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ABSTRACT
The agent-oriented modeling process is divided in a typ-
ical sequence of activities, i.e., requirements specification,
analysis, and design. The requirements are specified by de-
scriptions of the system’s functionality and by exemplary
scenarios of essential interactions. In analysis the system’s
structure is captured and mandatory behavior of agents is
prescribed. The design model describes system behavior by
means of local operations. The problem arises how the tran-
sition between these different stages of the modeling process
can be performed. In this paper, we introduce a concept
of roles in order to support the transition in a systematic
way and thereby improving the agent-oriented modeling pro-
cess.
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1. INTRODUCTION
In this paper, we discuss a concept of roles and how it

can be used to improve the agent-oriented modeling process.
Roles are a means to ease a systematic transition between
different stages of the modeling process (e.g., analysis to
design). First, we will summarize the agent properties that
we capture during the modeling process. Before we start
our discussion of roles and their application in our context
we will review the agent-oriented modeling process that we
have introduced in [5, 3].
For the purpose of this paper, the term agent is to be

identified with autonomous active object. This incorporates
properties like concurrency, reactivity, and autonomy, which
are characteristic of agents [8]. In particular, the concept
of autonomy goes beyond the notion of an object because a
feature like method invocation is not usual for agents. Other
relevant concepts like cooperation and goal-driven behavior
are discussed elsewhere (see e.g., [3]).

Concurrency is potential parallelism of execution, which
manifests itself in the existence of separate threads of con-
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trol for different execution units. In object-oriented model-
ing the concept of active objects provides a separate thread
of control for each object. Independently acting agents are
also well described by assigning them an own thread of con-
trol. Agents perform operations independently but commu-
nication between the agents and their access to shared data
(objects) establish causal dependencies of the operations.
Semantically, there results a partial causal order of the op-
erations performed in a multi-agent system. It abstracts
from all possibly executed linear orders of operations ex-
tending the causal order. Reactivity is the capability of an
agent to perceive its environment and react to changes. This
property can be considered as a prerequisite for purposeful
autonomy of agents, and it is already captured within the
concept of active objects. Autonomy is a property of agents
that manifests itself in the nondeterminism of its behavior
if the system is observed externally. Different to objects,
agents possess autonomous operations that are not auto-
matically triggered by messages but may be invoked by the
agents themselves when a corresponding situation pattern
occurs in their environment. If several autonomous opera-
tions are applicable in a particular situation, the decision
which operation to apply is internal to the agent.
We have introduced an approach to the modeling of agents

using the Unified Modeling Language (UML) and graph
transformation in [5, 3]. The UML provides several sublan-
guages that support the modeling of structure and behavior
of object systems. By using extension mechanisms of UML
we derive syntax elements like the agent as a stereotype of
an actor in the use case diagram. Additionally, graph trans-
formation systems provide a convenient model for the con-
currency, reactivity, and autonomy of agents. The theory of
graph transformation systems provides a concurrent model
of computation which relies on a partial order of the trans-
formation steps (see [1]). The basic idea is that two trans-
formation steps are concurrent (i.e., they can be executed in
any order, or in parallel) if all items that are shared are in
read-access only. Agent operations are given by graph trans-
formation rules and in this way concurrency of operations
can be described appropriately. In our approach, agents per-
ceive their environment by matching the left-hand sides of
their graph transformation rules against the current state of
the system, thus searching for the occurrence of a certain
pattern. Then, agents react to an occurrence by the appli-
cation of the corresponding rule. Agents posses autonomous
operations which are modeled by graph transformation rules.
If different rules have the same left hand side (lhs) the agent
itself has to decide which one to apply in the situation when



the lhs occurs in the agent’s environment.
The agent-oriented modeling process is divided in a typi-

cal sequence of activities which is already well known from
the modeling of object-oriented systems, i.e., requirements
specification, analysis and design [14]. The requirements are
specified in a use case diagram where agents are consid-
ered as actors internal to the system. The narrative de-
scription of the function of each use case is supplemented
by exemplary scenarios of essential interactions of the use
case. Graph transformation rules are used to describe the
preconditions and the postconditions of the interactions. In
this way, test cases are specified that have to be demon-
strated by the system. In the analysis stage the system’s
structure is captured in an agent class diagram that consists
of agent and object classes and contains relations between
the classes. Mandatory functions of the agents and the re-
sulting mandatory interactions (protocols) between agents
are derived from the specified test cases. Graph transforma-
tion rules and sequence diagrams express the results of the
analysis. They have a universal semantics different from re-
quirements specification. In the design model the analyzed
functions and interactions are expressed by local operations
whose order of execution is determined by state charts.

From this process model, the problem arises how the tran-
sition between the three stages can be performed. In the
analysis stage agent and object classes and their relations
have to be derived from the use case diagram and from the
scenarios. From the exemplary scenarios mandatory behav-
ior of agents has to be derived which is represented as proto-
cols. The transition from analysis to design is also difficult.
The protocols have to be mapped to local operations in a
systematic way. The order of the operations in a singular
protocol that an agent executes has to be fixed. Addition-
ally, the different protocols that an agent is involved in at
the same time have to be coordinated.

In object-oriented modeling, roles are used in order to en-
capsulate functionality which may change dynamically when
the object evolves. The visibility and also the access to an
object via a role is restricted to the attributes and methods
of the role of an object and to the object’s visible own fea-
tures. At any time, an object may play one or several roles
which can be of the same role class.

In the context of agent-based systems, roles are used for
various purposes. Firstly, roles describe the organizational
structure of multi-agent systems [18]. An organizational role
model incorporates different roles, their relationships and
behavioral rules. In a multi-agent system, the agents op-
erate with respect to a given role model. Secondly, roles
are used for the modeling of protocols (see, e.g., [7]). In this
case, each agent participating in a protocol is assigned a cer-
tain role which it plays as long as the protocol is performed.
Thus, the notion of a role gives an agent a well-defined po-
sition in an organization (stated in a role model) and a set
of behaviors expressed by protocols for the roles. Roles are
also used as components (so called agent-building blocks)
from which agents are to be composed [16].

In this paper, we introduce a concept of roles in order to
support the transition between different stages of the agent-
oriented modeling process in a systematic way and thus to
improve the process. We show how visually modeled roles
can be used in order to describe the development of orga-
nizational structure and interaction protocols. At last, our

concept of roles also supports the usage of roles as agent-
building blocks because we consider roles as instantiable
units.
In Section 2, we survey the three main phases of system

modeling, i.e., requirements specification, analysis, and de-
sign and explain how this general process model is special-
ized in our case. In Section 3, we explain how roles are
used in object-oriented and agent-oriented modeling and we
introduce a concept of roles that can be integrated in the
agent-oriented modeling process. In Sections 4 and 5 we
show how by the introduction of roles the transition be-
tween different stages of the modeling process can be better
supported. At last, Section 6 concludes the paper.

2. MODELING AUTONOMOUS AGENTS
WITH GRAPH TRANSFORMATION
AND UML

In this section, we summarize and partially review the
agent-oriented modeling process that we introduced before
in [3]. We divide the modeling process in a typical sequence
of activities which is already well known from the model-
ing of object-oriented systems [14]. First, the requirements
are specified by informal descriptions of the system’s func-
tionality and by scenarios of important interactions. In the
analysis model, the requirements specification is analysed
and refined. Thereafter, in the design model the behavior
that has been described globally in the analysis model is ex-
pressed by the local behavior of objects and agents. In [3],
this approach is explained in more detail and a formaliza-
tion based on the theory of graph transformation leads to
a notion of consistency between requirements specification,
analysis and design. In the following we will shortly review
our approach. For a more detailed discussion the reader is
referred to [3].

Requirements Speci£cation. The functional and architec-
tural requirements of a software product are specified by use
case diagrams in an informal way. They provide an abstract
view of the system by identifying the main actors using it
and the main functions that the system provides to them.
In the context of agent-based systems, UML use case dia-
grams are extended by a special kind of actor representing
the agents within the system [10]. In this way, additional
architectural requirements about the distribution of the sys-
tem’s functionality among different agents can be expressed.
The abstract narrative description given by use cases is

illustrated by typical examples, called scenarios, of how the
system behaves when a use case is performed. Scenarios
are specified in two complementary ways. The overall effect
of a scenario is described by a graph transformation on the
instance level, i.e., a pair of instance diagrams modeling a
before-after scenario of the use case. In order to specify the
communication between actors participating in a scenario,
UML sequence diagrams are used.

Analysis. In order to serve as a basis for future design deci-
sions, the requirements are analysed and refined. Similar to
object-oriented analysis, the refined model is structured into
submodels [14], a structural model, a dynamic model and a
functional model. As structural model, a class diagram spec-
ifies the types of objects and agents (presented as active
classes), their attributes, associations, and messages. In the



case of agents, messages do not automatically result in the
execution of methods since agents decide autonomously how
and when to react to an incoming message. The autonomous
operations of agents are specified in the design model.
The functional model specifies the overall effects of a use

case on the state of the system. In the requirements specifi-
cation, this has been done by a graph transformation on the
instance level. Formally, this transformation can be seen
as an individual test case which has to be realized by the
implementation of the system. However, in order to have
a complete view of the use case’s overall effect, many such
graph transformations would be needed. Thus, a mechanism
is required to specify (rather than to enumerate) pairs of
graphs. The theory of graph transformation suggests a rule-
based approach to this problem. A graph transformation
rule L → R consists of a pair of graphs L, R representing
a rule’s preconditions and postconditions. In the UML ter-
minology, these are diagrams on the specification level, i.e.,
unlike graph transformations in the requirements specifica-
tion, a rule has a mandatory interpretation: Whenever the
precondition specified by L is satisfied in a given state G,
which is witnessed by a subgraph isomorphism o : L → G,
called occurrence, at least that part of G is deleted which is
matched by L\R and, to the resulting graph, a copy of R\L
is added leading to the derived graph H. Notice that, during
analysis, rules are considered as incomplete specifications of
the transformations to be performed, i.e., additional (un-
specified) changes are permitted. This (quite liberal) notion
of graph transition [6] is strengthened in the design model
by the notion of graph transformation which assumes a com-
plete specification of the changes during a step.
The dynamic model complements the functional model by

focusing on the communication required to execute a certain
protocol. Like in the requirements specification, we use se-
quence diagrams to model the message flow between agents
in the system. However, during analysis, we strengthen the
semantics of these diagrams from an existential to a uni-
versal interpretation. Thus, a sequence diagram associated
with a graph transformation rule provides a complete spec-
ification of the interactions to be performed when the pre-
condition is met.

Design. The analysis phase is concerned with developing
a model of what the system is supposed to do. The design
model elaborates the analysis model concentrating on the
question how the system will function. As a consequence,
the focus of models is shifted from a global view on the
system during analysis to a local view, thus providing the
basis for an implementation. Like in analysis, we distin-
guish a structural model, given by a refined class diagram,
a dynamic model, describing, by means of state diagrams
for each class, the order in which operations of this class
can be performed, and a functional model specifying the ef-
fect of operations using graph transformation rules. Models
constructed during design are refinements of models of the
requirements specification and analysis phase. In the struc-
tural model, the class diagram of the design phase refines the
class diagram of the analysis adding, in particular, the sig-
natures of the agent’s autonomous operations for which an
extra compartment is provided. Notice the difference with
methods as specified in the method compartment of objects:
agent’s operations are autonomous, that is, they are never
called by another object or agent but only executed under

control of the agent itself. As a consequence, we distinguish
agent’s messages and operations while in the case of objects,
both notions are integrated in the notion of method. By a
state diagram for each agent class, the dynamic model spec-
ifies the ordering of operations an agent of this class may
perform. As agents do not automatically react to events of
their environment but decide autonomously when and how
to react, transitions are not labeled with an event and an
action but only with the name of the operation. The no-
tion of a protocol state machine [13] comes closest to our
understanding of statecharts. In the functional model, the
operations declared in the structural model are specified by
graph transformation rules. Whereas the dynamic model is
concerned with the order of operations, the functional model
shows how operations change the state of the system.

3. ROLES IN OBJECT-ORIENTED AND
AGENT-ORIENTED MODELING

We will first give a general definition of the notion of a
role in object-oriented modeling and then we explain which
properties a concept of roles should support. Roles are de-
fined almost consistently throughout the literature [12, 9].
According to Kristensen et al., a role of an object is a set of
properties which are important for an object to be able to
behave in a certain way expected by a set of other objects.
This definition is refined by a set of characteristic properties
that concepts of roles should support [11, 9]:

• visibility : The visibility and also the access to an ob-
ject is restricted to the attributes and methods of the
role of an object and to the object’s visible own fea-
tures.

• dependency : The existence of the role depends on that
of the object it belongs to. This is very similar to
composition of objects from other objects.

• identity : An object and its roles have one identity. It
is manipulated as one entity. As a consequence, this
means that an actual role may not belong to different
objects at the same time. There is always one unique
object or role that a role is mapped to.

• dynamicity : Roles may be added and removed during
the lifetime of an object. Thus one role is deleted and
another one is created while the related person object
survives.

• multiplicity : Several instances of a role may exist for
an object at the same time.

• abstractivity : Roles can be related to each other by
aggregation and generalisation.

These characteristics can be viewed as requirements for a
role concept and each role concept can be evaluated against
these requirements.
Recently, we have inspected whether UML supports an

appropriate concept of roles and the result is negative [2].
We showed that the mechanism of a rolename falls short
of fully supporting the requirements of roles for the follow-
ing reasons. A rolename is only a sort of label and specifies
behavior only if it is bound to an interface. Concerning mul-
tiplicity, rolenames do not provide the necessary means of
type and instance level. Other than rolenames there exists



also the possibility to simulate roles with existing mecha-
nisms such as inheritance or aggregation. We checked each
of these mechanisms against the role requirements presented
above (for an extended version of simulating roles the reader
is referred to Kristensen et al. [12]). We refine our argumen-
tation regarding rolenames and interface specifiers. If roles
are identified with interfaces then they are not able to have
state and thus to have attributes. As a consequence, multi-
plicity of roles is not possible because it depends on the state
of the role. Regarding multiple inheritance an object inherits
from all its role objects. Then public attributes and meth-
ods are visible to all other objects during the lifetime of the
objects. Therefore, the visibility and dynamicity properties
of roles get lost. Regarding aggregation, roles depend on the
object they belong to. This kind of dependency demands the
role, i.e. the part object to disappear when the object does.
In an aggregation relationship the part objects may exist
independently of the aggregate object. In order to support
this property the variant of aggregation named composition
is the more appropriate, because it respects this kind of de-
pendency. The visibility of public features of a role’s base
object can only be obtained indirectly, because attributes
and methods are only accessible through navigation to the
base object.
We conclude that there exist no appropriate mechanisms

in the UML for simulating roles. The composition relation-
ship fulfills most criteria of roles, but the behavior of the
part objects lacks a role’s ability to access its base object
directly. Therefore we introduced the new relationship role-
of. The subset of operations, attributes, and associations
of a class required to play a role is represented by a role
class which must be connected to a base class by a role-of
relationship. This new relationship demands that features
of the role class must be different from those of the base
class. On the instance level, the existence of an object’s role
depends on that of the base object itself, thus resembling
the behavior of composition. In a class diagram and also
in an object diagram, a role-of relationship is displayed as
an association with a full-filled triangle on the side of the
base class, see figure 3. We introduce agent role classes as
agent classes that depend on an agent class by a role-of rela-
tionship. In this way roles of agents have similar properties
like roles of objects. The behavior is different because agent
roles are active objects and thus run concurrently to their
base agent.
In agent-oriented modeling, roles are used for modeling

of protocols (see, e.g., [7]). In this case, each agent par-
ticipating in a protocol is assigned a certain role which it
plays as long as the protocol is performed. More gener-
ally, agent roles are used for capturing goals, tasks, or func-
tions exhibited by the agent. According to Wooldridge et
al. [17], a role has associated to it responsibilities, permis-
sions, activities, and protocols which are defined by specific
role schemata. Responsibilities comprise lifeness conditions
like the execution of a prescribed sequence of protocols. In
this way the interaction of roles is specified. In the agent-
oriented modeling approach of Zambonelli et al. [18] roles
and role models are used to express organisational struc-
ture and (behavioral) rules of multi-agent systems. In an
organisation an agent plays one or more roles. Interactions
and thus protocols are well-identified and localised in the
definition of a role. They express kinds of social behavior
of an agent within an organisation. Thus, the notion of a

issue bill

initiate
payment

select account

Customer

erchant

pay bill

Account
Agent

Bank

Personal
Banking

Agent (PBA)

Minimize
transaction

cost

selector contractor

<<include>>

Figure 1: Use case diagram

role gives an agent a well-defined position in an organisation
(stated in a role model) and a set of behaviors expressed by
protocols for the roles. Considering roles as participants
in protocols allows the specification of generic interactions
which can be used and reused in various multi-agent systems
of similar organizational structure. Wood et al. [16] intro-
duce a Multi-agent Systems Engineering (MaSE) methodol-
ogy where roles are introduced as more fine-grained building
blocks of agent classes which capture agent goals during the
design phase. A role serves as an abstract description for
the functions it is responsible to fulfill in order to reach an
assigned goal.
From the agent-oriented approaches above we conclude

that roles are a proper means of refining agent-oriented mod-
eling. Their protocols and their (social) relationships are
main characteristics of roles. Different to the approaches
above we will explain in the next two sections in which way
our concept of roles fits into a diagrammatic agent-modeling
language based on UML and how it can enhance the model-
ing process. We explain in which way graph transformation
fits together with our concept of role. Using these two tech-
niques the identification and appropriate generic description
of protocols becomes feasible. Thereafter, protocols can be
applied in a multi-agent system by just attaching roles to
agents.
Next, we show how our concept of roles, i.e., (agent) role

classes and the role-of relationship, can be used to reduce
problems of the transition between different stages of the
agent-oriented modeling process. We show that organiza-
tional structure and protocols can be derived step by step
in analysis and design. In the design model role classes get
attached to agent classes using role-of relationships. Thus,
an agent participating in a protocol is built (instantiated)
from role classes that belong to the protocol specification.
First we explain how the transition from requirements spec-
ification to analysis can be eased and how protocols can be
identified.

4. FROM REQUIREMENTS SPECIFICA-
TION TO ANALYSIS

An example will illustrate the use of roles. We introduce
roles in the model of an online banking system taken from
our previous work [5]. A personal banking agent (PBA) is re-
sponsible to pay bills for a customer who controls the agent.
A merchant issues bills not to the customer himself but to
his PBA. The customer has to initiate the payment in order
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Figure 2: Sequence diagram (scenario) and corre-
sponding graph transformation rule

to get a bill paid by the PBA. The agent selects an account
from which money is to be taken and tranfers the amount
to the account indicated by the bill. In the following para-
graphs we explain in which way the introduction of roles
supports the methodology presented above.
At the beginning of a software development process func-

tional requirements are given by means of use case diagrams.
Examples for the behavior of the system (scenarios) are ex-
pressed by sequence diagrams and global graph transforma-
tion rules. The use case diagram of Figure 1 identifies, be-
sides two kinds of users, the agents PBA and AccountAgent
(actors with square heads). These agents participate in the
use cases select account and pay bill.
In the requirements specification, an actor’s interactions

are determined by the use cases it is participating in. Each
participation of an actor in an interaction is represented by
a role, comprising the agent’s features relevant to the cor-
responding use case. A role name may be attached to the
association connecting actor and use case. In Figure 1 the
agent PBA acts as a selector and the agent AccountAgent is
involved as a Contractor in the use case select account.
The narrative description of the system’s functionality is

refined by scenarios which are typical examples of interac-
tions necessary to perform a use case. The interaction of the
roles that participate in a use case is expressed by the mes-
sage flow in a scenario diagram, see the top of Figure 2. The
interaction conforms to the contract net protocol [7] which
refines the behavior of the use case select account. A global
graph transformation rule describes the preconditions and
the effect of the scenario. In the bottom of Figure 2 the re-
sult of an account selection is shown. Again, only the roles
involved in the use case are taken up in the rule.
The introduction of roles at this stage of development has

the advantage that the behavior of the agents is partitioned
according to the use cases they are participating in. In this
way possible complexity is reduced. Dynamicity of roles
implies another advantage in the modeling of behavior de-
scribed by use cases. A use case is activated only for some
period of time during system execution. This behavior can
be modeled adequately by attaching the roles to those agents

Selector

AccountAgent

propose(acca :AccountAgent, 
prop :Proposal)

payBill(pba :PBA, bill :Bill)
Bill

pays
amount : int

messages

messages
uses

Account

balance : int

manages
Proposal

cost : int

pay_to

by

for

Contractor

cfp(pba :PBA, bill :Bill)
accept(pba :PBA, prop :Proposal)
reject(pba :PBA , prop :Proposal)

messages

PBA

initPayment(bill:Bill)

messages

Figure 3: Class diagram

s:Selector con:Contractor

cfp(s, b)

propose(con, p)

accept(s, p)

Accept (s, con) Reject (s, con)

s:Selector con:Contractor

cfp(s, b)

propose(con, p)

reject(s, p)

Figure 4: Basic interactions between agent roles

participating in a use case just before the execution period
and to retract them afterwards. For example, in Figure 1
the use case select account is activated only for some period
of time during execution of the use case pay bill.
When global graph transformations and sequence diagrams

are used to describe the scenarios of a use case, each occur-
rence of an agent in a rule or a diagram corresponds to a
different role. The corresponding role classes can be system-
atically constructed by collecting all the resources necessary
in order to perform the specified activities. Then, the classes
in the analysis model can be derived by integrating these role
classes.
In Figure 2, the sequence diagram contains the roles that

are participating in the interaction and also the messages
sent to them. The roles are inserted in the class diagram
and are related to the base classes by a role-of relationship.
The corresponding graph transformation rule in the bottom
of Figure 2 contains associations that are to be taken over
in the class diagram. The resulting class diagram for our
example is shown in Figure 3.
In the analysis of the scenarios from requirements spec-

ification protocols can be derived that agent roles have to
execute. The interaction of pairs of roles is examined in or-
der to find protocol steps and protocol alternatives. Basic
interactions between two roles are projections of more com-
plex interactions. Next, we introduce graph transformation
rules that describe the precondition and the effect of the ba-
sic interactions. A set of graph transformation rules forms
a protocol. It should be possible to derive all scenarios from
requirements specification by the application of rules of a
protocol.
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Figure 5: Rules for analysis

In Figure 3 the Selector role interacts independently with
both Contractor roles. There are two alternative effects of
the interaction that depend on a common precondition. In
Figure 5, two rules describe these alternative steps within
the protocol. They result from the basic interactions in Fig-
ure 4 which are projected from the scenario in Figure 2. The
first rule models the case that the Proposal of the AccountA-
gent is accepted by the PBA and the second one the rejection
of the Proposal. A rule is activated when the precondition of
the corresponding rule is met. For the rules in Figure 5 the
precondition requires that the Account Agent is connected
with the PBA by a uses link, and that a Bill object exists.
We conclude that the analysis of scenarios results in graph

transformation rules that specify a protocol based on the
roles participating in the interaction. At this stage of the
modeling process we can shorten the subsequent design ac-
tivity if it is possible to reuse existing design models of pro-
tocols. Thus, if the analyzed protocol has been designed
previously it is possible to just use the protocol by attaching
prefabricated role classes with graph transformation rules as
operations to the agent classes. Alternatively, the protocol
has to be designed in detail in another process step which is
described in the next section.

5. FROM ANALYSIS TO DESIGN
Roles also make the transition from analysis to design

more systematic. Each role represents the local contribu-
tion of an object or agent to a global interaction. Thus, for
each interaction specified in the analysis model, first the re-
quired local behavior is realized for each interaction role. In
a second step, the behavior of all the role classes belonging
to an agent class has to be coordinated, e.g., by synchro-
nizing the statecharts of the individual roles, yielding the
overall behavior of the class. In this way the complexity of
the behavior of a class participating in many different in-
teractions is structured, and the potential auto-concurrency
of such classes can be explicitly modeled by creating a new
role instance for each new interaction. This kind of parti-
tioning structure and behavior of agents also makes the use
of generic protocols feasible.
Role classes can be instantiated like object or agent classes,

but their instances do only exist in connection with an agent
or object. That means, a role instance automatically disap-
pears together with the object, agent or role it depends on.
Thus, from a structural point of view, the role-of relation-
ship is similar to a composition in UML. Considering the be-
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Figure 6: Class diagram
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r.sendReject(p)

sended

Figure 7: Statecharts for PBA, Selector role and Re-
quester role

havior of roles, it supports implicit delegation because roles
can access their parent’s features as if they were their own.
In Figure 6, the operations of the agents are distributed to
their roles. In this way the agents’ behavior is partitioned
according to the use cases the agents are participating in.
The operations of a role are executed within the interac-

tions the role is participating in. The possible sequences of
operations in such a protocol are constrained by statecharts.
This dynamic model of an agent is split into submodels that
are attached to the agent’s roles. In this way possible com-
plexity of the agents’ statecharts is reduced. In Figure 7 the
statecharts for the Requester role, the Selector role and the
PBA are shown. The selector role is created by the PBA
after reception of an initPayment message (a rule for the
operation selectAccount is left out). The Selector role acts
independently of the PBA who just waits for completion of
the selection. The behavior of the Selector role is given by
the rules from analysis, see Figure 5. The Requester role is
introduced in order to take over this functionality. A Re-
quester role interacts with a Contractor role whose dynamic
behavior is given by the statechart in Figure 8. Different to



c : Contractor

c.answerCFP(b)

c.getRejected(p)

c.getAccepted(p)

waiting answered

Figure 8: Statechart for Contractor role

r.sendCFP()

r : Requester

c : Contractor

addressee

r : Requester

c : Contractor

addressee

cfp(r)

s : Selector

s.startCNP()

c : Contractor
uses

s : Selector c : Contractor
uses

r : Requester

addressee

Figure 9: Operations startCNP and sendCFP

the functional behavior the dynamic model of the Requester
role can not be specified independently. In a second step
the Requester role has to coordinate with the Selector role
to which it is associated by a role-of relationship. Therefore
in the statechart of the Requester role the transitions to the
final state depend on the event that the operation selectProp
of the selector role is executed. The operation can be intro-
duced in the statechart because all features of the base class
are visible and accessible to the role.
In the functional model, the operations declared in the

structural model are specified by graph transformation rules.
Whereas the dynamic model is concerned with the order
of operations, the functional model shows how operations
change the state of the system. As agent’s operations may
only affect that part of the state which can be accessed lo-
cally, we require that all (role) objects in the left-hand side
of a rule are reachable via a path originating at the self
agent. In the rules it is not necessary to depict the roles’
base objects or agents because the roles inherit all available
features. By the introduction of roles the graph transforma-
tion rules typically describe only part of the state change
that is effected by rules for whole agents. In this way, the
rules for the agents are divided up to rules for the agents’
roles. The rules for roles are more readable and less complex
than the rules for objects und agents. This also eases the
implementation of the graph transformation rules.
In Figure 9 a graph transformation rule for the operation

startCNP of the role Selector is shown. By the application
of this rule for each contractor a corresponding Requester
role is created. In this way, it is modeled that the Selec-
tor role communicates independently because the Selector’s
Requester roles act concurrently. They are controled by an
instance of the statechart for the Requester role class, see
Figure 7. After the Requester role is created it applies the op-
eration sendCFP autonomously and sends a call-for-proposal

p : Proposal

propose(p)

r.recordProp()

r : Requester

c : Contractor

addressee

p : Proposal
cost = cst

r : Requester

c : Contractor

addressee

proposed

c.answerCFP()

r : Requester

c : Contractor

addressee

cfp(r)

propose(p)
r : Requester

c : Contractor

addressee

p : Proposal

Figure 10: Operations answerCFP and recordProp

message (cfp) to the Contractor role it is linked to, see Fig-
ure 9. The Contractor role applies the operation answerCFP
if it detects the cfp message, see Figure 10. It creates a
Proposal and sends a propose message to the requester. The
Requester role catches the Proposal when it executes the op-
eration recordProp, see Figure 10.
The Selector, Requester and Contractor role classes in Fig-

ure 6 and its autonomous operations which are defined by
graph transformation rules in Figures 9 and 10 and which
are controlled by statecharts in Figures 7 and 8 specify a
reduced kind of the contract net protocol [15]. This specifi-
cation can be reused in another agent-oriented model just by
attaching the role classes to agent classes which shall execute
the protocol. Possibly, some protocol features have to be re-
named in order to make them disjoint from base features or
to fix interaction features with the base class explicitly.
Now, we arrived at the end of the modeling process. A

variation from this process is to use a protocol library al-
ready from the beginning. In this case, in requirements
specification a use case diagram contains application spe-
cific use cases and use cases representing protocols from a
library. These protocol use cases would typically be included
into the application specific use cases. The agents in the use
case diagram are connected with a protocol use case accord-
ing to different interaction roles of the protocol. In analysis
the class diagram contains protocol role classes that are at-
tached to agent classes by a role-of relationship according
to the use case diagram. Graph transformation rules for
these roles and statecharts for control of the roles’ behavior
can be taken from the library and integrated in the analysis
model and the design model. In this way the whole modeling
process can be further facilitated and sped up.

6. CONCLUSION
In this paper, we explained how a concept of roles sup-

ports the transition between different stages of the agent-
oriented modeling process in a systematic way. In [5, 3]
we have presented an approach to an agent-oriented model-
ing process based on UML notation and concepts of typed
graph transformation systems. The agent-oriented modeling
process is divided in a typical sequence of activities like re-
quirements specification, analysis and design. In the analy-
sis stage the system’s structure is captured in an agent class



diagram which is derived from a use case diagram. Com-
munication protocols are extracted from the scenarios (test
cases) specified in the requirements. In this paper, a concept
of roles is introduced that supports the systematic deriva-
tion of agent and object classes and protocols in analysis.
In the design model the analyzed functions and protocols
are expressed by local operations whose order of execution
is restricted by state charts. The fine-grained modeling by
roles eases the identification and coordination of operations
in design. A major benefit of our notion of roles is the abil-
ity to specify the structure and behavior of protocols. By
use of the role-of relationship the roles of a protocol can be
attached to agents participating in the protocol.
It has become clear that roles cover three important as-

pects: specification of both organizational structure and
generic behavior and agent-building from components. In
the class diagram the organizational structure of the multi-
agent system is determined mainly by the role classes and
its associations. Generic behavior is specified by protocols
which incorporate only roles and which are introduced in the
use case diagram as protocol use cases and in the class dia-
gram by use of the role-of relationship. In this way agents
are built from agent components, i.e., from its roles. In [4]
we work out the different aspects of agent roles more thor-
oughly and we cover the use of protocols in a more technical
manner. Especially, the relationship of protocol behavior
and base agent behavior is examined in more detail.
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agent-oriented modeling with graph transformation.
Science of Computer Programming. To appear.

[4] R. Depke, R. Heckel, and J. M. Küster. Roles in
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modeling with graph transformation. In P. Ciancarini
and M.J. Wooldridge, editors, Proc. 1st Int. Workshop
on Agent-Oriented Software Engineering (AOSE
2000), Limerick, Ireland, June 2000, volume 1957 of
LNCS, pages 105–120. Springer-Verlag, Berlin, 2001.

[6] G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A
combined reference model- and view-based approach
to system specification. Int. Journal of Software and
Knowledge Engeneering, 7(4):457–477, 1997.

[7] Foundation for Intelligent Physical Agents (FIPA).
Agent communication language. In FIPA 97
Specification, Version 2.0. FIPA, 1997.

[8] S. Franklin and A. Graesser. Is it an agent, or just a
program?: A taxonomy for autonomous agents. In J.P.
Müller, M.J. Wooldridge, and N.R. Jennings, editors,

Proc. ECAI’96 Workshop on Agent Theories,
Architectures, and Languages: Intelligent Agents III,
volume 1193 of LNAI, pages 21–36. Springer-Verlag,
August 12–13 1997.

[9] Georg Gottlob, Michael Schrefl, and Brigitte Rock.
Extending object-oriented systems with roles. ACM
Transactions on Information Systems, 14(3):268–296,
July 1996.

[10] C. A. Iglesias, M. Garijo, J. C. González, and Juan R.
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