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ABSTRACT 
Multiagent systems have been touted as a way to meet the need 
for distributed software systems that must operate in dynamic and 
complex environments.  However, in order for multiagent systems 
to be effective, they must be reliable and robust.  Engineering 
multiagent systems is a non-trivial task, providing ample 
opportunity for even experts to make mistakes.  Formal 
transformation systems can provide automated support for 
synthesizing multiagent systems, which can greatly improve their 
correctness and reliability.  This paper describes a semi-automated 
transformation system that generates an agent’s internal 
architecture from the analysis specification for the MaSE 
methodology. 

1. INTRODUCTION 
In the last few years, agent technology has come to the forefront 
in the software industry because of advantages that multiagent 
systems have in complex, distributed environments.  As agent 
technology has matured and become more accepted, agent-
oriented software engineering (AOSE) has become an important 
topic for software developers who wish to develop reliable and 
robust agent-based systems.  Methodologies for AOSE attempt to 
provide a method for engineering practical multiagent systems.  
However, there are currently only a few AOSE methodologies for 
multiagent systems, and many of those are still under 
development.  Additionally, most of the existing methodologies 
lack specific guidance on how to transform the specification of a 
system to the corresponding design and implementation.  This 
lack of certainty is not unique to engineering multiagent systems 
and plagues most software engineering methodologies and which 
leaves the designer questioning if the resulting system correctly 
fulfills all of the initial system requirements. 

The Agent Research Group at the Air Force Institute of 
Technology (AFIT) has developed and continues to mature an 
AOSE methodology, called Multiagent Systems Engineering 
(MaSE) [1-4], which covers the complete life cycle of a 
multiagent system.  Additionally, recent work has focused on 
applying formal methods to develop a transformation system for 
formal agent system synthesis.  Formal transformation systems [5, 

6] provide automated support to system development, giving the 
designer much more confidence that the resulting system will 
operate correctly, despite its complexity.  While formal 
transformation systems, and formal methods in general, cannot a 
priori guarantee correctness [7], if each transform preserves 
correctness, then the designer can be sure that the resulting design 
and executable are at least correct with respect to the initial 
system specification.   

Given a sufficient level of automated support, the designer is only 
required to make high-level design decisions, while the low-level 
details of the transformations are carried out automatically by the 
system.  Transformation systems also provide traceability from the 
system requirements through the development process to the final 
executable code.  Furthermore, if the system engineer is able to 
adequately decompose the problem and capture the system 
behavior in the analysis phase, then there is hope that the 
undesirable system behavior, to which multiagent systems are 
prone, can be avoided. 

In this paper, we present a semi-automated formal transformation 
system that generates MaSE design models based on the analysis 
models [8], which is the first step in formal agent system 
synthesis.  Specifically, we explain how our transformation 
system generates an agent’s internal design based on an initial 
analysis specification. 

2. Multiagent Systems Engineering  
The MaSE methodology consists of the seven steps depicted in 
Figure 1.  The boxes represent the different models used in the 
steps, and arrows indicate the flow of information between the 
models.  While similar to the waterfall approach, we have 
designed MaSE to be applied iteratively.  The first three steps 
represent the Analysis phase of the methodology, while the last 
four steps represent the Design phase. 

2.1 Analysis Models 
The Role Model is the end result of the MaSE analysis phase.  
Role Models graphically depict the roles in the system, the goals 
they are responsible for, the tasks that each role uses to 
accomplish its goals, and the communication paths between the 
roles necessary to complete their tasks.  Roles are the abstract 
entities that exist in the system, and are defined much like an actor 
in a play, or a position in an organization (President, Vice 
President, Manager, etc.).  Each role is responsible for 
accomplishing one or more system level goal, and there must be at 
least one role responsible for each goal.  In this way, the analyst is 
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able to ensure that all of the initial system requirements have been 
captured.   
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Figure 1 – MaSE Methodology 

One example of a Role Model is shown in Figure 2.  The roles in 
the system are depicted as rectangles, and the goals that a role is 
responsible for are listed under the role.  Each task that a role has 
is denoted by an oval attached to the role.  The lines between the 
tasks denote communication protocols that occur between the 
tasks.  The arrows indicate the initiator and responder tasks in the 
protocol, with the arrow pointing from the initiator to responder.  
Solid lines indicate peer-to-peer communication, which is external 
communication either between two tasks of different roles, or 
between two different instances of the same role.  Conversely, 
dashed lines denote communication between two tasks of the 
same role instance. 
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Figure 2 – Role Model 

As part of defining the Role Model, the analyst must define the 
tasks that each role has.  Tasks describe the behavior that a role 
must exhibit in order to accomplish its goals, and are specified 

graphically using a finite state automaton, as shown in Figure 3.  
A single role may have multiple concurrent tasks that define the 
complete behavior of the role.  Each task is assumed to operate 
under its own thread of control, thus each task has its own state 
diagram that executes independently of the other tasks.  An 
important aspect of multiagent systems is the ability of agents to 
interact to accomplish their goals.  Concurrent tasks capture this 
interaction and can be used to specify complex communication 
protocols such as Contract Net, Dutch Auction, etc. [9].   
Concurrent tasks also lay the foundation for conversations 
between the agent classes in the design phase of MaSE. 

 
Figure 3 – Concurrent Task Diagram 

An important property of concurrent tasks is that they are able to 
capture communication with multiple tasks in order to accomplish 
their goals.  In other words, Concurrent Task Diagrams naturally 
intertwine events belonging to different protocols.  The other 
tasks being communicated with can belong to the same role, or 
they may belong to a different role.  Tasks that belong to the same 
role can coordinate with each other through internal events.  In 
Figure 3, the ^backup(file) event on the transition from the 
Wait_For_File state to the Wait_For_Backup state is an example 
of an internal send event, and the done event on the transition 
from the Wait_For_Backup state to the Process_File state is an 
example of an internal receive event.  In order for a task to 
communicate with a task of another role, events that represent 
external communication are specified using SendEvents and 
ReceiveEvents.  These events are defined to send and retrieve 
messages from an implied massage-handling component of the 
agent.  The ^send(request(filename), server) event on the 
transition from the Get_File_Name state to the Wait_For_File 
state is an example of an external SendEvent, and the 
receive(inform(file), server) event on the transition from the 
Wait_For_File state to the Wait_For_Backup state is an example 
of an external ReceiveEvent. 



 

3 

2.2 Design Models 
In the design phase of MaSE, the designer takes the Role Model 
in the analysis phase, and produces an Agent Class Diagram, as 
shown in Figure 4.  Each rectangle represents an agent class, with 
the roles played by each agent listed under the agent’s name.  The 
directed lines between the agents represent conversations between 
the agents, with the arrow pointing from the initiator to the 
responder.  In order to ensure that all system goals are being met, 
each role must be played by at least one agent class, providing a 
traceable link from the goals in the analysis phase to the agents in 
the design phase. 

 
Figure 4 – Agent Class Diagram 

Conversations define detailed coordination protocols between 
exactly two agents, and consist of a pair of Communication Class 
Diagrams, one each for the initiator and responder.  Conversations 
are at the heart of any multiagent system as they detail how the 
agents communicate with each other.  Like tasks, conversations 
are described using finite state automata that define each half of 
the conversation.  Since conversations are point-to-point 
communication between two agents, every event within a 
Communication Class Diagram is represents a message to or from 
the other agent in the conversation.  Conversations do not allow 
for communication with multiple agents simultaneously or for 
internal events to be exchanged with components internal to the 
agent.  An example of a Communication Class Diagram is shown 
in Figure 5. 

 
Figure 5 – Communication Class Diagram 

In addition to the conversations that agents participate in, agents 
have internal components defined using an architectural modeling 
language combined with the Object Constraint Language (see 

Figure 6).  Components allow users to logically decompose the 
agents and define attributes and functions that are needed for the 
agent to carry out its tasks.  The dynamic characteristics of the 
components are defined using a state diagram.  The events passed 
within a component’s state diagram are limited to internal events 
with other components that belong to that agent. 

 
Figure 6 – Internal Agent Components 

2.3 agentTool 
In addition to the MaSE methodology, AFIT has developed a 
CASE tool named agentTool that serves as a validation platform 
and a proof of concept for MaSE.  agentTool has a graphical user 
interface that allows a user to develop a multiagent system using 
the MaSE analysis and design models.  agentTool is also able to 
generate Java code for a system based on the design models.  
Currently, the code generator is able to generate code for two 
different frameworks, agentMom [10] and Carolina [11], but work 
is being done to integrate agentTool with the AFIT Wide 
Spectrum Object Modeling Environment that is looking at the 
more general code generation problem [5]. 

3. TRANSFORMATIONS 
Before defining the specific transformations, this section first 
describes how the analysis models map to the design models.  The 
MaSE methodology makes it clear that an agent class’ roles, in 
conjunction with the protocols between the tasks, determine the 
conversations each agent class will have.  However, if the external 
events are simply removed from the tasks to create the 
conversations, the problem we are faced with is that there will be 
nothing left in the design to capture how to coordinate the 
conversations and there will be no guarantee that the agent will 
behave consistently with the initial concurrent tasks.  We must 
also capture the internal events in the design as well. 

To solve this problem, we create a separate component for every 
task in each role that an agent is assigned to play.  We then copy 
the concurrent task definition to the associated component state 
diagram.  Next, we extract the states and transitions belonging to 
conversations and replace them with actions that represent the 
execution of the conversation.  Using this approach, the 
component’s state diagram retains the coordination and internal 
events necessary to ensure the behavior of the component matches 
the task from which it was derived. 

Prior to this segment of our research, we had defined 
conversations as belonging directly to agents.  However, based on 
the approach discussed above, we have redefined the generic 
architecture to have conversations belong to components.  Figure 
7 illustrates how the models in the analysis phase translate to the 
models in the design phase as well as the relationship between the 
design models.  Ultimately, the roles that the designer chooses for 
an agent to play determine that agent’s components, as well as the 
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set conversations in which the agent participates.  To accurately 
capture the behavior as defined in concurrent tasks, we assume 
each component also executes as an independent thread.   

 Role 

Task1 Task2 

Agent 

Component1 Component2

Conv1 - 1 Conv1 - 2 Conv2 - 1 Conv2-2

Analysis 

Design 

 
Figure 7 – Model Influences 

Besides components derived from concurrent tasks, our 
transformations also create a special Agent Component for each 
agent [12].  This Agent Component captures how the agent 
coordinates its different components.  Figure 8 shows the basic 
state diagram for the Agent Component, which is designed to 
handle both transient1 and persistent2 components.  The Agent 
Component can also be transformed to account for special agent 
characteristics like mobility, where the agent must halt all of its 
active components, move to a new location, and then resume the 
components where they were interrupted.   

startComp
c=createComp(message)

determineRecipient
c=getComponent(message)

[c==null][c==null]/sorry(agent)

[c!=null]

updateComponentList
addCompList(c)

idle
extReceive(message,agent)

extReceive(terminate,agent)

[c!=null]/relay(message,c)

startPersistentComps
started=startComps()

[started]

[NOT started]

 
Figure 8 – Basic Agent Component State Diagram 

                                                                 
1 A transient component is started in response to the receipt of a 

specific event.  There may be multiple transient components of 
the same type executing at any one time. 

2 A persistent component is started when the agent is instantiated 
and runs until its completion or the agent is terminated.  There 
is only one instance of a persistent component running. 

The transformation system created in this research is actually a 
series of small steps that incrementally change the roles and tasks 
in the analysis phase into agent classes, components, and 
conversations in the design phase.  The process logically 
decomposes into three stages.  Before the transformations can take 
place, the developer must analyze the system and develop a Role 
Model, which defines the roles that are present in the system, and 
a set of concurrent tasks, which the roles perform to accomplish 
their goals.  The developer must also decide which agent classes 
will be in the system and the roles that each agent class will play.   

During the first stage of the transformation process, the 
components for the agent classes are created based on the roles 
assigned by the developer.  The set of protocols to which each 
external event belongs is also determined.  The second stage 
centers on annotating the component state diagrams and matching 
external events in the different components that become the initial 
messages of a conversation.  During the last stage of the 
transformation process the component state diagrams are prepared 
for the removal of the states and transitions that belong to 
conversations.  They are then removed and added to the state 
diagrams of the corresponding conversation halves.  As they are 
removed from the components they are replaced with a single 
transition that has an action that starts the conversation. 

Each transformation is defined by a predicate logic equation of 
the form: condition ⇒ result, where the condition is the 
set of requirements that must be true for the transformation to take 
place, and the result describes what is guaranteed to be true after 
the transformation is performed.  This notation is similar to 
defining functions with pre-conditions and post-conditions.  
These transformations describe what must take place, not how it 
must be done.  

3.1 Creating Agent Components 
Once the designer has developed the Role Model, defined the 
concurrent tasks, and assigned roles to agent classes, the 
transformation process can begin.  The first transformations in 
stage one of the transformation process determine the protocols to 
which each external event belongs.  This is important because the 
specific protocols that events belong to are used to determine 
where conversations begin and end in the component state 
diagrams.  While the protocols for most events can be 
automatically determined, there are ambiguous cases where the 
designer must be asked to decide to which protocol specific 
events belongs. 

Next, for every task of every role that an agent plays, a component 
is created for that task.  Once again, the component’s state 
diagram is initially identical to that of the task it was derived 
from.  The rest of the transformation process is focused on 
moving the external events from these component state diagrams 
into conversations.  The following predicate logic equation 
formally defines this transformation: 

∀ a : Agent, r : Role, t : Task • (r  ∈  a.roles ∧ t ∈ r.tasks)  
⇒ (∃ c : Component • c ∈ a’.components  
∧ c.stateTable = t.stateTable ∧ c.name = t.name)  

As an example of this transformation, consider the example Role 
Model shown in Figure 9.  If the developer decides in the design 
phase to create the agent classes with the roles shown in Figure 
10, then the transformation system creates the components shown 
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for the agents.  Since both agents play Role 2, there is a 
component created for each agent for Role 2’s Task 2.  Figure 10 
is not a MaSE diagram, but is presented to illustrate the internal 
agent components based on the initial Agent Class Diagram. 

Role 1 Role 3Role 2

Task 1 Task 3Task 2
Protocol 1 Protocol 2

 
Figure 9 - Initial Role Model 

Agent 1
Role 1
Role 2

Agent 2
Role 2
Role 3

Component:
Task 1

Component:
Task 2

Component:
Task 3

Component:
Task 2  

Figure 10 – Agent Components Created from Roles’ Tasks 

Once the agent components are created, for each pair of roles that 
are combined into an agent class, the designer must determine 
whether each protocol that exists between components of that 
agent is either internal or external.  If a protocol is defined as 
internal, all events belonging to that protocol become internal 
events between components and not messages in a conversation.  

3.2 Annotating Component State Diagrams 
After the agent components are created, the next stage of the 
transformation process involves annotating the component state 
diagrams to prepare for conversation extraction.  There are many 
different cases in which tasks are defined in the analysis phase 
that make removing conversations problematic.  One such case 
occurs when multiple events not belonging to the same protocol 
reside on the same transition.  To solve this (and other similar) 
problem, we defined a transformation that converts the 
component’s state diagrams into a canonical form, which splits 
transitions having events belonging to different protocols.  This 
canonical form simplifies conversation extraction while remaining 
consistent with the initial task specification. 

Next, each transition is given a set of protocols that is based on 
the protocols for the external events on the transition.  Then the 
state diagrams are annotated to indicate where each conversation 
begins and ends.  Conversations are defined as point-to-point 
communication between two agent instances.  Therefore, any time 
a component’s state diagram has a transition with external 
communication to a different agent than one of the preceding 
transitions, a new conversation must begin, and that transition is 
labeled as the start of a conversation.  The following six 
conditions indicate the start of a conversation by a change in who 
the agent is communicating with, which in most cases is due to a 
change in the protocols. 

1. A transition has a protocol not found in at least one transition 
into its from state. 

2. A transition has a non-empty set of protocols that is different 
than another transition leaving the same state. 

3. A transition has a non-empty set of protocols, but lacks a 
protocol of another transition into its from state. 

4. A transition has a non-empty set of protocols, and there is 
another transition into or out of its from state with an empty 
set of protocols. 

5. A transition has an empty set of protocols and at least one 
SendEvent.  In these cases, there is either a multicast event, 
or there are SendEvents that belong to different protocols. 

6. A transition has a SendEvent whose recipient was previously 
determine by an action. 

Similarly, when a component state diagram has a transition with 
external communication not guaranteed to continue on transitions 
leaving its to state, that transition is labeled as the end of a 
conversation.  The following four conditions indicate that a 
transition is the end of a conversation  

1. A transition has a protocol not found in a transition leaving 
its to state. 

2. A transition has an empty set of protocols and at least one 
SendEvent. 

3. A transition has a non-empty set of protocols and there is a 
start transition leaving its to state. 

4. A transition to the end state has a non-empty set of protocols. 

Once the start and end labels have been added to the component 
state diagrams, the initial messages of the conversations must be 
“matched up” (i.e., both sides of a conversation must start and end 
with the same message types).  In most cases, this can be done 
automatically, but in some ambiguous cases the designer is 
required to decide how to match conversation halves. 

3.3 Extracting Conversations 
The last stage of the transformation process removes the 
conversations from the component state diagrams and places them 
in their appropriate conversation halves.  To extract a 
conversation from a state diagram, each of its end transitions must 
exit to the same state.  If different transitions of a conversation 
exit to different states, a transformation is applied to create a new 
“dummy” end state for the conversation.  Then, the states and 
transitions that belong to the conversation are replaced with a 
single transition from the state where the transition originates to 
the state where the conversation ends.  An action is added to the 
transition that represents the execution of the conversation. 

Other transformations in this stage prepare variables in the states 
and transitions before they are removed from the components and 
placed in the conversations.  If a variable is not exclusive to a 
single conversation, that variable must be stored in parent 
component to ensure any other conversations extracted from the 
component references the same variable.  To annotate this, these 
variables are pre-pended with “parent.”. 

As the transitions are moved from the components into the 
conversations, the special “send” and “receive” parts of the events 
are removed from the events.  They are used in the component 
state diagrams to distinguish between internal and external events, 
but are not needed in the conversations since conversations, by 
definition, define binary communication between exactly two 
agents. 
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4. EXAMPLE 
This section presents an example to demonstrate the results of the 
transformation system.  The transformations were implemented in 
agentTool, and most of the figures were screen shots from the 
tool.  Figure 11 shows the initial Role Model for a simple 
multiagent system.  There are three roles, each with a single task.  
The Manager role uses the ContractNet protocol to solicit bids for 
search tasks.  The Bidder role bids on the tasks, and if awarded 
the contract requests a search from the Searcher role.  The Bid 
task, shown in Figure 12, is used to demonstrate how the 
transformation system derives the agent components and 
conversations in the design phase from the roles and tasks in the 
analysis phase.  

 
Figure 11 – Role Model 

 
Figure 12 – Bid Task 

For the purposes of this example, we assume that the designer 
initially defines a SearchManager agent class, which plays the 
Manager role, and a MobileSearcher agent class, which plays both 
the Bidder and Searcher roles.  During the first stage of the 
transformation process, the designer determines that the 
SearchRequest protocol is internal communication within the 
MobileSearcher agent.  Therefore, every event in the 
MobileSearcher’s Bid and Search components that belongs to the 
SearchRequest protocol is transformed into an internal event.  The 
resulting architecture for the multiagent system is shown in Figure 
13.  Once again, this is not a MaSE model, but simply 
demonstrates the architecture created for the agents based on the 

roles they play.  The external protocol, ContractNet, generates 
several conversations to carry out that communication. 

SearchManager
Manager
SearchManager
Manager

MobileSearcher
Bidder
Searcher

MobileSearcher
Bidder
Searcher

Component: 
FulfillSearchRequests

Component: 
Bid

Component: 
Search

Search

Contract Net

 
Figure 13 – Agent Architectures 

Figure 14 shows the Bid Component after being annotated in the 
second stage of the transformation process.  The three events that 
belong to the SearchRequest protocol are now internal events, and 
three new null states have been added to split transitions that had 
both internal and external events.  The letters “S” and “E” on the 
transitions denote where the conversations begin and end. 

 
Figure 14 – Annotated Bid Component 

A total of six different conversations were extracted from the 
events belonging to the ContractNet protocol.  Some were due to 
the internal events passed with the Search component, while 
others were due to the way the SearchManager’s 
FulfillSearchRequest component (not shown) was annotated.    
For example, the reason the transition from the Idle state to the 
prepareBid state is both the start and end of a conversation is 
because the corresponding send event for the 
receive(announce(task), mgr) event in the FulfillSearchRequest 
component is a multicast.  Similarly, the transitions leaving the 
waitForBidResults state are the start of different conversations 
because the corresponding send event for the receive(sorry(task), 
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mgr) event in the FulfillSearchRequest is a multicast to all of the 
losers, and the corresponding send event for the receive(start(task, 
cost), mgr) event is only sent the winner agent, so they must be 
different conversations.   

Figure 15 shows the bid component after the third stage of the 
transformation process.  The states and transitions that belong to 
the conversations were removed, and each conversation was 
replaced with a transition that has an action that instantiates it.  
When the conversation completes, the action is finished and the 
component enters the next state, thus preserving the original 
semantics of the state diagram.   

 
Figure 15 – Bid Component After Extracting the 

Conversations 

Figure 16 shows the initiator half of Conversation13-1, which was 
one conversation extracted from the MobileSearcher’s Bid 
component.  It is easy to see that the waitForAcknowledge state 
and the transitions to and from that state were taken directly from 
the Bid component.  The task and cost variables were prepended 
with “parent.” because they are both used either in the Bid 
component or in another conversation.   

 
Figure 16 – Initiator Half of Conversation13-1 

Figure 17 shows the Agent Class Diagram derived by our 
transformation system.  Note that all external communication 
defined by the ContranctNet protocol is captured in six 
conversations. 

 
Figure 17 – Agent Class Diagram 

5. FUTURE WORK 
This research has opened the door to many areas of future work.  
Although transformation system produces a design that 
corresponds to the analysis phase, many times the result is not an 
optimal solution.  One example is the way that conversations are 
created.  After applying the transformations, there may be two 
conversations between two agents that do exactly the same thing.  
Although this is not necessarily wrong, an additional set of 
optimizing transformations could remedy these problems. 

Another area of future work deals with what we refer to as 
embedded conversations.  In many cases, the current 
transformations halt one conversation to carry out a dialog with 
another agent only to resume communication with the initial 
agent.  This results in a single protocol being decomposed into 
several simple conversations that, by themselves, have little 
semantic meaning.  Alternate approaches would be to allow one 
conversation to instantiate another conversation, or allow 
conversations to halt while a component carries out other 
communication, which would result in more robust and 
semantically intact conversations. 

A final area of future research is in the area of transforming 
concurrent tasks to run in a single threaded execution 
environment.  As described earlier, we assume that each 
component runs as its own thread; however, any many situations, 
we would rather have a single thread running.  The challenge 
would be to capture a single threaded design that would behave 
consistently with a concurrent specification. 

6. CONCLUSIONS 
The multiagent paradigm provides a framework for developing 
increasingly complex and distributed software systems.  However, 
better methods are needed to develop multiagent systems that can 
guarantee correctness, reliability, and robustness.  Using formal 
transformation systems for multiagent system synthesis is one way 
to meet this growing need. 

This paper presented a transformation system that generates 
design models from the analysis models, including the internal 
agent architectures and the specific conversations for the 
components.  It is predominantly an automatic process, requiring 
only a few key design decisions from the system developer.  Since 
each transformation preserves correctness from one model to the 
next, the developer has much more confidence that no 
inconsistencies or errors occurred during the design process.  The 



 

8 

transformation process also provides clear traceability between the 
analysis and design, simplifying the verification process.   

Furthermore, when implemented in a development environment, 
such as agentTool, the transformations allow the developer to 
maintain the system in the more abstract analysis models and 
regenerate the design when any changes are made.  How many 
times during a software development project are the models in the 
analysis phase forgotten once the project enters the design phase?  
In many cases, there is simply not enough time or manpower to 
maintain the consistency between the models in the two phases.  
The transformation system presented here can eliminate that 
problem for system engineers using the MaSE methodology. 
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