Representing Social

H. Van Dyke Pamunak
ERIM
PO Box 134001
Ann Arbor, MI48113-4001 USA
+1 7346232509

vparunak@erim.org

ABSTRACT

From a software engineering perspective, agent systems are a
specialization of object-oriented (OO) systems, in which
individual objects have their own threads of control and their
own goals or sense of purpose. Engineering such systems is
most naturally approached as an extension of object-oriented
systems engineering. In particular, the Unified Modeling
Language (UML) can be naturally extended to support the
distinctive requirements of multi-agent systems. One such
requirement results from the increasing emphasis on the
correspondence between multi-agent systems and social
systems. Sociological analogies are proving fruitful models
for agent-oriented constructions, while sociologists
increasingly use agents as a modeling tool for studying social
systems. We combine several existing organizational models
for agents, including AALAADIN, dependency theory,
interaction protocols, and holonics, in a general theoretical
framework, and show how UML can be applied and extended to
capture constructions in that framework.

Keywords
Agents, UML, AUML, Organizations, Dependencies, Protocols,
Holarchy, AALAADIN

1. INTRODUCTION

From a software engineering perspective, agent systems are a
specialization of object-based systems, in which individual
objects have their own threads of control and their own goals
or sense of purpose. Elsewhere we have defined agents as
objects that can say “go” (reflecting their separate threads of
control and the resulting ability to execute without being
externally invoked) and “no” (reflecting the priority of their
internal goals over external direction) [23]. Engineering such
systems is most naturally approached as an extension of
object-oriented systems engineering. In particular, the Unified
Modeling Language (UML), a product of the OO community, is
a natural starting point for developing requirements and
designs for agent-based systems. It is widely known, and
supported by a number of computer-aided software
engineering platforms.

Some researchers have already called the attention to the
potential of UML, in its unmodified form, for addressing many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Autonomous Agents ‘01, May 28-June 1, 2001, Montreal, Canada.
Copyright 2001 ACM 1-58113-000-0/00/0000...$5.00.

Structures in UML

James Odell
JamesOdell Associates
3646 West Huron River Drive
Ann Arbor, MI48103
+1 (734)994-0833

jodell@compuserve.com

aspects of agent-based systems [3, 33]. As valuable as these
efforts are, they cannot accommodate the additional
functionality of agents over objects. Earlier work addressed
one such area, the definition of interaction protocols between
autonomous processes, and suggested constructs and
conventions for Agent UML (AUML) [24, 25].

This paper addresses another area of agent functionality that
goes beyond the capabilities of current UML. Sociological
concepts have always been a source of inspiration for multi-
agent research, and recently the agent community has been
returning the favor by exploring the potential of agent-based
models for studying sociological phenomena (e.g.,[6, 11, 21,
32]). The result of this interaction has been the formalization
of a number of sociological and psychological concepts with
important applications in engineering agent systems, concepts
that are not directly supported in UML.

This paper brings together a number of these concepts,
including “group,” “role,” “dependency,” and “speech acts,”
into a coherent syntax for describing organizational
structures, and proposes UML conventions and AUML
extensions to support their use in the analysis, specification,
and design of multi-agent systems. Our approach is distinct
from some other approaches to roles in that it is behavioristic
rather than mentalistic. We define roles in terms of features
that are accessible to an outside observer, rather than those
available only to introspection by the agent.

Section 2 outlines the syntax of group structure on which our
representation is based. Section 3 describes a simple scenario
and illustrates the use of the proposed UML constructs to
model it. Section 4 summarizes our contribution.

Agent

is member of handles
0..1 0..1

contains
Group H Role

Figure 1: AALAADIN architecture expressed as a UML class
diagram

2. A GROUP SYNTAX

We begin with the AALAADIN architecture proposed by Ferber
and Gutknecht [13]. Their model, expressed as a UML class
diagram in Figure 1, involves three elements:

e An agent is an active communicating entity.

e A group is a set of agents.

* A vole is an abstract representation of an agent’s function,
service, or identification within a group.

(The one-to-one mappings in this diagram reflect the original
AALAADIN model, not the one we propose in this paper.) A
fundamental insight of AALAADIN is that groups interact only
through shared agents. An agent can be a member in several
different groups at the same time, perhaps playing a different
role (or roles) in each of them, and can move from one group to
another dynamically. From a classical OO point of view, this
multiple and dynamic role capability distinguishes the agent-
based from the OO approach. An OO class can be defined by
extension as a role, the set of all instances that belong to the
class, or role; but simulaneous membership in multiple classes
is the exception rather than the rule, and dynamic change of
class membership is even rarer. (Although, UML now supports
multiple and dynamic classification of objects.)

AALAADIN’s notion of a group is naturally extended to
organizations. We understand “group” as the generic term for a
set of agents related through their roles. The term
“organization” refers to groups distinguished by formality
and stability, but the underlying model and formalisms are the
same.

AALAADIN offers an attractive combination of parsimony and
expressiveness. It is a straightforward basis for developing
representational mechanisms for organizational concepts. We
refine AALAADIN in three ways. First, we suggest that the notion
of “role” can be defined in terms of two other notions current
in the agent community, dependencies and action templates.
Second, the ontology should be extended with the concept of
an environment through which agents interact. Third, we
confront the issue of aggregation as developed in the holonic
model and its apparent tension with AALAADIN’s flat network
of groups.

2.1 Looking Behind Roles

AALAADIN defines a group as a set of agents. An agent’s role
mediates between it and the group. That is, it participates in
the group not in its own right, but as an incumbent of a
particular role, and the nature of the group is defined by the set
of roles that it includes and their relations to one another. This
observation encourages us to seek a more fundamental way to
define roles, one that makes explicit their relations with one
another. Two concepts from the theory of multi-agent systems
contribute to this refined definition: dependency theory and
speech acts. Both of these concepts define structured relations
among interacting agents. Our insight is that a role is just a
labeling of a recurring pattern of dependencies and (speech
and other) interactions.

Dependency theory (e.g., [7, 8, 34], to cite only a few classic
references) is based on the idea that interactions among agents
result from an incompatibility between a single agent’s goals
and its resources and capabilities. Typically, an agent does not
control all the resources or have the ability to execute all the
actions required to achieve its objectives, so it must interact
with other agents who do control those resources or who can
perform those actions. For expository simplicity, we consider
only action dependencies (since a dependency on an agent for
a resource may be represented as depending on that agent to
perform the action of providing the resource), and define a
dependency as a three-tuple <Dependent, Provider, Action>.
The literature on dependency theory works out many
additional details that might be included in a dependency,

including the specific goal that leads to the dependency, the
specific plan leading to that goal that requires the specified
resource or action, and which of the agents involved in the
dependency recognizes its existence. Such details can readily
be incorporated in our approach.

A pattern of dependencies is an important component of a role.
For example, if agent A is a customer, there must be some agent
B on whom A depends for goods and services, while B depends
on A for money. However, dependencies alone leave many
details of the role ambiguous. From dependencies alone, A and
B might be thieves preying on one another. We can refine the
definition of a role by incorporating more dynamic
information, based on speech act theory.

Speech-act theory originates in the observation of [2] that
utterances are not simply propositions that are true or false,
but attempts on the part of the speaker that succeed or fail. The
theory has become ubiquitous in the development of agent
communication protocols such as KQML [15] and the FIPA
Agent Communication Language [16]. Isolated utterances do
little to characterize the relationships among interacting
agents. However, the “speech-act” nature of utterances permits
the definition of a set of relations that can obtain among
successive utterances in a conversation [28]. For example,
utterance B “responds” to utterance A if A caused B; it
“replies” to A if it responds and in addition is addressed to the
agent who uttered A, it “resolves” A if it replies and in
addition causes A to succeed, and it “completes” A if it fulfills
an earlier commitment. These relations may be extended to
non-speech actions. For example, a request to close the door
may be resolved by the physical action of closing the door. A
formal construction based on these relations, the Dooley
Graph [10, 28], consists of nodes corresponding to agents,
with directed edges corresponding to utterances and other
actions issued by the source of the edge and received by its
sink. Each node in a Dooley Graph corresponds to a single
agent, but an agent may occupy several different nodes. The
significance of a single node is that it terminates speech acts
associated with a single function of the agent. By a thespian
analogy, this function has been called a “character” [28], but
bears clear relationship to the notion of a role in AALAADIN.
The characters disclosed through Dooley analysis are useful in
engineering agent code, since they define reusable behavioral
templates (cf. the modules in BRIC [12], AARIA’s Actions
[31], Contexts in Gensym’s Agent Development Environment
[29], and Singh’s agent templates [35]). Such a template
implements a particular protocol, defining an interrelated set
of speech or other actions that an agent may undertake.

From the point of view of a protocol, A is a customer of B if the
two participate in the pattern of actions outlined in Table 1.
This pattern is not the only protocol that would be appropriate
for a customer and supplier. For example, a customer might
initiate the exchange with a request for quotation. The point is

Table 1. A simple protocol characterizes the “customer”

role.

Utterance # | Speaker Utterance

1 B Advertisement: Offers goods in
exchange for money

2 A Sends an order to B for the
goods, accompanied by the
payment

3 B Sends the goods to A

that a protocol can capture part of the semantics of a role. As
with dependencies, however, the semantics are incomplete. The
same protocol would be appropriate between two actors in a
play, neither of whom depends on the other for either money or
goods. Adding the dependency information provides a clearer
and more robust picture of the roles of customer and supplier
than either offers by itself. Such a protocol can be represented
in UML at various levels of abstractions Previous work [24,
25].

From the point of view of system analysis, both dependency
theory and interactions are attractive because they can be
analyzed (at least at the level necessary for our purposes)
without access to the internal state of the agents. Empirically,
an agent’s function in a group is defined by the network of
dependencies and actions in which it is embedded. When a
particular pattern of dependencies and protocols recurs, it is
useful to summarize it as a role. However, the role is not
primitive, but built up from dependencies and interactions.
The dependencies and actions are what really matter. The role
is simply a label that we attach to a recurring pattern to enable
us to manipulate it with greater efficiency. This viewpoint
implies (contrary to the original AALAADIN model exemplified
in Figure 1) that the same role can appear in multiple groups, if
they embody the same pattern of dependencies and
interactions (Figure 2).

If an agent in a group holds multiple roles concurrently, it may
sometimes be useful to define a higher-level role that is
composed of some of those more elementary roles. For
example, consider the three roles Customer, Vendor, and
Employee, all within the group Market Economy. An end-user
in such an economy is an agent who earns money in a job and
uses that money to purchase goods. Thus the End User role is
the composition of Customer and Employee roles. A supply
chain link in such an economy is an agent who buys goods,
transforms them into other goods, and then sells them. Thus
Supply Chain Link is the composition of Customer and
Vendor roles. Figure 2 expresses this composition of roles by
the composition association loop at the top of the Role class.

Our view of a role as a recurring pattern of dependencies and
actions is deliberately behavioristic rather than mentalistic.
Other researchers define roles in terms of mentalistic qualities,
such as obligations, permissions, and rights, that require a
detailed knowledge of the agents’ internal structure [1, 9, 27].
One prominent definition even disavows behavioral
considerations: “A role is here conceived as a system of
prescribed mental attitudes, rather than a system of prescribed
behaviour” [27]. The mentalistic approach is extremely useful
theoretically, as an extension of the BDI model that can both

composed of

5 1.

Interaction |._onginator ! — * 1 Action
Protocol recipient 1 Role ! PTOVI®T + | Dependency
* 1 dependent
1.
employs

employed by
*

Group

Figure 2. UML Class Diagram expressing the role
associations described in Section 2.1.

played by =
Role consists of 1..* Agent
1.*
employs
Environment H* > Group
1 C

supported by

Figure 3. The environment and its involvement with
groups, agents, and roles.

inform the further development of that model and permit
application of its formal mechanisms to role analysis. It is less
useful to a systems analyst confronted with a heterogeneous
system whose elements are often opaque. Examples of such
systems might be a network of trading partners in a B2B
ecommerce scenario, or a terrorist network in a military
intelligence application. In such cases, internal beliefs,
desires, and intentions are closely held secrets, and those who
would model the system from the outside must rely on
externally observable behaviors. The intended users of our
extensions to UML must often cope with just such situations.
An important question, which we do not engage here, is
developing correlations between the two classes (mentalistic
and behavioristic) of role models.

2.2 The Importance of the Environment

Agents cannot be considered independently of the
environment in which they exist and through which they
interact [14, 22]. This insight is often ignored in work on
computational multi-agent systems, where researchers
consider the environment as a passive communications
framework and everything of interest is relegated to one or
another of the agents. Even such purely electronic
environments often prove embarrassingly active when an
application is scaled up for real-world use, and those
engineering agents for non-electronic domains (such as
factory automation) must consider the environment explicitly.

Consider, for example, the active role of the environment in
pheromone models of coordination [4, 30]. In natural insect
societies and engineered systems inspired by them, the
environment actively provides three information processing
functions.

1. It fuses information from different agents passing over
the same location at different times.

2. It distributes information from one location to nearby
locations.

3. It provides truth maintenance by forgetting information
that is not continually refreshed, thereby getting rid of
obsolete information.

In modeling groups, it is important to recognize the role of the
environment in supporting the dependencies and protocols
that define the participants’ roles. The exact form that this
representation takes will vary widely, depending on the group
in question. However, we should recognize that environment,
along with the network of roles that it supports, is a defining
component of a social group (Figure 3).

consists of 1, *

consists of 1..*
Agent Agent
T
represented via
Group AAtgoer?]f —Q Group

(a) Holonic perspective (b) AALAADIN perspective

consists of 1 *

1.

represented
via

S

Group

Atomic
Agent

(c) Consolidated perspective

Figure 4. Three perspectives on the relation between Groups
and Agents

2.3 Groups as Agents

At first glance, AALAADIN contrasts strongly with the holonic
view of agent organization. A holon is an agent that may be
made up of smaller holons and that may join together with
other holons to form higher-level holons [5, 17, 19, 20]. Thus
the holonic model explicitly permits groups to be members of
other groups. The resulting lattice of holons 1is called a
holarchy, and is the dominant organizational metaphor in
holonic systems [36]. In AALAADIN, groups are related only
through shared members, and there is no provision for one
group as a group to be a member of another.

Both models have their own attractions. The holonic model
recognizes the need for some form of hierarchical aggregation
in real-world systems, which must remain understandable
while spanning a wide range of temporal and spatial scales. A
modern automotive factory incorporates hundreds of
thousands of individual mechanisms (each a candidate for
agent-hood) in hundreds of machines that are grouped into a
dozen or so lines. Engineers can design, construct, and operate
such complexes only by shifting the focus from mechanism to
machine or line, depending on the problem at hand, and
recognizing the higher-level agents are aggregates of lower-
level ones. Similarly, in e-commerce applications, a
corporation is a legal entity that is independent of the
individual people who make up its employees and directors.
Conversely, AALAADIN recognizes that when two groups (at any
level) interact, they do so through the interactions of their
components. Negotiations between two companies take place
through individual people with the roles of representing their
groups in the negotiation. Two machines in a factory interact
by virtue of a process involving the sensors of one and the
actuators of another.

As practicing engineers of agent-based systems, we recognize
the need for both perspectives, and resolve the tension
pragmatically. When we begin to analyze a group A4, we
identify the agents {ai, aa, ..., a,} occupying its roles. Those
agents may be individual persons, robots, or computer
systems (atomic agents). They may also be other groups, a; =
B, which we treat as black boxes. We take this “holonic”
perspective as long as our analysis can ignore the internal

structure of the member groups (Figure 4a). However,
subsequent analysis often requires us to open such a black
box and look inside at its roles and their incumbent agents,
analyzing B = {bi, by, ..., bu}. At that point, we insist on
identifying which of B’s member agents is actually
responsible for filling B’s role in A4, thus adhering to the
discipline of AALAADIN (Figure 4b). Figure 4c is thus the
consolidated model for our approach.

2.4 Summary
In sum, our model is based on AALAADIN, but with three
extensions:

¢ Roles are not ontologically primitive, but are defined as
recurring patterns of dependencies and actions.

e The definition of a group includes not just a set of agents
occupying roles, but also the environment through which
they interact.

e AALAADIN’s requirement that groups interact only through
identified members is relaxed in the case of unanalyzed
groups, which are permitted to occupy roles in higher-
level groups following the holonic model.

Figure 5 consolidates the class views described in this section.

Interaction Action
Protocol Dependency

*

>

originator
= recipien
— dependent *
— provider

played by «
Role consists of 1..* Agent
1.*
represented
em via f E
) Atomic
Environment Group Agent

éhpported by

Figure 5. Consolidated ontology.

3. ANEXAMPLE
We illustrate the theory and its UML instantiation by
modeling a simple example, a terrorist organization.

3.1 A Terrorist Organization

A national security organization might construct an agent-
based model of terrorism, for use in contingency planning and
modeling emerging threats. In this particular model, we
envision interactions among three groups with associated
roles. Individual agent 4 occupies roles in all three groups.

e The terrorist organization (TO) has roles

o Operative, who actually deploys and operates the
instrument of terrorism (e.g., plants and detonates the
bomb, or shoots the gun) (= 4)

o Ringleader, who sets the vision for the organization and
may bankroll it personally

e The weapons cartel (WC) has roles

o Customer, who wishes to procure arms (= 4)

o Supplier, who delivers arms to the customer

o Negotiator, who negotiates the deal with the customer
and receives payment.

¢ Western society (WS) has roles
o Citizen, whom the terrorist operative wishes to target
o Student, a convenient cover for a foreign national (= 4).

Informally, individual A procures financing and a mission
from TO, while feeding back information that permits TO to
expand its activities. A4 uses funds from TO to purchase
weapons from WC, and then occupies a role in WS to deploy
the weapons against citizens.

3.2 Its AUML Model

The OMG's Unified Modeling Language (UML) version 1.3
already provides a wealth of diagramming elements [18].
However, extensions to UML are required to effectively model
agents and agent-based systems. Within both OMG and FIPA,
an effort is currently underway to define a UML for agents
(AUML) that extends UML (http://www.auml.org). This section
proposes usages of and extensions to UML to represent
groups, agents, and roles, as illustrated in the Terrorist
Organization scenario, above.

A common misconception is that UML (and by extension,
AUML) is a graphical notation with no formal semantics. The
UML specification consists of two interrelated parts: the UML
Semantics (a metamodel that specifies the abstract syntax and
semantics of UML object modeling concepts), and the UML
Notation (a graphic notation for the visual representation of
the UML semantics) [26]. Our concern here is the development
and communication of high-level intuitions, not the formal
definition of the associated semantics, so we focus on the
graphical notation. The close linkage between UML notation
and semantics means that our use of UML, far from hampering
subsequent formalization, in fact provides a foundation for
that task.

<<aggregation>>

Terrorist Weapons Western
Organization Cartel Society
<
5 /Operative /Customer — /Student
o
= J—-2
@ 8 deals with | E
S 2) S
Al ° /Negotiator
o
5|7 ¢ :
Sl orders from |
| & i
HE /Supplier ||
£ <
Vv
v Q
kS targets /Citi
[itizen
<
1Y
9 /Ringleader
<

Figure 6. A class diagram with swimlanes depicts the
interrelated roles with their agents and groups.

Weapons
Cartel
* * *

* deals with 1 orders from N
/Customer /Negotiator 3 ol /Supplier
* | " |

delivers to

Figure 7. A class diagram depicting that Terrorist
Organizations consist of agents playing several distinct
roles.

3.2.1 Swimlanes as Groups

The scenario described in 3.1 involve three groups, each
employing defined roles. Figure 6 illustrates these groups and
roles using two UML techniques: the class diagram and
swimlane. The class diagram here models the various terrorist
roles and their relationships. (The slash in front of each name
indicates that the name is a role name, rather than a class
name.)

In UML, swimlanes graphically organize responsibility of
activities within an activity graph. However, AUML proposes
that the same device be used for any kind of UML diagram—in
the case of Figure 6, a class diagram. For example, Figure 6
indicates that the Terrorist Organization involves two roles,
Operative and Ringleader, where the Ringleader agent
coordinates Operative agents. Figure 6 also depicts a second
kind of swimlane based on agent instance. For example, agent
A plays the roles of Operative, Customer, and Student.
Multidimensional swimlanes are highly uncommon in the
UML community, but are supported by UML version 1.3.

The UML 1.3 swimlane is only “syntactic sugar,” a graphical
packaging technique. It cannot specify a swimlane's
underlying semantics. Understanding swimlanes like those in
Figure 6 could cause difficulty because vertical swimlanes
specify group aggregation, while the horizontal swimlanes
specify role instantiation. We propose that UML be extended
to specify the swimlane's underlying relationship. In Figure 6,
the vertical swimlanes are indicated as <<aggregation>> and
the horizontal as <<instantiation>>.

3.2.2 Class Diagrams to Define Roles

As mentioned above, the vertical swimlanes define an
aggregation relationship between groups and the roles that
comprise the group. Another way to express these
relationships within a group is to use a class diagram as
depicted in Figure 7.

The class diagram in Figure 7 and the Weapons Cartel
swimlane in Figure 6 are basically equivalent. They both show
that each Weapons Cartel group consists of agents playing the
roles of Customer, Negotiator, and Supplier. Additionally,
they both depict relationships among the roles. The only
difference is that Figure 7 expresses the relationship
cardinality constraints (multiplicity) between the Weapons
Cartel and the various roles, while Figure 6 does not. For
example, Figure 7 indicates that while each Weapons Cartel

Money
//’ o
// \\\
e ~
g EN
Terrorist {0}__. Butter RO Weapons
Organization |y, P Cartel

\\\ ///

N -7

o -
N Guns o

Figure 9. An object-flow activity graph specifies roles as
patterns of activities along with the products that are
produced and consumed by each activity.

group may have multiple customers and suppliers, it may only
have one negotiator. These constraints cannot be expressed by
UML swimlanes.

3.2.3 Sequence Diagrams to Show Roles as

Patterns of Interactions

Class diagrams model the kinds of entities that exist in a
system along with their relationships. Modeling the
interactions that may occur among these entities can be
represented using a UML sequence diagram. For example,
Figure 8 depicts the permitted interactions that may occur
among Customer, Negotiator, and Supplier agents for a
weapons procurement negotiation. The tabbed folder
encompassing the sequence diagram indicates that the
interaction can be viewed as a unit called a package.

The only extension to UML is the addition of the diamond-
shaped decision symbol. While branching decisions can be
expressed in UML 1.3 using guard conditions, we recommend
using the same symbol employed for the same purpose in
activity graphs—the diamond. (For more AUML extensions to
the sequence diagram, see [24, 25].)

3.2.4 Activity Graphs to Show Groups as Patterns
of Dependencies

The object-flow activity graph represents activities and the
kinds of objects that they produce or consume. The weapons
procurement in Figure 9 states that a Terrorist Organization
procures guns (and not butter) from a Weapons Cartel to which

Interaction protocol for weapons
procurement negotiation

/Customer /Negotiator /Supplier

T T
8 request for guns

request denied <>

request accepted

pay money order guns

deliver guns

Figure 8. Sequence diagram depicting an interaction
protocol for buying guns from a terrorist operation agent.

it pays money. Instead of representing the way in which roles
relate or interact among groups (Figure 6, Figure 7, Figure 8),
this diagram models groups as processing entities in their
own right. For example, Figure 9 depicts two groups and their
dependencies, without regard to the underlying roles. In other
words, it expresses the pattern of dependencies between a
Terrorist Organization and a Weapons Cartel.

Object-flow activity graphs, then, provide a way to model a
system by removing some of the detail, providing a "higher-
level" view of the system components. Figure 4c expresses the
fact that all groups are agents; but until this point, the only
agents we were modeling were as role-playing elements of a
group. The activity graph allows us to model groups of agents
as agents. In this way, we can express the kinds of
dependencies that are best represented at a group level. When a
more detailed view of the underlying interactions is required, a
sequence diagram (e.g., Figure 8) can be used.

Such an approach requires a UML extension. UML requires all
activities terminate in order to produce their output. However,
agent groups such as terrorist organizations or order
processing departments are typically thought of as continuous
activities, not as processes with definable starts and
completions. This proposed extension is important when
modeling long-lived groups that produce output many things
during their lifetime.

4. SUMMARY

Engineering of agent-based systems requires the availability
of common languages for requirements analysis, specification,
and design. The Unified Modeling Language (UML) has gained
wide acceptance in the Object-Oriented community, and is
supported by a number of computer-aided software
engineering tools. The close relation between objects and
agents has led numerous researchers to seek to apply it to
agents. Carrying out this agenda requires that we identify the
distinctive constructions required in designing agent-oriented
systems and develop conventions for using and extending
UML to accommodate them.

In the case of social structures, insights from AALAADIN,
dependency theory, and holonics can be fused into a single
metamodel of groups as composed of agents occupying roles
(defined as patterns of dependency and interaction) in an
environment. Various UML constructs, including swimlanes,
class diagrams, activity diagrams, and sequence charts, can
capture the crucial distinctions in such a model.

5. ACKNOWLEDGMENTS

When the first author presented an invited talk on applications
of UML to agents at MAAMAW’99, several participants,
including Cristiano Castelfranchi and Yves Demazeau, raised
the question of how a wide range of organizational structures
could be captured in UML. Their challenge was the germ for
this paper. Some of the ideas concerning the relation of
dependencies and action relations to the definition of roles
were stimulated by discussions with Catholijn Jonker,
Gabriela Lindemann, and others at the MASHO’00 workshop,
and by comments on a preliminary version with John Sauter,
Mitch Fleischer, and others at ERIM.

6. REFERENCES

[1] A. Artikis and J. Pitt. A Formal Model of Open Agent
Societies. In Proceedings of Fifth International
Conference on Autonomous Agents (Agents 2001), 2001.

[2] J. L. Austin. How to Do Things with Words. Oxford
University Press, 1962.

[3] F. Bergenti and A. Poggi. Exploiting UML in the Design
of Multi-Agent Systems. In Proceedings of Engineering
Societies in the Agents' World, pages 96-103, 2000.

[4] S. Brueckner. Return from the Ant: Synthetic Ecosystems
for Manufacturing Control. Thesis at Humboldt
University Berlin, Department of Computer Science, 2000.

[5] H.-J. Biirckert, K. Fischer, and G. Vierke. Teletruck: A
holonic fleet management system. In Proceedings of 14th
European Meeting on Cybernetics and Systems Research,
pages 695-700, 1998.

[6] K. Carley and M. Prietula, Editors. Computational
Organization Theory. Lawrence Erlbaum Associates,
1994.

[7] C. Castelfranchi. Founding Agent's 'Autonomy' on
Dependence Theory. In Proceedings of 14th European
Conference on Artificial Intelligence, pages 353-357, 10S
Press, 2000.

[8] C. Castelfranchi, M. Miceli, and A. Cesta. Dependence
Relations among Autonomous Agents. In Y. Demazeau
and E. Werner, Editors, Decentralized Al 3 (Proceedings of
the Third European Workshop on Modeling Autonomous
Agents in a Multi-Agent World), Elsevier, 1992.

[9] L. Cavedon and L. Sonenberg. On Social Commitment,
Roles and Preferred Goals. In Proceedings of
International Conference on Multi-Agent Systems
(ICMAS'98), pages 80-87, IEEE, 1998.

[10]R. A. Dooley. Appendix B: Repartee as a Graph. In R. E.
Longacre, Editor, An Anatomy of Speech Notions, pages
348-58. Peter de Ridder, Lisse, 1976.

[11]M. E. Epstein and R. Axtell. Growing Artificial Societies:
Social Science from the Ground Up. Boston, MA, MIT
Press, 1996.

[12]J. Ferber. Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence. Harlow, UK, Addison
Wesley Longman, 1999.

[13]7J. Ferber and O. Gutknecht. A meta-model for the analysis
and design of organizations in multi-agent systems. In
Proceedings of Third International Conference on Multi-
Agent Systems (ICMAS'98), pages 128-135, IEEE
Computer Society, 1998.

[14]J. Ferber and J.-P. Miiller. Influences and Reactions: a
Model of Situated Multiagent Systems. In Proceedings of
Second International Conference on Multi-Agent Systems
(ICMAS-96), pages 72-79, 1996.

[15] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R.
Fritzson, D. McKay, J. McGuire, R. Pelavin, S. Shapiro, and
C. Beck. DRAFT Specification of the KQML Agent-
Communication Language. 1993. Postscript,
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

[16] FIPA. FIPA Agent Communication Language
Specifications. 2000. HTML,
http://www.fipa.org/repository/aclspecs.html.

[17]1 K. Fischer. Agent-based design of holonic manufacturing
systems. Robotics and Autonomous Systems, 27(1-2):3-
13, 1999.

[18] M. Fowler and K. Scott. UML Distilled: Applying the
Standard Object Modeling Language. Reading, MA,
Addison-Wesley, 1997.

[19] C. Gerber, J. Siekmann, and G. Vierke. Flexible autonomy
in holonic multi-agent systems. In Proceedings of AAAI
Spring Symposium on Agents with Adjustable Autonomy,
1999.

[20] C. Gerber, J. Siekmann, and G. Vierke. Holonic Multi-
Agent Systems. RR-99-03, DFKI, Kaiserslautern, Germany,
1999. URL ftp:/ftp.dfki.uni-
kl.de/pub/Publications/ResearchReports/1999/RR-99-
03.ps.gz.

[21] G. N. D. Gilbert, J. Simulating Societies: the computer
simulation of social processes. London, UCL Press, 1993.

[22]7J. P. Miiller. The Design of Intelligent Agents. Berlin,
Springer, 1996.

[23]7J. Odell. Agents: Technology and Usage (Part 1).
Distributed Computing Architecture/E-Business Advisory
Service, 3(4):1-29, 2000.

[24]J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML
for Agents. In Proceedings of Agent-Oriented Information
Systems Workshop, pages 3-17, 2000.

[25]1J. Odell, H. V. D. Parunak, and B. Bauer. Representing
Agent Interaction Protocols in UML. In Proceedings of
Agent-Oriented Software Engineering, pages 121-140,
Springer, 2000.

[26] OMG. OMG Unified Modeling Language Specification.
1999. PDF File,
http://www.rational.com/media/uml/post.pdf.

[27] P. Panzarasa, T. J. Norman, and N. R. Jennings. Modeling
Sociality in the BDI Framework. In Proceedings of First
Asia-Pacific Conference on Intelligent Agent Technology
(IAT'99), pages 202-206, 1999.

[28] H. V. D. Parunak. Visualizing Agent Conversations: Using
Enhanced Dooley Graphs for Agent Design and Analysis.
In Proceedings of Second International Conference on
Multi-Agent Systems (ICMAS’96), pages 275-282, 1996.

[29] H. V. D. Parunak. Workshop Report: Implementing
Manufacturing Agents. Industrial Technology Institute,
1996. URL
http://www.erim.org/~vparunak/paamncms.pdf.

[30] H. V. D. Parunak. *Go to the Ant’: Engineering Principles
from Natural Agent Systems. Annals of Operations
Research, 75:69-101, 1997.

[31]1H. V. D. Parunak, A. D. Baker, and S. J. Clark. The AARIA
Agent Architecture: From Manufacturing Requirements to
Agent-Based System Design. Integrated Computer-Aided
Engineering, 8(1):45-58, 2001.

[32] M. I. Prietula, K. M. Carley, and L. e. Gasser. Simulating
Organizations: Computational Models of Institutions
and Groups. Menlo Park, CA, AAAI Press, 1998.

[33] G. Satapathy and S. R. T. Kumara. Object Oriented Design
based Agent Modeling. In Proceedings of The Fourth
International Conference on the Practical Application of

Intelligent Agents and Multi-Agent Technology, pages
143-162, The Practical Applications Company, 1999.

[34]1J. S. Sichman, Y. Demazeau, R. Conte, and C. Castelfranchi.
A Social Reasoning Mechanism Based on Dependence
Networks. In Proceedings of 11th European Conference
on Artificial Intelligence, pages 416-420, John Wiley and
Sons, 1994.

[35] M. P. Singh. Developing Formal Specifications to
Coordinate Heterogeneous Autonomous Agents. In
Proceedings of Third International Conference on Multi-
Agent Systems (ICMAS'98), pages 261-268, IEEE
Computer Society, 1998.

[36] University of Hannover. Holonic Manufacturing Systems.
2000. Web Page, http://hms.ifw.uni-hannover.de/.

