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ABSTRACT

Autonomy and inter-operability are two characteristics of software
agents that are advocating agent technology as an ideal candidate
to support next generation of software systems. This paper
presents a Java development toolkit supporting the realization of
autonomous and inter-operable agents. This toolkit provides the
developer with a goal-oriented agent architecture for FIPA-
compliant agents. Goal-orientation supports autonomy because
the developer is no longer requested to describe what the agent
should do in reaction to events. To this extent, our development
toolkit provides a planning engine capable of building plans to
achieve the agent’s goals autonomously. Goal-orientation is also a
key aspect of inter-operability because it is the basis of the
semantics of FIPA ACL. Our development toolkit can be used at
two levels of abstraction. The higher level, that we call the agent
level, allows describing the agent in terms of its natural
characteristics such as goals, beliefs and social organization. A
code generator producing Java skeletons from UML diagrams
supports this level. The developer can choose any UML CASE
tool to model her agents because this code generator works with
files in a standard format. The generated skeletons must be
completed with application-specific code at the lower level of
abstraction, that we call object level. At this level, agents are seen
as Java programs and the developer is provided with a
development library to integrate her code within the generated
skeletons. This two-level approach allows describing agents in
their natural terms at the agent level, while supporting the
integration of application-specific and legacy code at the object
level. Moreover, the generated code can be customized at the
object level to integrate application-specific optimizations.
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1. INTRODUCTION

The increasing importance of the Web in everyday life is pushing
the need of software capable of coping with open and dynamic
environments. More than other technologies, agents seem to have
the necessary characteristics to support the development of open
and flexible software systems. In particular, two characteristics of
agents seem more important in this perspective: autonomy and
inter-operability. Autonomy is necessary when dealing with
dynamic environments to allow agents adapting to unpredictable
situations. We cannot delegate to the developer the prediction of
all possible courses of events in the Web. Inter-operability is a
necessary condition for the implementation of open
systems [9][10][21]. Every second new information and new
services become available on the Web and we cannot wait for
developers evolving their products to take advantage of these new
opportunities.

The development tools currently available to agent
developers fail in supporting both autonomy and inter-operability.
Nowadays, the development of agents and multi-agent systems is
based on two kinds of tools: agent platforms and BDI-like tools.
Agent platforms, such as JADE [1] and FIpA-Os [22], provide only
a transport layer and some basic services, but they do not provide
any support for autonomy. Moreover, they lack support for inter-
operability because they do not take into account the semantics of
their agent communication language both in the case of FIPA
ACL [8] and KQML [6]. We call this kind of inter-operability
syntactic inter-operability because it relies only on parsing and
generating correct messages. In order to cope with the open nature
of the Web we need semantic inter-operability between agents
and this can be achieved only taking into account the semantics of
the adopted agent communication language. The available BDI-
like tools, such as dMARS [13], JACK [4], AGENTBUILDER [23],
JAM [11] and ZEus [16], support only syntactic inter-operability
because they do not exploit their reasoning engines to integrate
the semantics of the adopted agent communication languages.
Moreover, they are not always goal-oriented because the reactive
approach is often preferred as it is considered easier to use in
large-scale projects. As a matter of facts, the developer is
requested to provide autonomy and inter-operability to her agents
with only a limited support from the development tools.

This paper describes an agent development toolkit called
PARADE  (Parma  Development  Environment) that we
implemented to provide a support for autonomy and inter-



operability over existing FIPA-compliant platforms. Even if
PARADE could have been implemented over any existing agent
platform, its current implementation works on top of JADE [1] and
takes advantage of its services. The goal driving the work on
PARADE is providing the agent developer with a hybrid agent
architecture capable of promoting inter-operability and supporting
autonomy exploiting the semantics of FIPA ACL [8][24]. Such an
architecture is basically goal-orientated but it also integrates
reactive behaviors. This approach is chosen because goal-
orientation is a fundamental key in supporting both autonomy and
inter-operability, and we think that reactive agents are easier to
design and to implement. Goal-oriented agents are inherently
autonomous because they act to achieve their goals without
requiring the developer to foresee all possible flows of events.
Moreover, the semantics of FIPA ACL is specified in terms of a
goal-oriented agent model and therefore its integration with an
agent platform is straightforward exploiting a goal-oriented agent
architecture. It is worth noting that the integration of the
semantics of FIPA ACL within a development tool is a step
forward the current generation of FIPA-compliant development
tools. In fact, current tools allows parsing and generating correct
messages, but they do not take into account why an agent should
send a message and what the receiver agent should do with that
message.

PARADE is composed of a set of development tools
supporting the developer at two levels of abstraction. The higher
level, that we call the agent level, allows describing agents in
terms of their natural characteristics such as beliefs, goals and
social organization. At this level of abstraction, the developer
produces UML models describing the multi-agent system, the
agents and the ontology that agents follow. PARADE provides a
code generator capable of compiling such models into Java code
implementing skeletons of the agents in the system. This code
relies on PARADE development library and on the services
provided by the agent platform. It is worth noting that PARADE
does not provide any CASE tool because the code generator
works with XMI[18] files that any off-the-shelf CASE tool
should be able to produce. The code generated from agent-level
models is only a skeleton and the developer is requested to
complete it at the object level integrating application-specific
behaviors. Such behaviors are implemented exploiting the
PARADE development library to access PARADE components
such as the knowledge base or the planning engine. This two-level
approach has the advantage of supporting the production of code
from UML models at the agent level without taking
implementation details into account. Moreover, it allows
integrating legacy code and supporting application-specific
optimizations at the object level.

The rest of this paper describes PARADE and its underlying
agent architecture. In particular, section 2 analyses PARADE agent
architecture showing its basic concepts and its main execution
loop. Section 3 presents the tools the developer can exploit to
build agents. In particular, it introduces the UML notation that we
use to model agents at the agent level and the development tools
provided at the object-level. Finally, section4 discusses the
presented tools and its underlying ideas.

2. THE AGENT ARCHITECTURE

PARADE provides a hybrid agent architecture that exploits both
goal-orientation and reactive-ness to support autonomy and inter-
operability without disregarding efficiency and user friendliness.

In the previous section we emphasized the need of goal-
orientation to support autonomy and inter-operability. Obviously,
goal-oriented agents are also autonomous because their behavior
should not be explicitly programmed but it is deduced from their
beliefs and goals. Moreover, we believe that the only feasible way
to manage the semantics of FIPA ACL is to exploit its declarative
nature using a goal-oriented agent architecture. Therefore,
autonomy and inter-operability suggest employing a purely goal-
oriented architecture, but the well-known efficiency problems of
this approach cannot be ignored.

A number of goal-oriented architectures are available in the
literature and a review of the more important of them can be
found in [27]. Nevertheless, such architectures are not meant to
exploit FIPA specifications and therefore they do not integrate the
semantics of FIPA ACL and they do not take FIPA generic
interaction protocols into account. The presented agent
architecture is a hybrid architecture based on the ideas underlying
the classic logic-based architectures and that integrates the
semantics of FIPA ACL and FIPA generic interaction protocols.
In particular, we exploit goal-orientation to assembly plans
composed of actions and generic interaction protocols. Plans are
built and scheduled autonomously, but during the execution of a
protocol the agent is reactive because it simply reacts to the
incoming messages. This allows the developer driving the agent
reactively in know interaction paths, i.e., during the execution of
protocols. If during the execution of a plan an action or a protocol
fails, then the whole plan is dropped and the agent needs to
reconsider how to satisfy its goals. Two basic advantages derive
from this architecture: we can exploit autonomy and inter-
operability and we promote efficiency because the agent no longer
needs to reason on how to build a protocol in terms of isolated
communicative acts.

The proposed agent architecture relies on the possibility of
describing an agent in terms of a mental state, a set of possible
actions and a set of supported FIPA generic interaction protocols.
The mental state is composed of a set of beliefs, a set of persistent
goals and a set of transient goals. Persistent goals represent the
intentions of the agent, i.e., the goals it is committed to achieve
and that it will try to achieve until it comes to believe that they are
reached or that they are unreachable. Transient goals are goals
that the agent constructs as intermediate steps to achieve a
persistent goal. Basically, they are sub-goals build by the planning
engine to achieve a persistent goal. Beliefs, transient goals and
persistent goals are sets of propositions describing the mental state
of the agent. Such propositions can contain the following
elements:

- done operator that associates an agent to an action that

it performed;

- agent identifiers, exploiting FIPA agent identifier [8];

- exist and forall operators defined over the beliefs of the

agent;

- variables, that can be free in goals and must be bound in

beliefs;

- logic connectives;

- entities and predicates defined in the ontology.

Such elements constraint the logic framework provided to the
application developer. This may limit the systems that can be
implemented using PARADE, but we believe that such limitations
may not affect the majority of applications. Moreover, PARADE
provides customization points in the generated code where the
developer can explicitly provide support for more sophisticated



reasoning, such as enforcing temporal constraints or explicitly
representing beliefs and goals to the agent.

The planning engine uses actions and generic interaction
protocols to support its reasoning process. This engine is the core
of the proposed agent architecture and it is responsible for
producing plans of actions and protocols starting from the current
agent’s beliefs and goals. To this extent, the planning engine is
provided with a description of the roles that agents can play in the
system. This description contains:

- the actions that an agent playing such role can be

requested to perform;

- the generic interaction protocols that an agent playing

such role supports.

Similarly to the models found in BDI-like architectures, actions
and protocols are characterized in terms of a feasibility
precondition and a post-condition. Such conditions are expressed
as propositions containing the elements we allowed for goals and
therefore they can contain free variables. For the case of actions,
the feasibility precondition states what must be true for that action
to be feasible. This allows agents deciding whether they can
perform an action or not, but it does not impose the agents to
perform that action if they do not intend to do it. The post-
condition of an action asserts what is certainly true after the
execution of that action. For the case of a protocol, the feasibility
precondition is a generalization of the feasibility precondition for
actions. In particular, the feasibility precondition of a protocol
states what must be true for an agent to initiate that protocol. The
definition of post-conditions for protocols requires noting that all
FIPA generic interaction protocols are characterized by one
success state and one failure state. Sometimes such states are
graphically repeated in the diagrams used in FIPA specifications,
but this is only a drawing convention and it does not mean that the
protocol can end in more than two different states. In fact, success
and failure states represent success or failure of the protocol from
the point of view of the initiator. For example, the FIPA contract
net protocol [8], a variant of the contract-net protocol [25], can
have two outcomes:

- either one contractor informs the manager that it
performed the requested action, and therefore the
protocol ends in the success state;

- or no contractor performs the action, for one of the
admissible reasons, and the protocol ends in the failure
state.

Recognizing that FIPA generic interaction protocols have always
one success state and one failure state allows defining the post-
condition of an interaction protocol as a proposition that is
certainly true for the initiator of the protocol when the protocol
finishes in the success state. In the case of the FIPA contract net
protocol, an agent decides to initiate this protocol if it wants an
action to be performed by some other agent. Therefore, the
feasibility precondition states that the initiator believes that
somewhere in the multi-agent system it can find an agent capable
of performing such an action. The post-condition states that
finishing the protocol in the success state guarantees that one of
the contractors performed the action. The described conditions do
not express completely the meaning of the FIPA contract net
protocol. For example, the post-condition does not state that the
action was performed under the best available conditions for the
manager. We do not introduce such a level of detail in our model
of the FIPA contract net because of two reasons: it might cause
the agent spending too much time in planning and it would

boolean planer( goal , knowledgebase , plan)

if knowledgebase asserts goal then
return true
if goal contains only Methen

space =my actions
else
space = my interaction protocols

end if

forall action in space whose post -
condition unifies goal

queue action to plan

assert goal in knowle dgebase

success =planer(  action precondition,

knowledgebase , plan)

if success then
[* stop at first plan */
return true

else

remove action from plan
deny goal in knowledgebase
end if

endfo rall

/* if here no action can be found */
return false
end plan

Figure 1. Pseudo-code of the planning engine provided with
the current implementation of PARADE.

require a more sophisticated logic model capable of describing
conditions like “best price”. Even if this limitation seems
reasonable, especially from the point of view of efficiency, it may
lead two protocols to have exactly the same post-condition. For
example, the FIPA request protocol and the FIPA contract net
protocol are interchangeable for the planning engine. This is the
reason why we allow the developer prioritizing the protocols.
Moreover, the current implementation of PARADE provides hooks
in the planning engine that can be used to provide application-
specific code intended to discriminate between equivalent
protocols.

The availability of feasibility preconditions and post-
conditions for the actions that an agent can perform and for the
generic interaction protocols it may use to communicate allows
defining the planning engine. We use protocols as plan templates
and we use their post-conditions to decide when we should
employ a particular protocol. We say that a protocol is a plan
template because it must be instantiated providing application-



void main(  knowledgebase )
forever
wait for goals or

for an action to perform

if goals are available then
goal =choose agoalin goals
success =planner( goal ,

knowledgebase , plan )

if success then
schedule the first action of
the plan
end if
else
action

nextaction = perform

if nextaction  exist then

schedule nextaction
else

if action failed the plan then

drop the plan

if the goal is unreachable then
drop the goal
end if
else
assert the goal
end if
end if
end if
end forever
end mai n

Figure 2. The main loop of PARADE agents.

specific content messages. The planning engine is in charge of
building a sequence of protocols and actions capable of satisfying
a chosen goal starting from the current state of the world and the
current mental state of the agent. This is a classic planning
problem and it has been studied intensively in the literature.
Therefore, we can access to a huge set of techniques that can be
adopted to solve this problem. In the current implementation of
PARADE we provide an implementation of the simplest of such
techniques and a future work is intended to evaluate the
adoptability of more sophisticated planning algorithms. Figure 1
shows a coarse-grained pseudo-code of the planning engine
currently implemented in PARADE. First, the engine verifies if the
goal is currently asserted in the knowledge base and if so it stops
the planning process. Otherwise, it analyses the goal to see
whether it contains references to other agents or not. If the goal

does not contain any reference to another agent, then the planner
looks for an action to execute in the space of the actions the agent
can perform. In the case that the goal refers to other agents, the
planning engine searches for a protocol that may satisfy the goal.
Choosing an action or a protocol simply means unifying the
current goal with the post-condition of such action or protocol.
The problem of instantiating the protocol is solved by this
unification, as it allows associating a value with the initial
proposition of the protocol. The remaining propositions are
instantiated during the execution of the protocol because the agent
behaves reactively in these situations. The algorithm shown in
figure 1 recursively builds plans until a first plan leading to the
goal is found. This algorithm uses the priorities associated with
protocols to sort the set of protocols unifying the current goal.
Transient goals are not explicit because they are the first
parameter of the plan method and therefore they are created and
destroyed during the planning process.

Even if the presented planning technique is very simple, it
may fit many application scenarios, especially concerning
information agents. In fact, many information agents simply use
well-known protocols to extract information from information
sources. Therefore they do not need to build complex plans, but
they need to search quickly in their library of plans. Nevertheless,
the current implementation of PARADE allows providing a
different planning engine simply wrapping it within a subclass of
the Java class PlanningEngine

The proposed agent architecture is split in two parallel
threads. A main thread runs the main loop of the architecture,
while a second thread, called messaging thread, waits for
messages on the agent’s mailbox and changes the knowledge base
taking into account the semantics of FIPA ACL. These threads do
not interact directly because the information produced by the
messaging thread is stored in the knowledge base and the main
thread observes only the changes of the knowledge base. When a
message is taken from the agent’s mailbox, the messaging thread
asserts that the sender of the message intended to achieve the
rational effect of the communicative act and it also asserts the
feasibility precondition of this act. Such assertions rely on two
assumptions: the feasibility precondition does not take time into
account and agents are rational, i.e., they want to achieve the
rational effect of the communicative acts they perform. The first
assumption is coherent with the logic framework that PARADE
provides to applications, while the second is a fundamental
assumption of FIPA compliancy.

Figure 2 shows the main loop of PARADE agents. First, the
agent waits for new goals or for new actions to perform. New
goals and new actions may result from the execution of other
actions or from the arrival of messages. A message within the
scope of a protocol stimulates the execution of an action to
continue the protocol, while messages outside the scope of
protocols cause changes in the knowledge base and may stimulate
goals. FIPA does not constraints the behavior of an agent
receiving a message outside the scope of a protocol and therefore
the application developer can choose what to do without breaking
inter-operability. This circumstance is coherent with autonomy,
but it leads to interesting drawbacks as discussed in section 4. In
the current implementation, PARADE reacts to this kind of
messages putting the rational effect of the incoming message as a
new goal. This is a cooperative behavior that the developer can
change simply extending the Java class implementing the agent
template.



Once new goals or new actions become available, the main
loop tests if new goals are available. If this is the case, the
planning engine is invoked and possibly a new plan is generated.
If a new plan can be generated, then the first action of the plan is
scheduled. In the case that no new goals are available, then an
action is ready to be executed. The main loop performs this action
and receives the next action of the plan in return. If such an action
exists, then it is scheduled, otherwise the plan is finished in the
success or failure state. If the plan ended in the success state, then
the corresponding goal can be asserted, otherwise the goal
remains pending and the agent may decide to achieve it later. This
is the only point where agents reconsider their intentions [20].
The decision on whether a goal is unreachable or not is
completely application-specific and therefore the main loop calls a
Java method that the developer can re-implement to test the
achievability of goals. If the developer needs to perform reasoning
on the knowledge base to decide on the achievability of a goal,
then she can use the generic reasoning engine described in the
following section.

3. THE DEVELOPMENT SUPPORT

PARADE supports the developer at two levels of abstraction: the
agent level and the object level. The agent level considers agents
as atomic entities that communicate to implement the
functionality of the system. This is the reason why describing a
system at the agent level means modeling the architecture of the
multi-agent system and the elements agents use to communicate.
We defined in [2] a UML notation to model a multi-agent system
at this level of abstraction and PARADE provides a tool to
generate code for agents from models employing such a notation.
At the object level each agent is seen as an object-oriented system
and PARADE provides an object-oriented development library to
implement agents at this level.

3.1 Working at the Agent Level

The first step in the development of a PARADE system consists in
modeling the essential characteristics of such a system at the agent
level. Modeling a multi-agent system at the agent level requires
modeling the architecture of the multi-agent system and the
interactions between agents. Such elements can be modeled using
UML exploiting what we call architecture diagrams and ontology
diagrams.

Architecture diagrams are UML class diagrams used to
model the roles [14] that agents play in the system. Each role is
represented by a class that we call agent class. We introduce the
stereotype agent to tag the classes in architecture diagrams to ease
the implementation of tools managing such diagrams.
Associations between agent classes describe possible associations
between agents playing different roles. Such associations are
basically used to express acquaintance, as it is common to
promote flexibility in multi-agent systems avoiding the use of
associations to spread responsibilities across agents.

An agent class can be used to associate a set of actions and a
set of generic interaction protocols with a role. Actions are
represented as public methods of the class. Such methods must be
declared void because no concept of return value is defined for
actions. Moreover, the parameters of such actions must belong to
classes of entities defined in ontology diagrams. The list of
actions associated with an agent class does not include the
performatives of the agent communication language because
PARADE agents are FIPA-compliant and therefore they employ
FIPA ACL.

Object protocols, the object-oriented counterpart of
interaction protocols, are not included in UML because they are
not considered a valuable concept in object orientation. This is the
reason why we propose to annotate agent classes with the list of
supported interaction protocols exploiting comments. This allows
modeling only known protocols and the developer is implicitly
requested to use only generic interaction protocols. The
motivation of this choice is simply to preserve inter-operability. In
fact, introducing application-specific interaction protocols may
lead to the following problems. Even if we provide agents with a
run-time description of a protocol, it is extremely difficult to
implement an agent capable of taking such a description and
learning how to use the protocol without any explicit help from
the developer. Therefore, agents using application-specific
protocols may not be able to run in open systems where third-
party agents join and leave the system dynamically. Moreover, in
order to support inter-operability, the semantics of the paths of a
protocol must be coherent with the semantics of the employed
performatives. This coherence is very difficult to achieve and only
well-studied and accepted protocols can guarantee this properties.
These are the reasons why we believe that complex interactions
should be obtained composing FIPA generic interaction protocols
and therefore we do not consider the integration of AUML
interaction-protocol diagrams [7][17] in PARADE.

Comments are used in architecture diagrams also to model
feasibility preconditions and post-conditions of actions. Such
conditions are expressed exploiting the predicates defined in the
ontology and the believe operator. Such a representation is very
simple and its expressive power is limited, therefore we are
currently investigating the possibility of using OCL [19] to model
such conditions.

PARADE uses architecture diagrams to generate the code of
agent skeletons. Each agent class is associated with one agent
skeleton. Many agents can be instantiated from a single skeleton,
but the current implementation of PARADE imposes the
restriction that the class of an agent cannot change in time. This
limits agents to play always the same role within the system and a
future work will be devoted to investigate a possible solution to
such a problem preserving efficiency. Figure 1(a) shows the
architecture diagram of a simple example inspired by e-commerce.
It shows two classes of agents: personal assistants and CD shop
agents. Agents belonging to such classes support the FIPA
contract net protocol the FIPA request protocol. Moreover, CD
shop agents can be requested to perform an action called sell.
Such an action requires the description of the personal assistant
buying the CD, the description of the CD it wants to buy and its
conditions of payment. CD shop agents declare the semantics of
the sell action stating that if the desired CD is still available, then
after the execution of this action the personal assistant will have
the CD.

Ontology diagrams modify the notation introduced by
Cranefield and Purvis [5] to make it more useful for generating
code for agents. An ontology diagram is a class diagram where
classes model classes of entities in defined in the ontology. As for
architecture diagrams, we tag the classes in ontology diagrams,
i.e., entity classes, with the stercotype entity. Entities are
structured using public attributes. Ontology diagrams allow
defining relations between classes and we use such relations to
model the predicates provided by the ontology. Figure 1 (b)
shows the ontology of the CD shop example. This diagram
comprises three classes of entities: CDs, prices and payment



protocol:
FIPA Contract Net
FIPA Request

sell(cd, assistant, condition):
pre: believe(has(Me, cd))
post: has(assistant, cd)

<<agent>>
Assistant

<<agent>>
CD Shop

%sell (cd : CD, assistant : Assistant, condition : Condition) : void

@
<<agent>> <<agent>> <<entity>>
CD Shop Assistant Condition
gcardNumber : long
\ gprice : int
has has
price
<<entity>>
CD price Price
gtitle : String gvalue : int
gauthor : String
(b)

Figure 2. (a) Architecture diagram and (b) ontology
diagram of the CD shop example.

conditions. CDs are characterized by a title and an author, prices
are characterized by an integer value while payment conditions
comprise a credit card number and a price. The diagram shows
also four predicates: two predicates has and two predicates price
defined over different entities.

PARADE code generator exploits ontology diagrams to build
a set of classes representing the entities and the predicates in the
ontology. Such classes are intended to support the developer in
managing the concepts of the ontology at the object level.
Moreover, they are used by generic components in the PARADE
development library to integrate the concepts of the ontology.

Ontology diagrams and architecture diagrams provide a
diagrammatic notation to represent the concepts introduced in the
agent architecture. Architecture diagrams allow modeling the
actions and the interaction protocols that a class of agents
supports. Actions are annotated with their feasibility precondition
and their post-conditions. Ontology diagrams complete the
elements that agents may use to form propositions introducing
entities and predicates.

3.2 Working at the Object Level

PARADE can be used at the agent level to model the multi-agent
system exploiting the diagrams described in the previous section.
PARADE code generator can produce Java code from such models
and the developer is requested to complete the generated skeletons
providing application-specific code. This two-level approach
allows integrating legacy code and providing optimizations.

Moreover, it allows the developer choosing whether to express
application-specific behaviors in terms of the supported logic
framework or, more explicitly, in terms of Java methods.

The code produced by the code generator relies on the
services provided by the platform and on the PARADE
development library. The core class of the PARADE development
library is class Agent . This class is the agent template that
implements the agent architecture described in the previous
section and the developer subclass it to complete the skeleton of
the agent with application-specific code. Moreover, this class can
be extended to customize or to add new functionality to the agent
architecture. In particular, it can be extended to provide new
implementations of the key concepts of the agent architecture such
as the planning engine or the knowledge base. Extending the
PlanningEngine class allows providing agents with a more
sophisticated planning algorithm than the simple algorithm
described in the previous section. Subclasses of the
KnowledgeBase class can be provided to add deduction rules
to agents. Every manipulation of the knowledge base is associated
with a hook method that the developer can use to provide
application-specific code to be executed just before, or just after,
this manipulation. If the manipulation is a query, the developer
can provide deductions to manage the result of the query. If the
manipulation is an insertion or a deletion from the knowledge
base, the developer can provide deductions to add or to remove
new predicates from the knowledge base. This approach is chosen
because we wanted to limit the unnecessary deductions that a
PARADE agent may perform. Therefore, we delegated to the
application developer the choice of what to deduce and when to
deduce it. In order to support the developer in performing
deductions, the PARADE development library provides a simple
PrOLOG-like rule system, called generic reasoning engine, that
the developer can use to build facts and rules within the scope of
the knowledge base.

PARADE code generator takes as input XMI [19] files that
any an off-the-shelf CASE tool should be able to produce. The
generated code is composed of application-specific subclasses of
the general-purpose classes provided by the PARADE
development library. In particular, subclasses of the classes
Entity , Predicate and Agent are generated exploiting the
information contained in architecture and ontology diagrams. The
subclasses of the Entity and Predicate  classes provide a
concrete implementation for the entities and the predicates
defined in the ontology. The subclasses of Entity  allow treating
the entities of the ontology as Java objects and, in particular, they
allow accessing the attributes of the entities as Java fields. This
simplifies the use of the entities defined in the ontology in the
application-specific code. Similarly, subclasses of Predicate
allow treating predicates defined in the ontology as Java objects.
While this representation allows treating all predicates uniformly,
it is not very convenient when using predicates in application-
specific code. This is the reason why PARADE code generator
synthesizes a subclass of the OntologyHelper  class to provide
a more direct access to predicates. This class is combined with the
Agent class to provide an application-specific agent template
where programmers can treat predicates as Java methods. As an
example, the code generated from the ontology diagram shown in
figure 2 allows the developer writing the following piece of Java
code to make a CD shop agent informing a personal assistant of
the price for a CD:



CD cd = new CD(title, author);
Price newPrice = new Price(valueOfthePrice);

send(personalAssistant,
inform(price(cd, newPrice)));

Another important component of the PARADE development
library is the ontology-driven parser [3] for the SLO [8] language.
This is a general-purpose component that the application
developer does not need to customize. It takes as input a run-time
description of the entities and the predicates defined in the
ontology and parses incoming SLO messages taking such concepts
into account. The PARADE code generator synthesizes the run-
time description of the ontology needed by the parser. The output
of the SLO parser is a Java object describing the input message in
terms of the classes built by the code generator. This allows the
programmer dealing only with the elements of the ontology rather
than with the abstract syntax tree of the incoming message.
Providing the developer only with the elements of the ontology
does not only simplifies the application code, but it also allows
writing code that does not depend on the content language used
for communications. Input messages are transparently parsed by
the agent template and only the result of the parsing is passed to
the application. Similarly, output messages are generated from
classes created by the code generator and the developer is not
required to encode the messages in a particular content language.
The current implementation of PARADE integrates only the parser
for the SLO language, but the developer can provide new parsers
implementing the Parser class.

4. DISCUSSION AND CONCLUSIONS

This work presents an implemented agent development toolkit
called PARADE intended to show the benefits of using hybrid
architectures in supporting autonomy and inter-operability. In
particular, PARADE agent architecture supports autonomous
agents capable of exploiting FIPA compliancy at the semantic
level rather than only at the syntactic level. Moreover, PARADE
takes efficiency into account using FIPA generic interaction
protocols to implement reactive behaviors. It is worth noting that
the semantics of FIPA ACL seems to allow using isolated
communicative acts as planning primitives rather than protocols.
Unfortunately, such an approach is not only less efficient than
using protocols but it also prohibits the use of agents in open
environments because it requires some hypotheses on the
characteristics of the agents in the system. The semantics of FIPA
ACL allows agents choosing the communicative acts to perform
on the basis of feasibility preconditions and rational effects. Such
conditions describe what must be true for an act to be feasible and
the result that a rational agent performing that act wishes to
obtain. This description is not sufficient for planning purposes
because there is no guarantee that an agent receiving a message
will take this message into account. For example, there is no
guarantee that requesting another agent to perform an action will
result in such an agent performing the action or just informing of
the refusal. In fact, the receiver of a message has no obligations
with respect of the rational effect intended by the sender of this
message. Therefore, an agent cannot use rational effects to infer
the effects of an action and it cannot rely on rational effects to
plan a sequence of actions. This is not really a limitation of the
semantics of FIPA ACL because it is coherent with the
characteristic autonomy of agents. Nevertheless, this prohibits
using isolated communicative acts to build planning agents. This

limitation can be overcame exploiting the semantics that FIPA
provides for interaction protocols. In particular, FIPA
specifications state that if an agents supports a FIPA generic
interaction protocol, then all conversations it runs with another
agent using such a protocol must be finished according to this
protocol [8]. This implies, for example, that if an agent requests to
another agent to perform an action within the FIPA request
protocol, then the receiving agent must perform the action and
inform the sender or it must explicitly refuse to perform the
action. This constraint was introduced to allow developers dealing
with interaction protocols easily, but it is fundamental to support
goal-oriented agents because it allows defining post-conditions
for protocols.

The basic difference between the PARADE approach and all
FIPA compliant tools available in the literature is the exploitation
of the semantics of FIPA ACL to support autonomy. This
approach overcomes a basic problem of many applications
developed using such tools: they need to limit agent expressive
power. In particular, common limitations are: performatives
cannot be nested in a message and some new performative must
be introduced to support application-specific concepts. Nested
performatives are not allowed because, normally, a Java method is
associated with each performative or each step of a protocol.
Nevertheless, the meaning of a message containing nested
performatives is not calling two methods. Basically, this problem
comes from treating messages as imperative sentences rather than
declarative assertions. The need of introducing application-
specific performatives is a consequence of the problem described
above. The impossibility of nesting performatives implies the
impossibility of creating macro-performatives and therefore the
developer may not find a performative with the desired meaning
within FIPA ones. A possible solution to such a problem could be
associating agents with actions that have the same post-condition
of the desired performative. This solution moves the problem
from the domain of agent communication language to the domain
of the content language and therefore it implies including
concepts such as beliefs and intentions in the ontology. Even if
this might be a working solution, it may be pushed to its extreme
consequences of using just the request performative delegating the
meaning of messages completely to the content. This approach is
quite similar to the communication scheme of distributed object-
oriented programming and therefore it lacks many of the benefits
of available agent communication languages.

Another important advantage that we see in the presented
approach is that it seems to help bridging the gap between
specification and implementation. In fact, the description of
agents we introduced in section 2 is quite similar to the one
employed in the methodologies supporting the specification of
multi-agent systems [12], such as GAIA [28], MESSAGE [15] and
UAML [26]. Such methodologies are not yet supported by any
tool and therefore the developer has no means to generate code
from specification or design artifacts. PARADE provides an
implemented tool along with a general-purpose agent architecture
and this may help using it in real-world applications.

PARADE has currently a number of limitations deriving both
from its underlying theoretic model and from its current
implementation. Nevertheless, PARADE provides concrete
support to the developer and the possibility of using UML
diagrams to generate code should promote its use also in the
industry. Moreover, PARADE is a step forward the available
FIPA-compliant tools because it integrates the semantics of FIPA



ACL to support semantic inter-operability and autonomy without
disregarding efficiency.
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