Towards an ADL for Designing Agent-Based Systems

Marie-Pierre Gervais
LIP6 and University Paris X
8 rue du Capitaine Scott - F75015 Paris
+33144 277365

Marie-Pierre.Gervais@lip6.fr

ABSTRACT

In this paper, we describe the Architecture Description
Language (ADL) that we are defining for the design of agent-
based systems. This aims at filing the gap between the analysis
and design phases in agent-oriented methodologies. The
analysis phase enables the description of the software
architecture without any consideration of the execution
environment while the design phase supplements the analysis
output with descriptions related to the distributed
environment in which the agents will run. The distributed
environment we consider is OMG MASIF compliant mobile
agent platforms. Our approach is to use the UML built-in
mechanism of extension in order to provide a UML profile for
the agent-based systems designers. Thus they can detail the
software architecture of the system with information
concerning the distribution aspects related to the execution
environment.

This work is a part of a project that deals with the development
of a methodology for the construction of agent-based systems,
called ODAC. This is based on the ISO Open Distributed
Processing standards that define an architectural framework for
the construction of distributed systems.

Keywords
Design of agent-based systems, Architecture Description
Language (ADL), UML

1. INTRODUCTION

A multi-agent system is commonly considered as a distributed
system in which the entities are agents. This characteristic
requires that these agents be deployed in an environment that
supports their execution. Constructing an agent-based system
must then encompass all the steps from the analysis and
design to the implementation of the system. As the
terminology is not standardized, in order to avoid confusion,
let us precise what we call analysis and design. The analysis
relates to the development of a detailed solution that does not
depend on achievement choices. It includes the description of

Florin Muscutariu
LIP6 and University Paris 6
8 rue du Capitaine Scott - F75015 Paris
+3314427 8861

Florin.Muscutariu@lip6.fr

all the processes composing the system operation, the
information definition and the tasks' specification. The
purpose of the design is to lead to the system implementation
and to carry out choices to make the models operational for the
system achievement. It relates to the operational specifications
needed to ensure the achievement of the future system. It
includes the taking into account of the means chosen for the
adopted solution, namely a target environment that will
support the execution of the system.

According to these definitions, it must be recognized that
most of the current methodologies focus on the analysis phase
in the sense that they define the organization, the architecture
and the description of the system elements, namely the agents
and their relations [9]. This corresponds to the functional
definition of the system, i.e., its software architecture. On the
other hand, some works deal with the development of
platforms for the agents execution, either in conformance with
standards such as MASIF or FIPA or not [10, 4, 8]. However, no
correlation is established between the software architecture
resulting from the analysis phase and its mapping onto an
operational environment. There is a breaking point between
the two aspects.

We advocate that the construction of an agent-based system is
a process that must take into account the definition of the
system as well as its implementation into a target environment
in which it will run. This process must be achieved in
accordance with an AO methodology that encompasses all the
steps including analysis, design and implementation. The
methodology must reflect the specificity of the agent
technology. The distinction between the agent technology and
the other software technologies has been described in [24],
based on a unique set of software characteristics. One of the
characteristics is a required peer-to-peer protocol. In [25], the
distribution of data and control is cited as a reason to consider
the multi-agent systems as an important new direction in
software engineering. Both the peer-to-peer protocol and the
distribution of data and control assume the existence of a
distributed infrastructure that provides transparent
communication mechanisms (e.g., an agent naming service) or
an eventual support for mobility, as identified in [26].

Based on these considerations, LIP6 started a project to
develop such a methodology, named ODAC (Open Distributed
Applications Construction), using its experience learned from
the distributed systems development. For this, it makes use of
an ISO standard related to the distributed processing that is
the Open Distributed Processing standard (ODP) [11]. This
defines a set of rigorous concepts for modeling distributed
systems. It makes use of the object paradigm in such a general
way that it is possible to deal with ODP objects in the same
way as they would be agents. For example, ODP objects are
autonomous entities able to act by themselves. In our view, an

agent is an ODP object and agent-based systems are
distributed in the ODP term sense, since they comply in a
technical and organizational heterogeneous context. They
consist of interacting entities, which can be agents and/or
objects. The Reference Model of ODP (RM-ODP) can then be
useful when building agent-based systems as it provides an
architectural framework that encompasses all the needed
aspects, i.e. the functional as well as the technical description
of the system while providing some correspondence rules
between them. However, ODP provides no prescriptive
methodology that can be followed in developing a system.
Furthermore, the standard supplies no support for this
development. For example, it defines concepts and rules, but
no notation or formalism is proposed to put in a concrete form
the system specification. We then propose in ODAC the use of
the UML standardized notation for specifying agent-based
systems according to the ODP semantics. Thus, we are defining
an Architecture Description Language (ADL) for modeling the
system both in analysis and design phases. In a first step of
the ODAC methodology development, we have defined the part
of the ADL devoted to the analysis phase.

This paper focuses on the design phase of the ODAC
methodology. More precisely, it illustrates the requirements
for filing the gap between the analysis and the design phases
and for achieving this design phase in order to get an
operational description of the agent-based system to be
implemented. As mentioned previously, the analysis output is
the software architecture of the system related to its functional
properties. The design activity adds to this description the
non-functional properties according to the chosen execution
environment. ODAC considers a specific kind of environment,
namely a MASIF compliant mobile agent platform. We are then
supplementing the ADL already defined in order to include the
part devoted to the design phase. Our approach is to define a
UML profile enabling the description of the distributed
execution environment and the placement of the agents in this
environment.

The paper is structured as follows. We first provide an
overview of the ODAC methodology. Then we present our
approach based on background coming from two fields related
to the software design. We describe the UML profile we are
defining for the design phase. At the end, we present a
conclusion.

2. THE ODAC METHODOLOGY
OVERVIEW

A methodology must define a set of concepts, the usage rules
of these concepts by organizing them into various steps, the
process associated with these steps and a notation. ODAC
makes use of RM-ODP concepts. The major one is the
“viewpoint” concept, that is a structuring concept of the
modeling activity and thereby of the agent-based system
modeling. RM-ODP defines five viewpoints: Enterprise,
Information, Computational, Engineering and Technology.
Each of them focuses on a specific concern when modeling a
system and enables to specify the system according to a set of
relevant concepts for the preoccupations related to this
viewpoint. Therefore this concept of “viewpoint” results from
the separation of concerns approach in modeling activity. The
complete system specification is then the set of each
viewpoint specification with their correspondence rules.

In ODAC methodology, we make use of this concept by
associating in an informal way the Enterprise, the Information
and Computational viewpoints to the analysis and the
Engineering viewpoint to the design [7]. The Technology
viewpoint is out of our consideration as it refers to the
implementation. ODAC then distinguishes in these two stages
intended to define the system those that describe it
independently of any target environment of those that
describe it according to the environment in which it will be
carried out. Two kinds of specifications are identified: the
behavioral specification and the operational specification.

The behavioral specification results from the specifications
established in the Enterprise, Information and Computational
viewpoints. It describes the system according to its objective,
its place in the company in which it is developed, information
that it handles and the tasks that it carries out. For sake of
simplicity, we do not mention the complete steps for writing a
behavioral specification. Details can be found in [6]. Here,
only the part devoted to the Enterprise specification is
described. The basic concepts of the Enterprise viewpoint are
ODP Enterprise object, role, community, objective, behavior
and action [12]. An ODP Enterprise object is a model of an
entity, either an entity of the system to be specified or an
entity of the system environment. ODP Enterprise objects can
be grouped to form a community. In that case, they exhibit the
behavior needed to realize the objective of the community. By
doing this, they fulfill roles of the community since a role
identifies a behavior. This is a set of actions with constraints
on when they appear. Actions can be interactions between
several objects or internal actions. ODAC prescribes the steps
for elaborating an Enterprise specification as follows:

1) Defining the objective of the system;

2) Enumerating all the roles enabling to perform this
objective;

3) Among these roles, identifying roles of the system
environment and roles of the system. This means
identifying the S-Community;

4) Among the roles of the system, identifying the
possible interface roles, i.e. other communities. Assign
then to these communities the roles that must be
attached to them;

For each community:

5) Identifying the Enterprise objects fulfilling the roles of
the community;

6) Describing the behavior of the community;
7 Describing the policies.

To express these various descriptions, we provide the modeler
with an ADL based on the UML standard notation. We then
have mapped the RM-ODP Enterprise concepts onto the UML
ones as illustrated in Table 1 [2].

Table 1. RM-ODP Enterprise and UML Concepts Mapping
RM-ODP Enterprise

UML Notation

Concepts
Objective Use Case
Role Stereotype of Class “role”

S-Community Use Case Diagram

Enterprise Object UML Object

Community Collaboration Diagram

Community Behavior Sequence Diagram

Policy Note

The operational specification results from the design step
corresponding to the projection of the behavioral
specification on a target environment reflecting the real
execution environment. It depends on the specification
established in the Engineering viewpoint, which describes the
execution environment. It constitutes the description from
which code is generated and the implementation is carried out.
We are then supplementing our ADL used in the analysis step
in order to include the design concerns. For this, we make use
of background coming from two areas related to the software
design.

3. RELATED WORKS

We aim to fill the gap existing between the analysis phase and
an agent execution environment. We want to provide the
designer with a notation for describing the operational
specification that is the mapping of the software architecture
resulting from the analysis phase onto an operational
environment.

The notation for the design step must include concepts related
to the distribution aspects while enabling the description of
the considered environment. The RM-ODP Engineering
viewpoint provides such concepts as it focuses on required
mechanisms and functions supporting distributed interactions
among RM-ODP objects in the system. The definition of an
ODP object as a model of an entity permits us to consider an
ODP object as an agent. The agent execution environment we
consider is in conformance with the MASIF standard. We have
then mapped the MASIF standard concepts onto the RM-ODP
Engineering concepts [15]. We refer them from now as the
MASIF platform elements (e.g. region, agent system, place,
agent, etc) [21]. In order to ensure continuity between analysis
and design steps, the ADL we are defining for the design step
must also be based on the UML notation.

We have investigated two fields that address issues relevant
for our objective, namely the definition of an ADL for the
description of an ODAC operational specification:

1. The Object Engineering field addresses the distribution
aspects description through the use of UML. Moreover,
some work has been done in considering object
engineering on an RM-ODP base;

2. The Architecture Engineering field provides concepts to
characterize the elements to be designed together with
their relations. Since agent semantics is richer than the
object semantics, Architecture Engineering represents a

valuable work enabling the UML representation of
different element semantics.

We detail hereafter works related to these two fields.

3.1 Object Engineering

Object engineering has made some important progress since
the appearance of UML. UML seems to be generally accepted as
the language to describe object architectures. It is the result of
a unified effort of other object languages (OMT, OOSE and
OOADA). Basically, the notions that UML introduces can be
grouped in three categories:

- Things;
- Relationships;
- Diagrams.

Although most of the efforts are devoted to the analysis phase
of an object-oriented system, there are also possibilities to
describe distribution issues (i.e. node, component,
deployment diagram, etc). But UML lacks a methodology that
defines the links between various elements.

Probably the most known methodology, which implicitly
establishes a part of these links is the RUP (Rational Unified
Process) developed by Rational Corporation [19]. This permits
to describe some distribution concerns and is based on UML
concepts as defined in UML Meta-Model.

Other projects consider their own
methodologies based on an RM-ODP approach.

a) The TRUMPET project consisted in modeling an RM-ODP
system. This was done using a UML notation [16]. Most of the
project was concerned with the analysis phase, although an
extension of UML is presented for the RM-ODP engineering
concepts dedicated to a chosen environment. This extension
uses the UML subsystem considerations presented in [20]. In
addition, the project is only concerned with UML deployment
diagrams. Moreover, an RM-ODP object is considered to be an
object in the usual meaning in object-oriented modeling,
although its definition enables to map richer semantics on it.

b) Other efforts use an RM-ODP approach for UML object-
oriented modeling but are only interested in the analysis
phase [17]. More complete approaches never really passed the
draft stage [18].

c) Lately, the DOT Profile project has proposed to consider an
RM-ODP system on a component basis but for now it only
addresses the analysis phase [3].

object-oriented

3.2 Architecture Engineering

Architecture Engineering mainly consists of ADLs definitions
enabling the description of architectures. Basically, ADLs have
two main concepts: components and connectors. An
architecture is then described as components connected by the
connectors. The graphical representation for ADL is boxes for
the components and lines for the connectors with specific
semantics and properties. Few means are offered to describe the
so-called non-functional properties of the components and
connectors, i.e. properties that take into account an execution
environment [13]. Most of the effort is dedicated to the
analysis phase. Two main approaches are used in ADL-based
methodologies for mapping the software architecture
described in the analysis step onto the execution environment
(Figure 1):

a) acompilation approach when the architecture is mapped
directly onto a specific executing environment. An
example of this approach could be seen in the OLAN
project [1]. The compilation is done using an “OLAN
configuration machine” which makes all the
implementation choices.

b) the construction of a framework over the executing
environment capable to match the ADL’s semantics
(bottom-up construction). An example of this approach
could be seen in C2 [14]. C2 constructs a class hierarchy
that implements the component and the connector classes.

Architecture description

Analyis phase

[T 1

a) "Compilation”

b). Hierarchical Construction

/ Execution environment \

Figure 1. Two approaches for implementing the architecture
description.

Methodologies used for the architecture description based on
particular ADLs representations have been supplemented
lately with a UML approach. Instead of using specific ADL’s
boxes and lines, UML extensions are defined for capturing the
ADL’s semantics [5]. An example is the C2 ADL mapping to
UML [14].

This trend of UML extension and adaptation for different
purposes is encouraged by OMG and some Profiles are already
made available [22].

3.3 Summary

We are defining a UML-based ADL for the design phase of a
agent architecture system. RM-ODP offers the overall
framework for that. The object-oriented modeling helps us to
consider the platform elements representation using the
existing UML concerns for distribution.

Since the agent platform elements have other semantics than
the UML standard can offer, we have to choose:

- to create a different Meta-Model by operating
modification at this level of abstraction,

- orto use the built-in mechanism of extension in
order to obtain the required semantics.

Since the scope of UML is a “Unified Language”, rather than
modifying the Meta-Model, we propose to use the UML
extension mechanism by introducing tagged values and

semantics constraints expressed in OCL and grouped them in a
UML profile.

The Architecture Engineering offers a feedback for different
semantics representations with UML. Also architecture
engineering permits us to situate our approach for the design
phase as a top-down construction. The construction offers the
possibility to refine the behavioral specification with the
imposed choices and characteristics related to the distributed
execution environment.

4. UML MASIF-DESIGN PROFILE

The ADL that we propose for the design phase is defined as a
UML profile. This is called “MASIF-DESIGN” profile, as for
now, the distributed execution environment we consider is in
conformance with the OMG-MASIF standard.

MASIF presents a minimum set of concepts and operation
interfaces necessary for interoperability. The term operation in
this context has a UML meaning. These concepts and
operations are considered in an overall RM-ODP framework.
The operation is the function equivalent in an ODP context.
RM-ODP guide us in establishing the operations required to
manage physical distribution, communication, processing and
storage. Some of the operations defined in MASIF accomplish
requirements for the management of this physical distribution.
MASIF presents these operations grouped in two IDL
interfaces: MAFFinder and MAFAgentSystem. These interfaces
present the prototype of the methods that implement these
operations.

The ADL for the design phase must enable the description of
the considered environment. Thus we have first to model the
MASIF platform elements with UML diagrams. As this model
permits us further to locate agents in a distributed
environment, two issues must be considered:

- The placement of agents in the distributed
infrastructure;

- The representation of
transparencies.

distribution

A distribution transparency is the capacity of hiding the
distribution aspects in the behavioral specification elaborated
in the analysis phase. The platform elements cooperate to
provide a transparency by bringing uniformity to some
aspects of agents’ distribution (e.g. uniformity of naming
whatever the location of the agent). RM-ODP presents an
inventory of assumed transparencies for a distributed system
(e.g. access transparency or location transparency). MASIF
presents a limited set of operations available to model the
interactions between the platform elements needed for the
transparency specification.

The transparencies have to be specified as analysis phase
requirements. They enable to refine the existing behavioral
specification with introducing additional behavior, including
the use of one or more operations of the platform elements.

4.1 The placement of agents in the

distributed infrastructure

The placement of agents in a distributed infrastructure is
specified with UML deployment diagram. In order to do that,
we have to model the infrastructure platform elements with
UML diagrams. These platform elements are organized in a
hierarchical configuration. First there is the Region, which

makes the link among Agent Systems. An Agent System
includes Places where Agents reside and a CoreAgency as a
management module.

This modeling process is not always straightforward. Each
platform element can be represented at the type level and the
instance level. Aninstance of a type is defined in ODP as a <X>
(anything) that satisfies the type. A type is a predicate that
characterizes collections of <X>s. The same approach of type
and instance is referred in [5]. For simplicity, an analogy with
object modeling concepts would be classes for types and
instances of these classes.

We model the platform elements in the MASIF-DESIGN profile
with stereotypes illustrated in Table 2.

Table 2. The stereotypes modeling
the MASIF platform elements

MASIF Type level Instance level | Stereotype
platform Name
elements UML =~ Meta-
model Class
Region Stereotyped Stereotyped Region
Subsystem Subsystem
instance
Agent System | Stereotyped Stereotyped Agent
Node Node instance | System
Core Agency | Stereotyped Stereotyped CoreAgency
Subsystem Subsystem
instance
Place Stereotyped Stereotyped Place
Package Component
instance
Agent Stereotyped Stereotyped Agent
Component Component
instance

a) The Region fully interconnects agent systems and enables
the point-to-point transfer of information between them. The
Region has a region registry with all the information about the
places and agents. We represent Regions as stereotyped
subsystems (Figure 2).

In UML, the subsystem is both package and classifier. A
package is a grouping of model elements. A classifier is a
super-type (abstraction) used to specify the common
characteristics of the UML Class, Interface and DataTypes. A
classifier describes behavioral and structural characteristics.
The subsystem is instantiable.

<<Region>>h |

MAFFinder

Figure 2. The stereotyped subsystem “Region”

A subsystem groups three elements: operations,
specifications elements and realization elements. The services
provided by the subsystem are represented by interfaces and
the corresponding operations. The specifications and
realization elements detail the internal behavior in order to
assure these services and the elements that realize this
behavior.

In MASIF, the region has an IDL interface named the
MAFFinder. This is a set of operations needed to implement a
“white pages” service. Thus graphical representation of the
Stereotyped subsystem “Region” can be refined as illustrated
in Figure 3. Only a few operations are listed here, the complete
list can be found in the MASIF specification. It should be
noted that the specification elements and realization elements
of a Region are not addressed in MASIF. Thus each mobile
agent platform that implements the MASIF standard has to
make the desired choices.

<<Region>>|l|

register_agent(..):void
unregister_agent(..):void

<<Interface>>
MAFFinder

7 register_agent(..):void
unregister_agent(..):void
hespecification | | -

and realization
elements

Figure 3. Refinement of the stereotyped subsystem “Region”

b) The AgentSystem is the platform that can create, interpret,
execute, transfer and terminate agents. We represent it as a
stereotyped node. A node has an instance. The graphical
representation is illustrated in Figure 4.

<<Agent System>>

Figure 4. The stereotyped Node “Agent System”

Each agent system has one CoreAgency, represented as a
stereotyped subsystem.

c) The CoreAgency supports the management services
provided to agents in an Agent System. The CoreAgency has
an interface defined in MASIF as MAFAgentSystem. Only a
limited number of operations are described. The complete list
of operations can be found in the MASIF specification. The
specification elements and realization elements of the Core
Agency Subsystem stereotype are not addressed in MASIF. The
graphical representation and the implementation diagram are
the same as the Region ones.

d) A Place is a context within an Agent System in which an
agent can run. It can provide functions such as access control.
We represent it as a stereotyped package (Figure 5).

<<Place>> |

Figure 5. The stereotyped package “Place”

Since a package has no instance, we represent the place
instance as a component instance. The component realizes the
place. Figure 6 illustrates the corresponding component
diagram.

<<Place>> |

realizes

~ ~ — D

<<Place>>

Figure 6. The Place component diagram

e) We represent an Agent as a stereotyped component. The
component realizes the stereotyped class that represents an
agent in the analysis phase [23]. Additional information
needed for the implementation can be included in the
component diagram related to an agent implementation. For
example, Grasshopper, which is a MASIF implementation
platform, introduces an interface definition that specifies the
agents’ interaction points, i.e. the public operations (Figure 7).

<<Agent>>

realizes

~ ~ — D

<<Agent>>

Figure 7. The Agent component diagram

A component instance is defined in UML as a run-time
implementation unit and may be used to show implementation
units that have identity at run-time, including their location
on nodes. The vast semantic of this definition permits us to
consider the instance of a stereotyped package “Place” and of a
stereotyped component “Agent” as components instances but
with different semantics. The Place is a grouping unit of
different agents. As for the Agents, they are the basic
executable units. Components are things that participate in the
execution of a system and nodes are things that execute
components.

The dependency relations among the platform elements are
represented in a component diagram (Figure 8).

The deployment diagram represents the physical distribution
of the platform elements in a hierarchical structure. The
diagram is static and represents an image of the system
(Figure 9). We use transition stereotypes already defined in
UML 1.3. These stereotypes permit us to specify all the
locations that an agent visits during its lifetime and the
eventual clones that it creates (Table 3).

As this representation could lead to an overloaded diagram,
then we choose to multiply the deployment diagrams, one for
small group of agents when it is necessary. This type of

deployment diagram helps us to consider further some of the
distribution transparencies.

<<CoreAgency>> H

<<Region>> hl s

[
~ S
-~—-=-Jd___
\
1 <<Agent>>

<<Place>>

Figure 8. The platform elements dependencies

Table 3. Transition stereotypes

UML Stereotype Description

Become Migration of an agent

Copy Replication of an agent

<<Region>> A
my_region

<<Agent System>> <<Agent System>>

Ag_sysl Ag_sys2
<<Place>> <<Place>>
Placel
Place2

[] [] <<Agent>>]
my_2
[] <<Agent>>] I_J <<Agent>>

my_3
my_1 b/,comes
/
Figure 9. The placement of agents
in the hierarchical structure

4.2 Transparencies

The transparencies defined in RM-ODP are: access
transparency, failure transparency, location transparency,
migration transparency, relocation transparency, replication
transparency, persistence transparency and transaction
transparency. Our ongoing work only deals with location and
access transparencies. The others are for further study.

a) Location transparency masks the use of information about
location in space when identifying and binding interfaces of
agents. Thus, agents can interact with other agents without
using the location information.

There are two location issues, namely the location of an agent
and the location of resources files for an agent.

In MASIF, the location is defined as the path to an agent
system based on the agent system, the agent or the place. The
operation named MAFFinder.lookup_agent() permits to
connect two agents without knowing their location by
requesting the region about the agents’ location. The location
descriptor in MASIF is either a URI containing a CORBA name
or a URL containing an internet address.

We have also to consider the location of the agent definition
file. An Agent System that executes an instance of an agent
needs this agent definition. The operation
MAFFAgentSystem.fetch_class() permits to retrieve this
definition from the location of this file provided by the
designer. In order that the designer can locate the source file
with the agent definition, we introduce a tagged value named
FileDefinitionLocation.

b) Access transparency masks differences in data
representation and invocation mechanisms to enable
interactions between agents. Here, there are also two issues,
namely the link establishment of the communication and the
security aspects in terms of access rights.

For the link establishment, MASIF refers existing mechanisms
such as RMI, CORBA or RPC. However nothing is established
in order that the designer makes the choice between these
mechanisms. Some implementations, such as Grasshopper
detail further the possibility to make these choices. We
provide a tagged value Link so that the designer identifies the
link he chooses.

As for the access rights, MASIF defines the notion of Agent’s
authority. An agent’s authority identifies the person or
organization for whom the agent acts. An authority must be
authenticated. MASIF discusses the requirements for a secure
mobile communication. The only operation related to access
rights is MAFFinder.list_all_agents_of_authority().In order
that the designer identifies the authority of an agent, we
introduce a tagged value named Authority.

5. CONCLUSION AND FUTURE WORK

In order that designers of agent-based systems describe the
model resulting from the analysis phase according to an
execution environment, we provide them with an ADL. This
enables the designers to describe the mobile agents platform
they use and to locate the agents identified in the analysis step
in this description. This ADL is defined as a UML profile since
we make use of the built-in mechanism of extension. Thus it is
based on UML notation.

Current work has identified the stereotypes needed to describe
an OMG MASIF compliant mobile agent platform and its
hierarchical structure and to locate the agents in such a
structure. It also provides means in terms of tagged values
enabling the designers to represent location and access
transparencies. Further work is devoted to the refinement of
our proposal by identifying attributes to characterize the
platform elements and the transparencies not addressed in this
paper. In addition, the approach described here in the
definition of an ADL for the design of agent-based systems
will be applied to another application domain, namely the
active networks.

REFERENCES

[1] Bellisard L. et al., Distributed Application Configuration,
In proceedings of the 16" International Conference on
Distributed Computing Systems, IEEE Computer Society,
Hong Kong, May 1996, pp579-585

[2] Blanc X., Gervais M.-P. and Le Delliou R., Using the UML
language to express the ODP Enterprise Concepts, In
proceedings of the 3th International Enterprise
Distributed Object Computing Conference (EDOC’99),
IEEE Press, Mannheim, Germany, September 1999, pp50-
59

[3] Born M., Holz M. and Kath M., A Method for the Design
and Development of Distributed Applications using UML,
International Conference on Technology of of Object-
Oriented Languages and Systems (TOOLS Pacific), Sydney
Australia, November, 2000.

[4] FIPA-OS, http://fipa-0s.sourceforge.net

[5] Garlan D. and Kompanek A.J., Reconciling the Needs of
Architectural Description with Object-Modeling
Notations, UML’2000.

[6] Gervais M.P., ODAC : une méthodologie de construction
de systémes a base d'agents fondée sur ODP, rapport LIP6
2000/28, November 2000 (in French)

[7] Gervais M.P., ODAC: An Agent-Oriented Methodology
Based on ODP, Submitted in Journal of Autonomous
Agents and Multi-Agent Systems.

[8] Glass G., Overview of Voyager : ObjectSpace’s Product
Family for State of the Art Distributed Computing, CTO
Object Sapce, www.objectspace.com, 1999

[9] Iglesias C. A., Garijo M. and Gonzalez J. C., A survey of
agent-oriented methodologies, In Proceedings of the 5th
International Workshop on Agent Theories, Architectures
and Languages (ATAL'98), LNAI n°1555 - Springer
Verlag, Paris, France, July 1998, pp317-330

[10] IKV++ GmbH, Grasshopper, A platform for mobile
software agents, www.ikv.de/products/grasshopper

[11]1SO/IEC IS 10746-x — ITU-T Rec. X90x, ODP Reference
Model Part x, 1995

[12] 1ISO/IEC CD 15414, ODP Reference Model
Viewpoint, January 2000

[13] Medvidovic N. and Taylor R.N., A Classification and
Comparison Framework for Software Architecture
Description Languages, IEEE Transactions on Software
Engineering, 26(1), January 2000

[14] Medvidovic N., Egyed A., Rosenblum D.S, Round Trip
Software Engineering Using UML: From Architecture to
Design and Back, Proceedings of the Second International
Workshop on Object-Oriented Reengineering (WOOR’99),
Toulouse, France, September 6, 1999.

[15] Muscutariu F. and Gervais M.-P., Modeling an OMG-
MASIF Compliant Mobile Agent Platform with the RM-
ODP Engineering Language, in Proceedings of the 2nd
International Workshop on Mobile Agents for
Telecommunication Applications (MATA'00), Lecture
Notes in Computer Science n°1931, Springer Verlag (Ed),
Paris, France, September 2000, pp133-141

. Enterprise

[16] Kandé M.M, Mazaher S., Prnjat O., Sacks L., Witting M.,
Applying UML to Design an Inter-Domain Service
Management Application, OOPSLA’2000.

[17] Milosevic Z., ODP viewpoint languages and UML: a case
of study, ftp.dstc.edu.au/AU/staff/zoran-milosevic.html

[18] Miller J., Relationships of the Unified Modeling
Language to the Reference Model of Open Distributed
Computing version 1.1.2, 21 September 1997.

[19] RationalRose (www.rational.com)

[20] Miller J. and Wirfs-Brock R., How can subsystems be both
a package and a Classifier, (www.omg.org)

[21]OMG MASIF
http://www.omg.org

Standard (orbos/98-03-09)

[22] OMG Unified Modeling Language Specification, Version
1.3, Mars 2000, http://www.omg.org

[23] Odell J., Van Dyke Parunak J. and Bauer B., Extending
UML for Agents, AOIS Worshop at AAAI 2000.

[24] Petrie C., Agent-Based Software Engineering, AOSE 2000.

[25] Wooldrige, M., and Ciancarini P. Agent-Oriented Software
Engineering: The State of the Art, AOSE 2000.

[26] Shehory, On. Software Architecture of Multi-Agent
Systems, AOSE 2000

