
UML-Based Ontology Modelling for Software Agents

Stephen Cranefield�, Stefan Hausteiny and Martin Purvis�

� Department of Information Science
University of Otago

PO Box 56
Dunedin, New Zealand

fscranefield,mpurvisg@infoscience.otago.ac.nz

y University of Dortmund
Computer Science VIII

Baroper Str. 301
D-44221 Dortmund, Germany

stefan.haustein@udo.edu

ABSTRACT
Ontologies play an important role in defining the terminology that
agents use in the exchange of knowledge-level messages. As object-
oriented modelling, and the Unified Modeling Language (UML)
in particular, have built up a huge following in the field of soft-
ware engineering and are widely supported by robust commercial
tools, the use of UML for ontology representation in agent systems
would help to hasten the uptake of agent-based systems concepts
into industry. This paper examines the potential for UML to be
used for ontology modelling, compares it to traditional description
logic formalisms and discusses some further possibilities for apply-
ing UML-based technologies to agent communication systems.

1. INTRODUCTION
Ontologies play an important role in defining the terminology that
agents use in the exchange of knowledge-level messages and there-
fore the choice of an ontology representation language is a sig-
nificant issue when designing a multi-agent system. Traditional
approaches to ontology representation use modelling formalisms
developed by the artificial intelligence knowledge representation
community—in particular, frame-based languages descended from
the KL-ONE system [7] and their formalisations as various forms
of description logic. However, these languages were developed for
use in monolithic knowledge representation systems that are very
different in character from distributed multi-agent systems.

One of the potentially significant advantages of multi agent systems
is that agents built using different technologies can be combined to
form a society and can collectively solve problems that none of the
agents could on their own. In particular, it cannot be assumed that
all agents will be implemented on top of a KL-ONE style knowl-
edge representation system. Therefore, the choice of a ontology
modelling language should depend more on its suitability for the
initial construction of the ontology than any support it may offer for
specialised run-time reasoning. In fact, we believe that the reason-
ing requirements of future multi-agent applications are not likely to
be predominant design criteria and other issues such as coping with
design complexity are more important.

In addition, there are other things to consider when deciding what
representation to use for ontology modelling. If agent-based ar-
chitectures are to find their way from the research laboratory into
wide-spread use in industry and business, we would do well to con-
sider the degree to which a candidate ontology modelling language
would gain aceptance in the wider community outside the research
laboratories. As object-oriented modelling, and the Unified Model-
ing Language (UML) in particular, have built up a huge following

in the field of software engineering and are widely supported by
robust commercial tools, the use of UML for ontology represen-
tation in agent systems would help to hasten the uptake of agent-
based systems concepts into industry. This paper therefore exam-
ines the potential for UML to be used for ontology modelling, com-
pares it to traditional approaches (description logic in particular)
and discusses some further possibilities for applying UML-based
technologies to agent communication and reasoning systems.

The paper is structured as follows: First, we discuss traditional ap-
proaches to ontology modelling, focusing in particular on descrip-
tion logic. We then explain why we consider UML to be suitable
as a knowledge representation language before making a compar-
ison between the features of description logic and UML. We then
discuss UML in the wider context of agent communication.

2. TRADITIONAL APPROACHES
The most widely used traditional approaches for ontology mod-
elling are the Knowledge Interchange Format (KIF) [26] and de-
scription logic.

KIF is a language based on first-order predicate logic with ex-
tensions for representing definitions and metaknowledge. While
first-order logic is a low-level language for expressing ontologies,
the Ontolingua tool [19] allows users to build KIF ontologies at a
higher level of description by importing predefined ontology defi-
nitions. In particular, the frame ontology [24] allows ontologies to
be described at a level similar to description logics.

Description logics are a formalisation of the representations and
processes underlying frame-based knowledge representation sys-
tems in the tradition of KL-ONE [7]. These systems support the
definition of concepts by simply naming them and specifying where
they fit in the generalisation/specialisation hierarchy of existing
concepts. New concepts can also be defined in terms of existing
concepts using the operations of concept conjunction: the and op-
erator can be used to specify that the new concept is a common
specialisation of a number of other concepts. New roles may be in-
troduced to represent possible relationships that may hold between
individuals in the domain being modelled, and concept definitions
may include restrictions on the possible values, number of values,
or type of values that a role may have for the concept being defined.

The following example, adapted from Nebel [27], illustrates these
features of description logic. In the notation used, Anything is a
predefined concept representing the class of all things and the class
of all relations is denoted by anyrelation. The symbol

�
= rep-

resents concept definition and concept specialisation is represented

by
�

�.

Human
�

� Anything

Set
�

� Anything

Man
�

� Human

Woman
�

� Human

member
�

� anyrelation

Team
�
= (and Set

(all member Human)
(atleast 2 member))

Description logics are designed to support certain types of infer-
ences over user-defined concepts and instances of concepts and
roles that may be stored in a knowledge base (see Section 4.4).
These types of deduction are designed to help the user in incremen-
tally designing a coherent set of concepts and instances to describe
a domain.

3. UML FOR ONTOLOGY MODELLING
The Unified Modeling Language is a language and associated graph-
ical notation for object-oriented analysis and design. The object-
oriented modelling paradigm has become the mainstream technique
in the software industry based on the widely accepted view that
object-oriented modelling fits well with people’s intuitive models
of the world [4].

UML is a standard from the Object Management Group (OMG)
[29]. The OMG is a consortium of around 800 member compa-
nies and institutions involved in software engineering. Therefore,
UML has a very large and rapidly expanding user community and
the language is widely taught in universities. There are also many
tools available for creating and editing models in UML using direct
manipulation of the models’ graphical presentation1.

The use of UML is now widespread in industry and its rapid accep-
tance (even for the design of mission-critical applications) suggests
that it provides an effective and scalable approach to conceptual
modelling, and therefore warrants serious consideration as an on-
tology modelling language [12, 1]. However, UML has a rather dif-
ferent character from the logic-based formalisms traditionally used
for ontology modelling. UML is defined in terms of a graphical
syntax as well as a metamodel defining the types of structure that
may appear in a user’s model and the ways in which they can be
related to each other. The metamodel plays the same role that a
context-free grammar does in defining the legal combinations of
terminal symbols in a string-based language, but without the limi-
tations caused by the use of a linear textual format. There is cur-
rently no text-based syntax designed for human use (although work
is in progress to design one [30]), but there is a standard XML-
based format—the XML Model Interchange format (XMI)—that
allows models to be encoded as instances of the UML metamodel.
Despite these differences from traditional knowledge representa-
tion languages, we believe UML models have a number of features
1Although there are graphical notations and/or model editors exist-
ing for some AI knowledge representation languages (e.g. Seman-
tic Nets and Conceptual Graphs), UML is unique in having both a
compact, high-level and standardised notation and a high degree of
tool support.

SportsClub
sport : String
priceOfBeerAtClubRooms : Real

ProfessionalBody

profession : String
codeOfEthics : String

Person
givenName : String
familyName : String

Organisation

name : String

*

*member

* memberOf

*

Figure 1: A simple UML class diagram example

commonly regarded as characteristic of the declarative knowledge
representation paradigm [21, 13]:

� Knowledge expressed in UML is directly accessible for hu-
man comprehension (via its standard graphical presentation)
and for machine processing (via the XMI model interchange
format and associated software libraries or the application
programmer interface defined by the OMG’s Meta Object
Facility).

� Knowledge in a UML model can be changed easily due to the
modular nature of object-oriented modelling. Changes to one
feature in the model do not generally affect other features.

� UML models can be used for purposes that were not antic-
ipated at the time of model creation. In other words, UML
is an abstract modelling language, not tied to any particular
application.

� New knowledge can be derived from UML models by rea-
soning about their contents. In particular, UML has an asso-
ciated constraint language—the Object Constraint Language
(OCL)—that can be used to define derived model elements
(those that can be computed from other elements) and to as-
sert arbitrary constraints on the possible instances of a model.
This aspect of UML has not been well supported by tools in
the past, but a number of OCL-aware tools [3, 35] and code
libraries [34] are beginning to appear.

With this viewpoint, UML can be regarded as a suitable candidate
for knowledge representation. In particular, we refer to UML class
diagrams which provide a rich notation for defining classes, their
attributes and the relationships between them. They can therefore
be used to define ontologies in an object-oriented fashion.

Figure 1 shows a simple class diagram specifying the structure of
and relations between classes representing people and organisa-
tions. The diagram also shows two specialisations of the organisa-
tion class: sports club and professional body. In order to understand
this UML class diagram, it is sufficient to know the following:

� Rectangles depict classes.

– The class name appears at the top (in italics if the class
is abstract).

– Any attributes appear below in a separate compartment.

� Lines between classes represent association relationships.

– Association ends may be labelled with “role names”.

– Association ends may be annotated with numbers in-
dicating how many objects may have this association
with instances of the class at the other end. ‘*’ means
“zero or more”.

� A line with a closed arrowhead represents generalisation,
with the arrow pointing to the more general class.

UML contains many other modelling constructs besides those men-
tioned here [5, 28], such as n-ary associations, association classes
(associations with their own attributes and the ability to take part in
associations with other objects), associations navigable in one di-
rection only, and “ordered” constraints on association ends (speci-
fying a sequence-based rather than set-based semantics). UML also
includes the Object Constraint Language (OCL) that can be used to
constrain the possible models of a specification in ways that cannot
be achieved using the UML structural elements alone.

Examples of more complex ontologies expressed in UML can be
found elsewhere [12, 10, 11].

4. DESCRIPTION LOGIC AND UML:
A COMPARISON

Description logic and UML have resulted from different fields of
research. Description logic was produced by the knowledge rep-
resentation community as a formalisation of the conceptual mod-
elling support provided by systems such as KL-ONE. In particu-
lar, description logic is optimised to allow automated consistency
checking and the classification of new concepts with respect to
existing concepts as the model is constructed. UML stems from
research into object-oriented modelling and is designed to allow
the direct expression of analysis and design models of problem do-
mains and software systems using OO concepts. In this section we
will look at these differences from an agent system viewpoint.

4.1 Modelling paradigm
Defining an ontology in DL involves introducing terms naming or
describing concepts and combining them to create new terms de-
scribing more complex concepts. Consider the DL definition of
Team shown earlier:

Team
�
= (and Set

(all member Human)

(atleast 2 member))

This definition states that the concept described by the symbol Team
is the conjunction of three other concepts: Set, the unnamed con-
cept of anything that has a member role having a value that is any
instance of the concept Human, and the unnamed concept of any-
thing that has a member role having at least two values. Although
these latter two concepts are highly unlikely to be of interest to
agents, it is unavoidable in DL that mentioning these role restric-
tions for the Team concept introduces them as concepts with the
same status as any others.

In UML, a class diagram is a direct specification of the structure of
a number of classes and the relationships between them. A class is
defined by firstly an optional parent class (or a set of parent classes),
from which it inherits all attributes and associations, and secondly
a set of additional attributes and associations. Each class can be
seen as the template for all instances of that class. Only the classes
that are of interest to the modeller need to be defined.

4.2 Roles vs. Attributes and Associations
One significant difference between DL and object-oriented mod-
elling notations, such as UML, is the style in which the structure
of concepts and relationships between concepts are defined. In DL,
there is a single construct to model these: the role. Roles are first-
class entities: a binary role represents a binary relation on the uni-
verse of discourse U , i.e. a subset of U2. A given role can poten-
tially be used to make an assertion about any individual in U .

A concept can be defined in terms of restrictions on the possible
value types, number of values, or possible values for a role when
applied to instances of that concept. Apart from any type restric-
tions declared for particular concepts, roles are untyped. Also, if an
ontology makes no mention of a role in relation to a given concept,
this does not prevent a knowledge base from containing assertions
that an instance of a concept has a value for that role. Consider
the Set concept defined earlier. This has no mention of any roles,
although it is clear from the definition of Team (which is a speciali-
sation of Set with restrictions on member) that the intended way of
stating that instances are members of a set is to use the member role.
However, if the knowledge base contained the assertions (Set s)
and (element s a) (where the second assertion uses the wrong
vocabulary to refer to members of a set), this would not be consid-
ered to be an error (assuming that the role element was introduced
for some other concept in the ontology, e.g. PeriodicTable).

In fact, some forms of description logic would allow the ontology
designer to state that member is defined for Set by a statement of
the following form, which means that Set is a special case of things
that have values for the member role:

Set
�

� (exists member Anything)

Ignoring the fact that this does not allow for empty sets, this now
allows the absence of any member assertions about set s to be de-
tected (which may result in the mistaken use of element to be
discovered).

However, the fact that such declarations are not required before re-
ferring to member in a sub-concept means that developers (or tools
supporting DL) must exercise a certain discipline when building
ontologies. This could become a problem when attempting to scale
the use of DL large-scale team development of ontologies.

While the above declaration now indicates that the member role is
associated with the concept Set, and therefore provides guidance
for users of the ontology, it still does not help to directly detect the
mistaken assertion of (element s a) in the knowledge base. The
following declaration would help:

(exists element Anything)
�

� PeriodicTable

This restricts the domain of element to the concept PeriodicTable
and therefore it can no longer be used to make assertions about sets.
However, there is now a more serious problem: Two designers can-
not work on independent parts of the ontology without reserving
unique names for every role they need to define. This is clearly not
a viable approach.

It could be argued that it is not desirable to prevent the simulta-
neous use of different terms such as member and element in the

same database. This could be compared with Tim Berners-Lee’s
notion of the Semantic Web where “anyone can say anything about
anything” [2]. However, this requirement does not seem to ap-
ply to ontology-based agent communication. The nature of inter-
agent communication using an agent communication language is
that agents agree on an ontology to use. They know what the ap-
plicable roles are for each individual they wish to talk about and
can be assumed to converse in it correctly. While it will no doubt
be necessary to translate between ontologies, this is probably bet-
ter handled as a separate process involving specialised translation
agents.

In contrast, in UML, the internal structure and relationships be-
tween classes are represented by attributes and associations, with
attributes being used to represent slots of simple types and asso-
ciations being used to express relationships between classes. At-
tributes and associations are not defined globally, but are defined
in the context of the particular classes with which they are con-
cerned. Thus, since an attribute of a class is only known in the
context of that class, it may be expressed as a simple identifier,
such as “name”, “member”, etc., without the necessity of defining
its global semantics for the whole model.

One of the significant features that UML offers is assistance at de-
sign time in the management of complexity. This is accomplished
by the way in which modelling elements are localised in scope.
This feature of design locality makes it more likely that the model
designer will be able to construct a more complex design by means
of manageable ‘chunks’, whose complexity is encapsulated within
the scope of a class or a few classes. Although a DL may provide
more advanced mechanisms for detecting inconsistencies among
modelling elements that the designer has constructed, it doesn’t of-
fer the guidance in managing complexity that UML does. The de-
sign locality that UML inherently offers by means of its structure
assists the design in “getting it right from the outset”, and the value
of this feature should not be underestimated.

4.3 Formal Properties
Much research has been done on the semantics of description log-
ics and the computational complexity of reasoning with them to an-
swer various types of questions about models. This is the main ad-
vantage of using DLs for ontology modelling: their well-understood
properties. This depth of research has also led to the definition of
a wide array of different DLs with varying degrees of expressive-
ness; however as these generally share a common core of modelling
concepts, interoperability shouldn’t be a problem.

In contrast, UML currently lacks a formal definition. The semantics
of UML are defined by a metamodel, some additional constraints
expressed in the Object Constraint Language (essentially a form of
first-order logic with an object-oriented syntax), and descriptions of
the various elements of the language in English. This shortcoming
is being addressed by the Precise UML Group [32] who are actively
working on formal semantics for UML.

4.4 Inference Capabilities
There are various possible types of inference that a knowledge rep-
resentation system could support. This section compares DL and
UML in terms of a number of different categories of reasoning.

The first four categories are listed by Bucheit et al. [8] as the min-
imum features that should be offered by a DL-based knowledge
representation system:

� Concept Satisfiability

Can a concept C have a non-empty set of instances?

Detecting when a concept is unsatisfiable can be useful dur-
ing ontology design to alert the user when an invalid model
is being defined.

� Subsumption

Is a given concept description more general or more specific
than another, or can no such relation be established?

The ability to answer this question allows DL systems to per-
form automatic classification of concepts. When an ontology
designer defines a new concept, the system can determine
how this concept relates to other existing ones.

� Knowledge-Base Satisfiability

Are the model and the set of recorded instances consistent
with each other?

This check can be used to validate a model using sample in-
stance data. It can also potentially be used during normal
agent operation to check that meaningful information is be-
ing provided by other agents.

� Instance Checking

Is a an instance of concept C in any model of the knowledge
base?

This is closely related to the previous question and is also
concerned with the validation of information.

The first two categories above are applicable during the design of
an ontology and are well supported by description logic. In con-
trast, there are no corresponding analysis capabilities for UML.
However, object-oriented modelling is a mature field with well-
established and proven methodologies for the design of models.
This suggests that such inference abilities are not critical to the pro-
cess of designing complex models.

It could be possible to equip UML design tools with similar capa-
bilities. However, the structural modelling elements of UML to-
gether with the Object Constraint Language provides a formalism
that is more expressive than DL and the usual trade-off between
representational power and tractability applies. As OCL is “es-
sentially a variant of [first order predicate logic] tuned for writing
constraints on object structures” [9], concept satisfiability is only
semi-decidable for UML.

It can also be argued that automatic classification based on struc-
tural properties of a concept is not always desirable. The subsump-
tion inference leads to problems where the distinction between two
concepts cannot be modelled explicitly in the language, but the on-
tology designer wishes to have a “strongly typed” system in which
these concepts are distinct. For example, an ontology may con-
tain two specialisations of collections: sets and lists. What is the
subsumption relation between the three concepts if DL does not
provide means to describe the differences?

The latter two categories above don’t have precise counterparts for
UML. In UML an object always has a specific class associated with
it and it is (conceptually at least) a structure that must conform
to the structural definition of that class. However, in the presence
of OCL constraints in the ontology that relate to that class it is

necessary to check these in order to be certain that an object is valid.
There are now UML tools emerging [3, 35] that can store instances
and check that they conform to any relevant OCL constraints.

The following two additional categories of reasoning are also likely
to be of interest to agent systems.

� Reasoning with Metaproperties

Some knowledge representation languages allow slots, roles
or properties (depending on the terminology used) to have
certain ‘metaproperties’. For example, in OIL [31], proper-
ties can be declared to be transitive, symmetric or functional.
These declarations provide information that an agent could
potentially use for deduction.

� General Rule-Based Reasoning

Ontologies expressed in lower-level languages such as KIF
can include general axioms. The use of the frame ontology
with KIF allows ontologies to be defined using the concept
of frames while still retaining the ability to include general
logical axioms. In many cases these axioms may simply be
considered to be for specification and certification purposes
only: any agent advertising that it can communicate using
the ontology should always generate conforming instances.
However, it is also possible for ontologies to include axioms
that agents might plausibly use to perform inference, partic-
ularly if–then rules that could be used in backwards chaining
inference to answer queries, or in forward chaining inference
to generate new information.

Metaproperties can generally be defined using lower-level mod-
elling constructs. In the case of OIL, their meaning is defined by
expressions in an expressive description logic. While the underly-
ing description logic is powerful enough to encode these notions
using more primitive concepts such as role subsumption, agents
are likely to want to make explicit deductions using metaproper-
ties, rather than just having this information included in the more
generic deductions described above. Although some DL-based sys-
tems can use satisfiability tests to perform more general inference
by refutation, this is unlikely to be very efficient. It would be more
useful for agents to explicitly take note of metaproperties such as
transitivity that might occur in an ontology and use it to generate
new knowledge from old. Description logic has nothing to offer
in this regard: knowledge representation systems based on DL typ-
ically have a separate “ABox” (the “assertional” component) that
contains instance data and may have application-specific inference
mechanisms that are not formally connected with the DL inference
mechanisms.

For UML models, OCL constraints can be used to declare asso-
ciation properties such as transitivity. However, describing such
constraints may involve writing moderately complex OCL expres-
sions that are not immediately understandable to a human reader
(or an agent). Furthermore, there may be several different expres-
sions encoding the same constraint. One way around this would
be to use one of UML’s extension mechanisms, stereotypes, to de-
fine specialised types of association that are constrained (by OCL)
to have certain metaproperties such as transitivity. An agent could
then recognise the appearance of (e.g.) a ‘transitive’ stereotype and
make inferences based on this knowledge, even if it could not un-
derstand OCL.

name = "Kim"

 : Man

Man

name : String

Person

name = "Kim"

 : Person

name = "Bob"

 : Personchild parent+

+

parent

2
child*

2

/son

*

{ son = child->select(oclIsTypeOf(Man))

 Person.allInstances->forAll(
 p | self.name = p.name implies self = p) }

name = "Kim"

 : Man
child parent

name = "Bob"

 : Person

son

Figure 2: An example of inference over knowledge in UML

Description logics also have no notion of rules, although an ABox
component in a knowledge representation system may support them.
OIL 1.0 ontologies could include a ‘rule-base’ but no specifica-
tion was given for the meaning of the rules or how they relate
to the conceptual modelling part of the language. Later versions
of OIL and DAML+OIL [17] do not support this, but the defini-
tion of a “DAML-L” language (combining conceptual models with
semantically-integrated rules) is a long-term aim of the DAML
project.

Although UML does not resemble a traditional logic-based lan-
guage recent research has shown how inference rules in UML can
be expressed as graph transformations on the UML metamodel [18,
22]. To give a taste of what inference with UML might look like,
Figure 2 shows how new knowledge in the form of an object dia-
gram can be generated by combining existing knowledge and infor-
mation about the ontology. In this example, one agent has commu-
nicated to another that there is an object of class Man with “Kim” as
the value of its name attribute. The other agent knows that there is a
Person object with name Kim and that this object is the child of a
Person object with name Bob. The ontology for this domain states
that Man is a specialisation of Person, and includes two OCL con-
straints: one defining the derived (indicated by a ‘/’) role son (a son
is a child that is a man), and the other stating (rather unrealistically)
that the name attribute uniquely identifies objects of class Person.
Over several steps of inference the agent can conclude that the two
objects with name Kim are the same and therefore Kim is a male
child, i.e. a son. Implementing this style of deduction in UML is a
subject for future research.

5. UML AND AGENT COMMUNICATION
In the previous sections we focused on the benefits of using UML
from the conceptual modelling perspective. However, in distributed
agent systems, besides the ontology, agents need a concrete knowl-
edge exchange language to be able to communicate with each other.

While the standards of the Foundation for Intelligent Physical agents
(FIPA) [20] are widely accepted as providing a good foundation for
agent communication—ranging from the basic transportation pro-
tocol to the speech act level—the encoding of the message content
itself is still an open issue.

: Person
givenName = "Sally"
familyName ="Smith"

: ProfessionalBody
name = "ACM"
profession = "Computing

Machinery"
codeOfEthics = "Don’t write

 viruses"
: Person

givenName = "John"
familyName ="Brown"

memberOf

Figure 3: A simple UML object diagram example

The use of an object-oriented ontology representation language for
ontology modelling raises interesting questions about the form in
which knowledge should be stored within an agent and encoded
within inter-agent messages. If an agent developer is using an
object-oriented model of the problem domain and is also using a
agent development toolkit based on an object-oriented language
(such as Java), it may be most convenient to encode domain knowl-
edge using Java objects and to include these within messages to
play the role of propositions. There is evidence for a desire amongst
agent developers to have this ability: the FIPA content language
SL (for “Semantic Language”) includes the ability to use func-
tional terms built from object ‘constructors’ that appear in the on-
tology, the JADE agent platform [16] allows application-specific
Java classes to be associated with concepts in an ontology, and
members of the FIPA agentcities mailing list have been discussing
the inclusion of ontology-specific objects within XML encodings
of messages.

Given a set of ontologies described using UML class diagrams,
knowledge about the domains described in these ontologies can be
expressed as instances of the classes in the ontologies. This knowl-
edge can therefore be formalised as a UML object diagram. In
object diagrams, rectangles denote objects, specifying their class
and the object’s attribute values. The lines between objects show
‘links’: instances of associations between classes.

Figure 3 shows a simple object diagram showing instances of the
classes defined in Figure 1. This can be considered to be a declar-
ative representation of knowledge. It states that there are Person
objects with names “Sally Smith” and “John Brown” and that these
are both members of the ProfessionalBody object with name “ACM”.
It also records the profession and code of ethics of this latter object
(note: this diagram in no way represents the official policy of the
ACM).

For a simple, domain-specific agent, this diagram (or, more accu-
rately, a Java or OODBMS encoding of it) may be the most conve-
nient way to represent knowledge, rather than using a knowledge
base containing separate facts such as class(object1, person)
and givenName(object1, "Sally"). The choice between these
representations may depend largely on how much (if any) reasoning
the agent is expected to do. If general deductive capabilities are re-
quired, then a traditional logic-based representation of knowledge
is likely to be more suitable. However, this will not be required for
all agents.

5.1 Message serialisation via RDF
If two agents represent domain knowledge as object diagrams, it
would be most convenient for them to communicate information to
each other in this form as well. To provide this ability requires:

UML-based
design tool

<....>
 <....>
 <...>
 <.>
<..>

XMI document

.. {
 ...(.) {

 }
}

100110
101001
011011
000110
101101

RDF schema
(in XML)

Knowledge
(in RDF/XML)

XSLT

XSLT

references

javac

references

Agents
loads

references

Java
source files

Java
class files

.. {
 ...(.) {

 }
}

.. {
 ...(.) {

 }
}

Marshalling
package RDF API

uses

uses

javac

Figure 4: UML “ data binding” via an RDF serialisation

1. a concise and convenient representation for object diagrams
within an agent (e.g. as networks of Java objects)

2. a concise and convenient serialisation format for object dia-
grams

3. a marshalling framework to make it easy for agents to convert
between 1 and 2.

Requirement 1 can be achieved (for agents developed using Java)
by generating from a UML class diagram a set of corresponding
Java classes.

A candidate for requirement 2 is the XML Model Interchange (XMI)
format which is an XML-based standard for exchanging models. In
particular it provides an XML DTD corresponding to the concepts
in the UML metamodel. This provides a convenient format for
exchanging a model such as an ontology. However, it does not pro-
vide a concise and convenient way to encode object diagrams. This
is because the UML metamodel has concepts such as Instance, Link
and LinkEnd rather than domain-specific concepts such as Person,
Organisation, etc. Therefore an XMI encoding of an object diagram
has separate cross-referenced entities for each instance, ‘attribute
link’, link and link end and an application has to piece together the
application-specific objects from these.

A better solution is to generate a domain-specific schema from the
class diagram. One possibility is to generate an XML schema and
then Requirement 3 could be satisfied by one of the various Java
XML binding [33] implementations under development. However,
an alternative approach has been taken based on the simpler data
model underlying the Resource Description Framework (RDF) [25].
Figure 4 shows an implemented mechanism [10, 11] for generating
RDF schemas and sets of Java classes corresponding to ontologies
in UML. The generation is performed using Extensible Stylesheet
Language Transformations [36]. The generated classes in conjunc-
tion with some additional marshalling support classes allow object
diagrams to be converted between in-memory networks of Java ob-
jects and RDF serialisations with a single method call.

This technique can be extended to allow complete agent messages
(not just the content expression) to be conceptualised as UML ob-

ject diagrams and serialised using RDF. Agent communication lan-
guages and content languages can be viewed as an ontologies for
communication and knowledge representation, and their abstract
syntax can be defined using UML. This approach to language speci-
fication could be less error-prone than the grammar-based approach
used currently, and would provide a uniform framework for mod-
elling and investigating the relationships between agent communi-
cation languages and ontologies [15, 14].

5.2 Message serialisation via SOAP
The RDF serialisation provides a machine-readable and ontology-
specific encoding of object-oriented knowledge that can be used
for encoding knowledge within messages or for publishing infor-
mation on the “Semantic Web”. However, the RDF format is not
ideal for this purpose. One problem is that RDF (like DL) has uni-
versal ‘properties’ which must be used to represent class attributes
and association ends. The solution chosen was to generate unique
property names within each class by prepending the class name to
each UML attribute and rolename. However, this makes the RDF
serialisation verbose for a human to read. In addition there are a
number of other factors that complicate human reading and ma-
chine parsing of RDF files [23].

An alternative is to use the serialisation format of the Simple Object
Access Protocol (SOAP) [6]. SOAP is a specification covering re-
mote procedure calls over HTTP. It contains an object serialisation
format that can be compared to the Resource Description Format
(RDF) to some extent, although RDF is more than just an object
serialisation format.

SOAP is supported by computer industry leaders like Microsoft,
IBM and SUN. The simplicity of SOAP together with the strong
support from the industry suggests that many SOAP-based services
will be available in the near future. Although SOAP is an rela-
tively young technology, implementations for many programming
languages are available. SOAP is suited for all kinds of automated
internet services like weather forecasts, traffic services, and logis-
tics coordination, to give just a few examples.

The main difference from RDF is that SOAP does not rely on glob-
ally unique slot names, thus the inclusion of the class name in the
property name is not neccessary.

Figure 5 shows the SOAP serialisation of the object diagram shown
in Figure 3.

6. CONCLUSION
This paper has discussed the application of the Unified Modeling
Language to ontology modelling for agent systems. The charac-
teristics of UML and description logic—the most widely used tra-
ditional ontology modelling language—were compared. Although
UML may not currently have the support for reasoning that is of-
fered by description logic, we believe that UML’s strengths in many
other areas make it suitable as a candidate for general adoption for
ontology representation. In particular its features that assist in the
modelling of complex systems and its association with many other
standard business technologies suggest that there is a significant
advantage to using UML in comparison with other approaches cur-
rently in use.

The paper also discussed the use of UML for representing instance
information within agent messages and presented some technolo-
gies to support this style of knowledge representation.

<Person id="123">
<givenName>Sally</givenName>
<familyName>Smith</familyName>

<memberOf>
<element href="#789" />

</memberOf>
</Person>

<Person id="456">

<givenName>John</givenName>
<familyName>Brown</familyName>
<memberOf>
<element href="#789" />

</memberOf>
</Person>

<ProfessionalBody id="789">
<name>ACM</name>
<profession>Computing Machinery</profession>
<codeOfEthics>Don't write viruses</codeOfEthics>
<member>

<element href="#123" />
<element href="#456" />

</member>
</ProfessionalBody>

Figure 5: SOAP encoding of the object diagram

7. REFERENCES
[1] F. Bergenti and A. Poggi. Exploiting UML in the design of

multi-agent systems. In A. Omicini, R. Tolksdorf, and
F. Zambonelli, editors, Engineering Societies in the Agents
World, Lecture Notes in Computer Science 1972, pages
106–113. Springer, 2000. (an earlier version is available at
http://lia.deis.unibo.it/confs/ESAW00/pdf/ESAW13.pdf).

[2] T. Berners-Lee. Metadata architecture. World Wide Web
Consortium Discussion Document, 1997.
http://www.w3.org/2000/01/sw/.

[3] BoldSoft. ModelRun product Web page.
http://www.boldsoft.com/products/modelrun/, 2001.

[4] G. Booch. Object-Oriented Analysis and Design with
Applications. Addison-Wesley, 2nd edition, 1994.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer.
Simple Object Access Protocol (SOAP) 1.1. Note, World
Wide Web Consortium, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

[7] R. J. Brachman and J. G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cognitive
Science, 9(2):171–216, April 1985.

[8] M. Buchheit, F. Donini, and A. Schaerf. Decidable reasoning
in terminological knowledge representation systems. Journal
of Artificial Intelligence Research, 1:109–138, 1993.

[9] T. Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A
feasibility study in rearchitecting UML as a family of

languages using a precise OO meta-modeling approach.
Report, Precise UML Group, September 2000.
http://www.cs.york.ac.uk/puml/mml/mmf.pdf.

[10] S. Cranefield. Networked knowledge representation and
exchange using UML and RDF. Journal of Digital
Information, 1(8), 2001. http://jodi.ecs.soton.ac.uk/.

[11] S. Cranefield. UML and the Semantic Web. Discussion Paper
2001/04, Department of Information Science, University of
Otago, 2001. http://www.otago.ac.nz/informationscience/
publctns/complete/papers/dp2001-04.pdf.gz.

[12] S. Cranefield and M. Purvis. UML as an ontology modelling
language. In Proceedings of the Workshop on Intelligent
Information Integration, 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), 1999.
http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-23/cranefield-ijcai99-iii.pdf.

[13] S. Cranefield and M. Purvis. Extending agent messaging to
enable OO information exchange. In R. Trappl, editor,
Cybernetics and Systems 2000: Proceedings of the 2nd
International Symposium “From Agent Theory to Agent
Implementation” (AT2AI-2) at the 5th European Meeting on
Cybernetics and Systems Research (EMCSR 2000), Vienna,
2000. Austrian Society for Cybernetic Studies. An earlier
version is available at http://www.otago.ac.nz/
informationscience/publctns/complete/papers/dp2000-
07.pdf.gz.

[14] S. Cranefield and M. Purvis. Generating ontology-specific
content languages. In Proceedings of the Workshop on
Ontologies in Agent Systems, 5th International Conference
on Autonomous Agents, 2001.
http://autonomousagents.org/2001/oas.

[15] S. Cranefield, M. Purvis, and M. Nowostawski. Is it an
ontology or an abstract syntax? Modelling objects,
knowledge and agent messages. In Proceedings of the
Workshop on Applications of Ontologies and
Problem-Solving Methods, 14th European Conference on
Artificial Intelligence (ECAI 2000), 2000.
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/16.pdf.

[16] CSELT. The JADE agent platform Web site.
http://sharon.cselt.it/projects/jade/, 2001.

[17] DARPA Technology Integration Center. DAML project Web
site. http://www.daml.org, 2001.

[18] A. S. Evans. Reasoning with UML class diagrams. In
Proceedings of the Workshop on Industrial Strength Formal
Methods (WIFT’98). IEEE Press, 1998.
http://www.cs.york.ac.uk/puml/papers/evanswift.pdf.

[19] A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server: a
tool for collaborative ontology construction. In Proceedings
of the 10th Knowledge Acquisition for Knowledge-Based
Systems Workshop (KAW’96), 1996.

[20] Foundation for Intelligent Physical Agents. FIPA web site.
http://www.fipa.org/specs/fipa00023/XC00023F.pdf.

[21] M. R. Genesereth and N. J. Nilsson. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, 1987.

[22] M. Gogolla. Graph transformations on the UML metamodel.
In Proceedings of the ICALP Workshop on Graph
Transformations and Visual Modeling Techniques
(GVMT’2000), pages 359–371. Carleton Scientific, 2000.
ftp://ftp.informatik.uni-bremen.de/%2Flocal/db/papers/
Gogolla 2000 GraGra.ps.

[23] S. Haustein. Semantic Web languages: RDF vs. SOAP
serialisation. In Proceedings of the Second International
Workshop on the Semantic Web, pages 14–22, May 2001.
http://semanticweb2001.aifb.uni-karlsruhe.de/
semanticWebWorkshop2001.pdf.

[24] Knowledge Systems Laboratory. The Frame Ontology.
ftp://ftp.ksl.stanford.edu/pub/knowledge-sharing/ontologies/
html/frame-ontology/frame-ontology.lisp.html, 1994.

[25] O. Lassila and R. R. Swick. Ressource Description
Framework (RDF) model and syntax specification. Technical
report, World Wide Web Consortium, 1999.
http://www.w3.org/TR/1999/REC-RDF-SYNTAX-
19990222.

[26] National Committee for Information Technology Standards.
Draft proposed American national standard for Knowledge
Interchange Format. http://logic.stanford.edu/kif/dpans.html,
1998.

[27] B. Nebel. Reasoning and Revision in Hybrid Representation
Systems. Number 422 in Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1990.

[28] Object Management Group. OMG Unified Modeling
Language Specification, version 1.3.
http://www.omg.org/technology/documents/formal/
unified modeling language.htm, 2000.

[29] Object Management Group. OMG Web site.
http://www.omg.org/, 2001.

[30] Object Management Group. UML textual notation RFP.
http://www.omg.org/techprocess/meetings/schedule/
UML Textual Notation RFP.html, 2001.

[31] On-To-Knowledge project. OIL web site.
http://www.ontoknowledge.org/oil, 2000.

[32] Precise UML Group. The Precise UML Group home page.
http://www.puml.org, 2001.

[33] M. Reinhold. XML data binding specification. Java
Specification Request JSR-000031, Sun Microsystems,
1999. http://java.sun.com/aboutJava/communityprocess/jsr/
jsr 031 xmld.html.

[34] Technische Universität Dresden. Dresden OCL toolkit.
http://sourceforge.net/projects/dresden-ocl/, 2000.

[35] University of Bremen. A UML-based specification
environment.
http://www.db.informatik.uni-bremen.de/projects/USE/,
2001.

[36] World Wide Web Consortium. XSL Transformations (XSLT)
version 1.0. http://www.w3.org/TR/xslt, 1999.

