Architecture-Centric Object-Oriented Design Method

for Multi-Agent Systems

Hongsoon Yim*, Kyehyun Cho*, Jongwoo Kim **, and Sungjoo Park*

* Graduate School of Management, KAIST (Korea Advanced Institute of Science and
Technology), 373-1 Kusong-dong, Yousong-gu, Tagjon 305-701, Korea
{hsyim, potin, §park} @kaist.ac.kr

** Department of Statistics, Chungnam National University, 220 Kung-dong, Tagjon
305-764, Korea
Jwkim@stat.chungnam.ac.kr

Abstracts

This paper introduces an architecture-centric object-oriented design method for MAS
(Multi-Agent Systems) using the extended UML (Unified Modeling Language). The
UML extension is based on design principles that are derived from characteristics of
MAS and concept of software architecture which helps to design reusable and well-
structured multi-agent architecture. The extension alows one to use original object-
oriented method without syntactic or semantic changes which implies the preservation
of OO productivity, i.e., the availability of developers and tools, the utilization of past
experiences and knowledge, and the seamless integration with other systems.

Keywords: multi-agent systems, architecture, object-oriented devel opment methods

1. Introduction

Software agents provide a new way of analyzing, designing, and implementing
complex software systems. Currently, agent technology is used in wide variety of
applications with range from comparatively small systems such as personalized
email filtersto large, complex, and mission critical systems such as air-traffic control
[3, 14]. Due to the popularity and complexity of MAS (Multi-Agent Systems), they
require systematic development methodology, but support of them still lacks in
practice [3, 23].

For MAS development, although object-oriented methodologies are seemed to be
natural, they have limitations to properly represent MAS [4, 12, 15, 16, 24]. These
limitations include the representing collaboration among agents and mental states of
an agent. Several agent-oriented design methods have been suggested to cover limits
of the past system development methodologies [4, 12, 15, 16, 24]. These
methodologies have been extended based on the past development methodologies
such as object-oriented methodologies, knowledge engineering methodologies [12],
and enterprise integration methodologies [16]. They, however, have own special
purpose notations and techniques. So, these extensions cause the semantic and
syntactic gaps between them and original object-oriented methodologies. This
implies lacks of developers and tools for the development of MAS.

In addition, object-oriented methodologies have been evolved from past object-
oriented methodologies that the agent-oriented methodologies have referred such as
OMT [20]. Past object-oriented methodologies have limits such as functional
decomposition and poor representing collaboration among objects [5]. The gap
between agent-oriented methodologies and original object-oriented methodologies
prevents from evolution of agent-oriented methodologies.

In MAS, multi-agent architecture plays important role in defining relationships
and collaborations among agents [3]. Actually, most of MAS have been suggested
multi-agent architecture, but it was just implementation-oriented, focused on
internals of a single agent, or was provided with informal diagrams [3, 14]. In
particular, as the size and complexity of systems increase, the main design problem is
specifying overall system structure rather than the algorithms and data structure [8].
Even though multi-agent architecture is important for the MAS, current agent-
oriented methodologies do not provide models and modeling elements to analysis,
design, and evaluate it.

This paper suggests an architecture-centric object-oriented design method for
MAS. It is based on considering MAS as a software system [23]. It uses object-
oriented methods as a core development methodology, and extends them to properly
represent collaborations among agents. The extensions are based on design principles
that are derived from characteristics of MAS and concepts of software architecture.
They have roles that are kinds of syntactic or semantic constraints to restrict on
models or modeling elements and are formalized. Concepts of software architecture,
which software system consists of software components and their connectors [8], are
introduced to properly represent multi-agent architecture. These formalized
restrictions contribute to accuracy and verification of modelsin principled-way.

The suggested method uses semantics and notations of the UML (Unified
Modeling Language) that has adopted as an industry standard object-oriented design
method by OMG (Object Management Group) [2, 19]. The use of standard design
methods has several benefits such as availability of developers and tools, utilization
of past experience and knowledge, and more direct comparison and evaluation than
specia-purpose notations. In addition, the UML has the extension mechanism
without semantic and syntactic change of origina models such as constraints,
stereotypes, and tagged values [19]. It implies that the availability of developers and
tools, the utilization of past experiences and knowledge, and the seamless integration
of other systems. The suggested method isillustrated with areal case[21].

2. Background

As a result of the popularity and complexity of agent-based systems, agent-
oriented methodologies (AOM) and modeling techniques have been suggested in last
few years [4, 12, 15, 16, 24]. They take object-oriented methodologies (OOM) as
their basis, extend the OOM to cover limits of the OOM, and suggest new kinds of
AOM. A survey of current agent-oriented methodologiesis found in [11].

There are similarities among AOM in concept of differences between agents and
objects. Agents do not just of attributes and methods, but also have mental state and
concepts such as plans or goals. Based on OMT [20], the approach of Kinny et. a
[16] is the most strong extension case of AOM, but it restricts the scope on domain
of methodology to BDI (Belief, Desire, and Intention) agents.

Another difference is the type of communication between agents and objects.
Agents communicate with each other by structured or meaningful messages and use
protocols to collaborate, while message passing for objects is just method invocation

or simple data passing. Behavior models of AOM approaches depend on their basis
model. Approaches that their basis are classical OOM such as the OMT [20], the
Booch Method [1], and Object-Oriented Software Engineering (OOSE) [13] use
behavior model of the OOM with slight extension of modeling elements. There is an
approach to propose the combination of the OOM and enterprise modeling
methodology IDEF (Integration Definition for Function modeling) for agent system
modeling [15]. The classica OOM, however, take concept of functiona
decomposition and are poor to represent collaboration among agents [5]. For
example, the event flow model of the OMT for the behavior among objectsislack in
concepts and constructs such as communication of instance level, message sequence,
concurrency, and dependency among objects in terms of dynamic state. The
functional model of the OMT and the IDEFO (functional model) clash with object
structure of the implementation.

The AOM have own specia purpose notations and techniques. So, their
extensions cause the semantic and syntactic gaps between them and original OOM.
In addition, approaches of the AOM are based on the classica OOM, while the
classical OOM have been evolved. For example, the UML (Unified Modeling
Language) have been suggested to cover limits of the classical OOM. This implies
lacks of developers and tools for the development of MAS.

All these AOM support the development of MAS in limited value without
considering multi-agent architecture. There are two kinds of approaches to research
agent architecture: internals of a single agent and multi-agent architecture. Only the
AOM approach of Kinny et.al [16] reflects agent architecture to logical model, but
the scope is restricted on single agent architecture. In MAS, multi-agent architecture
plays important role in defining relationships and collaborations among agents [3].
Actually, most of MAS have been suggested multi-agent architecture, but it was just
implementation-oriented, focused on internals of single agent, or was provided with
informal diagram [3, 21]. In particular, as the size and complexity of systems
increase, the design problem is specifying overall system structure rather than the
detail algorithms and data structure [8]. Even though multi-agent architecture is
important for the MAS, current AOM do not provide models and modeling elements
to analysis, design, and evaluate it.

Concept of software architecture supports to properly represent multi-agent
architecture. Software architecture description is a high-level model of software
systems. It is recognized as a collection of computational components together with a
description of the interactions between these components — the connectors such as

procedure call, event broadcast, database query, and pipes [8]. An architectural style
defines a family of such systems in terms of a pattern of structural organization. It
determines the vocabulary of components and connectors that can be used in
instances of that style, together with a set of constraints on how they can be
combined. In MAS, it provides clean separation between individual agents and their
interactions in overall systems. The separation is natural for the description of multi-
agent architecture, because agents should communicate with each other without
dependency on other agent. It is called connection problemin MAS [6].

Architectural styles for the multi-agent architecture have been already researched
such as blackboard system, agency, and facilitator [3, 24]. Although current AOM do
not reflect multi-agent architecture, for analysis and design of multi-agent
architecture, there are ADL (Architecture Description Languages) [18] and
techniques such as design pattern [7]. The ADL, however, are inappropriate to adopt
as a development method, because they focus on only architecture description
without other development artifacts such as development models and activities [18].
Design pattern provides a useful technique for the design of multi-agent architectural
style. According to research of Gamma et. a [7], design patterns are defined as
descriptions of communicating objects and classes that are customized to solve a
general design problem in a particular context. Even though concepts of software
architecture and design pattern support to effectively develop MAS, thereisno AOM
to reflect them.

Although a development methodology need to include a development process that
describes activities, results, and guidelines along development phases, the
devel opment process depends on development environments such as scale of projects,
experience and knowledge level of the development teams [2, 19]. This paper
focuses on notations and techniques for the design of MAS and devel opment process
is beyond the scope of this paper.

3. Conceptua Framework
3.1 Overview of Proposed Framework

The suggested design method is an integrated method from existing technologies
rather than another new design method. These existing technologies include object-

oriented methodology, design patterns, and software architecture in software
engineering. Although artificial intelligence and knowledge engineering have

influenced to knowledge processing in singular agent or among agents, the
development of MAS as a software system should utilize experience and knowledge
from past decades in software engineering [24]. It is intended that the suggested
method is appropriate for development of large-scale multi-agent systems that
necessarily require design methods for the effectiveness such as the productivity and
quality of the system devel opment.

The UML is adopted as a core design notation. Main reasons of using the UML
are that it has integrated progresses from past object-oriented methodologies, that it
has extension mechanism underlying original semantics of the method, and that it has
been adopted industry standard object-oriented design methods in the OMG (Object
Management Group) [2, 19]. The use of standard design methods has several benefits
such as availability of developers and tools, utilization of past experience and
knowledge, and more direct comparison and evauation than specia-purpose
notations.

The extensions of the UML are based on design principles that are derived from
agent characteristics and concepts of software architecture. They have roles that are
kinds of syntactic or semantic constraints to restrict on model or modeling elements.
Agent characteristics are consolidated on structure and behavior of multi-agents
rather than those of single agent because current object-oriented technologies provide
sufficient techniques to consider agent as a primitive building block. For example, an
agent can be manipulated as asingle classin logical model by abstraction mechanism
such as aggregation. In addition, behavior abstraction of an agent with interfaces
makes logical models are free from internal implementation of agents.

Concept of software architecture, which software system consists of software
components and their connectors [8], is utilized to properly represent multi-agent
architecture. It provides clean separation between individual agents and their
interactions in overal systems. The separation makes large applications more
tractable, global analysisfeasible, and software reusable.

Design principles are extended using the extension mechanism of the UML and
formalized by the OCL (Object Constraints Language) of the UML. The extension
mechanism guarantees to keep original syntax and semantics of model and modeling
elements. This implies seamless integration of legacy object-oriented system,
reusability of past experience and knowledge, and availability of developers and
tools. The formalizations contribute to accuracy and verification of models in
principled-way.

Cc
<
=

Agent Characteristics E> Derive Design Principles <j Software Architecture

-

Extend the UML

-

Formalize the Extensions

il

Architecture-Centric Object-Oriented Design Methods for MAS

Figure 1. Conceptual Frameworks

3.2 The UML AsaCore Design Methods and Its Extension Mechanisms

The UML is an object-oriented graphical language with well-defined syntax and
semantics. The syntax and semantics are specified semi-formally though underlying
semantic models (meta-model), descriptive text, and constraints. The UML consist of
nine diagrams and each diagram represent various aspects to develop atarget system:
class diagram, object diagram, use case diagram, statechart diagram, sequence
diagram, collaboration diagram, activity diagram, component diagram, and
deployment diagram.

The UML is an extensible language so that new construct may be added to
address new issues in software development without changing the original syntax
and semantics. (1) Constraints place semantic restrictions on particular design
elements. (2) Tagged values alow new attributes to be added to particular elements
of the model. (3) Stereotypes allow to add new elements representing a subclass of
an existing element. These mechanisms may be written by the OCL that is a formal
language to express constraints based on first-order predicate logic.

Since, basically, the UML covers most of aspects to design MAS as a software
system, the suggested method extends the UML to satisfy additional requirements for

MAS in principled way. Design principles are derived from agent characteristics and
software architecture and formalized to verify models whether or not the model user
specified satisfies the principles.

3.3 Deriving Design Principles

Multi-agent system design encourages the distribution of behavior among agents.
Such distribution can result in agent structure with many connections between agents.
Lots of interconnections make it less likely that an agent can work without the
support of others, while one of agent characteristics is that an agent has capability to
follow its goal autonomously. In fact, as the number of agentsisincreasing, it can not
be avoided that the more dependencies among agents exist. In classical object-
oriented modeling techniques, objects should have references to communicate with
each other, while agents communicate with other agent in keeping independence.
Concept of software architecture, which software systems consist of components and
connectors, supports the design to minimize the interconnection among agents.
Introduction of connectors reduces structural dependencies between agents in
structural model. This leads to the following principle of architecture-centric object-
oriented design:

Multi-agent structure consists of agents having roles of components and connectors.

Although the internal structure of an agent consists of functional components and
also a number of behavior patterns, agent is a primitive building for the design of
MAS. In fact, an agent has more similarity with a subsystem of classical object-
oriented methods than a single object. It, however, is only of limited use to structure
agent-oriented systems in the form of subsystems. Rather, the modeling should be
performed taking into consideration an agent as an abstracted agent class within
overall systems, because an agent can be directly designed by decomposing without
re-structuring in object-oriented model. This leads to second principle of
architecture-centric object-oriented design:

An agent is a primitive building block for the design of multi-agent systems.

This abstracted modeling technique accommodates reuse. One of the strengths in
object-oriented techniques is the inheritance mechanism to reuse or abstract

components, but it discourages to use this mechanism in MAS. Agent normally has a
very special form and also the existence of knowledge based components. It is a
reason that current agent-oriented methodologies do not permit or discourage to use
this mechanism. An architecture-centric design, however, provides a generic system
structure and behavior patterns. This implies that once successfully designed
architecture can be reused in the same specific domain. The following principle is
derived to accommodate reuse in the design of MAS:

Architecture-centric design favors patter n-based mechanism over inheritance.

All these above principles support to effectively design MAS, but they are not
enough to design complete MAS. They are just principles at least for the design.
There are more general principles in development methodology community [2]. They
can be summarized following as: it is important what kinds of models are selected,
model should be expressed at different levels, the best models are connected to
reality, and no single model is sufficient.

In this paper, we provide the extensions of the UML based on these principles and
then, the extensions are formalized by OCL. The formalizations have roles that are
syntactic or semantic constraints to restrict on model or modeling el ements.

4. CASE Study

4.1 Overview of Case

As an illustrative example, the visitor hosting system (VHS) example is used in
this paper [21]. It had been developed based on reusable multi-agent computational
architecture RETSINA (Reusable, Task Structure-based Intelligent Network Agent).
It has three types of agents. Interface agents interact with users. Task agents help
users perform tasks by formulating problem solving plans and carrying out these
plans through querying and exchanging information with other agents. Information
agents provide intelligent access to a heterogeneous collection of information sources.

The RETSINA architecture was suggested in the form of figure 2. This form is
typical to suggest agent architecture in agent-based applications, but it is difficult to
represent the architecture in traditional object-oriented model. Figure 3 shows the
problems when the architecture is designed by traditional object-oriented model. As
the number of agent increases, dependency among agent is to be profound. In

traditional object-oriented techniques, agents have references to each other to
communicate with them in natural way. At worst case, agents know all other agent.
To resolve these problems, we have suggested architecture centric design methods to
constrain modeling.

USER 1 USER 2 USERh

Goals and Task
Specifications | Results

Conflict
Resolution|

Task Agent 1

Information
Request /' Reply

InfoAgent 1 -
Collaborative

Query Processing

Information
Integration

InfoAgent 2 InfoAgent m

< 5
Info Info
Source 1 Source 1

Figure 2. Agent Architecture in RETSINA [21]

Interface Interface Interface
Agent Agent Agent
Task Task
Agent Agent
Information Information Information
Agent Agent Agent
e
:]
Information Information Information

Figure 3. Traditional Object-Oriented Model of the RETSINA Architecture

4.2 The Visitor Hosting System

The VHS is a system that is to arrange the visitor’s schedule with faculty whose
research interests match the interests that the visitor has expressed in higher visit
request. The VHS has an interface agent, referred to as the Visitor Hoster, which
interacts with the person hosting the visit. It also has the following task agents: a
personnel finder task agent, who finds detailed information about the visitor, and also
finds the faculty he/she meets, (2) the visitor’s scheduling task agent and (3) various
personal calendar management task agents that manage calendars of various faculty
members. In addition, the VHS has a number of information agents that (1) retrieve
information from a CMU database that has faculty research interests (Interests agent),
and (2) retrieve personnel and location information from various university databases.
For the brevity, it is assumed that agents have been already identified and the KQML
is used for the communication among agents

4.3 Architecture-centric Extensions for MAS

In order that agents are primitive building blocks for the design of MAS,

behaviors of agents and their internal objects are abstracted to interfaces and the
agent has operations corresponding to the interfaces.

Sereotype ArMessage for instance of meta-class Message
[1] ArMessages are tagged identifying protocol types
arMsgType : enum{advertise, unadvertise, ask, ask-all, reply, ...}

Sereotype ArOperation for instance of meta-class Operation

[1] ArOperatons are tagged for identifying corresponding ArMessages
arOprType : enum {advertise, unadvertise, ask, ask-all, reply, recruit, ...}
[2] ArOperations have no return values

self.parameter 2 not exists(p | p.kind = return)

Sereotype Arlnterface for instance of meta-class Interface
[1] All Arinterface operation corresponds to stereotype ArOperation.
self.ocl Type.operation - forall (0| o.stereotype = ArOperation)

Figure 4. Interface Restrictions

Modeling elements for design of MAS consist of components and connectors.
Agents are components that are abstracted to ignore their interna details. Agents
have state values for representing mental state. In fact, agents do not reply until their
mental state reach agreement state although they take request message.

Sereotype ArAgent is instance of meta-class Class

[1] Mental state of agent has a tagged value either agreement or disagreement
ArMtlSate : enum{ agreement, disagreement }

[2] ArAgent has ArOperations to recognize all of communication protocols.
self.ocl Type.operation = exists (0 | o.arOprType = advertise) and

self.ocl Type.operation = exists (0 | o.arOprType = unadvertise) and

self.ocl Type.operation = exists (0 | o.arOprType = ask) and

self.ocl Type.operation - exists (0 | o.arOprType= ask all) and

self.ocl Type.operation = exists (0 | o.arOprType= reply)

[3] ArAgent is associated to its internals with composition relationship.

Let wholes = self.ocl Type.assocEnd 2 select (a | a.aggregation = composite),
wholes.association.ocl Type = select (0 | 0.oclIsKindOf (class)) and select (0 |

o.stereotype <> ArAgent) and select (0 | o.stereotype <> ArConnector)

Figure 5. Component Restrictions

In architecture-centric design, connector plays a role that is a bridge between
agents. In this approach, agents communicate with each other maintaining
independence through connectors. In fact, a connector is an agent, but it abstracts
interactions among other agent.

Sereotype ArConnector isinstance of meta-class Class
[1-2] Same as constraints 1-2 on ArAgent

Figure 6. Connector Restrictions

In architecture-centric design, there is only one kind of relationships between
components and connectors. An agent is not associated with other agents except
connectors. It leads a topology rule that agent can not directly connect to other agent
without connector. This fact guarantees independence of agents

Sereotype ArAttachment is instance of meta-class Association.

[1] ArAttachment is binary association

self.ocl Type.assocEnd 2 size= 2

[2] Thefirst end of the association must be to an ArAgent

self.ocl Type.assocEnd[1] .class.stereotype = ArAgent

[3] The second end of the association must be to an ArConnector

self.ocl Type.assocEnd[1] .class.stereotype = ArConnector

[4] Multiplicity of ArConnector that participate ArAttachment is at minimum one and
at maximum one

self.ocl Type.role = forall (r | rmultiplicity = “1..1")

[5] Multiplicity of ArAgent that participate ArAttachment is at minimum one and at
maximum one

self.ocl Type.role = forall (r | rmultiplicity = “1..1")

Figure 7. Relationship Definition

Architecture-centric design means that all of components are organized in

structured way. As described in previous section, only few kinds of model elements
are used for architectura model. This restriction of constructs makes designers
concentrate on narrow scope and models maintain consistency. All agents know at
least one connector to communicate other agents. This means that all agents
participate in one or more collaborations.

Sereotype ArModé is a instance of meta-class Model
[1] ArModel contains architectural components
self.ocl Type.modelElement > forall (e | e.stereotype = ArAgent or e.stereotype =
ArConnector or estereotype = ArAttachment or estereotype = Arinterface or
e.stereotype = ArOperaton or e.stereotype = ArMessage)
[2] Each ArAgent must participate at least one Ar Attachment
Let cls = self.ocl Type.model Element -2 select (e.stereotype = ArAgent)
cls = forall (¢ | c.assocEnd.association
- select (a| a.stereotype = ArAttachment) 2> size>=1)
[3] Each ArConnector must participate at least one ArAttachment
Let cls = self.ocl Type.model Element - select (e.stereotype = ArConnector)
cls = forall (¢ | c.assocEnd.association
- select (a| a.stereotype = ArAttachment) 2> size>=1)

Figure 8. Model Elements Restrictions

4.4 Selective Graphical Diagrams

Architecture-centric design focuses on artifacts to describe architecture of systems
in certain level of abstraction. In the UML, use case model can be used for
establishing the desired architecture of the systems like figure 9. Part (a) shows the
model for the RETSINA architecture. It mainly consists of collaborations, which
their shapes are dotted ellipse, rather than use cases, since the RETSINA architecture
isakind of generic architecture and a basis for the design of the VHS. Part (b) shows
use case diagram for the VHS. The use case diagram reflects that the VHS should be
developed under the RETSINA architecture. The collaborations that are defined for
the RETSINA architecture are used for realizing use cases of the VHS.

In the RETSINA architecture, collaborations for representing interactions among
agents are perform task, integrate information, conflict resolution, and collaborative
query. In fact, these collaborations require more detailed design, but, for the brevity,

it is assumed that they are realized by mediator pattern [7]. Figure 10 depicts a model
of agent collaboration using mediator pattern. Structural aspect of mediator
collaboration is shown in part (b) of figure 10. The mediator pattern among design
patterns is the best match to the case that facilitator is used for communication
between agents. It is used in following cases: a set of objects communicates in well-
defined but complex way. The resulting interdependencies are unstructured and
difficult to understand. Reusing an object is difficult because it refers to and
communicates with many other objects. A behavior that’s distributed between
several classes should be customizable without alot of subclassing.

4, Perform Task Q
/\ <<refine>> Integrate
% / 7 Information .. <

- <<refine>> -
Godl and Task =<~ - Miediotor
.. Specification <<refine>> 5, Conflict
User ' Resolution Q
<<refine>> . .
a. Collaborative
Quey
(a) Organizing Collaborationsin the RETSINA
<<include>> Collect Person
/ Information
Visit request v
% Integrate
Information
Visitor

" Goal and Task
Make schedule 4 Specification

(b) Usecase model for the VHS based on the RETSINA
Figure 9. Use case model for the RETISNA and the VHS

Architecture-centric design favors pattern-based mechanism over inheritance for
reuse. Figure 11 shows the redlization of pattern modeling in part (a) of figure 10.
This approach uses substitution of parameter rather than inheritance for reuse.
Components for the VHS are used for parameters of mediator pattern. In the figure,
Components including RETISNA connector, interface agent, task agent, and
information agents substitute for colleague and mediator parameters. As results of
this approach, figure 11 shows the structural aspects and behavioral aspects of the
integrate information collaboration in the RETSINA architecture.

" Colleague |
RETSINA __Mediator Mediator
Connector
Colleague Colleague
= Colleague
Interface Task Information
Agent Agent Agent

Mediator

(a) Agent Collaboration in the RETSINA Architecture

. mediator
Mediator Colleague
Concrete Concrete Concrete
Mediator colleague Colleague a Colleague b
‘ colleague T

(b) Class Diagram for Mediator Collaboration(Design Pattern)
Figure 10. Pattern Modeling

In models of figure 11, al of classes are ArAgents that are stereotype classes for
agents. The RETSNA connector is introduced to simplify relationships among agents.
It is an agent having role of facilitator, but has more semantics than traditional
facilitator by the connector restrictions. It does not resolve the connection problems
among scattered agents in distributed network, but also abstracts collaborations
among agents. It encapsulates how a set of agents interacts. It promotes loose
coupling by keeping agents from referring to each other explicitly, and it makes
designers model their interaction independently. All of relationships are
ArAttachments that are stereotype relationships for relationship between agents. They
derive topological rule that agents are not directly connected to each other without a
connector.

In models of figure 11, the RETSINA connector agent is a mediator. The RETSNA
agents send and receive requests from the RETS NA connector agents. The RETSINA
connector agent implements the cooperative behavior by routing requests between
appropriate the RETINA agents. Messages between agents are represented by
stereotype ArMessages. The messages have performatives to inform protocols
between agents.

<<ArConnector>> <<ArAttachment>> mediator | <<ATAgent>>
Agent is-attached-to RETSINA
Connector Agent
‘ <<ArAttachment>>
(R;ETSA NA is-attached-to Interface Task Information
onnector Agent Agent Agent
<<ArAttachment>>

is-attached-to
| ! !
(a) Class Diagram for Integrate Information Collaboration in the RETSINA Architecture

:Client
% :Interface :RETSINA :Information
Agent Connector Agent
Goal or Task <<ArMessage>> find_agent()
Specification ask(information)] <<ArMessage>>
ask(information)
<<ArMessage>> < " J
tell(information) <<ArMessage>>
< tell (information)

Result

(a) Sequence Diagram for Integrate Information Collaboration in the RETSINA Architecture

Figure 11. Two Aspects for the Integrate Information Collaboration

Figure 12 and 13 show the model for the VHS based on the RETSINA models.
The VHS directly reuses the structure and behavior of the RETISNA without
restructuring. This means well-defined architecture is re-usable for the same domain.

RETSINA Connector
Interface Agent
Task Agent
Information Agent

Hosting RETSINA Integrate | nformation
Connector [Connector

Information Agent

Interface’ Agent '
g Task Agent Information Agent
Visitor Hoster Personnel Interest Retrieval
Finder

(a) Integrate Information Collaboration for the VHS

<<ArAttachment>>

Agent is-attached-to mediator RETSINA
Connector Agent
L% | | | |
Hosting L Personnel .
Connector Visitor Hoster Finder Interest Retrieva
\)
coll%:ague

(b) Class Diagram for Integrate Information Collaboration
Figure 12. The VHS modeling based on the RETSINA model

1.1.1:<<ArMessage>>

1.1:<<ArMessage>>

:Visitor askvisit q :Hosting askfind_faculty nterests
Hoster |« Connector |« —_—
1.13. 2.1:<<ArMessage>> 1.1.1.1 :<<ArMessage>>
tell initial_result tell faculty_info
Lirequest visit 1.1.2:<<ArMessaget>
ask visitor_info
T 1.1.3:x<Ar\lessage>>
1.13.2.1. 1. initial_faculty set ask faculty_info
1.1.3.2:<<ArMessage>>
y y y tell initial_result
. :Personnel
:Visitor —_—
—_— Finder
1.1.3.Lintegrate_info()
(a) Collaboration diagram for the visit request
1.1:<<ArMessage>> 1.2.2*[until agree]:
Vistor ask schedule “Hostin <KArM e>> ask schedl -Scheduler
Hoster |« Connector |+
1.1.2.1.1:<<ArMessage>> 1.1.2.1 <<ArMessage>>
) tell schedule tell schedule
1:selection 1.1.1*[until agree]:<<ArMessage>p L111<<AM
. schedule informatign -1.1.1<<ArMessage>>
11.21.1.1fi na?f‘f esu - tell schedule_information
A [
:Visitor Calendar J

(b) Collaboration diagram for the make schedule

Figure 13. Collaboration Diagram in Behavior Models

Hosting Connector :: ask visit_request

Hosting Connector

Message Agents

Personnd Finder Interests

[dead Interests]
[alive Interests]
Yy

Ask >
aculty info

> Construct

—
v
Establish Creaie \
connection /[dead PF]
[dlive PF] Construct message
v
Ask > Interpret
visitor info mi e
Interpret "\ ¢
n S v
DGl
S message visitor info

Y
< Integrate > < Tell
result initial-set

@

Figure 14. Activity Diagram in Behavior Models

Figure 13 shows collaboration diagrams for behavioral aspects of use cases of the
VHS. Figure 14 shows an activity diagram for the collaboration between a connector
and agents. This diagram is used for modeling a detail algorithm for collaboration
protocols. In figure 14, it is assumed that the connector has pre-defined references of
agents for the collaboration instead of searching appropriate agents.

In this case study, all of selective diagrams use extended modeling elements that
are defined based on the suggested design principles. They satisfy syntactic or
semantic constraints to properly design the case. Although detailed design is required
for implementations of the case, selective diagrams show sufficient logical models to
represent the case. This implies that the suggested design principles help to build
more reusable and well-structured systems for large and complex MAS.

In the UML, there are other diagrams. statechart, component, and deployment
diagram. These diagrams may contribute to model in certain aspects of MAS, but
they are omitted because this paper focuses on logical model to design of MAS.

7. Conclusion and Further Researches

Agent technology is used in wide variety of applications with range from
comparatively small systems to large, complex, and mission critical systems. While the
popularity of agent-based system is increasing in trends, practical development support
of methodology has fallen behind the trend of increasing popularity.

Based on classical object-oriented methodologies, agent-oriented methodologies
have been suggested to reflect characteristics of agents or multi-agent systems, but they
are just immature or research-oriented. In particular, multi-agent architecture plays a
role in representing relationship and collaboration among agents in multi-agent systems.
Actualy, most of multi-agent systems have been suggested multi-agent architecture to
describe relationship and collaboration among agents, but current agent-oriented
methodologies do not have model and modeling elements to analysis, design and
eval uate the multi-agent architecture.

In this paper, an architecture-centric object-oriented design method for multi-agent
systems is suggested. The suggested method adopts object-oriented method as a core
design method and then extends it to properly represent collaboration among agents.
The suggested method provides design principles that are derived from agent
characteristics and concepts of software architecture. Concept of software architecture,
which software systems consist of components and connectors, is introduced to properly
represent multi-agent architecture. It provides clean separation between individua

agents and their interactions in overall agent systems. The separation makes large
applications more tractable, global analysis feasible, and software reusable.

The suggested method adopts the UML as a core design method and extends it by
extension mechanism of the UML without syntactic and semantic changes of original
models. It implies that the availability of developers and tools, the utilization of past
experiences and knowledge, and the seamless integration of other systems. The
extension is based on design principles and formalized by OCL (Object Constraint
Language). These extensions have roles that are kinds of syntactic or semantic
constraints to restrict on model or modeling elements. These formalized restrictions
contribute to accuracy and verification of models in principled way.

This approach will improve the productivity and quality of MAS development by
exploiting existing software-engineering progresses. In future, we will employ the
methods in the real applications. The feedback from these applications will refine the
methods.

References

[1] Booch, G., Object-Oriented Analysis and Design with Application,
Benjamin/Cummings, 1994.

[2] Booch, G., Rumbaugh, J., and Jacobson, |., The Unified Modeling Language
User Guide, Addison-Wesley, 1999.

[3] Brenner, W., Zarnekow, R., and Wittig, H., Intelligent Software Agents:
Foundations and Applications, Springer-Verlag, 1998.

[4] Burmeister, B., “Models and Methodology for Agent-Oriented Analysis and
Design”, K. Fischer, editor, Working Notes of the KI’96 Workshop on Agent-
Oriented Programming and Distributed Systems, Germany, 1996.

[5] Coleman, D., Arnold, P, Bodoff, S., Dollin, C., Gilchrist, H., Hayes, H., and
Jeremaes, P, Object-Oriented Development: The FUSON Method, Prentice
Hall, 1994.

[6] Decker, K., Sycara, K. and Williamson, M., “Matchmaking and Brokering”,
Proceedings of the Second International Conference on Multi-Agent Systems
(ICMAS-96), December 1996.

[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns. Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[8] Garlan, D. and Shaw, M., “An Introduction to Software Architecture”, Software
Engineering and Knowledge Engineering, Vol. 1, World Science Publishing,
1993.

[9] Foundation for Intelligent Physical Agents, “FIPA Architectural Overview”,
FIPA 99 Specification, July 1999. Available from http://www.fipa.org.

[10] Finin, T. and Wiederhold, G., “An overview of KQML: A Knowledge Query
and Manipulation Language”, Dept. of Computer Science, Stanford Univ., 1991.

[11] Iglesias, C.A., Garijo, M., and Gonzalez, J.C., “A Survey of Agent-Oriented
Methodologies’, ATAL’ 98, Paris, France, 1998, pp. 185 — 198.

[12] Iglesias, C.A., Garijo, M., Gonzalez, J.C., and Velasco, JR., “Anaysis and
Design of Multi-Agent Systems Using MAS-CommonKADS’, M.P Singh,
A.Rao, M.J. Wooldridge, editors, Intelligent Agent IV(ATAL'97), LNAI 1365,
Springer-Verlag, Berlin, Germany, 1998, pp. 314 — 327.

[13] Jacobson, I., M. Christerson, P. Jonsson, G. Overgaard, Object-Oriented
Software Engineering. A Use Case Driven Approach, Addison-Wesley, 1992.

[14] Jennings, N. R., Sycara, K., and Wooldrige, M., “A Roadmap of Agent Research
and Development”, Journal of Autonomous Agents and Multi-Agent Systems,

1998, vol.1, pp. 275-306

[15] Kendall, E. A., M. Makoun, and C. H. Jiang, "A Methodology for Developing
Agent Based Systems for Enterprise Integration”, Modelling and Methodol ogies
for Enterprise Integration, Chapman and Hall, P. Bernus and L. Nemes, Editors,
1996.

[16] Kinny, D., Georgeff, M., and Rao, A., “A Methodology and Modeling
Technique for Systems of BDI Agents’, LNAI 1038, Springer-Verlag, Berlin,
Germany, 1996, pp. 56-71

[17] Robbins, J.E., Medvidovic, N., Redmiles, D.F, and Rosenblum, D.S,
“Integrating Architecture Description Languages with a Standard Design
Method”, Proceedings of the 1998 International Conference on Software
Engineering, Kyoto, Japan, 1998, pp. 209 — 218

[18] Taylor, R. N., Medvidovic, N., Anderson, K., Whitehead, Jr., E.J., Robbins. J.E.,
Nies, K. A., Oreizy, P, and Dubrow, D.L., “A Component and Message-based
Architectural Style for GUI Software”, IEEE Transaction on Software
Engineering, June 1996, Vol. 22, No. 6, pp. 390-406.

[19] Rational Partners, Unified Modeling Language Documents, Version 1.1,
Rationa Software Corporation, September 1997, Available from

[20] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-
Oriented Modeling & Design, Prentice-Hall, 1991

[21] Sycara, K., Decker, K., Pannu, A., Williamson, M. and Zeng, D., “Distributed
Intelligent Agents’, |EEE Expert, December 1996.

[22] Winograd, T. (1987), "A language/action perspective on the design of
cooperative work," Human-Computer Interaction 3:1 (1987-88), 3-30.

[23] Wooldridge, M., “Agent-based Software Engineering”, |EE Proceedings on
Software Engineering, 144(1), pp. 26 - 37, February 1997.

[24] Wooldridge, M., Jennings, N.R., Kinny, D., “A Methodology for Agent-
Oriented Analysis and Design”, In Etzioni, O., Muller, J.P, and Bradshaw, J.,
editors. Agents '99: Proceedings of the Third International Conference on
Autonomous Agents, Seattle, WA, May 1998.

http://www.rational.com/

