
Extended Modeling Languages

for Interaction Protocol Design

Jean�Luc Koning�� Marc�Philippe Huget�� Jun Wei and Xu Wang�

� Leibniz�Esisar
��� rue La�emas � BP ��
��	�� Valence� France

Jean�Luc
Koning�esisar
inpg
fr
� Magma�Leibniz

��� avenue F�lix Viallet

��
� Grenoble� France

Marc�Philippe
Huget�imag
fr
� Institute of Software

Chinese Academy of Sciences
Beijing� China

wj�otcaix
iscas
ac
cn xuwang�cs
ust
hk

Abstract� Successful development of agent interaction protocols re�
quires modeling methods and tools that support a relatively complete
development lifecycle
 Agent�based systems are inherently complex but
exhibit many similarities to object�oriented systems
 For these reasons
not only current modeling languages need to be extended� but also re�
lated tools should be provided for agent interaction protocol design to
be supported
 In this paper� we focus on the design stage of an agent in�
teraction protocol development cycle
 We start by giving general criteria
for comparing agent modeling languages
 The ones we take into consid�
eration in this paper are extensions of Agent�UML and FIPA�UAML
languages
 We describe these languages and discuss some extensions on
a simpli�ed application of the Netbill electronic commerce protocol
 We
then brie�y introduce a component�based formal speci�cation language
in order to support the protocol�s design stage and present a tool built
upon the FIPA norm �making use of the PDN or UAML notation� which
supports the analysis and design of interaction protocols


� Introduction

The development cycle of agent interaction protocols �AIP� for multiagent sys�
tems does not account for as large a literature as the one dedicated to commu�
nication protocols in distributed systems� Let us quote El Fallah�Seghrouchni�s
work on interaction protocol engineering ��	
 where it comprises three main
stages�

Design and validation� A dedicated way to tackle stage � is through the use
of colored Petri nets since such a formalism supports concurrent processing�
Besides a whole set of validation tools is available�



�

Observation of the protocols� execution� Stage � deals with a post�
mortem analysis of the message scheduling�

Recognition and explanation of conversations� Stage 
 checks whether
the interactions unfolded according to the protocol and that the overall
behavior corresponds to what the designer expected� It also highlights the
agents� behavior during those interactions and helps pinpoint possible causes
of failure�

Because of the quite distinctive nature of the two sets of protocols found
in distributed and multiagent systems� it is not possible to fully apply results
from works in communication protocols to interaction protocols� Therefore� it is
necessary to de�ne a suited development cycle that� when possible� makes use
of existing techniques from distributed systems� or otherwise derives new ones�

In this paper� we will focus on the design stage of an agent interaction proto�
col development cycle� Section � starts by giving general criteria for comparing
agent modeling languages� The ones taken into consideration in this paper are
extensions of Agent�UML and FIPA�UAML languages� We describe these lan�
guages and discuss some extensions on a simpli�ed application of the Netbill
electronic commerce protocol �section 
�� Section � then brie�y introduces a
component�based formal speci�cation language in order to support the proto�
col�s design stage and presents a tool built upon the FIPA norm �making use of
the PDN or UAML notation� which supports the analysis and design of inter�
action protocols� This tool also supports our extension of UAML�

� Agent Modeling Languages

Essentially two families of agent modeling languages have been used for rep�
resenting AIPs�� one is Agent�UML ���
 and the other is FIPA�UAML ��
� In
this section� we brie�y compare these two families as well as their respective
extension against a set of general criteria�

��� Uni�ed Agent Modeling Language and UAMLe

UAML ��
 is probably the �rst graphical language proposed �by FIPA� for repre�
senting AIPs� Most of the characteristics in UAML also appear in AUML� agents
are denoted via their role� several types of message sendings along with possible
added constraints are allowed �synchronous� asynchronous� broadcast� repeated
sendings� temporal constraints� etc��� As shown in �gure �� concurrent messages
are allowed� Sub�protocols are an interesting notion introduced in UAML that
denotes a sequence of messages inside one protocol�

The letters attached to the edges represent a cardinal value� e�g�� the �rst
edge indicates that m copies of the message are to be sent and n �or o or p�
answers �n � m� can be sent back and so on�

� Both of these forms were combined in ���� and are now referred to simply as AUML







cfp-msg

not-understood-msg

refuse-msg

reject-proposal-msg

inform-msg

propose-msg

accept-proposal-msg

cancel-msg

1 m

n1

o1

p1

1 r

1 q

q1

1 q

1 q

failure-msg

Agent-Type-1 Agent-Type-2

Fig� �� Contract Net in UAML


UAML represents alternatives in interaction states by means of boxes with
separations between the possible cases� Each message is de�ned via a box con�
taining a message �i�e�� with an arrow�� A sub�protocol �e�g�� see the box start�
ing with the message not�understood�msg� may contain other sub�protocols �as
shown by two other nested boxes in �gure ��� Possible choices are separated by
lines and messages to be handled concurrently are separated by dotted lines �like
between inform�msg and cancel�msg��

Compared with UAML� UAMLe essentially enables to synchronize one agent
on several messages of di�erent types and also introduces the notion of excep�
tion at the level of a single message as well as a set of messages� In the classical
Contract Net protocol �with AUML ���
 and with UAML ��
� the �nal message
is a cancel message returned by the initiator after receiving the last inform mes�
sage� Actually� it would be better to send a cancel message only if an exception
arises� In UAMLe ��gure �� this exception handling is denoted by an excep�
tion�cancel�� � � end exception statement� Therefore the exception applies to the
whole time interval that corresponds to the waiting for an answer by the agent
in charge of the task� When the exception is caught the cancel message is sent
to that agent�



�

Agent-Type-1 Agent-Type-2

1 mcfp-msg

not-understood-msg1 n

refuse-msg1 o

propose-msg1 p

reject-proposal-msg1 r

accept-proposal-msg1 q

failure-msg1 q

inform-msg1 q

[cancel]
exception

end exception

Fig� �� Contract Net in UAMLe


��� Agent�UML and EAUML

AUML ���
 ��

 is a proposal for the speci�cation of agent�based systems� It has
been mainly applied to model protocols for multiagent interactions� AUML pro�
vides a set of extensions based on UML sequence diagrams� packages� templates�
protocol diagrams� agent roles� extended message semantics� multi�threaded life�
lines� nested and interleaved protocols� and protocol templates� The core of these
extensions for AIPs is found in what could be called protocol diagrams that com�
bine sequence diagrams with the notation of state diagrams for the speci�cation
of AIPs�

In AUML messages are considered to be exchanged between agents that are
denoted by their role� Loops are taken care both at the level of single messages
and sets of messages� Conditional branching can be represented by means of stan�
dard if�then�else choice and also through some dedicated connectors representing
concurrent threads� Figure 
 respectively shows and� xor and or connectors�

On one hand the simplicity of UML sequence diagrams makes them suitable
for expressing requirement� but lack of semantics makes them sometimes ambigu�
ous and therefore di�cult to be interpreted� AUML�s proposal has improved this
situation�

EAUML ���
 is essentially based on AUML protocol diagrams� It brings forth
some simpli�cations and modi�cations in that it adopts a somewhat di�erent
view from AUML as far as control threads for single agent and message char�



�

CA-1

CA-2

CA-n

CA-1

CA-2

CA-n

CA-1

CA-2

CA-n
...

(a)

...

(b)

x

(c)

Fig� �� Connectors for message sending in AUML


x

AND XOR OR

Fig� �� Connectors for lifeline in AUML


acterization� EAUML should not be seen as a competing alternative to AUML
but rather as a way of viewing AIP visual modeling from another angle�

The extended notations for agent lifelines �see �gure �� and message sending
�see �gure 
� in AUML are kept but with a di�erent semantics as far as the
inclusive�or lifeline� Also only an asynchronous semantics is kept for messages�
Besides� these messages are abstract symbolic messages rather than mere speech
act messages�

n
[trigger] msg

TriggeringCausalitySynchronizationBroadcast

Fig� �� Connectors in EAUML


The extensions EAUML provides essentially deal with message passing within
sequence diagrams� Figure � shows four new connectors� Message broadcast cor�
responds to sending a message n times� Message triggering corresponds to the
guarded messaging in UML and AUML but in EAUML this also implies some
internal events trigger the message sending� Message synchronization and the
keyword �silent� have no direct counterpart in AUML� The former means an
agent has to wait for several messages to arrive� The latter is a constraint that
can be placed on messages to denote that the sending or receiving of a message
has no e�ect on the current state� Message causality is introduced to indicate
a causal relationship between two messages� The purpose of this construct is to
simplify the dynamic model�



�

Figure 	 depicts the contract net protocol expressed as a EAUML sequence
diagram� This example very much looks like the one given by Odell et al� ���
�
The major di�erence with the AUML sequence diagram deals with the handling
of message Cancel� This is not a regular message since it appears only in case of
trouble we can make use of the fourth connector of �gure ��

reject-proposal*, accept-proposal*,

Deadline

Initiator, Participant

call-for-proposal, refuse*
not-understood, propose,

cancel*, inform*

refuse

FIPA Contract Net Protocol

call-for-proposal

x
not-understood

propose

x

accept-proposal

reject-proposal

inform

cancel

ParticipantIntiator

deadline

[problems]

Fig� �� Contract Net in EAUML


Regarding organizational structures� some further extensions to AUML have
recently been addressed ���
� Among other things they re�ne the concept of role
agents may endow from a behavioristic perspective�

��� Some General Criteria on Agent Modeling Languages

In order to compare agent modeling languages� let us list a series of nine general
criteria one may want to see supported by AIPs one way or another�

Roles� Agents are not represented by their name but according to their role
within the interaction protocol� Such an approach enables to easily take into
account a variable number of agents� Once those roles are identi�ed there is
no need to modify the design of the interaction protocol when a new agent
is brought into place�

Synchronous	asynchronous communication� When agents send messages
to one another they wait �resp� do not wait� till those messages are read
prior to keep on running�



�

Concurrency� A number of messages can be sent or received at the same time�
Loop� A set of messages is sent a number of times� Either this number is ex�

plicitly known or the loop is based on a condition that must be true for the
loop to keep on being activated�

Temporal constraints� An agent speci�es a deadline that corresponds to a
point in time before which some messages are expected�

Exception� A way to handle unexpected events that could either stop the
course of an interaction or lead to a failure�

Design� Connected to the visual modeling langage a set of algorithms and�or
tools to go to a formal corresponding de�nition is provided� This may involve
a translation of the description into �nite state machines �FSM��

Validation� Connected to the visual modeling langage a set of algorithms
and�or tools for validating properties on interaction protocols is provided� It
may either be a structural or a functional validation� For this purpose one
may rely on the Spin�Promela model�checker �	
�

Protocol synthesis� Some algorithms and�or tools can lead to some code gen�
eration to make a protocol executable by the agents�

Table � gives a synthesized view on the following four graphical languages
AUML� EAUML� UAML� UAMLe against these nine criteria�

The �rst six criteria deal with the direct characteristics of the visual language�
and as a matter of fact� all four languages provide them� Sharper di�erences
between these agent modeling languages appear among the last three criteria�
i�e�� when one considers them as a stage of an overall AIP life�cycle�

� Designing Agent Interaction Protocol

��� Designing the Netbill Protocol Using EAUML

In order to clarify the extension in EAUML sequence diagrams� let us look at the
agent�based Netbill �

 purchase protocol� Although we give here a simpli�ed ver�
sion of the Netbill protocol �see �gure �� it embodies the primary characteristics
of agent interaction protocols in electronic commerce� including asynchronous
messaging� distributed processing� concurrency� communication uncertainties�
etc� The agent�based modeling of this protocol can be abstracted to involve
only three agents� one consumer� one merchant and a commonly trusted bank�
Consumers buy e�goods through a web�browser from the merchant� Payment
between them is settled by the bank�

Figure � illustrates the interaction pattern among the three parties� Message
passing is asynchronous� Causal messaging relates in�out messaging into one
action such as on the Merchant lifeline where in�message �endorsed electronic
payment order� �EEPO� and �electronic payment order� �EPO� are causally
related� The triggered messaging implies that some internal event happened so
that one message sending is triggered� The triggered messaging on the lifeline of
Consumer expresses that the timeout event occurred and then caused message
�transaction enquiry� �TE� to be sent out� XOR and OR message sendings are



�

AUML EAUML UAML UAMLe

Roles ✓

Sync
�
Async


Both
Asyn�
chronous

Both

Concur�
rency

Speci�c connector
Separation of the various mes�
sages using boxes

Loop At the level of a message or a group of message

Time Through deadlines

Exception

By means
of a special
connector
for triggering
actions

Not directly
Upon a set of
messages

Design
Possible aug�
mented UML
tools

Algorithms
for trans�
lation into
FSM

No graphical
tools

Graphical
tool DIP

Validation
No direct
bridge to
validators

Algorithms
for trans�
lation into
Promela for
use with Spin

No direct
bridge to
validators

Translation
to FSM for
reachability
analysis and
translation
to Promela

for model�
checking

Protocol
synthesis

No known
algorithm
for protocol
synthesis

Code genera�
tion

No known
algorithm
for protocol
synthesis

Code genera�
tion

Table �� Some criteria for comparing agent modeling languages




	

GR

EG

EPO
EEPO

[TimeOut] TE

x

x

PS

NP

NR{silent}

Consumer Merchant Bank

PS

NP

x
x

Fig� �� Transaction Protocol of NetBill in EAUML


selected depending on some state condition� The XOR message sending between
�payment slip� �PS� and �no payment� �NP� on the bank lifeline is chosen based
on a state condition about payment transaction status� The silent message �no
record� �NR� does not a�ect the state of the recipient �Consumer� nor the sender
�Bank�� GR refers to �Good Request� and EG to �Electronic Good��

��� Designing the Netbill Protocol Using UAMLe

The Netbill protocol is represented with UAMLe in �gure ��
In conjunction with the UAMLe modeling language a formal description is

provided� We give such a detailled description of the Netbill protocol in sec�
tion ����

� Towards a Component�Based Speci�cation


�� Protocols and Micro�Protocols

It is important for an interaction protocol to be reusable� i�e�� a piece of a protocol
could be replaced by another without having to start a whole new development
cycle and to globally think out the protocol but to be able to reuse parts of a
protocol� This idea has been introduced by Singh ���
 and Burmeister et al� ��
�

One could de�ne interaction protocols as sets of components� called micro�
protocols �i�e�� they represent interaction units that themselves contain a set



��

exception
[Timeout]

EndorsedEncryptedPaymentOrder(6)

SugnedResult(7)

SignedResult(8)

end exception

PriceRequest(1)

PriceQuote(2)

GoodRequest(3)

EncryptedGood(4)

EncryptedPaymentOrder(5)

Customer Merchant NetBill server

Fig� 	� Complete Transaction Protocol of NetBill in UAMLe


of performatives� and whose contents is the piece of information to be passed
on�� that can be assembled in a protocol via a dedicated composition language
called CPDL� See ��
 for an extended article on issues related to the modeling of
component�based interaction protocols�

Like components in software engineering� a micro�protocol is de�ned by an ex�
ecutable part which is a set of performatives and an interface part for connecting
micro�protocols together� Such a micro�protocol is composed of four attributes�

� Its name identi�es a unique micro�protocol�
� Its semantics is used to help designers know its meaning without having to
analyze its de�nition� These two �elds make up the micro�protocol�s signa�
ture� The other two attributes refer to its implementation�

� Its parameters� semantics� When making use of a micro�protocol it is neces�
sary to know all the parameters� semantics since they are used for building
messages�

� Its de�nition corresponds to the ordered set of performatives constituting
the micro�protocol� Each performative is described along with its parameters
like the sender� the receiver and the message�s content�

Combining micro�protocols into a general interaction protocol can be done
with some logic�based formulae encompassing a sequence of micro�protocols�
The relation between the micro�protocols� parameters should also be speci�ed

� A performative is related to speech act ���� and is a verb plus a content




��

by telling which are the ones matching� Suppose two parameters u and v are
used in a same protocol� if they handle an identical parameter� this parameter
should have a unique name� This facilitates the agents� work in allowing them
to reuse preceding values instead of having to look for their real meaning� This
approach is very much oriented towards data reuse�

CPDL is a description language for interaction protocols based on a �nite
state automaton paradigm which we have endowed with a set of features coming
from other formalisms such as�

� tokens in order to synchronize several processes as this can be done with
high�level Petri nets�

� timeouts for the handling of time in the other agents� answers� This notion
stems from� for example� temporal Petri nets�

� beliefs that must be taken into account prior to �ring a transition� This
notion is present in predicate�transition Petri nets as well as in temporal
logic� Beliefs within the protocol�s components as it is the case in AgenTalk
���
�

Compared with a �nite state automaton a CPDL formula includes the fol�
lowing extra characteristics�

�� a conjunction of predicates in �rst order logic that sets the conditions for
the formula to be executed�

�� the management of loops that enable a logic formula to stay true as long as
the premise is true� with a loop predicate�

These following characteristics are included in micro�protocols�

�� the synchronization of processes through the handling of tokens� Such be�
havior is given through the token predicate�

�� the management of time and time stamps in the reception of messages with
the time predicate� A CPDL well�formed formula looks like�

�� fb � Bg�� loop�
V
pi� �� micro�protocol�� �

A CPDL formula corresponds to an edge going from an initial vertex to a �nal
one in a state transition graph� Such an arc is labeled with the micro�protocols�
the beliefs and the loop conditions� � denotes the state the agent is in prior
to �ring the formula and � denotes the state it will arrive in once the formula
has been �red� The star on the micro�protocols denotes that one can have zero
micro�protocol in this formula�

fb � Bg� represents the guard of a formula� Such a guard is a conjunction of
�rst�order predicates that needs to be evaluated to true in order for the formula
to be used� B is the set of the agent�s beliefs� This guard is useful when the set
of formulae contains more than one formula with a same initial state� Only one
formula can have a guard evaluated to true� and therefore it is �red� This requires
that no formula be nondeterministic and that two formulae cannot be �red at



��

the same time� In the current version of CPDL� predicates used for beliefs are
de�ned within the language� and agents have to follow them�

As indicated earlier the loop predicate aims at handling loops within a for�
mula� Its argument is a conjunction of predicates� It loops on the set of micro�
protocols involved in the formula while it evaluates to true�


�� Description of Netbill in CPDL

Given that there are three di�erent roles in the Netbill protocol �see �gure �� it
is divided into three interaction parts� PriceRequest where one consumer asks to
the merchant how much is one particular electronic good� GoodsDelivery where
the merchant sends encrypted electronic goods to the consumer and Payment
involving the three roles where the consumer purchases the goods to the mer�
chant via the bank represented by a Netbill server� The consumer receives a key
in order to decrypt the good�

The CPDL expression of the latter protocol is given as

init �� PriceRequest�C�M�G�� A�
A�� exception�timeout � exit� �� GoodsDelivery�C�M�G�� A�
A� �� Payment�C�M�G�� end

Variables C� M and N correspond to the consumer� the merchant and the
bank� The de�nition of micro�protocol PriceRequest is�

request	price�C�M�G�
inform�M�C�P�

The one for GoodsDelivery is�

request�C�M�G�
send�M�C�G�

Micro�protocol Payment is de�ned as�

pay�C�M�EPO�
pay�M�N�EEPO�
inform�N�M�R�
inform�M�C�R�

Variable G corresponds to the requested good and P stands for its price�
request�price is a performative� Performatives inform and request have the same
semantics as the one in FIPA�ACL ��
� Performative send corresponds to the
sending of good G�

Variable EPO corresponds to the Electronic Payment Order sent by the
consumer� When it is passed from the merchant agent to the bank agent� the
former agent is adding a key that is necessary for decyphering the good G� thus
leading to the variable EEPO �Endorsed EPO�� Variable R is the result of the
�nancial transaction as well as the key need for decyphering� The semantics of
performative pay is the payment of good G�

The exception inside the second formula corresponds to the case where the
consumer agent is refusing the price given by the merchant agent� In Netbill�



�


nothing is said concerning whether the consumer agent has to let know the
merchant agent that the interaction is over� Therefore an exception allows to take
into consideration the fact that a client agent presumably closed the interaction
whenever the duration between the price o�er and the request for the good is
too long�


�� A Tool for Supporting AIP Design

We have developed a platformwith a tool dedicated to helping design interaction
protocols �DIP�� This platform also contains a tool for validation �TAP� and a
tool for conformance testing �CTP�� DIP follows the component�based approach
presented here above� As shown on �gure �� such a tool enables to design and
bring into play a protocol in a graphical manner by relying on micro�protocols
and on the compositional language CPDL�

Our platform is endowed with a true graphic editor that enables to de�ne
interaction protocols in the graphic language UAMLe �cf� �gure ��� Such a tool
allows to ��� build and ��� modify protocols� For this� DIP maintains some
information about a protocol� its name� its set of micro�protocols� its semantics
and its set of CPDL formulas

Another feature is �
� the automatic translation into CPDL of a protocol
represented by a high�level Petri net� ��� DIP allows to display a protocol in
the alternate FIPA�s notation called the Protocol Description Notation �PDN��
Unlike UAML �and UAMLe�� PDN is a tree�like description of a protocol where
each node represents a protocol state and the transitions going out of a node
correspond to the various types of message that can be received or sent at the
time the interaction takes place� Since DIP is also used in analysis and pro�
tocol synthesis phases� it is possible to store a description of the protocol in
natural language and the designer can generate a skeleton of the protocol in a
programming language�

� Discussion

In the �eld of multiagent systems� there are very few tools supporting the design
of interaction protocols to date� Let us mention AgentBuilder ���
 and AgentTool
��
�

As opposed to the approach advocated in this paper� AgentBuilder does not
allow for an easy reuse of existing protocols in order to build new ones as with
DIP� Protocols in AgentBuilder are de�ned by means of �nite state automata
which unfortunately do not e�ciently handle synchronization among agents�
Furthermore� AgentBuilder leans on a proprietary protocol�s structure which
makes it very di�cult to utilize any external tool to perform validation tests�

It is also impossible to import protocols expressed in some other formalism
which limits reusing� In the approach we have presented� interaction protocols are
given in an open formalism which makes it possible to import foreign protocols
expressed by means of Petri nets for instance�



��

Fig� 
� Tool for designing interaction protocols


In the domain of distributed systems protocol engineering has been tack�
led for a long time� This has led to numerous e�ective tools� Let us mention
Design�CPN ��
 which allows to manage protocols by means of colored Petri
nets�

Design�CPN enables to graphically design and test Petri nets� Such a soft�
ware tool is capable of simulating the execution of a protocol but is not open to
other tools� Its proprietary formalism for representing protocols forces designers
to address the protocol implementation issue with still another formalism which
is not adequate as far as validation is concerned� On the other hand DIP aims
at keeping a same formalism up to the point of validation ��
�

Our work on graphically designing interaction protocols and on CPDL is
included in a whole interaction protocol engineering ���
� This engineering is
decomposed in �ve phases coming from analysis to conformance testing� In a
very �rst time� the designer speci�es the document of protocol�s requirements�
then formally describes it �with CPDL and UAMLe�� The next step is to check
if the protocol ful�lls the properties de�ned in the document written before� The
last two steps of our proposal of interaction protocol engineering tackle on an
executable version of the protocol� First� one generates a program corresponding
to the protocol and �nally� one checks if the protocol always ful�lls properties
de�ned before� This proposal of interaction protocole engineering makes bene�t



��

of work in distributed systems where one can �nd one communication protocol
engineering ��
�

Acknowledgments

This work was partially supported by the Sino�French Advanced Research Pro�
gram �PRA SI ����	�� CIPE project� Component�based Interaction Protocol En�
gineering� J��L� Koning � Wei Jun��

References

�
 Agenttool information page
 http���en
a�t
af
mil�ai�agentool
htm� ����

�
 B
 Burmeister� A
 Haddadi� and K
 Sundermeyer
 Generic� con�gurable� coop�

eration protocols for multi�agent systems
 In C
 Castelfranchi and J
�P
 Muller�
editors� From Reaction to Cognition� volume 	�� of Lecture notes in AI� pages
�������� Berlin� Germany� �		�
 Springer Verlag
 Appeared also in MAAMAW�
	
� Neuchatel




 B
 Cox� J
 Tygar� and M
 Sirbu
 Netbill security and transaction protocol
 In
Proceedings of the First USENIX Workshop in Electronic Commerce� july �		�


�
 FIPA
 Speci�cation� Agent Communication Language
 Foundation for Intelli�
gent Physical Agents� http���www
�pa
org�spec��pa		spec
htm� September �			

Draft��


�
 G
 J
 Holzmann
 Design and Validation of Computer Protocols
 Prentice�Hall�
�		�


�
 G
 J
 Holzmann
 The model checker spin
 IEEE Transactions on Software Engi�
neering� �
���� May �		�


�
 K
 Jensen
 Coloured Petri Nets� Basic Concepts� Analysis Methods and Practical
Use� volume �� Basic Concepts of Monographs in Theoretical Computer Science�
chapter �� Overview of Design�CPN
 Springer�Verlag� �		�
 ISBN� 
�������	�
��


�
 J
�L
 Koning and M
�P
 Huget
 A component�based approach for modeling interac�
tion protocols
 In ��th European�Japanese Conference on Information Modelling
and Knowledge Bases� Finland� May ����


	
 J
�L
 Koning and M
�P
 Huget
 A semi�formal speci�cation language dedicated to
interaction protocols
 In H
 Kangassalo� H
 Jaakkola� and E
 Kawaguchi� editors�
InformationModelling and Knowledge Bases XII� Frontiers in Arti�cial Intelligence
and Applications
 IOS Press� Amsterdam� ����


��
 J
�L
 Koning� M
�P
 Huget� J
 Wei� and X
 Wang
 Engineering electronic commerce
interaction protocols
 In Proceedings of Intelligent Agents� Web Technologies and
Internet Commerce �IAWTIC ��	� Las Vegas� NV� USA� July ����


��
 K
 Kuwabara� T
 Ishida� and N
 Osato
 AgenTalk� Describing multiagent coor�
dination protocols with inheritance
 In Seventh IEEE International Conference
on Tools with Arti�cial Intelligence� pages �������� Herndon� Virginia� November
�		�


��
 J
 Odell� H
 V
 D
 Parunak� and B
 Bauer
 Extending uml for agents
 In G
 Wag�
ner� Y
 Lesperance� and E
 Yu� editors� Proceedings of the Agent�Oriented Informa�
tion Systems Workshop at the �
th National conference on Arti�cial Intelligence�
Austin� Texas� july� 
� ����
 ICue Publishing




��

�

 J
 Odell� H
 V
 D
 Parunak� and B
 Bauer
 Representing agent interaction protocols
in uml
 In P
 Ciancarini and M
 Wooldridge� editors� Proceedings of First Interna�
tional Workshop on Agent�Oriented Software Engineering� Limerick� Ireland� june�
�� ����
 Springer�Verlag


��
 H
 V
 D
 Parunak and J
 Odell
 Representing social structures in uml
 In
M
 Wooldridge� G
 Weiss� and P
 Ciancarini� editors� Second International Work�
shop on Agent�Oriented Software Engineering �AOSE�����	� LNCS� Montreal�
Canada� May ����
 Springer�Verlag


��
 J
 Searle
 Speech Acts� An Essay in the Philosophy of Language
 Cambridge Uni�
versity Press� Cambridge� �	�	


��
 A
 E
�F
 Seghrouchni� S
 Haddad� and H
 Mazouzi
 A formal study of interaction
in multi�agent systems
 In Modelling Autonomous Agents in Multi�Agent Worlds
�MAAMAW	� �			


��
 M
 P
 Singh
 Toward interaction oriented programming
 Technical Report TR�	��
��� North Carolina State University� May �		�


��
 R
 Systems
 Agentbuilder� an integrated toolkit for constructing intelligent software
agents
 Technical report� Reticular Systems� �			


�	
 J
 Wei� S
�C
 Cheung� and X
 Wang
 Towards a methodology for formal design and
analysis of agent interaction protocols � An investigation in electronic commerce

In International Software Engineering Symposium� Wuhan� Hubei� China
� March
����



