
Agent Oriented Analysis using MESSAGE/UML
Giovanni Caire
Telecom Italia LAB

Via Reiss Romoli 274
10148 Turin - Italy
+39 011 2286107

giovanni.caire@tilab.com
Francisco Garijo, Jorge

Gomez, Juan Pavon
Telefónica I+D
Emilio Vargas

28043 Madrid, Spain
+34913374235

fgarijo@tid.es

Francisco Leal, Paulo Chainho
PT Inovação

Largo de Mompilher, 22 – 3º
4050-392 Porto, Portugal

+351 222 079 300

fleal@ptinovacao.pt
Paul Kearney, Jamie Stark

BTexaCT
Adastral Park, Martlesham Heath

Ipswich IP53RE, UK
+44 1473 605544

paul.3.kearney@bt.com

Richard Evans
Broadcom Eireann Research Ltd
Kestrel House, Clanwilliam Place

Dublin 2, Ireland
+353 1 604 6000

re@broadcom.ie
Philippe Massonet

CEDITI
Av. Georges Lemaître,21
6041 Charleroi, Belgium

+32 71 25 94 25

phm@info.ucl.ac.be

ABSTRACT
This paper presents the MESSAGE/UML agent oriented software
engineering methodology and illustrates it on an analysis case
study. The methodology covers MAS analysis and design and is
intended for use in mainstream software engineering departments.
MESSAGE extends UML by contributing agent knowledge level
concepts, and diagrams with notations for viewing them. The
diagrams extend UML class and activity diagrams.

Categor ies and Subject Descr iptors

D.2.1 [Software Engineer ing]:
Requirements/Specifications – methodologies.

General Terms
Languages, Documentation.

Keywords
Agent, Methodology, UML, Analysis.

1. INTRODUCTION
1.1 Agent Or iented Software Engineer ing
The agent-oriented (AO) approach promises the ability to
construct flexible systems with complex and sophisticated
behaviour by combining highly modular components. The
intelligence of these components – the agents – and their capacity
for social interaction results in a multi-agent system (MAS) with
capabilities beyond those of a simple ‘sum’ of the agents. The
availability of agent-oriented development toolkits has allowed
the technology to be assessed for industrial use. Many case studies
have been carried out, yielding promising results that have

aroused industrial interest in the technology.

Most recent software engineering methodologies are designed for
an object-oriented approach. Engineering of commercial MAS
requires the availability of agent oriented software engineering
(AOSE) methodologies. Most MAS systems will be implemented
with object and component based technology in the near future
unless a widely accepted agent programming language emerges.
In this case, viewed at a detailed level, an agent is a relatively
complex object or component. However, this is like considering
that a house is a pile of bricks, but it is more convenient to view a
house in terms of higher level concepts such as living room,
kitchen and bedroom. When an agent is viewed at a more abstract
level, structures come into focus that are not found in
conventional objects or components. Agent-orientation is thus a
paradigm for analysis, design and system organisation. An agent-
oriented modelling language must provide primitives for
describing these higher-level structures, the inspiration for which
derives from cognitive psychology and social modelling via
artificial intelligence.

MESSAGE12 [5] (Methodology for Engineering Systems of
Software Agents) is an AOSE methodology which builds upon
current software engineering best practices covering analysis and
design of MAS which is appropriate for use in mainstream
software engineering departments. It has well defined concepts
and a notation that is based on UML whenever appropriate.

1.2 Compar ison to Other Approaches
Work toward an AOSE methodology can be divided into two
broad categories. The first category aims to apply existing
software engineering methodologies to AOSE. AgentUML
(AUML) [9] for example defines extensions to UML with
notations suited for agent concepts. AUML has extended UML’s
interaction diagrams to handle agent interaction protocols.
Although this notation is useful and has been adopted within

1 MESSAGE is a two year collaborative project which is funded

by EURESCOM.
2 EURESCOM is a research organisation owned by European

telecommunications companies, http://www.eurescom.de/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

MESSAGE, it does not have the concept of agent at its centre, i.e.
specifying an object’s behaviour in terms of interaction protocols
does not make it an agent. The second category of work aims at
developing a methodology from agent theory, mainly covering
analysis and design. Typically these methodologies define a
number of models for both analysis and design [8] such as Gaia
[6] and MAS-CommonKads [7]. The Gaia methodology has two
analysis models and three design models. While the analysis
models are based on well-defined concepts, these only represent a
subset of the concepts required for agent oriented analysis. The
design models are not clearly explained and the authors envisage
OO methods being used for detailed design. Mas-Common-Kads
has six models for analysis, and three for design. While these
models are comprehensive, the method lacks a unifying semantic
framework and notation. In addition to this work, goal analysis
techniques have been shown to be very useful [10][4]. The
techniques range from informal to formal analysis and cover
functional and non-functional goal analysis. MESSAGE combines
the best features of the above approaches.

1.3 Outline and Contr ibutions
The MESSAGE/UML methodology covers MAS analysis and
design and is designed for use in mainstream software engineering
departments.

This article focuses on analysis of MAS using MESSAGE/UML.
Section 2 describes the principal 'knowledge level' agent-oriented
MESSAGE concepts and describes different views on the analysis
model. Section 3 describes the MESSAGE analysis process.
Section 4 describes an analysis case study using the
MESSAGE/UML notation. The following diagram types are
introduced: organisation, goal, task, delegation, workflow,
interaction and domain. All are extensions of UML class
diagrams, except for the task diagram, which extends the UML
activity diagram. The use of schemas to textually describe the
concepts is also illustrated.

The contributions of MESSAGE are the agent knowledge level
concepts, and the diagrams for viewing these concepts in the
analysis model that have been added to UML. The case-study
focuses on illustrating these new agent related concepts and the
new diagrams to visualise them. A complete case study would
also involve using existing UML notation in addition to the new
notation.

2. MESSAGE DESCRIPTION
2.1 Extending UML for Agent Modelling
UML is a convenient starting point for an agent-oriented
modelling language for the following reasons:

• UML is widely accepted as a de facto standard for object-
oriented modelling, many software engineers are trained in
its use, and commercial software tools are available to
support it (some of which are extendable).

• The object- and agent-oriented paradigms are highly
compatible. Agent-oriented concepts can readily be defined
in terms of object-oriented ones.

• UML is based on a meta-model (UML uses the MOF meta-
modelling language [3]), which makes it extendable [1].

The MESSAGE modelling language is related to UML as follows:

1. It shares a common metamodelling language (meta-
metamodel) with UML and MOF

2. It extends the UML metamodel with 'knowledge level' agent-
oriented concepts.

A more complete description of the relationship between the
MESSAGE metamodel and the UML metamodel is given in [5].

2.2 Main MESSAGE Concepts
2.2.1 Foundations
UML concepts are used to model MESSAGE entities at a detailed
(or micro) level. That is, from a structural standpoint they are
objects with attributes and operations realised by methods; from a
behavioural point of view they are state machines. The main UML
behavioural concepts that are used to define the 'physics' of the
MESSAGE worldview are: Action, Event and State. The world is
seen as a collection of StateMachines. A full description of a
world state consists of a description of the state of every
StateMachine within it at a point in time. The evolution of the
world in time can be described fully by a description of the world
state at a specific point in time and a list of all the Events in which
the world participates before and after that time. This full
description is referred to as the world history. A Situation is a
knowledge (or macro) level analogue of a world state.

2.2.2 Knowledge-level concepts
Most of the MESSAGE knowledge level entity concepts fall into
the main categories: ConcreteEntity, Activity, and
MentalStateEntity. The main types of ConcreteEntity are:

Agent: An Agent is an atomic autonomous entity that is capable
of performing some (potentially) useful function. The functional
capability is captured as the agent's services. A service is the
knowledge level analogue of an object's operation. The quality of
autonomy means that an agent's actions are not solely dictated by
external events or interactions, but also by its own motivation. We
capture this motivation in an attribute named purpose. The
purpose will, for example, influence whether an agent agrees to a
request to perform a service and also the way it provides the
service. SoftwareAgent and HumanAgent are specialisations of
Agent.

Organisation: An Organisation is a group of Agents working
together to a common purpose. It is a virtual entity in the sense
that the system has no individual computational entity
corresponding to an organisation; its services are provided and
purpose achieved collectively by its constituent agents. It has
structure expressed through power relationships (e.g. superior-
subordinate relationships) between constituents, and
behaviour/co-ordination mechanisms expressed through
Interactions between constituents.

Role: The distinction between Role and Agent is analogous to
that between Interface and (object) Class: a Role describes the
external characteristics of an Agent in a particular context. An
Agent may be capable of playing several roles, and multiple
Agents may be able to play the same Role. Roles can also be used
as indirect references to Agents. This is useful in defining re-
usable patterns.

Resource: Resource is used to represent non-autonomous entities
such as databases or external programs used by Agents. Standard
object-oriented concepts are adequate for modelling Resources.

The main types of Activity are:

Task: A Task is a knowledge-level unit of activity with a single
prime performer. A task has a set of pairs of Situations describing
pre- and post-conditions. If the Task is performed when a pre-
condition is valid, then one can expect the associated post-
condition to hold when the Task is completed. Composite Tasks
can be expressed in terms of causally linked sub-tasks (which may
have different performers from the parent Task). Tasks are
StateMachines, so that e.g. UML activity diagrams can be used to
show temporal dependencies of sub-tasks.

Interaction and InteractionProtocol: The MESSAGE concept of
Interaction borrows heavily from the Gaia methodology [6]. An
Interaction by definition has more than one participant, and a
purpose which the participants collectively must aim to achieve.
The purpose typically is to reach a consistent view of some aspect
of the problem domain, to agree terms of a service or to exchange
to results of one or more services. An InteractionProtocol defines
a pattern of Message exchange associated with an Interaction.

The internal architecture of an agent typically is based on one of
several models derived from cognitive psychology. MESSAGE is
intended to be applicable to a variety of agent cognitive
architectures. However, without some basic abstract reference
model it is difficult to say anything meaningful. We suppose that
the architecture separates an inference mechanism from a
knowledge base and a working memory. The knowledge base
contains fixed or slowly changing domain or problem-solving
knowledge in a declarative form. The working memory contains
more transient sensed or derived information. We view this
working memory as an abstract database holding instances of
MentalStateEntities, and its contents define the Agent’s mental
state For present purposes we focus on one type of
MentalStateEntity: Goal.

Goal: A Goal associates an Agent with a Situation. If a Goal
instance is present in the Agent’s working memory, then the Agent
intends to bring about the Situation referenced by the Goal. Some
Goals are intrinsic to the agent’s identity, and are derived from its
purpose. These persist throughout the life of the Agent. Others are
transient tactical Goals. It is often useful to express the purpose in
terms of a utility function that associates ’goodness values’ with
Situations. The target situation of the Goal is then the one that is
estimated to maximise utility (determined dynamically). Note that
the agent’s knowledge base needs to include ’rules’ governing
assertion and deletion of (tactical) Goals. One fairly standard rule
would be to assert a Goal to provide a given service whenever the
Agent agrees with another Agent to do so.

Two other simple but important concepts used in MESSAGE are:
InformationEntity (an object encapsulating a chunk of
information) and Message. The agent-oriented concept of
Message differs from the object-orient one in a number of
respects. In UML, a Message is a causal link in a chain of
behaviour, indicating that an Action performed by one object
triggers an Action by another object. In MESSAGE, a Message is
an object communicated between Agents. Transmission of a
Message takes finite time and requires an Action to be performed
by the Sender and also the receiver. The attributes of a Message
specify the sender, receiver, a speech act (categorising the
Message in terms of the intent of the sender) and the content (an
InformationEntity). Figure 1 MESSAGE Concepts gives an

informal agent-centric overview of how these concepts are inter-
related.

Agent

RoleGoal

Information
Entity

Event

Resource

Action

Service

Task

Perceives

Plays

Performs

Implements

Acquaintance

AimsToAchieve
Provides
ServiceTo

GeneratedBy
ChangeOfState

Generates

Describes
StateOf

DirectAction Communicative
Action

Affects

Describes

Figure 1 MESSAGE Concepts

2.3 Analysis Model Views
An analysis model is a complex network of inter-related classes
and instances derived from concepts defined in the
MESSAGE/UML metamodel. MESSAGE defines a number of
views that focus on overlapping sub-sets of entity and relationship
concepts.

Organisation view (OV) – This shows ConcreteEntities (Agents,
Organisations, Roles, Resources) in the system and its
environment and coarse-grained relationships between them
(aggregation, power, and acquaintance relationships). An
acquaintance relationship indicates the existence of at least one
Interaction involving the entities concerned.

Goal/Task view (GTV) – This shows Goals, Tasks, Situations
and the dependencies among them. Goals and Tasks both have
attributes of type Situation, so that they can be linked by logical
dependencies to form graphs that show e.g. decomposition of
high-level Goals into sub-goals, and how Tasks can be performed
to achieve Goals. Graphs showing temporal dependencies can also
be drawn, and we have found UML Activity Diagram notation
useful here.

Agent/Role view (AV) – This focuses on the individual Agents
and Roles. For each agent/role it uses schemata supported by
diagrams to its characteristics such as what Goals it is responsible
for, what events it needs to sense, what resources it controls, what
Tasks it knows how to perform, 'behaviour rules', etc.

Interaction view (IV) – For each interaction among agents/roles,
shows the initiator, the collaborators, the motivator (generally a
goal the initiator is responsible for), the relevant information
supplied/achieved by each participant, the events that trigger the
interaction, other relevant effects of the interaction (e.g. an agent
becomes responsible for a new goal). Larger chains of interaction
across the system (e.g. corresponding to uses cases) can also be
considered.

Domain view (DV) – Shows the domain specific concepts and
relations that are relevant for the system under development (e.g.

for a system dealing with making travel arrangements, this view
will show concepts like trip, flight, ticket, hotel….).

Provisional ideas on notation, diagrams and schemas to visualise
the views are illustrated in the case study section below.

3. ANALYSIS PROCESS
The purpose of Analysis is to produce a model (or collection of
models) of the system to be developed and its environment, that is
agreed between the analyst and the customer (and other
stakeholders). It aids communication between the development
team and the customer, and provides a basis from which design
can proceed with confidence. The analysis models are produced
by stepwise refinement.

Refinement Approach: The top level of decomposition is
referred to as level 0. This initial level is concerned with defining
the system to be developed with respect to its stakeholders and
environment. The system is viewed as a set of organisations that
interact with resources, actors, or other organisations. Actors may
be human users or other existing agents. Subsequent stages of
refinement result in the creation of models at level 1, level 2 and
so on.

At level 0 the modelling process starts building the Organisation
and the Goal/Task views. These views then act as inputs to
creating the Agent/Role and the Domain Views. Finally the
Interaction view is built using input from the other models. The
level 0 model gives an overall view of the system, its
environment, and its global functionality. The granularity of level
0 focuses on the identification of entities, and their relationships
according to the metamodel. More details about the internal
structure and the behaviour of these entities are progressively
added in the next levels.

In level 1 the structure and the behaviour of entities such as
organisation, agents, tasks, goals domain entities are defined
Additional levels might be defined for analysing specific aspects
of the system dealing with functional requirements and non
functional requirements such as performance, distribution, fault
tolerance, security. There must be consistency between
subsequent levels. In the MESSAGE project only level 0 and level
1 have been considered.

Analysis Refinement strategies: Several strategies are possible
for refining level 0 models. Organisation-centred approaches
focus on analysing overall properties such as system structure, the
services offered, global tasks and goals, main roles, resources. The
agents needed for achieving the goals appear naturally during the
refinement process. Then co-operation, possible conflicts and
conflict resolution may be analysed.

Agent centred approaches focus on the identification of agents
needed for providing the system functionality. The most suitable
organisation is identified according to system requirements.
Interaction oriented approaches suggest progressive refinement of
interaction scenarios which characterise the internal and external
behaviour of the organisation and agents. These scenarios are the
source for characterising task, goal, messages, protocols and
domain entities.

Goal/task decomposition approaches are based on functional
decomposition. System roles, goals and tasks are systematically
analysed in order to determine the resolution conditions, problem-
solving methods, decomposition and failure treatment. Task

preconditions, task structures, task output and task post-condition
may determine what Domain Entities are needed. Goals and tasks
must be performed by agents playing certain roles. Consequently
looking at the overall structure of goal and tasks in the Goal/task
view decisions can be made on the most appropriate agents and
organisation structure for achieving those goals/tasks.

The experience in MESSAGE shows that the different views of
the system leave the analyst free to choose the most appropriate
strategy. In practice a combination of refinement strategies with
frequent loop-backs among them are used. The analysis process
might start with the OV, then switch to the AV and continue with
the IV. The results of the analysis of specific interaction scenarios
may lead to reconsider part of OV, and starting again refining
and adapting OV constituents.

4. MESSAGE/UML CASE STUDY
This section illustrates the MESSAGE/UML concepts and views
on a case study. MESSAGE diagrams are introduced with
proposed notations. The analysis process is illustrated by
describing level 0 and then refining it into level 1.

4.1 Case Study Descr iption
The system under development is a knowledge management
system to be used by a team of engineers of a telecom operator
company (TOC) that perform equipment installation and
maintenance operations on a given territory.

Context: Each engineer in the team gets the list of jobs assigned
to him from a co-ordination centre and performs them
sequentially moving on the territory in his van. At the end of each
job he fills in a proper paper form where he reports the type of
problem, if and how the problem was solved. These forms are
then sent back to the co-ordination centre where the relevant
information is stored in a database. Moreover the TOC owns a
database storing all the technical documentation about the
equipment deployed in the fields.

Requirements: The TOC wants now to improve the efficiency of
the whole process by giving each engineer a proper wireless
terminal and developing a system (distributed both on these
terminals and on the terrestrial network) that

• Automatically notifies engineers about the jobs they are
assigned

• Automatically and/or on request retrieves the relevant
documentation for the job to be carried out.

• Automatically and/or on request identifies other engineers in
the team who can provide help in the job to be performed
(e.g. because they have proper skills or because they recently
solved similar problems) so that it is possible for an engineer
to directly receive assistance from another qualified
engineer.

• Allows engineers to report about performed jobs filling an
electronic form so that the relevant information are directly
inserted into the report database.

Appropr iateness of an Agent Approach to the case-study:
Since the documentation relevant to a job must be proactively
provided to the engineer who is going to perform that job, the
system to be developed requires its components to show a high
degree of autonomy. Moreover it is almost impossible to exactly

foresee all possible faults that can happen in the equipment to be
maintained and therefore goal oriented behaviour will be needed.
Finally finding an engineer with proper skills to provide
assistance in a certain job may require some form of negotiation
and distributed co-ordination.

4.2 Level 0 Analysis
4.2.1 Organisation view
The analysis starts at level 0 viewing the system to be developed
as a black box and focusing on its relationships to the entities in
its environment (users, stakeholders, resources, …).

Two diagrams from the level 0 organisation view are reported as
examples showing the main (from the system point of view)
structural and acquaintance relationship in the TOC.

Figure 2 describes structural relationships in a level 0
organisation diagram. The diagram shows that the Knowledge
Management (KM) system is owned by the TOC. An Engineer is
part of a team and there are several teams in the TOC. It should be
noticed that this organisation diagram is a UML class diagram
where proper icons have been associated to different stereotypes.
At level 0 the system under development, i.e. the KM system, is
seen itself as an organisation that will be analysed at level 1.

Organi
zation

TeamCoord.
center

Engineer

System
administr.

Equipment

Doc
database

Report
database

KM
system

1..*
1 1

1 1..*1 1..*

1..*

Telco
company

Resource

Role

Class

Figure 2 Structural relationships

Figure 3 shows the acquaintance relationships in the level 0
organization diagram. The KM system interacts with two roles,
the System Administrator and the Engineer and with two external
systems (resources), the Technical Documentation DB to retrieve
documentation and the Report DB to insert the job reports filled
by the engineers. Moreover it interacts with the Coordination
center to get the list of jobs to perform. An Engineer also interacts
with other Engineers to get direct help. It has to be noticed that an
engineer does not interact directly with the Documentation DB
and the Report DB. All these interactions are carried out through
the KM system.

Coord.
center

Engineer

System
administr.

Equipment
Doc

database
Report

database

KM
system

Stores reports Installs / maintains
Retrieves

documentation

Acquaintance

Figure 3 Acquaintance relationships

4.2.2 Goal/Task view
As for the Goal view the main goal of the system (i.e. providing
assistance to the engineers) is and/or decomposed according to the
Goal decomposition diagram in Figure 4.

Engineer
Assisted

Documentation
provided

Qualified Engineer
Identified

JobToPerform
Known

Documentation
for job identified

Documentation
for job retrieved

X

X

Documentation
presented

And Decomp.X

+

Goal

Or Decomp.

Figure 4 Goal And-decomposition

The diagram in figure 5 shows that the main goal of the system
(EngineerAssisted) is satisfied when the relevant documentation
for the current job is provided and the name of a qualified
engineer to possibly request direct help to is identified. The
DocumentationProvided goal on its turn is satisfied when the job
to be performed is known, the documentation required to perform
the job has been identified/retrieved, and that documentation is
presented to the assisted engineer. The decomposition of the
QualifiedEngineerIdentified goal is not shown. Alternative
decompositions can be modelled with or-decomposition notation
not illustrated here.

Alternatively, or in conjunction with goal decomposition it is
useful to analyse how a given service is realised by a partially
ordered set of tasks. The example in figure 6 shows the workflow
of tasks implementing the Identify-Qualified-Engineer service by
means of a task diagram (i.e. a UML Activity Diagram where
tasks are shown instead of activities).

Identify
Required

Skills

Identify
Engineers

Score
Engineers

Service
required by user

Activate
direct

connection

Task Service

Figure 5 Task workflow

4.3 Level 1 Analysis
4.3.1 Organization view
Moving from level 0 to level 1, analysis focuses on the system
itself identifying at a glance the main pieces of functionality
required (seen as roles and/or types of agents). The approach
followed in this simple case study is to consider only roles
initially and to define what agents will populate the system and
what roles each agent will play at the beginning of the design
process. However the developer is free to start identifying agents
during analysis.

Coord.
center

Engineer

Doc
database

Report
database

Communicator

Skills
manager

Assistant

Report
manager

Doc.
managerJob

Assigner

Figure 6 Acquaintance relationships

Figure 6 shows the level 1 acquaintance relationships in an
organization diagram. The skills manager maintains knowledge of
engineer’s skills on the basis of the jobs he carries out. The
interaction between Assistants requires a contract-net to identify
another engineer who has the right skills to provide assistance for
a given job.

4.3.2 Agent/Role view
Delegation, Workflow structure diagrams, and textual Agent/Role
schemas are useful to describe the view.

A delegation structure diagram shows how the sub-goals obtained
decomposing a goal of an organisation are assigned to the

agents/roles included in the organisation. Clearly this diagram is
strictly related to (and must be consistent with) both the goal
decomposition diagram showing the decomposition of the
organisation goal and the organisation diagram showing the
agents/roles inside the organisation.

Engineer
Assisted

Assistant

KM
system

Documentation
presented

Documentation
for Job retrieved

Job to perform
known

Communicator

Parent
pane

Structure
pane

Child
pane

Documentation
for Job identified

Doc.
manager

Figure 7 Delegation structure

Figure 7 shows a Delegation diagram. Only the root and the
leaves of the decomposition of the parent organisation goal are
shown.

Similarly a workflow structure diagram shows the roles in an
organisation that must perform the tasks necessary to implement a
given service provided by the organisation.

For each agent/role there is one Agent/Role schema that describes
its characteristics. At the analysis level this information is
typically quite informal and therefore free text is preferred to a
graphical notation. The schema below describes the Assistant role.

Role Schema Assistant

Goals JobToPerformKnown,
DocumentationForJobRetrieved

Capability Some learning capability is required to
keep the profile of the engineer updated
on the basis of the completed job.

Knowledge, Beliefs A profile of the skills of the engineer to
be used to evaluate if and how the
engineer can provide help to a colleague
requesting assistance A profile

Agent requirements This role will be played by the agent that
actually assists the Engineer.

4.3.3 Interaction view
This view highlights which, why and when agents/roles need to
communicate leaving all the details about how the communication
takes place to the design process.

The interaction view is typically refined through several iterations
as long as new interactions are discovered. It can be conveniently
expressed by means of a number of interaction diagrams. These

diagrams are interaction centric (i.e. there is one of such diagram
for each interaction) and show the initiator, the responders, the
motivator (often a goal of the initiator) of an interaction plus other
optional information such as the trigger condition and the
information achieved and supplied by each participant.

The following picture shows as an example the interaction
diagram describing the Documentation Request interaction
between the Assistant and the Documentation Manager roles.
Figure 8 shows an Interaction diagram.

Documentation
Request

Job

Document

Initiator Collaborator

1 1

supplies

supplies

uses

achieves 1 1

1..*1..*

Assistant
Doc.

Manager

Documentation
for job retrieved

Motivator
Interaction

Figure 8 Interactions

The details of the interaction protocol and the messages that are
exchanged between roles can be represented using AUML
sequence diagram [2].

4.3.4 Domain view
The domain view can be conveniently represented by means of
typical UML class diagrams where classes represent domain
specific concepts and named association represent domain
specific relations. It is typically built in parallel to the other views
by adding new concepts and relations as long as they are needed
in the other views. Figure 9 shows a provides a very simplified
example related to the considered case study.

Job

Installation Maintenance

Equipment Document
refers to describes

Figure 9 Domain

5. CONCLUSIONS
This paper has presented the MESSAGE/UML AOSE
methodology and illustrated it on an analysis case study.
MESSAGE extends UML by contributing agent knowledge level
concepts, and diagrams with notations for viewing them. The
diagrams extend UML class and activity diagrams. The
methodology covers MAS analysis and design and is designed for
use in mainstream software engineering departments.

Section 2 described the principal ’knowledge level’ agent-oriented
MESSAGE concepts and described how a MESSAGE
specification is organised in terms of an analysis model and views.
The following overlapping views have been defined on the
analysis model: Organisation, Goal/Task, Agent/Role, Interaction
and Domain. Section 3 described the MESSAGE analysis process.
Section 4 described an analysis case study using the
MESSAGE/UML notation. The following diagrams were
illustrated: organisation, goal decomposition, task, delegation,
workflow, interaction and domain. The use of schemas to
textually describe the concepts was also illustrated. A more
complete analysis model would complete the MESSAGE
diagrams with existing UML notation and AUML sequence
diagrams to describe role/agent interactions.

6. ACKNOWLEDGMENTS
The authors would like to thank EURESCOM for the project
support, and all P907 project contributors past and present.

7. REFERENCES
[1] “OMG Unified Modeling Language Specification

Version 1.3.” . Object Management Group, Inc.,
http://www.rational.com/uml/resources/documentation/
index.jtmpl, June 1999.

[2] Bauer, B. et al. "Response to the OMG Analysis and
Design Task Force UML 2.0 Request for Information:
Extending UML for the specification of Agent
Interaction Protocols".,
ftp://ftp.omg.org/pub/docs/ad/99-12-03.pdf .OMG,
December 1999.

[3] “OMG Meta Object Facility (MOF) Specification” .
ftp://ftp.omg.org/pub/docs/ad/99-09-04.pdf.,
September 1999.

[4] Dardenne, A., van Lamsweerde, A. and Fickas, S.
“Goal-Directed Requirements Acquisition“. Science of
Computer Programming Vol. 20, North Holland, 1993,
3-50.

[5] MESSAGE website,
http://www.eurescom.de/Public/Projects/p900-
series/P907/P907.htm

[6] Wooldridge, M., Jennings, N.R., Kinny D. "The Gaia
Methodology for Agent-Oriented Analysis and
Design". Kluwer Academic Press, 2000.

[7] Iglesias, C., Garijo M., Gonzalez, J. and Velasco, J.R.
“Analysis and Design of multiagent systems using
MAS-CommonKADS”. Intelligent Agents IV: Agent

Theories, Architectures and Languages, 1997, Singh,
M. P., Rao, A. and Wooldridge, M.J., eds., Lecture
Notes in Computer Science 1365.

[8] Iglesias, C., Garrijo, M., Gonzalez, J. “A survey of
agent-oriented methodologies” . Agent Theories,
Architectures and Languages, 1998.

[9] Odell, J., Van Dyke Parunak, H., Bauer, B. “Extending
UML for Agents” . Proc. Of the Agent-Oriented

Information Systems Workshop at the 17 th National
Conference on Artificial Intelligence, Wagner, G.,
Lesperance, Y., and Yu, E. eds. 2000.

[10] Mylopoulos, J., Chung, L., Liao, S., Huaiqing Wang,
Yu, E. “Exploring alternatives during requirements
analysis” . IEEE Software, Vol. 18, N. 1, 2001, 92 –96.

