A Knowledge Level Software Engineering Methodology for
Agent Oriented Programming

Paolo Bresciani and
Anna Perini
ITC-Irst
Via Sommarive, 18
[-38050 Trento-Povo, Italy

bresciani@irst.itc.it
perini@irst.itc.it

Paolo Giorgini and
Fausto Giunchiglia
Department of Information and
Communication Technology
University of Trento
via Sommarive, 14
1-38050 Trento-Povo, Italy

pgiorgini@cs.unitn.it

John Mylopoulos
Department of Computer
Science
University of Toronto
M5S 3H5, Toronto, Ontario,
Canada

jm@toronto.edu

fausto@cs.unitn.it

ABSTRACT

Our goal in this paper is to introduce and motivate a method-
ology, called Tropos, for building agent oriented software sys-
tems. Tropos is based on two key ideas. First, the notion of
agent and all the related mentalistic notions (for instance:
beliefs, goals, actions and plans) are used in all phases of
software development, from the early analysis down to the
actual implementation. Second, Tropos covers also the very
early phases of requirements analysis, thus allowing for a
deeper understanding of the environment where the software
must operate, and of the kind of interactions that should oc-
cur between software and human agents. The methodology
is illustrated with the help of a case study.

Keywords

Agent-based software engineering, design methodologies.

1. INTRODUCTION

Agent oriented programming (AOP, from now on) is most
often motivated by the need of open architectures that con-
tinuously change and evolve to accommodate new compo-
nents and meet new requirements. More and more, software
must operate on different platforms, without recompilation,
and with minimal assumptions about its operating environ-
ment and its users. It must be robust, autonomous and
proactive. Examples of applications where AOP seems most
suited and which are most quoted in the literature [15] are
electronic commerce, enterprise resource planning, air-traffic
control systems, personal digital assistants, or book travel
arrangements, and so on.

To qualify as an agent, a software or hardware system is
often required to have properties such as autonomy, social

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

AGENTS 01, May 28-June 1, 2001, Montréal, Quebec, Canada.

Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

ability, reactivity, proactivity. Other attributes which are
sometimes requested are mobility, veracity, rationality, and
so on. The key feature which makes it possible to implement
systems with the above properties is that, in this paradigm,
programming is done at a very abstract level, more precisely,
following Newell, at the knowledge level [13]. Thus, in AOP,
we talk of mental states, of beliefs instead of machine states,
of plans and actions instead of programs, of communication,
negotiation and social ability instead of interaction and I/O
functionalities, of goals, desires, and so on. Mental notions
provide, at least in part, the software with the extra flexi-
bility needed in order to deal with the complexity intrinsic
in the applications mentioned in the first paragraph. The
explicit representation and manipulation of goals and plans
allows, for instance, for a run-time “adjustment” of the sys-
tem behavior needed in order to cope with unforeseen cir-
cumstances, or for a more meaningful interaction with other
human and software agents.

We are defining a software development methodology, cal-
led Tropos, which will allow us to exploit all the flexibility
provided by AOP. In a nutshell, the two key and novel fea-
tures of Tropos are the following:

1. The notion of agent and all the related mentalistic no-
tions are used in all phases of software development,
from the first phases of early analysis down to the
actual implementation. In particular our target im-
plementation agent language and system is JACK [3],
an agent programming platform, based on the BDI
(Beliefs-Desires-Intentions) agent architecture.

2. A crucial role is given to the earlier analysis of require-
ments that precedes prescriptive requirements specifi-
cation. We consider therefore much earlier phases than
the phases supported in, for instance, OOP software
engineering methodologies. One such example are the

' AOP is often introduced as a specialization or as a “natu-
ral development” of Object Oriented Programming (OOP),
see for instance [14, 11, 15]. In our opinion, the step from
OOP to AOP is more a paradigm shift than a simple spe-
cialization. Also those features of AOP which can be found
in OOP languages, for instance, mobility and inheritance,
take in this context a different and more abstract meaning.

methodologies based on UML [2] where use case anal-
ysis is proposed as an early activity, followed by ar-
chitectural design. As described in detail below, this
move is crucial in order to achieve our objectives.

Our goal in this paper is to introduce and motivate the
Tropos methodology, in all its phases. The presentation
is carried out with the help of a running example. The
example considered is a fragment of a substantial software
system (which, in its full implementation, is requiring var-
ious man years of work) developed for the government of
Trentino (Provincia Autonoma di Trento, or PAT). The sys-
tem (which we will call throughout the eCulture system) is a
web-based broker of cultural information and services for the
province of Trentino, including information obtained from
museums, exhibitions, and other cultural organizations and
events. It is the government’s intention that the system be
usable by a variety of users, including Trentinos and tourists
looking for things to do, or scholars and students looking for
material relevant to their studies.

The paper is structured as follows. Section 2 introduces
the five basic steps of the Tropos methodology, namely, early
requirement analysis, late requirements analysis, architec-
tural design, detailed design, and implementation. The five
Tropos phases are then described, as applied in the context
of the eCulture system example, in Sections 3, 4, 5, 6 and 7.
The conclusions are presented in section 8.

This paper follows on two previous papers, [12] and [4],
which provide some motivations behind the Tropos project,
and an early glimpse of how the methodology works. With
respect to these earlier papers much more emphasis has been
put on the issue of developing knowledge level specifications.

2. THETROPOSMETHODOLOGY:
AN OVERVIEW

Tropos is intended to support five phases of software de-
velopment:

e FEarly requirements, concerned with the understanding
of a problem by studying an existing organizational
setting; the output of this phase is an organizational
model which includes relevant actors and their respec-
tive dependencies. Actors, in the organizational set-
ting, are characterized by having goals that, in iso-
lation, they would be unable to achieve; the goals are
achievable in virtue of reciprocal means-end knowledge
and dependencies [19].

o Late requirements, where the system-to-be is described
within its operational environment, along with rele-
vant functions and qualities; this description models
the system as a (small) number of actors, which have
a number of social dependencies with other actors in
their environment.

o Architectural design, where the system’s global archi-
tecture is defined in terms of subsystems, intercon-
nected through data and control flows; in our frame-
work, subsystems are represented as actors while data
and control interconnections correspond to actor de-
pendencies. In this step we specify actor capabilities
and agents types (where agents are special kinds of
actors, see below). This phase ends up with the spec-
ification of the system agents.

o Detailed design, where each agent of the system archi-
tecture is defined in further detail in terms of internal
and external events, plans and beliefs and agent com-
munication protocols.

o Implementation, where the actual implementation of
the system is carried out in JACK, consistently with
the detailed design.

The idea of paying attention to the activities that precede
the specification of the prescriptive requirements, such as
understanding how the intended system would meet the or-
ganizational goals, is not new. It was first proposed in the
requirements engineering literature (see for instance [7, 18]).
In particular we adapt ideas from Eric Yu’s model for re-
quirements engineering, called ¢* which offers actors, goals
and actor dependencies as primitive concepts [18].> The
main motivation underlying this earlier work was to develop
a richer conceptual framework for modeling processes which
involve multiple participants (both humans and computers).
The goal was to have a more systematic reengineering of pro-
cesses. One of the main advantages is that, by doing this
kind of analysis, one can also capture not only the what or
the how but also the why a piece of software is developed.
This, in turn, allows for a more refined analysis of the sys-
tem dependencies and, in particular, for a much better and
uniform treatment not only of the system’s functional re-
quirements but also of the non-functional requirements (the
latter being usually very hard to deal with).

Neither Yu’s work, nor, as far as we know, any of the
previous work in requirements analysis was developed with
AOP in mind. The application of these ideas to AOP, and
the decision to use mentalistic notions in all the phases of
analysis, has important consequences. When writing agent
oriented specifications and programs one uses the same no-
tions and abstractions used to describe the behavior of the
human agents, and the processes involving them. The con-
ceptual gap from what the system must do and why, and
what the users interacting with it must do and why, is re-
duced to a minimum, thus providing (part of) the extra
flexibility needed to cope with the complexity intrinsic in
the applications mentioned in the introduction.

Indeed, the software engineering methodologies and speci-
fication languages developed in order to support OOP essen-
tially support only the phases from the architectural design
downwards. At that moment, any connection between the
intentions of the different (human and software) agents can-
not be explicitly specified. By using UML, for instance, the
software engineer can start with the use case analysis (possi-
bly refined by developing some activity diagrams) and then
moves to the architectural design. Here, the engineer can
do static analysis using class diagrams, or dynamic analysis
using, for instance, sequence or interaction diagrams. The
target is to get to the detail of the level of abstraction al-
lowed by the actual classes, methods and attributes used
to implement the system. However, applying this approach
and the related diagrams to AOP misses most of the advan-
tages coming for the fact that in AOP one writes programs
at the knowledge level. It forces the programmer to translate
goals and the other mentalistic notions into software level
notions, for instance the classes, attributes and methods of

24* has been applied in various application areas, including
requirements engineering [17], business process reengineer-
ing [21], and software modeling processes [20].

Gitizen

get cul tural
nf or mat i on,

internet
infrastructurg
avail abl e

usabl’e
eCul ture
stem

A provi de
cCul tural
sejvi ges

eCul ture
System
avail abl e

increase
internet us

Q actor C) goal Q softgoal
Q—VQ—P—Q goal dependency

depender dependum dependee

enjoy visit

Figure 1: An actor diagram specifying the stake-
holders of the eCulture project and their main goal
dependencies.

class diagrams. The consequent negative effect is that the
former notions must be reintroduced in the programming
phase, for instance when writing JACK code: the program-
mer must program goals, beliefs, and plans, having lost the
connection with the original mentalistic notions used in the
early and late requirements. The work on AUML [1, 10],
though relevant in that it provides a first mapping from
OOP to AOP specifications, is an example of work suffering
from this kind of problem.

In the following sections we present the five Tropos phases
as applied in the context of the eCulture system example.

3. EARLY REQUIREMENTS

During early requirements analysis, the requirements en-
gineer models and analyzes the intentions of the stakehold-
ers. Following #* in Tropos the stakeholders’ intentions
are modeled as goals which, through some form of a goal-
oriented analysis, eventually lead to the functional and non-
functional requirements of the system-to-be. Early require-
ments are assumed to involve social actors who depend on
each other for goals to be achieved, tasks to be performed,
and resources to be furnished. Tropos includes actor dia-
grams for describing the network of social dependency re-
lationships among actors, as well as rationale diagrams for
analyzing and trying to fulfill goals through a means-ends
analysis.® These primitives are formalized using intentional
concepts from Al such as goal, belief, ability, and commit-
ment.

An actor diagram is a graph, where each node represents
an actor, and a link between two actors indicates that one
actor depends, for some reason, on the other in order to at-
tain some goal. We call the depending actor the depender
and the actor who is depended upon the dependee. The
object around which the dependency centers is called the

3In 4* actor diagrams are called strategic dependency mod-
els, while rationale diagrams are called strategic rationale
models.

easonabl e
expenses

internet

infrastructurg
avai | abl e

fundi ng
nuseuns for
own systens

of fer
i nexpensi ve
infrastructurg

good cul tural

sejvices

provide
eCul tural
services

provi de
interesting
systens

N eSCuI ture educat e
N ystem citizens
N avai | abl e
N

7| funds for
4 cultural IS

bui | d
eCul ture
System

Figure 2: A rational diagram for PAT. The rectangu-
lar box added to a dependency, models a resource
dependency.

dependum (see, e.g., Figure 1). By depending on another
actor for a dependum, an actor is able to achieve goals that
it would otherwise be unable to achieve on its own, or not
as easily, or not as well. At the same time, the depender
becomes vulnerable. If the dependee fails to deliver the de-
pendum, the depender would be adversely affected in its
ability to achieve its goals.

In our eCulture example we can start by informally listing
(some of) the stakeholders:

e Provincia Autonoma di Trento (PAT), that is the gov-
ernment agency funding the project; their objectives
include improving public information services, increase
tourism through new information services, also encour-
aging Internet use within the province.

o Museums, that are cultural information providers for
their respective collections; museums want government
funds to build/improve their cultural information ser-
vices, and are willing to interface their systems with
the eCulture system.

e Visitors, who want to access cultural information be-
fore or during their visit to Trentino to make their visit
interesting and/or pleasant.

e (Trentino) Citizens, who want easily accessible infor-
mation, of any sort.

These stakeholders correspond to actors in an actor dia-
gram. Notice that citizens and visitors correspond to (hu-
man) agents while this is not the case for the other two stake-
holders. Museums and PAT correspond, rather, to roles. An
actor is an agent, a role or a position, according to the fact

that the actor is a well identified (human or software) en-
tity (agent), it is a function (role) that can be played by an
agent, or collects a set of roles that are usually played by a
single agent (position).

Figure 1 shows the actors involved in the eCulture project
and their respective goals. In particular, PAT is associated
with a single relevant goal: increase internet use, while
Visitor and Museum have associated softgoals, enjoy visit
and provide cultural services respectively. Softgoals are
distinguished from goals because they don’t have a formal
definition, and are amenable to a different (more qualita-
tive) kind of analysis (see [5] for a detailed description of
softgoals). Citizen wants to get cultural information and
depends on PAT to fulfill the softgoal taxes well spent, a
high level goal that motivates more specific PAT’S respon-
sibilities, namely to provide an Internet infrastructure, to
deliver on the eCulture system and make it usable too.

The early requirements analysis goes on extending the

actor diagram by incrementally adding more specific actor
dependencies which come out from a means-ends analysis
of each goal. We specify this analysis using rationale dia-
grams. Figure 2 depicts a fragment of one such diagram,
obtained by exploding part of the diagram in Figure 1,
where the perspective of PAT is modeled. The diagram ap-
pears as a balloon within which PAT’s goals are analyzed
and dependencies with other actors are established. This
example is intended to illustrate how means-ends analysis is
conducted. Throughout, the idea is that goals are decom-
posed into subgoals and positive/negative contributions of
subgoals to goals are specified. Thus, in Figure 2, the goals
increase internet use and eCulture system available
are both well served by the goal build eCulture System.
The (high level) softgoal taxes well spent gets two pos-
itive contributions, which can be thought as justifications
for the selection of particular dependencies. The final re-
sult of this phase is a set of strategic dependencies among
actors, built incrementally by performing means-ends anal-
ysis on each goal, until all goals have been analyzed. The
later it is added, the more specific a goal is. For instance, in
the example in Figure 2 PAT’s goal build eCulture system
is introduced last and, therefore, has no subgoals and it is
motivated by the higher level goals it fulfills.*

4. LATE REQUIREMENTS

During late requirement analysis the system-to-be (the
eCulture System in our example) is described within its op-
erating environment, along with relevant functions and qual-
ities. The system is represented as one or more actors which
have a number of dependencies with the actors in their en-
vironment. These dependencies define all functional and
non-functional requirements for the system-to-be.

Figure 3 illustrates the late requirements actor diagram
where the eCulture System actor has been introduced. The
PAT depends on it to provide eCultural services, one of
the PAT’s subgoals discovered during the means-end anal-
ysis depicted in Figure 2. The softgoal usable eCulture
system, for which Citizen depends on PAT (see Figure 1),
has been delegated by PAT to the eCulture system. More-
over, the eCulture System is expected to fulfill other PAT
softgoals such as extensible eCulture system, flexible

“In rationale diagrams one can also introduce tasks and re-
sources and connect them to the fulfillment of goals.

provi de
eCul tural
services

se internet
t echnol ogy

£xt ensi bl e
eCulture
System

provi de
eCul tural
services

provi de
info

Ggistici9 élural i9

avai | abl e
scal abl e

portabl e

Figure 3: A fragment of the actor diagram including
the PAT and the eCulture System actors; the rationale

diagram for the eCulture System is detailed within
the balloon.

eCulture system, and use internet technology. The bal-
loon in Figure 3 shows how two of the PAT’s dependums can
be further analyzed from the point of view of the eCulture
System. The goal provide eCultural services is decom-
posed (AND decomposition) into four subgoals: make re-
servation, provide info, educational services and vir-
tual visit that can be further specified along a subgoal
hierarchy. For instance, the types of information that the
system has to provide are both logistical (timetables and vis-
iting instructions for museums), and cultural (for instance,
cultural content of museums and special cultural events).

The rationale diagram includes also a softgoal analysis.
The usable eCulture system softgoal has two positive (+)
contributions from user friendly eCulture systemand a-
vailable eCulture system. This latter softgoal in turns
specifies the following three basic non-functional require-
ments: system portability, scalability, and availability over
time.

Starting from this analysis, the system-to-be actor can
be decomposed into sub-actors that take on the responsibil-
ity of fulfilling one or more goals of the system. Figure 4
shows the resulting eCulture System actor diagram: the
eCulture System depends on the Info Broker to provide
info, on the Educational Broker to provide educational
services, on the Reservation Broker to make reserva-
tion, on the Virtual Visit Broker to provide virtual

virtual
visits

provi de
interface

educat i onal
services

reservati ons

Virtual
Visit
Broker

System

Manager
system [user
interfacing i nterfacing

User
Interface
Manager

Reservation
Broker

Info
Br oker

Educat i onal
Br oker

System
Interface
Manager

Figure 4: The system actor diagram. Sub-actors
decomposition for the eCulture System.

visit, and on the System Manager to provide interface.
Furthermore each sub-actor can be further decomposed in
sub-actors responsible for the fulfillment of one or more sub-
goals.

At this point of the analysis we can look into the actor di-
agram for a direct dependency between the Citizen, which
plays the role of system user, and the eCulture System. In
other words we can now see how the former Citizen’s goal
get cultural information can be fulfilled by the current
eCulture System. The rational diagram of this goal depen-
dency, see Figure 5, provides a sort of use-case analysis [9].

5. ARCHITECTURAL DESIGN

The architectural design phase consists of three steps:
1. refining the system actor diagram

2. identifying capabilities and

3. assigning them to agents.

In the first step the system actor diagram is extended ac-
cording to design patterns [8] that provide solutions to het-
erogeneous agents communication and to non-functional re-
quirements.® Figure 6 shows the extended actor diagram
with respect to the Info Broker.® The User Interface
Manager and the Sources Interface Manager are responsi-
ble for interfacing the system to the external actors Citizen
and Museum respectively.

The second step consists in capturing actor capabilities
from the analysis of the tasks that actors and sub-actors will
carry on in order to fulfill functional requirements (goals).
A capability is the set of events, plans and beliefs nec-
essary for the fulfillment of actor goals. Figure 7 shows

5In this step design patterns for agent systems are mapped
to actor diagrams.

SFor the sake of readability we do not show all the actors
needed to take into account other non-functional require-
ments, e.g., system extensibility and user friendliness.

@

area
lspeci ficati ol
form

get info on synt hesi ze

area results
query
sour ces

find info
sour ces

- lquery result
info about
source

Figure 5: Rationale diagram for the goal get
cultural information. Hexagonal shapes model
tasks. Task decomposition links model task-subtask
relationships. Goal-task links are a type of means-
ends links.

an example for the Info Broker actor analysis, with re-
spect to the goal of searching information by topic area.
The Info Broker is decomposed into three sub-actors: the
Area Classifier, the Results Synthesizer, and the Info
Searcher. The Area Classifier is responsible for the clas-
sification of the information provided by the user. It depends
on the User Interface Manager for the goal interfacing
to users. The Info Searcher depends on the Area Clas-
sifier to have (thematic) area information that the user
is interested in, and depends on the Sources Interface
Manager for the goal interfacing to sources (the Museum).
The Results Synthesizer depends on the Info Searcher
for the information concerning the pending query (query
information) and on the Museum to have the query results.

Info
Br oker

nterfacing interfacing
to the . to the

eCulture n‘YOEFJSa;'S”Q i nterfacing eCul ture
System to sources

User
Interface
Manager

Figure 6: Extended actor diagram, Info Broker.

I nfo
Br oker

area
information

Info

area
specificatio
form

Results
Synt hesi zer

area
information

interfacing
to the
eCul ture

System

User
Interface
Manager

Sear cher

information

query

interfacing
to sources

query
results

interfacing
to the
eCul ture
System

Sour ces
Interface
Manager

Figure 7: Actor diagram for capability analysis, Info Broker.

Capabilities can be easily identified by analyzing the di-
agram in Figure 7. In particular each dependency relation-
ship gives place to one or more capabilities triggered by ex-
ternal events. Table 1 lists the capabilities associated to the
extended actor diagram of Figure 7. They are listed with
respect to the system-to-be actors, and then numbered in
order to eliminate possible copies whereas.

=

Actor Name Capability

Area Classifier get area specification form
classify area

provide area information
provide service description

B wWwN -

Info Searcher get area information

find information source
compose query

query source

provide query information

provide service description

© 0 ~NO O

Results Synthesizer 10 get query information
11 get query results
12 provide query results
13 synthesize area query results
provide service description

Sources Interface 14 wrap information source
Manager provide service description
User Interface 15 get user specification
Manager 16 provide user specification

17 get query results
18 present query results to the user
provide service description

Table 1: Actors capabilities

Agent Capabilities

Query Handler 1, 3, 4, 5, 7, 8, 9, 10, 11, 12
Classifier 2, 4

Searcher 6, 4

Synthesizer 13, 4

Wrapper 14, 4

User Interface Agent 15, 16, 17, 18, 4

Table 2: Agent types and their capabilities

The last step of the architectural design consists in defin-
ing a set of agent types and in assigning to each agent one
or more different capabilities (agent assignment). Table 2
reports the agents assignment with respect to the capabil-
ities listed in Table 1. The capabilities concern exclusively
the task search by area assigned to the Info Broker. Of
course, many other capabilities and agent types are needed
in case we consider all the goals and tasks associated to the
complete extended actor diagram.

In general, the agents assignment is not unique and de-
pends on the designer. The number of agents and the ca-
pabilities assigned to each of them are choices driven by
the analysis of the extended actor diagram and by the way
in which the designer thinks the system in term of agents.
Some of the activities done in architectural design can be
compared to what Wooldridge et al. propose to do within
the Gaia methodology [16]. For instance, what we do in ac-
tor diagram refinement can be compared to “role modeling”
in Gaia. We instead consider also non-functional require-
ments. Similarly, capability analysis can be compared to
“protocols modeling”, even if in Gaia only external events
are considered.

EE: inform(SIA UIA query results)

=t Query results

E: (enpty result set)

present enpty
results

E: (result set)

present query
results

Figure 8: Capability diagram using the AUML ac-
tivity diagram. Ovals represent plans, arcs internal
and external events.

6. DETAILED DESIGN

The detailed design phase aims at specifying agent ca-
pabilities and interactions. The specification of capabilities
amounts to modeling external and internal events that trig-
ger plans and the beliefs involved in agent reasoning. Prac-
tical approaches to this step are often used.” In the paper
we adapt a subset of the AUML diagrams proposed in [1].
In particular:

1. Capability diagrams. The AUML activity diagram al-
lows to model a capability (or a set of correlated ca-
pabilities), from the point of view of a specific ac-
tor. External events set up the starting state of a
capability diagram, activity nodes model plans, tran-
sition arcs model events, beliefs are modeled as ob-
jects. For instance, Figure 8 depicts the capability di-
agram of the query results capability of the User
Interface Agent.

2. Plan diagrams. Each plan node of a capability diagram
can be further specified by AUML action diagrams.

3. Agent interaction diagrams. Here AUML sequence dia-
grams can be exploited. In AUML sequence diagrams,
agents corresponds to objects, whose life-line is inde-
pendent from the specific interaction to be modeled
(in UML an object can be created or destroyed during
the interaction); communication acts between agents
correspond to asynchronous message arcs. It can be
shown that sequence diagrams modeling Agent Inter-
action Protocols, proposed by [10], can be straightfor-
wardly applied to our example.

"For instance the Data-Event-Plan diagram used by JACK
developer. Ralph Ronnquist, personal communication.

(. IMPLEMENTATION USING A BDI AR-
CHITECTURE

The BDI platform chosen for the implementation is JACK
Intelligent Agents, an agent-oriented development environ-
ment built on top and fully integrated with Java. Agents in
JACK are autonomous software components that have ex-
plicit goals (desires) to achieve or events to handle. Agents
are programmed with a set of plans in order to make them
capable of achieving goals.

The implementation activity follows step by step, in a nat-
ural way, the detailed design specification described in sec-
tion 6. In fact, the notions introduced in that section have a
direct correspondence with the following JACK'’s constructs,
as explained below:

o Agent. A JACK’s agent construct is used to define the
behavior of an intelligent software agent. This includes
the capabilities an agent has, the types of messages and
events it responds to and the plans it uses to achieve
its goals.

e Capability. A JACK’s capability construct can include
plans, events, beliefs and other capabilities. An agent
can be assigned a number of capabilities. Furthermore,
a given capability can be assigned to different agents.
JACK’s capability provides a way of applying reuse
concepts.

e Belief. Currently, in Tropos, this concept is used only
in the implementation phase, but we are considering
to move it up to earlier phases. The JACK’s database
construct provides a generic relational database. A
database describes a set of beliefs that the agent can
have.

e FEvent. Internal and external events specified in the
detailed design map to the JACK’s event construct.
In JACK an event describes a triggering condition for
actions.

e Plan. The plans contained into the capability speci-
fication resulting from the detailed design level map
to the JACK’s plan construct. In JACK a plan is
a sequence of instructions the agent follows to try to
achieve goals and handle designed events.

As an example, the definition for the UserInterface agent,
in JACK code, is as follows:

public agent UserInterface extends Agent {
#has capability GetQueryResults;
#has capability ProvideUserSpecification;
#has capability GetUserSpecification;
#has capability PresentQueryResults;
#handles event InformQueryResults;
#handles event ResultsSet;

The capability PresentQueryResults, analyzed in detail in
the previous section (see Figure 8) is defined as follows:

public capability PresentQueryResults
extends Capability {
#handles external event InformQueryResults;
#posts event ResultsSet;
#posts event EmptyResultsSet;
#private database QueryResults();
#private database ResultsModel();
#uses plan EvaluateQueryResults;
#uses plan PresentEmptyResults;
#uses plan PresentResults;

}
8. CONCLUSIONS

In this paper we have proposed Tropos, a new software
engineering methodology which allows us to exploit the ad-
vantages and the extra flexibility (if compared with other
programming paradigms, for instance OOP) coming from
using AOP. The two main intuitions underlying Tropos are
the pervasive use, in all phases, of knowledge level specifi-
cations, and the idea that one should start from the very
early phase of early requirements specification. This allows
us to create a continuum where one starts with a set of men-
talistic notions (e.g., beliefs, goals, plans), always present in
(the why of) early requirements, and to progressively convert
them into the actual mentalistic notions implemented in an
agent oriented software. This direct mapping from the early
requirements down to the actual implementation allows us to
develop software architectures which are “well tuned” with
the problems they solve and have, therefore, the extra flex-
ibility needed in the complex applications mentioned in the
introduction.

Several open points still remain. The most important are:
we should be able to use concepts such as beliefs and events
as early as possible in the Tropos methodology; we should
be able to exploit adaptation and reuse concepts during all
the activities in the development process, as well as to sup-
port an iterative process; we should be able to extend the
Tropos process also to other important activities of software
engineering, such as testing, deployment and maintenance.

9. ACKNOWLEDGMENTS

The knowledge that Paolo Busetta has of JACK has been
invaluable. Without him this paper would have been much
harder to write. We'd like to thank also Ralph Ronnquist
and Manuel Kolp for their helpful comments.

10. REFERENCES

[1] B. Bauer, J. P. Miiller, and J. Odell. Agent UML: A
formalism for specifying multiagent interaction. In
Ciancarini and Wooldridge [6].

[2] G. Booch, J. Rambaugh, and J. Jacobson. The Unified
Modeling Language User Guide. The Addison-Wesley
Object Technology Series. Addison-Wesley, 1999.

[3] P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas.
Jack intelligent agents - components for intelligent
agents in java. AOS Technical Report tr9901, Jan.
1999. http://www.jackagents.com/pdf/tr9901.pdf.

[4] J. Castro, M. Kolp, and J. Mylopoulos. Developing
agent-oriented information systems for the enterprise.
In Proceedings Third International Conference on
Enterprise Information Systems, Stafford UK, July
2000.

[5]

[10]

[11]

[12]

[20]

[21]

L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software
Engineering. Kluwer Publishing, 2000.

P. Ciancarini and M. Wooldridge, editors.
Agent-Oriented Software Engineering, volume 1957 of
LNCS. Springer-Verlag, 2001.

A. Dardenne, A. van Lamsweerde, and S. Fickas.
“goal” directed requirements acquisition. Science of
Computer Programming, (20), 1993.

S. Hayden, C. Carrick, and Q. Yang. Architectural
design patterns for multiagent coordination. In
Proceedings of the International Conference on Agent
Systems ’99, Seattle, WA, May 1999.

I. Jacobson, M. Christerson, P. Jonsson, and

G. 0vergaard. Object-Oriented Software Engineering:
a Use-Case Driven Approach. Addison Wesley,
Readings, MA, 1992.

B. B. James Odell, H. Van Dyke Parunak.
Representing agent interaction protocols in UML. In
Ciancarini and Wooldridge [6].

N. R. Jennings. On agent-based software engineering.
Artificial Intelligence, 117(2), 2000.

J. Mylopoulos and J. Castro. Tropos: A Framework
for Requirements-Driven Software Development.
Lecture Notes in Computer Science. Springer-Verlag,
2000.

A. Newell. The knowledge level. Artificial Intelligence,
18, 1982.

Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1), 1993.

M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review,
10(2), 1995.

M. Wooldridge, N. R. Jennings, and D. Kinny. The
Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and
Multi-Agent Systems, 3(3), 2000.

E. Yu. Modeling organizations for information systems
requirements engineering. In Proceedings First IEEE
International Symposium on Requirements
Engineering, pages 34—41, San Jose, Jan. 1993. IEEE.
E. Yu. Modeling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, University of
Toronto, 1995.

E. Yu and J. Mylopoulos. From E-R to “A-R” —
modeling strategic actor relationships for business
process reengineering. In P. Loucopoulos, editor,
Proceedings of 13th Int. Conf. on the
Entity-Relationship Approach (ER’94), number 881 in
Lecture Notes in Computer Science, pages 548-565,
Manchester, U.K., Dec. 1994. Springer-Verlag.

E. Yu and J. Mylopoulos. Understanding ‘why’ in
software process modeling, analysis and design. In
Proceedings Sizteenth International Conference on
Software Engineering, Sorrento, Italy, May 1994.

E. Yu and J. Mylopoulos. Using goals, rules, and
methods to support reasoning in business process
reengineering. International Journal of Intelligent
Systems in Accounting, Finance and Management,
1(5), Jan. 1996.

