Presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

Automated Derivation of Complex Agent Architectures

from Analysis Specifications

Clint H. Sparkman, Scott A. DeLoach and Athie L. Self
Air Force Institute of Technology
Department of Electrical and Computer Engineering
Wright-Patterson Air Force Base, OH 45433-7765
937-255-6565x4288

clint.sparkman@afit.edu, sdeloach@computer.org, and athie.self@afit.edu

ABSTRACT

Multiagent systems have been touted as a way to meet the need
for distributed software systems that must operate in dynamic and
complex environments. However, in order for multiagent systems
to be effective, they must be reliable and robust. Engineering
multiagent systems is a non-trivial task, providing ample
opportunity for even experts to make mistakes. Formal
transformation systems can provide automated support for
synthesizing multiagent systems, which can greatly improve their
correctness and reliability. This paper describes a semi-automated
transformation system that generates an agent’s internal
architecture from the analysis specification for the MaSE
methodology.

1. INTRODUCTION

In the last few years, agent technology has come to the forefront
in the software industry because of advantages that multiagent
systems have in complex, distributed environments. As agent
technology has matured and become more accepted, agent-
oriented software engineering (AOSE) has become an important
topic for software developers who wish to develop reliable and
robust agent-based systems. Methodologies for AOSE attempt to
provide a method for engineering practical multiagent systems.
However, there are currently only a few AOSE methodologies for
multiagent systems, and many of those are still under
development. Additionally, most of the existing methodologies
lack specific guidance on how to transform the specification of a
system to the corresponding design and implementation. This
lack of certainty is not unique to engineering multiagent systems
and plagues most software engineering methodologies and which
leaves the designer questioning if the resulting system correctly
fulfills all of the initial system requirements.

The Agent Research Group at the Air Force Institute of
Technology (AFIT) has developed and continues to mature an
AOSE methodology, called Multiagent Systems Engineering
(MaSE) [1-4], which covers the complete life cycle of a
multiagent system. Additionally, recent work has focused on
applying formal methods to develop a transformation system for
formal agent system synthesis. Formal transformation systems [5,

This paper is authored by employees of the United States
Government and is in the public domain.
AOSE '01, May 28- June 2, 2001, Montreal, Quebec, Canada.

ACM 1-58113-000-0/00/0000...$5.00.

6] provide automated support to system development, giving the
designer much more confidence that the resulting system will
operate correctly, despite its complexity. While formal
transformation systems, and formal methods in general, cannot a
priori guarantee correctness [7], if each transform preserves
correctness, then the designer can be sure that the resulting design
and executable are at least correct with respect to the initial
system specification.

Given a sufficient level of automated support, the designer is only
required to make high-level design decisions, while the low-level
details of the transformations are carried out automatically by the
system. Transformation systems also provide traceability from the
system requirements through the development process to the final
executable code. Furthermore, if the system engineer is able to
adequately decompose the problem and capture the system
behavior in the analysis phase, then there is hope that the
undesirable system behavior, to which multiagent systems are
prone, can be avoided.

In this paper, we present a semi-automated formal transformation
system that generates MaSE design models based on the analysis
models [8], which is the first step in formal agent system
synthesis. Specifically, we explain how our transformation
system generates an agent’s internal design based on an initial
analysis specification.

2. Multiagent Systems Engineering

The MaSE methodology consists of the seven steps depicted in
Figure 1. The boxes represent the different models used in the
steps, and arrows indicate the flow of information between the
models. While similar to the waterfall approach, we have
designed MaSE to be applied iteratively. The first three steps
represent the Analysis phase of the methodology, while the last
four steps represent the Design phase.

2.1 Analysis Models

The Role Model is the end result of the MaSE analysis phase.
Role Models graphically depict the roles in the system, the goals
they are responsible for, the tasks that each role uses to
accomplish its goals, and the communication paths between the
roles necessary to complete their tasks. Roles are the abstract
entities that exist in the system, and are defined much like an actor
in a play, or a position in an organization (President, Vice
President, Manager, etc.). Each role is responsible for
accomplishing one or more system level goal, and there must be at
least one role responsible for each goal. In this way, the analyst is

able to ensure that all of the initial system requirements have been
captured.

Require-
ments
Goal

Hierarchy Capturing Goals

Use Cases

Sequence
Diagrams

« v
[Con(:l'menl]: /&[Roles]

Tasks
I

Applying Use
Cases

Refining Roles

Agent Creating Agent
Classes Classes

Constructing
Conversations

Conver-
sations
\4
Agent
Architectue
v ¥

Deployment
Diagrams

Figure 1 — MaSE Methodology

ublssgq ————— > <4——— sisfleuy —»

Assembling
Agent Classes

System Design

One example of a Role Model is shown in Figure 2. The roles in
the system are depicted as rectangles, and the goals that a role is
responsible for are listed under the role. Each task that a role has
is denoted by an oval attached to the role. The lines between the
tasks denote communication protocols that occur between the
tasks. The arrows indicate the initiator and responder tasks in the
protocol, with the arrow pointing from the initiator to responder.
Solid lines indicate peer-to-peer communication, which is external
communication either between two tasks of different roles, or
between two different instances of the same role. Conversely,
dashed lines denote communication between two tasks of the
same role instance.

Broker
Client goal2

goall goal3

Request Searcher Start Bidding

Searcher
goal 4

Start Search Made Bid
Search Bid

RequestBids

Found Searcher

Contract Net

Figure 2 — Role Model

As part of defining the Role Model, the analyst must define the
tasks that each role has. Tasks describe the behavior that a role
must exhibit in order to accomplish its goals, and are specified

graphically using a finite state automaton, as shown in Figure 3.
A single role may have multiple concurrent tasks that define the
complete behavior of the role. Each task is assumed to operate
under its own thread of control, thus each task has its own state
diagram that executes independently of the other tasks. An
important aspect of multiagent systems is the ability of agents to
interact to accomplish their goals. Concurrent tasks capture this
interaction and can be used to specify complex communication
protocols such as Contract Net, Dutch Auction, etc. [9].
Concurrent tasks also lay the foundation for conversations
between the agent classes in the design phase of MaSE.

‘ Get_File_MName |

‘ﬂlename = getFiIenameo|

*send{request

receiveiFileMotFound, server) Wait_For_File

receivefinformifile), semer™hackupfila)

WWail_For_Backup

ddne

File_Maot_Found
C.(}r_ Process_File

processifiled

Figure 3 — Concurrent Task Diagram

An important property of concurrent tasks is that they are able to
capture communication with multiple tasks in order to accomplish
their goals. In other words, Concurrent Task Diagrams naturally
intertwine events belonging to different protocols. The other
tasks being communicated with can belong to the same role, or
they may belong to a different role. Tasks that belong to the same
role can coordinate with each other through internal events. In
Figure 3, the "backup(file) event on the transition from the
Wait_For File state to the Wait For Backup state is an example
of an internal send event, and the done event on the transition
from the Wait For Backup state to the Process File state is an
example of an internal receive event. In order for a task to
communicate with a task of another role, events that represent
external communication are specified using SendEvents and
ReceiveEvents. These events are defined to send and retrieve
messages from an implied massage-handling component of the
agent. The “send(request(filename), server) event on the
transition from the Get File Name state to the Wait For File
state is an example of an external SendEvent, and the
receive(inform(file), server) event on the transition from the
Wait_For File state to the Wait For Backup state is an example
of an external ReceiveEvent.

2.2 Design Models

In the design phase of MaSE, the designer takes the Role Model
in the analysis phase, and produces an Agent Class Diagram, as
shown in Figure 4. Each rectangle represents an agent class, with
the roles played by each agent listed under the agent’s name. The
directed lines between the agents represent conversations between
the agents, with the arrow pointing from the initiator to the
responder. In order to ensure that all system goals are being met,
each role must be played by at least one agent class, providing a
traceable link from the goals in the analysis phase to the agents in
the design phase.

Managerfgent Broker
LD FequestSearcher,
Manager Bidder
BeginBearch Reg|ster
SearchAgent
Searcher

Figure 4 — Agent Class Diagram

Conversations define detailed coordination protocols between
exactly two agents, and consist of a pair of Communication Class
Diagrams, one each for the initiator and responder. Conversations
are at the heart of any multiagent system as they detail how the
agents communicate with each other. Like tasks, conversations
are described using finite state automata that define each half of
the conversation. Since conversations are point-to-point
communication between two agents, every event within a
Communication Class Diagram is represents a message to or from
the other agent in the conversation. Conversations do not allow
for communication with multiple agents simultaneously or for
internal events to be exchanged with components internal to the
agent. An example of a Communication Class Diagram is shown
in Figure 5.

Querylser

info = quen/User(gquestion)

gquerygyestion)
*nfarmidnfo)
‘nlanipackages)

splan{packages) DeselectPackages |

|packages = deselectPackages(|

[choice == réjeci]replan
infarm{plamn

ReviewPlan

choice = displayPlan{plan)

[choice == aceepf)*accept

Figure 5 — Communication Class Diagram

In addition to the conversations that agents participate in, agents
have internal components defined using an architectural modeling
language combined with the Object Constraint Language (see

Figure 6). Components allow users to logically decompose the
agents and define attributes and functions that are needed for the
agent to carry out its tasks. The dynamic characteristics of the
components are defined using a state diagram. The events passed
within a component’s state diagram are limited to internal events
with other components that belong to that agent.

Componenti
winteger Component?
tTask vilntener
agents: Setianent) #FdoTaskit Task)
#oetTaskd:Task

Figure 6 — Internal Agent Components

2.3 agentTool

In addition to the MaSE methodology, AFIT has developed a
CASE tool named agentTool that serves as a validation platform
and a proof of concept for MaSE. agentTool has a graphical user
interface that allows a user to develop a multiagent system using
the MaSE analysis and design models. agentTool is also able to
generate Java code for a system based on the design models.
Currently, the code generator is able to generate code for two
different frameworks, agentMom [10] and Carolina [11], but work
is being done to integrate agentTool with the AFIT Wide
Spectrum Object Modeling Environment that is looking at the
more general code generation problem [5].

3. TRANSFORMATIONS

Before defining the specific transformations, this section first
describes how the analysis models map to the design models. The
MaSE methodology makes it clear that an agent class’ roles, in
conjunction with the protocols between the tasks, determine the
conversations each agent class will have. However, if the external
events are simply removed from the tasks to create the
conversations, the problem we are faced with is that there will be
nothing left in the design to capture how to coordinate the
conversations and there will be no guarantee that the agent will
behave consistently with the initial concurrent tasks. We must
also capture the internal events in the design as well.

To solve this problem, we create a separate component for every
task in each role that an agent is assigned to play. We then copy
the concurrent task definition to the associated component state
diagram. Next, we extract the states and transitions belonging to
conversations and replace them with actions that represent the
execution of the conversation. Using this approach, the
component’s state diagram retains the coordination and internal
events necessary to ensure the behavior of the component matches
the task from which it was derived.

Prior to this segment of our research, we had defined
conversations as belonging directly to agents. However, based on
the approach discussed above, we have redefined the generic
architecture to have conversations belong to components. Figure
7 illustrates how the models in the analysis phase translate to the
models in the design phase as well as the relationship between the
design models. Ultimately, the roles that the designer chooses for
an agent to play determine that agent’s components, as well as the

set conversations in which the agent participates. To accurately
capture the behavior as defined in concurrent tasks, we assume
each component also executes as an independent thread.

|Convi-1] [Convi2| [Conv2-1| [Conv2-2]

Figure 7 — Model Influences

Besides components derived from concurrent tasks, our
transformations also create a special Agent Component for each
agent [12]. This Agent Component captures how the agent
coordinates its different components. Figure 8 shows the basic
state diagram for the Agent Component, which is designed to
handle both transient' and persistent’ components. The Agent
Component can also be transformed to account for special agent
characteristics like mobility, where the agent must halt all of its
active components, move to a new location, and then resume the
components where they were interrupted.

startPersistentComps
started=startComps()

[started]

extReceive(terminate,agent)

extReceive(message,agent)

[c!=null]/relay(message,c)

determineRecipient
c=getComponent(message)

[c==null]/sorry(agent) [e==null]

startComp
c=createComp(message)

[c!=null]

updateComponentList
addCompList(c)

Figure 8 — Basic Agent Component State Diagram

A transient component is started in response to the receipt of a
specific event. There may be multiple transient components of
the same type executing at any one time.

% A persistent component is started when the agent is instantiated
and runs until its completion or the agent is terminated. There
is only one instance of a persistent component running.

The transformation system created in this research is actually a
series of small steps that incrementally change the roles and tasks
in the analysis phase into agent classes, components, and
conversations in the design phase. The process logically
decomposes into three stages. Before the transformations can take
place, the developer must analyze the system and develop a Role
Model, which defines the roles that are present in the system, and
a set of concurrent tasks, which the roles perform to accomplish
their goals. The developer must also decide which agent classes
will be in the system and the roles that each agent class will play.

During the first stage of the transformation process, the
components for the agent classes are created based on the roles
assigned by the developer. The set of protocols to which each
external event belongs is also determined. The second stage
centers on annotating the component state diagrams and matching
external events in the different components that become the initial
messages of a conversation. During the last stage of the
transformation process the component state diagrams are prepared
for the removal of the states and transitions that belong to
conversations. They are then removed and added to the state
diagrams of the corresponding conversation halves. As they are
removed from the components they are replaced with a single
transition that has an action that starts the conversation.

Each transformation is defined by a predicate logic equation of
the form: condition = result, where the condition is the
set of requirements that must be true for the transformation to take
place, and the result describes what is guaranteed to be true after
the transformation is performed. This notation is similar to
defining functions with pre-conditions and post-conditions.
These transformations describe what must take place, not how it
must be done.

3.1 Creating Agent Components

Once the designer has developed the Role Model, defined the
concurrent tasks, and assigned roles to agent classes, the
transformation process can begin. The first transformations in
stage one of the transformation process determine the protocols to
which each external event belongs. This is important because the
specific protocols that events belong to are used to determine
where conversations begin and end in the component state
diagrams. ~ While the protocols for most events can be
automatically determined, there are ambiguous cases where the
designer must be asked to decide to which protocol specific
events belongs.

Next, for every task of every role that an agent plays, a component
is created for that task. Once again, the component’s state
diagram is initially identical to that of the task it was derived
from. The rest of the transformation process is focused on
moving the external events from these component state diagrams
into conversations. The following predicate logic equation
formally defines this transformation:

Va:Agent,r:Role, t: Taske (r € aroles At € r.tasks)
= (3 c: Component e ¢ € a’.components
A c.stateTable = t.stateTable A c.name = t.name)

As an example of this transformation, consider the example Role
Model shown in Figure 9. If the developer decides in the design
phase to create the agent classes with the roles shown in Figure
10, then the transformation system creates the components shown

for the agents. Since both agents play Role 2, there is a
component created for each agent for Role 2’s Task 2. Figure 10
is not a MaSE diagram, but is presented to illustrate the internal
agent components based on the initial Agent Class Diagram.

Protocol 1 Protocol 2

Figure 9 - Initial Role Model

Agent 1 Agent 2
Role 1 Role 2
Role 2 Role 3

Component:
Task 2

Figure 10 — Agent Components Created from Roles’ Tasks

Once the agent components are created, for each pair of roles that
are combined into an agent class, the designer must determine
whether each protocol that exists between components of that
agent is either internal or external. If a protocol is defined as
internal, all events belonging to that protocol become internal
events between components and not messages in a conversation.

3.2 Annotating Component State Diagrams
After the agent components are created, the next stage of the
transformation process involves annotating the component state
diagrams to prepare for conversation extraction. There are many
different cases in which tasks are defined in the analysis phase
that make removing conversations problematic. One such case
occurs when multiple events not belonging to the same protocol
reside on the same transition. To solve this (and other similar)
problem, we defined a transformation that converts the
component’s state diagrams into a canonical form, which splits
transitions having events belonging to different protocols. This
canonical form simplifies conversation extraction while remaining
consistent with the initial task specification.

Next, each transition is given a set of protocols that is based on
the protocols for the external events on the transition. Then the
state diagrams are annotated to indicate where each conversation
begins and ends. Conversations are defined as point-to-point
communication between two agent instances. Therefore, any time
a component’s state diagram has a transition with external
communication to a different agent than one of the preceding
transitions, a new conversation must begin, and that transition is
labeled as the start of a conversation. The following six
conditions indicate the start of a conversation by a change in who
the agent is communicating with, which in most cases is due to a
change in the protocols.

1. A transition has a protocol not found in at least one transition
into its from state.

2. A transition has a non-empty set of protocols that is different
than another transition leaving the same state.

3. A transition has a non-empty set of protocols, but lacks a
protocol of another transition into its fiom state.

A transition has a non-empty set of protocols, and there is
another transition into or out of its from state with an empty
set of protocols.

5. A transition has an empty set of protocols and at least one
SendEvent. In these cases, there is either a multicast event,
or there are SendEvents that belong to different protocols.

6. A transition has a SendEvent whose recipient was previously
determine by an action.

Similarly, when a component state diagram has a transition with
external communication not guaranteed to continue on transitions
leaving its fo state, that transition is labeled as the end of a
conversation. The following four conditions indicate that a
transition is the end of a conversation

1. A transition has a protocol not found in a transition leaving
its fo state.

2. A transition has an empty set of protocols and at least one
SendEvent.

3. A transition has a non-empty set of protocols and there is a
start transition leaving its fo state.

4. A transition to the end state has a non-empty set of protocols.

Once the start and end labels have been added to the component
state diagrams, the initial messages of the conversations must be
“matched up” (i.e., both sides of a conversation must start and end
with the same message types). In most cases, this can be done
automatically, but in some ambiguous cases the designer is
required to decide how to match conversation halves.

3.3 Extracting Conversations

The last stage of the transformation process removes the
conversations from the component state diagrams and places them
in their appropriate conversation halves. To extract a
conversation from a state diagram, each of its end transitions must
exit to the same state. If different transitions of a conversation
exit to different states, a transformation is applied to create a new
“dummy” end state for the conversation. Then, the states and
transitions that belong to the conversation are replaced with a
single transition from the state where the transition originates to
the state where the conversation ends. An action is added to the
transition that represents the execution of the conversation.

Other transformations in this stage prepare variables in the states
and transitions before they are removed from the components and
placed in the conversations. If a variable is not exclusive to a
single conversation, that variable must be stored in parent
component to ensure any other conversations extracted from the
component references the same variable. To annotate this, these
variables are pre-pended with “parent.”.

As the transitions are moved from the components into the
conversations, the special “send” and “receive” parts of the events
are removed from the events. They are used in the component
state diagrams to distinguish between internal and external events,
but are not needed in the conversations since conversations, by
definition, define binary communication between exactly two
agents.

4. EXAMPLE

This section presents an example to demonstrate the results of the
transformation system. The transformations were implemented in
agentTool, and most of the figures were screen shots from the
tool. Figure 11 shows the initial Role Model for a simple
multiagent system. There are three roles, each with a single task.
The Manager role uses the ContractNet protocol to solicit bids for
search tasks. The Bidder role bids on the tasks, and if awarded
the contract requests a search from the Searcher role. The Bid
task, shown in Figure 12, is used to demonstrate how the
transformation system derives the agent components and
conversations in the design phase from the roles and tasks in the
analysis phase.

hManager Bidder Searcher

ContractMet SearchReguest

Search

Bid

ulfillSearchRegquest:

Figure 11 — Role Model

receive(sorryireason), searchi*send{sorryireason), mar

receivelinfo{results), search)*send{infofresults), marn

waitForSearchResults

receivei@announcedask),mar

| prepareBid

costcostToPerformitask)
hid=acceptahility(costtask)

[hid)*sendi{aBiditpsk cosh man

hweaitF orAcknowledge

receivelackniwledge, mor

receive(sarryitask) magr

waitForBidResult

receive(startitask cost), man*send{acknowledge, marn;sendidoftask)search)

Figure 12 — Bid Task

For the purposes of this example, we assume that the designer
initially defines a SearchManager agent class, which plays the
Manager role, and a MobileSearcher agent class, which plays both
the Bidder and Searcher roles. During the first stage of the
transformation process, the designer determines that the
SearchRequest protocol is internal communication within the
MobileSearcher agent. Therefore, every event in the
MobileSearcher’s Bid and Search components that belongs to the
SearchRequest protocol is transformed into an internal event. The
resulting architecture for the multiagent system is shown in Figure
13. Once again, this is not a MaSE model, but simply
demonstrates the architecture created for the agents based on the

roles they play. The external protocol, ContractNet, generates
several conversations to carry out that communication.

MobileSearcher
SearchManager Bidder
Manager Searcher

Component: Contract Net

FulfillSearchRequests

Component:
Bid

Component:
Search

Search

Figure 13 — Agent Architectures

Figure 14 shows the Bid Component after being annotated in the
second stage of the transformation process. The three events that
belong to the SearchRequest protocol are now internal events, and
three new null states have been added to split transitions that had
both internal and external events. The letters “S” and “E” on the
transitions denote where the conversations begin and end.

[nul*sendiinfofresults), magt o Mull2
E —

e 1

Idle

Jnull*sendisormireason), mor

infa(regults)

receive{annou

Sorfreasan)

| prepareBid waitForSearchResults

cost= costTaPerformitask)
hid = acceptability(cost, task)

5]
[hid]*send{aBid{psk,cost),mar)

[null*dojtask)

MUl

weaitF oracknowledge

receivelacknwladye,mar

receive(somatask) mgr

recefve(startitask, cost), mgn*send{acknowledgef, mar)

Figure 14 — Annotated Bid Component

A total of six different conversations were extracted from the
events belonging to the ContractNet protocol. Some were due to
the internal events passed with the Search component, while
others were due to the way the SearchManager’s
FulfillSearchRequest component (not shown) was annotated.
For example, the reason the transition from the Idle state to the
prepareBid state is both the start and end of a conversation is
because the corresponding send event for the
receive(announce(task), mgr) event in the FulfillSearchRequest
component is a multicast. Similarly, the transitions leaving the
waitForBidResults state are the start of different conversations
because the corresponding send event for the receive(sorry(task),

mgr) event in the FulfillSearchRequest is a multicast to all of the
losers, and the corresponding send event for the receive(start(task,
cost), mgr) event is only sent the winner agent, so they must be
different conversations.

Figure 15 shows the bid component after the third stage of the
transformation process. The states and transitions that belong to
the conversations were removed, and each conversation was
replaced with a transition that has an action that instantiates it.
When the conversation completes, the action is finished and the
component enters the next state, thus preserving the original

semantics of the state diagram.
Null2

info{regults)

IConversationt 2-1{mgr)

. { 1 Y fComvergation?1-1(maor)

sorry{feason)
receive{announcedtask), maryConversation10-1{magr)

prepareBid

[NOT bid]
cost= costToPerformitask)
bid = acceptabilitycast, task)

[bid}Conversationd 3-1{mar)
receive(sormy(task), maniGonversation? 5-1(man

weaitF orBidResult

receive(startitask, cost), marConversationt4-1{mgn

waitForSearchResults

Figure 15 — Bid Component After Extracting the
Conversations

Figure 16 shows the initiator half of Conversation13-1, which was
one conversation extracted from the MobileSearcher’s Bid
component. It is easy to see that the waitForAcknowledge state
and the transitions to and from that state were taken directly from
the Bid component. The task and cost variables were prepended
with “parent.” because they are both used either in the Bid
component or in another conversation.

*aBid{parenttask, parent.cost)

waitF orAcknowledge

acknowledge(

®

Figure 16 — Initiator Half of Conversation13-1

Figure 17 shows the Agent Class Diagram derived by our
transformation system. Note that all external communication
defined by the ContranctNet protocol is captured in six
conversations.

Convergation?0-1

Convergation11-1

o

SearchManager MaobileSearcher
Manager Conversation? 2-1 Bidder
Search

Convergation?3-1

\\

Figure 17 — Agent Class Diagram
5. FUTURE WORK

This research has opened the door to many areas of future work.
Although transformation system produces a design that
corresponds to the analysis phase, many times the result is not an
optimal solution. One example is the way that conversations are
created. After applying the transformations, there may be two
conversations between two agents that do exactly the same thing.
Although this is not necessarily wrong, an additional set of
optimizing transformations could remedy these problems.

Convergation?4-1

Convergation?5-1

Another area of future work deals with what we refer to as
embedded conversations. In many cases, the current
transformations halt one conversation to carry out a dialog with
another agent only to resume communication with the initial
agent. This results in a single protocol being decomposed into
several simple conversations that, by themselves, have little
semantic meaning. Alternate approaches would be to allow one
conversation to instantiate another conversation, or allow
conversations to halt while a component carries out other
communication, which would result in more robust and
semantically intact conversations.

A final area of future research is in the area of transforming
concurrent tasks to run in a single threaded execution
environment. As described earlier, we assume that each
component runs as its own thread; however, any many situations,
we would rather have a single thread running. The challenge
would be to capture a single threaded design that would behave
consistently with a concurrent specification.

6. CONCLUSIONS

The multiagent paradigm provides a framework for developing
increasingly complex and distributed software systems. However,
better methods are needed to develop multiagent systems that can
guarantee correctness, reliability, and robustness. Using formal
transformation systems for multiagent system synthesis is one way
to meet this growing need.

This paper presented a transformation system that generates
design models from the analysis models, including the internal
agent architectures and the specific conversations for the
components. It is predominantly an automatic process, requiring
only a few key design decisions from the system developer. Since
each transformation preserves correctness from one model to the
next, the developer has much more confidence that no
inconsistencies or errors occurred during the design process. The

transformation process also provides clear traceability between the
analysis and design, simplifying the verification process.

Furthermore, when implemented in a development environment,
such as agentTool, the transformations allow the developer to
maintain the system in the more abstract analysis models and
regenerate the design when any changes are made. How many
times during a software development project are the models in the
analysis phase forgotten once the project enters the design phase?
In many cases, there is simply not enough time or manpower to
maintain the consistency between the models in the two phases.
The transformation system presented here can eliminate that
problem for system engineers using the MaSE methodology.

7. ACKNOWLEDGMENTS

The Air Force Office of Scientific Research sponsored this
research. The views expressed in this paper are those of the
authors and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the U.S.
Government.

8. REFERENCES

[1] DeLoach, Scott, Wood, Mark, and Sparkman, Clint,
“Multiagent Systems Engineering,” to appear in the
International Journal on Software Engineering and
Knowledge Engineering.

[2] DeLoach, Scott, “Multiagent Systems Engineering: A
Methodology and Language for Designing Agent
Systems,” Proceedings of the Agent Oriented
Information Systems '99 (AOIS'99), Seattle, WA, 1
May 1999, 1999.

[3] DeLoach, Scott and Wood, Mark, “Multiagent Systems
Engineering Methodology: the Analysis Phase,” Air
Force Institute of Technology, Technical Report
AFIT/EN-TR-00-02, June 2000.

[4] Wood, Mark, Multiagent Systems Engineering: A
Methodology for Analysis and Design of Multiagent

Systems. MS thesis, AFIT/GCS/ENG/00M-26. School
of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, 2000.

[5] Hartrum, Thomas and Graham, Robert, “The AFIT
Wide Spectrum Object Modeling Environment: An
AWESOME Beginning,” Proceedings of the National
Acrospace and Electronics Conference (NAECON),
Dayton, OH, October 10-12, 2000.

[6] Green, C., Luckham, D., Balzer, R., et al., “Report on a
Knowledge-Based Software Assistant,” in Readings in
Artificial Intelligence and Software Engineering, C.
Rich and R. C. Waters, Eds. San Mateo, Calif.: Morgan
Kaufmann, 1986, pp. 377-428.

[7] Clarke, Edmund and Wing, Jeannette, “Formal
Methods: State of the Art and Future Directions,”
ACM Computing Surveys, vol. 28, No.4, 1996.

[8] Sparkman, Clint, Transforming Analysis Models Into

Design Models for the Multiagent Systems Engineering
(MaSE) Methodology. MS thesis,

AFIT/GCS/ENG/01M-12. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson
AFB, OH, 2001.

[9] DeLoach, Scott, “Specifying Agent Behavior as
Concurrent Tasks: defining the behavior of social
agents,” Air Force Institute of Technology, Technical
Report AFIT/EN-TR-00-03, July 2000.

[10]DeLoach, Scott, “Using agentMom,” Air Force
Institute of Technology, 2000.

[11]Saba, G. Mitchell and Santos, Eugene, “the Multi-
Agent Distributed Goal Satisfaction System,”

Proceedings of the International ICSC Symposium on
Multi-Agents and Mobile Agents in Virtual

Organizations and E-Commerce (MAMA '2000) 2000.

[12] Self, Athie, Design & Specification of Dynamic,
Mobile, and Reconfigurable Multiagent Systems. MS

thesis, AFIT/GCS/ENG/01M-11. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, 2001.

