making process.

= . [HE

purchase-6.1: new car, initiated by purchaserAgent-22
{1 offer-12: car-6.1, submitted by sellerAgent-33
< criterion-22.5: safety
) feature-22.5.3: (airbag, 2)
72 feature-33.4.2: (sidebars, double)
0 criterion-22.8: cost
) feature-22.8.1: (purchase_price, 25000)
D) offer-29: car-A25, submitted by sellerAgent-12
< criterion-22.3: performance
75 feature-22.3.1: (maximum_speed, 230)
f+) feature-22.3.3: (acceleration, 10.3)
€ criterion-12.8: image
7o) feature-12.8.1: (firm_reputation, high)
D) offer-16: car-XY-34, submitted by sellerAgent-3
€ criterion-22.8: cost
) feature-22.8.1: (purchase_price, 29500)
5 feature-3.6.4: (annual_service_cost, low)
€ ariterion-22.3: performance
) feature-22.3.7: (consumption, low)
preference-22.13: (performance, more_important, safety), submitted by purchaserAgent-22
@) argument-33.11: (if (maximum_speed > 200) then (accident_risk, high))
preference-33.3: (safety, more_important, performance), submitted by sellerAgent-33
3% argument-33.12: (if (maximum_speed > 200) then (accident_risk, high))
3 argument-33.13: (report12: “safety was the big issue in 1998 car sales”)
PO preference-12.13: (purchase_price, less_important, firm_reputation), submitted by sellerAgent-12
@ argument-12.21: (if (firm_reputation = high) then ((robustness, high) and (life_cycle, long))
@ constraint-22.1: (purchase_price, less_than, 30000), submitted by purchaserAgent-22

p

p
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Figure8: Intervention of customer and purchase suggestion.

4.3 Detection of conflicts and inconsistencies
Apart from an activation label, each preference has a consistency
label, which can be consistent or inconsistent. Each time a
preference is inserted in the offer synthesis graph, a mechanism
checks if the constituent features or criteria of it exist in another
(dready inserted) preference. If yes, the new preference is
considered either redundant, if it also has the same importance
relation, or conflicting, otherwise. A redundant preference is
ignored (not inserted in the graph), while a conflicting one is put
next to the previously inserted preference, the rationale being to
gather together conflicting preferences and stimulate the user to
contemplate on them (that is, to select which one to inactivate),
until only one becomes active. Such an instance is illustrated in
Figure 8, with the entries preference-22.13: (performance,
more_important, safety) and preference-33.3: (safety,
more_important, performance).



If both features (or criteria) of a new preference do not exist in a
previously inserted preference, its consistency is checked against
previous active and consistent preferences. Consider, for example,
a dtuation, where there exist two preferences (feature-x,
more_important, feature-y) and (feature-y, more_important, feature-
z). A new preference (feature-z, more_important, feature-x) IS
inconsistent with respect to the first two ones, although it is not
directly conflicting with either one. Inconsistency checking is
performed through a polynomia (o (n°), n the number of the
associated features) path consistency agorithm. Although the
algorithm interacts with the database where the offers synthesis
graph is stored (the public-domain mSQL has been integrated in the
module), the algorithm is efficient; even for cases involving offers
with numerous criteria and associated features, execution time is
negligible.

4.4 Theweighting schema

Active and consistent preferences participate in the weighting
scheme (only preference-33.3 and preference-22.13 in the example
of Figure 8). A detailed description of the agorithm used to assign
weights to an offer’s features appears in [7]. The basic idea is that
the weight of a feature (or a criterion) is increased every time it is
more important than another one (and decreased when is less
important), the final aim being to extract a total order of offers.
Since only partial information may be given, the choice of the
initial maximum and minimum weights may affect the purchaser
agent’ s recommendation. However, the above weighting scheme is
not the only solution; aternative schemes, based on different
algorithms, have been aso implemented. The score of each offer is
calculated from the weights of the active features the offer consists
of (we assume that an offer which includes no product features gets
score = 0), according to the formula:

score (offer;) =), weight (featurey) - Y weight (featurey),

where feature; (feature,) an active feature which refers to offer,
having a positive (negative) impact. The scores of offer-12, offer-29
and offer-16 in Figure 8 are 11, 9 and 10, respectively. Concerning
the first one, both feature-22.5.3 and feature-22.8.1 have score 5.5,
while feature-33.4.2 is inactive; similarly, for the other two offers,
it IS score(feature-22.3.1) = score(feature-12.8.1) = score(feature-
22.3.7) = 4.5, while feature-22.3.3 and feature-3.6.4 are inactive.
Therefore, offer-12 is the one recommended by the purchaser agent
(as shown in Figure 8, the best proposal is accompanied by an “up-
arrow” button, while the rest by a “down-arrow” one). Once again,
this may change in the future upon a different configuration
(activation/inactivation) of the offers’ festures by the customer, or
the receipt of a new offer (assuming that the time limit given has
not been exceeded).

5. DISCUSSION

Severa interesting works have been aready proposed in the area of
agent-mediated electronic commerce. For instance, Excite's Jango
[5] provides a comparison shopping Internet site, allowing users to
specify the name and category of an item before searching on-line
stores for the lowest prices available. It is based on a rather low-
level approach, which does not address any of the issues
highlighted in our approach. Being more sophisticated,
Personalogic [15] provides a set of predefined, category-based
“guides’, and allows customers impose constraints, to be then
exploited by a constraint satisfaction engine in order to prune

alternatives that do not satisfy them. Compared to our system, only
a comparative evaluation of the matched offers is supported;
however, the constraints imposed are predetermined, upon the
“guide”, and cannot refined or amended.

Kasbah [1] helps users creating agents to negotiate the buying and
selling of goods on their behalf, also allowing the specification of
parameters to guide and constrain an agent’'s overall behavior.
However, these agents live only during the completion of a certain
transaction, thus not fully exploiting each actor’s profile, aswell as
the proactiveness and semi-autonomy of their agents (e.g., towards
newcoming offers or requests). Negotiation in Kasbah is
straightforward and based on some simple heuristics; this makes it
intuitive for users to understand what their agents are doing in the
marketplace, but does not alow for: (i) “open” argumentation and
criteria refinement, (ii) handling of incomplete, inconsistent and
conflicting data, and (iii) progressive synthesis and comparative
evaluation of the entries matched. .

Finaly, Téte-a-Téte [9], unlike most other online negotiation
systems that competitively negotiate over price, equally considers
product and merchant features to help the shopper simultaneously
determine what to buy and whom to buy from. It also provides a set
of pre-determined, user-profile based specifications for the
requirements of each product category, and multi-attribute utility
theory to rank merchant offerings. Téte-a-Téte is certainly close to
our approach in that it allows consumer-owned shopping agents
and merchant-owned sales agents cooperate across multiple terms.
However, the issue of the long (or even permanent) existence of a
consumer’s agent is not fully exploited (see comments above); in
addition, proactiveness and semi-autonomy of both shopping and
sales agents is limited compared to our approach (see Sections 2
and 3). Furthermore, argumentation in our system is more flexible,
in that it does not have to be based on pre-determined
specifications. The mechanisms deployed can efficiently handle
any kind of incomplete, inconsistent and conflicting data. We aso
argue that our interface for the progressive synthesis and
comparative evaluation of multiple offers is more intuitive and
closer to the real way of thinking of a customer (see Section 4).

The system presented in this paper is fully implemented in Java and
runs on Windows NT. It is based on previous well-tried work
concerning intra-agent control [10], inter-agent communication
[10], and automation of multiple criteria decision making [6, 7].
Agents communicate using TCP/IP, while actors interact with them
through web interfaces. All transactions carried out use information
encoded in XML/EDI format [2, 17]. A start-up company is
currently testing the system’ s first fully integrated version.

A future work direction concerns the integration of a more
elaborated negotiation stage (for an overview, see [8]), by
exploiting a multicriteria-based negotiation model that has first
been presented in [11]. Negotiation of a set of product features, for
instance, between a purchaser and a seller agent will enable the
latter better tailoring its offer proposal and, eventualy, work more
efficiently for its merchant. We also intend to work towards an
adaptation of the system that will address various types of auctions;
the system'’s architecture and interaction protocols are “open”, thus
their appropriate fine-tuning is not expected to be a hard task.
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