
UML Class Diagrams
 Revisited in the Context of Agent-Based Systems

Bernhard Bauer
Siemens AG, Corporate Technology, Information and Communications

Otto-Hahn-Ring 6
81739 Munich, Germany

(+49)89-636-50654

bernhard.bauer@mchp.siemens.de

ABSTRACT
Gaining wide acceptance for the use of agents in industry requires
both relating it to the nearest antecedent technology (object-
oriented software development) and using artifacts to support the
development environment throughout the full system lifecycle.
We address both of these requirements using AUML, the Agent
UML (Unified Modeling Language) — a set of UML idioms and
extensions. This paper illustrates the next steps of our approach
by presenting notions for the internal behavior of an agent and its
relation to the external behavior of an agent using and extending
UML class diagrams.

General Terms
Algorithms, Documentation, Design, Reliability, Standardization,
Languages, Theory.

Keywords
Agents, UML, internal behavior of agents, AUML, design
artifacts, software engineering.

1. INTRODUCTION
Successful industrial deployment of agent technology requires
techniques that reduce the risk inherent in any new technology.
Two ways that reduce risk in the eyes of potential adopters are: to
present the new technology as an incremental extension of known
and trusted methods, and to provide explicit engineering tools that
support industry-accepted methods of technology deployment.
We apply both of these risk-reduction insights to agents.
Accepted methods of industrial software development depend on
standard representations for artifacts to support the analysis,
specification, and design of agent software. Three characteristics
of industrial software development require the disciplined
development of artifacts throughout the software lifecycle. The
scope of industrial software projects is much larger than typical
academic research efforts, involving many more people across a
longer period of time, and artifacts facilitate communication. The
skills of developers are focused more on development
methodology than on tracking the latest agent techniques, and
artifacts can help codify best practice. The success criteria for
industrial projects require traceability between initial
requirements and the final deliverable — a task that artifacts
directly support.
To leverage the acceptance of existing technology, we present

agents as an extension of active objects, exhibiting both dynamic
autonomy (the ability to initiate action without external
invocation) and deterministic autonomy (the ability to refuse or
modify an external request). Thus, our basic definition of an agent
is “an object that can say ‘go’ (dynamic autonomy) and ‘no’
(deterministic autonomy).” This approach leads us to focus on
fairly fine-grained agents. More sophisticated capabilities can also
be added, such as mobility, BDI mechanisms, and explicit
modeling of other agents. Such capabilities are extensions to our
basic agents, that is, they can be applied where needed, but are not
diagnostic of agenthood.
The Unified Modeling Language (UML) is gaining wide
acceptance for the representation of engineering artifacts in
object-oriented software. Our view of agents as the next step
beyond objects leads us to explore extensions to UML and idioms
within UML to accommodate the distinctive requirements of
agents. The result is Agent UML (AUML), see e.g. [1, 2]. This
paper reports UML class diagrams revisited in the context of
agent-based systems, namely the representation of the agent's
internal behavior and relating it to the external behavior of an
agent.

2. BACKGROUND
Agent UML (AUML) synthesizes a growing concern for agent-
based software methodologies with the increasing acceptance of
UML for object-oriented software development.
In [2] we have shown how Agent UML differs from the other
existing agent software methodologies, as presented in [4, 5, 6, 8,
9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27].
This wide-ranging activity is a healthy sign that agent-based
systems are having an increasing impact, since the demand for
methodologies and artifacts reflects the growing commercial
importance of our technology. Our objective is not to compete
with any of these efforts, but rather to extend and apply a widely
accepted modeling and representational formalism (UML) — one
that harnesses insights and makes them useful for communicating
across a wide range of research groups and development
methodologies.

2.1 UML and AUML
To make sense of and unify various approaches on object oriented
analysis and design, an Analysis and Design Task Force was
established within the OMG. By November 1997, a de jure
standard was adopted by the OMG members called the Unified
Modeling Language (UML) [3, 17, 21]. UML unifies and

formalizes the methods of many approaches to the object-oriented
software lifecycle, including Booch, Rumbaugh, Jacobson, and
Odell.
In a previous paper, we have argued that UML provides an
insufficient basis for modeling agents and agent-based systems [1,
2]. Basically, this is due to two reasons: Firstly, compared to
objects, agents are active because they can take the initiative and
have control over whether and how they process external requests.
Secondly, agents do not only act in isolation but in cooperation or
coordination with other agents. Multiagent systems are social
communities of interdependent members that act individually.
To employ agent-based programming, a specification technique
must support the whole software engineering process — from
planning, through analysis and design, and finally to system
construction, transition, and maintenance.
A proposal for a full life-cycle specification of agent-based system
development is beyond the scope for this paper. Both FIPA and
the OMG Agent Platform SIG are exploring and recommending
extensions to UML. Moreover it is planned that within the
European network of Excellence AgentLink a working group
should be established on this topic. In this paper, we will focus on
a new subset of an agent-based UML extension for the
specification of the agent internal behavior of an agent and
relating it to the external behavior of an agent using and extending
UML class diagrams. This extension and considerations extends
our effort on AUML for the software engineering process,
because this topic closes the gap between the agent interaction
protocol definition as shown e.g. in [2] and the internal behavior
of an agent and its relation to the agent interaction protocols.
The definition of the internal behavior is part of the specification
of the dynamical model of an agent system, as well as the static
model of an agent.

3. UML CLASS DIAGRAMS - REVISITED
First of all let us have a closer look at the concepts of object
oriented programming languages, namely the notions of object
and class and adapt it afterwards to agent based systems.

3.1 Basics
In object oriented programming languages an object consists of a
set of instance variables, also called attributes or fields, and its
methods. Creating an object its object identity is determined.
Instance variables are identifiers holding special values,
depending on the programming languages these fields can be
typed. Methods are operations, functions or procedures, which
can act on the instance variables and other objects. The values of
the fields can be either pre-defined basic data types or references
to other objects.
A class describes a set of concrete objects, namely the instances of
this class, with the same structure, i.e. same instance variables,
and same behavior, i.e. same methods. There exists a standard
method 'new', to create new instances of a class. A class definition
consists of the declaration of the fields and the method
implementations. It consists of a specification or an interface part
as well as of an implementation part. The specification part
describes, which methods with which functionality are supported
by the class, but not how the operation is realized. The
implementation part defines the implementation / realization of
the methods and is usually not visible to the user of the method.
The access rights define which methods are visible to the user and

which one are not. In most programming languages classes define
also types, i.e. each class definition defines a type of the same
name.
Some programming languages allow in class definitions also the
definition of class variables, which are shared by all classes, in
contrast to instance variables belonging to a single object. I.e.
each instance of a class has its own storage for its instance
variables, in contrast to class variables which share the same
storage. Class variables are often used as a substitute for global
variables. Beyond class variables, there are often used class
methods which can be called independently of a created object
and are used as global procedures.

3.2 Relating Objects with Agents
As already stated, an agent is more than an object, see figure 1.

m e th o d

m e th o d

m e th o d
o b je c t

a ttr ib u te

a ttr ib u te

a ttr ib u te

C A

C A

C A
A g e n t

a c tio n

a c tio n

a c tio n

a g e n t h e a d
(g o a ls , a c tu a l s ta te ,.. .)

fig. 1: object vs. agent

We have autonomy, pro- and re-activity, the communication is
based on speech act theory (communicative acts, CA for short),
the internal state is more than only fields with imperative data
types, and additional features. All these concepts have to
supported by a class diagram for agents.

In the agent oriented programming paradigm we have to
distinguish between an agent class defining on the one side the
type of an individual agent and being on the other side a blue
print for individual agents, and individual agents. I.e. an
(individual) agent is an instance of an agent class. Therefore we
specify the schema of an agent class which is then used in
programs as instantiated agents.

An agent can be divided into the communicator - doing the
physical communication, head - dealing with goals, states, etc. of
an agent - and body - doing the pure actions of an agent. For the
internal view of an agent we have to specify the agent's head and
body.

The aim of the specification of the agent's internal behavior is to
provide possibilities do define e.g. BDI semantics or permanent
and actual goals as well as Java agents. Especially the semantics
of the communicative acts and the reaction of an agent to some
incoming messages have to be taken into consideration, this can
be done either by the designer or the agent using e.g. BDI
semantics. We allow the definition of a procedural as well as a
declarative process description, the specification can e.g. be done
using activity diagrams or the UML process specification
language.

The reaction to events and pro-active behavior can be defined
either by pro-active actions or agent head automata for pro-active
behavior. Not only methods can be defined for an agent which are
only visible to the agent itself, but actions which can be accessed
by other agents. But in contrast to object orientation the agent
decides itself whether some action is performed or not.

Abstract actions are characterized with pre-conditions, effects and
invariants. Moreover the usual object oriented techniques have to
be applied to agent technology, supporting efficient and structured
program development, like inheritance, abstract agent types and
agent interfaces, and generic agent types.

Single, multi, and dynamic inheritance can be applied for states,
actions, methods, and message handling.

Associations are usable to describe e.g. agent A uses the services
of agent B to perform a task (e.g. client, server), with some
cardinality and roles. Aggregation and composition show e.g. car
park service and car park monitoring can be part of an car park
agent.

The components can either be agent classes or usual object
oriented classes. Several times we have argued that agent and
objects are completely different paradigms. Therefore we have to
distinguish in our specifications between agents and objects.
Especially an agent can be build using some object as part of its
internal state (see fig 2). Therefore different notations between
agents and objects have to be used either directly or using
stereotypes.

Agent
Class Class

fig. 2. object part of an agent

Relating classes in the sense of objects to agent technology arises
the question what is a class in the sense of an agents.

A class in the sense of object oriented programming is a blueprint
for objects, in our context an agent class has to be a blueprint for
agents. This can be either an instance of an agent or a set of agents
satisfying some special role or behavior.

UML distinguishes different specification levels, namely the
conceptual, the specification and the implementation level.

For the agent oriented point of view in the conceptual level an
agent class corresponds to an agent role or agent classification,
e.g. monitoring and route planning can be defined in different
agent classes. E.g. we can have an individual traffic (IT) route
planning (RP) agent and an IT Monitoring agent.

IT
RPAgent

IT
Monitoring

Agent

fig 3. conceptual level

On the specification level or interface level an agent class is
blueprint for instances of agents, e.g. the monitoring and route
planner are part of one agent class. But only the interfaces are
described and not the implementation, i.e. the agent head
automata (see below) describing the behavior of the agent
according to incoming messages is missing. Only the internal
states and the interface, i.e. the communicative acts supported by
the agent, is defined.

IT RP
Component

IT
Monitoring
Component

ITAgent

fig 4. specification level

The implementational level or code level is the most detailed
description of a system, showing how instances of agents are
working together and how the implementation of a class of agents
look like. On this level the agent head automata has to be defined,
too.

3.3 Agent class diagrams
In this section we show how usual UML class diagrams can used
and extended in the framework of agent oriented programming
development. We will use the following notation to distinguish
between different kinds of agent classes and instances.

A g e n tC la ss

A g e n tC la s s / ro le -1 , ro le -2 , . . .

A g e n tIn s ta n c e / r o le -1 , ro le -2 , . . . :
A g e n tC la ss

fig. 5: different kinds of agent classes

The first one denotes some agent class, the second some agent
class satisfying distinguished roles and the last one defines some
agent instance satisfying distinguished roles. The roles can be
neglected for agent instances. According to the statement given
above what has to be specified for agent classes we specify agents
by the agent class diagram shown in figure 6

agent-class-name / rolename1, rolename-2, ...

state-description

actions

methods

capabilities, service description, supported
protocols

[constraint] society-name

agent-head-
automata-name

CA-1 /
protocol

CA-2 /
protocol

not-
understooddefault

CA-2 /
protocol

CA-1 /
protocol

for short, e.g.

IT
RPAgent

IT
Monitoring

Agent

fig. 6. agent class diagram and its abbreviations

The usual UML notation can also be used to define such an agent
class, but for more readable reasons we have introduced the above
notation. Using stereotypes an agent class written as a class
diagram can look as shown in fig. 7.

Agent Class Descriptions and Roles
In UML, role is an instance focused term. In the framework of
agent oriented programming by agent-role a set of agents
satisfying distinguished properties, interfaces, service descriptions
or having a distinguished behavior are meant. UML distinguishes
between multiple classification (e.g., a retailer agent acts as a
buyer and a seller agent at the same time), and dynamic
classification, where an agent can change its classification during
its existence. Agents can perform various roles within e.g. one
interaction protocol. In an auction between an airline and
potential ticket buyers, the airline has the role of a seller and the
participants have the role of buyers. But at the same time, a buyer
in this auction can act as a seller in another auction. I.e., agents
satisfying a distinguished role can support multiple classification
and dynamic classification. Therefore, the implementation of an
agent can satisfy different roles. An agent role describes two
variations, which can apply within a multi agent system. A multi
agent system can be defined at the level of concrete agent
instances or for a set of agents satisfying a distinguished role
and/or class. An agent satisfying a distinguished agent role and
class is called agent of a given agent role and class, respectively.
The general form of describing agent roles in agent UML (as we
have shown in [2]) is

instance-1 ... instance-n / role-1 ... role-m : class

denoting a distinguished set of agent instances instance-1,...,
instance-n satisfying the agent roles role-1,..., role-m with n, m ≥
0 and class it belongs to. Instances, roles or class can be omitted,
in the case that the instances are omitted the roles and class are
not underlined.

State description
The state description looks similar to a field description in class
diagrams with the exception that we introduce a distinguished
class wff for well formed formula for all kinds of logical
descriptions of the state, independent of the underlying logic.
With this extension we have the possibility to define as well BDI
agents. Beyond the extension of the type for the fields, we allow
in addition to the visibility attributes a persistency attribute which
characterizes that the value of this attribute is persistence. E.g. in
our personal travel assistance example the user agent can have an
instance variable storing the already planned and booked travels.
This field is persistent (denoted by the stereotype <<persistent>>)
if the user agent is stopped and re-started later in a new session.
Optionally the fields can be initialized with some values.

In the case of BDI semantics one can define four instance
variables, named beliefs, desires, intentions and goals each of
type wff. Describing the beliefs, desires, intentions and goals of a
BDI agent. These fields can be initialized with the initial state of a
BDI agent. The semantics states that the wff holds for the beliefs,
desires, intentions and goals of the agent.

 In a pure goal-oriented semantics two instance variables of type
wff can be defined, named permanent-goals and actual-goals,

holding the formula for the permanent and actual goals.

Usual UML fields can be defined if we have to specify a plain
object oriented agent, i.e. an agent which is implementation on
top of e.g. a Java-based agent platform, as e.g. JADE.

 However in different design stages different kinds of agent can be
appropriate, e.g. on the conceptual level one can specify some
BDI agents which are then implemented by some Java-based
agent platform, i.e. some refinement steps from BDI agents to
Java agents are performed.

Actions
Pro-active behavior can be defined in two different ways, namely
using pro-active actions and agent head automata with a pro-
active behavior. The latter one will be considered later. Thus two
kinds of actions can be specified for an agent: pro-active actions
(denoted by the stereotype <<pro-active>>) are triggered by the
agent itself, e.g. using timer, or a special state is reached. I.e. it is
tested on state changes of the agent (e.g. timer, sensor input) if the
pre-condition of the action evaluates to true. Re-active actions
(denoted by the stereotype <<re-active>>) are triggered by
another agent, i.e. receiving some message from another agent.

The description of an agent's actions consists of the action
signature with visibility attribute, action-name and a list of
parameters with its associated types. The semantics of an action is
defined by pre-conditions, post-conditions, effects and invariants
as in UML.

Methods
Methods are defined like in UML, eventually with pre-conditions,
post-conditions, effects and invariants.

Capabilities
The capabilities of an agent can be defined either in an informal

way or using class diagrams for e.g. FIPA-service descriptions

Sending and Receiving of Communicative Acts
The main interface of an agent to its environment is the sending
and receiving of communicative acts. By communicative act (CA)
we mean the type of the message as well as the other information,
like sender, receiver or content like in FIPA-ACL messages. We
assume that the information about communicative acts are
represented by classes and objects. How ontologies and classes /
objects are playing together is beyond this paper and are reason
for future work.

The incoming messages are drawn as
C A - 1 /

p r o to c o l
and the

outgoing messages are drawn as
C A - 1 /
p r o t o c o l

. The received or
sent communicative act can either be some class or some concrete
instance.

The notation CA-1 / protocol is used if the communicative act of
class CA-1 is received in the context of an interaction protocol
protocol. In the case of an instance of a communicative act the
notation CA-1 / protocol is used. As alternative notation we write
protocol[CA-1] and protocol[CA-1]. The context / protocol can
be omitted if the communicative act is interpreted independent of
some protocol. In order to re-act to all kinds of received
communicative acts, we use a distinguished communicative act
default, which matches every incoming communicative act. The
not-understood CA is sent if an incoming CA cannot be
interpreted.

agent-class-name / rolename1, rolename-2, ...
<<agent>>

fields
<<state-description>>

methods
<<actions>>

methods
<<methods>>capabilities, service

description, supported
protocols

[constraint]
society-name

CA-1/protocol

CA-2/protocol

default

CA-1/protocol

CA-2/protocol

default

IT
RPAgent

<<agent>>

IT
Monitoring

Agent
<<agent>>

for short

figure 7. using UML class diagrams to specify agent behavior and its abbreviations

We distinguish between instances and classes, because of the
following reasons:

An instance describes a concrete communicative act with fixed
content or other fixed values. Thus if we have a concrete request,
say "start auction for a special good", an instance of a
communicative act would be used.

In order to allow a more flexible or generic description, say "start
auction for any kind of good", of the interface of an agent classes
are used for the communicative acts.

Matching of Communicative Acts
A received communicative act has to be matched against the
incoming communicative acts of an agent to trigger the
corresponding behavior of the agent. The matching of the
communicative acts depends on the ordering of them, namely the
ordering from top to bottom, since more than one communicative
act of the agent can match an incoming message.

The simplest case is the default case, default matches everything
and not-understood is the answer to messages not understood by
an agent. Since we match on the one side instances of
communicative acts, as well as classes of communicative acts, we
have to define free variables within an instantiated communicative
act. This is shown in figure 8 (class diagram for communicative
acts where the instance variables have the type undef).
Communicative acts are defined by classes without methods.

Communicative
Act

FIPA

sender : undef
receiver : undef
...

content : undef

FIPA-Inform

sender : undef
receiver : undef
...

content : undef

FIPA-Inform-
HotelInfo

sender : undef
receiver : undef
...

content : HotelInfo

fig. 8 instance hierarchy on communicative acts, being an
instance of the corresponding class hierarchy.

An input communicative act CA matches an incoming message
CA', iff

• CA is a class, then

• CA' must be an instance of class CA or

• CA' must be a subclass of class CA or a subclass of it.

• CA is instance of some class, then

• CA' is instance of the same class as CA and

• CA.field matches CA'.field for all fields field of the
class CA, defined as

• CA.field matches CA'.field, if CA.field has the
value undef.

• CA.field matches CA'.field, if CA.field is equal to
CA'.field with CA.field not equal to undef and the
type of field is a basic type.

• CA.field matches CA'.field, if CA.field is unequal
to undef and the type of field is not a basic data
type and CA.field are instance of the same class C
and CA.field.cfield matches CA'.field.cfield for all
fields cfield of class C.

In the case of a communicative act in the context of a protocol,
protocol[CA] matches protocol'[CA'], if CA matches CA' and
protocol' is equal to protocol.

The analogous holds for outgoing messages, in this case the
communicative act has to match the result communicative acts of
the agent head automata.

3.4 Agent-Head-Automata
The agent head automata defines the behavior of an agent's head.
We had defined an agent consisting of an agent's communicator,
head and body.

The agent communicator is responsible for the physical
communication of the agent.

The main functionality of the agent is implemented in the agent
body. This can be e.g. an existing legacy software which is
coupled to the MAS using wrapper mechanisms.

The agent's head is the "switch-gear" of the agent. Its behavior has
to be specified with the agent head automata. Especially this
automata relates the incoming messages with the internal state,
actions and methods and the outgoing messages, called the re-
active behavior of the agent. Moreover it defines the pro-active
behavior of an agent, i.e. it automatically triggers different
actions, methods and state-changes depending on the internal state
of the agent. An example of a pro-active behavior is to do some
action at a specific time, e.g. an agent migrates at pre-defined
times from one machine to another one, or it is the result of some
request-when communicative act.

UML supports four kinds of diagrams for the definition of
dynamic behavior, namely sequence diagrams, collaboration
diagrams on the object level, state and activity diagrams for other
purposes. Sequence diagrams and collaboration diagrams are
suitable for the definition of an agent's head behavior, since it is a
object / agent instance focused diagram. So it can easily be used
to define the concrete behavior, namely based on the actions,
methods and state changes. It is up to the preferences of the
designer to apply one of these diagrams. The state and the activity
diagram is more suitable for a more abstract specification of the
behavior of an agent's head. Again it is up to the designer to use
one of these two diagrams.

Let us first of all have a closer look at the re-active behavior. We
have to specify how the agent reacts to incoming. Using an
extended state automata (see fig. 9) this behavior can be specified.
In contrast to standard state automata the CA-notation of the class
diagram is used to trigger an automata (initial states) and the final
states match with the outgoing communicative acts.

Pro-active behavior is not triggered by incoming messages, but
depends on the validity of constraints or conditions. I.e. in the
state automata the initial state(s) are marked with some
conditions.

4. EVALUATION AND CONCLUSION
The artifacts for agent-oriented analysis and design were
developed and evaluated in the German research project MOTIV-
PTA (Personal Travel Assistant), aiming at providing an agent-
based infrastructure for travel assistance in Germany (see
www.motiv.de). MOTIV-PTA will run from 1996 to 2000. IT is a
large-scale project involving approx. 10 industrial partners,
including Siemens, BMW, IBM, DaimlerChrysler, debis, Opel,
Bosch, and VW. The core of MOTIV-PTA is a multiagent system
to wrap a variety of information services, ranging from
multimodal route planning, traffic control information, parking
space allocation, hotel reservation, ticket booking and purchasing,
meeting scheduling, and entertainment.

From the end user's perspective, the goal is to provide a personal
travel assistant, i.e., a software agent that uses information about
the users' schedule and preferences in order to assist them in
travel, including preparation as well as on-trip support. This
requires providing ubiquitous access to assistant functions for the
user, in the office, at home, and while on the trip, using PCs,
notebooks, information terminals, PDAs, and mobile phones.

From developing PTA (and other projects with corporate partners
within Siemens) the requirements for artifacts to support the
analysis and design became clear, and the material described in
this paper has been developed incrementally, driven by these
requirements. So far no empirical tests have been carried out to
evaluate the benefits of the Agent UML framework. However,
from our project experience so far, we see two concrete
advantages of these extensions: Firstly, they make it easier for
users who are familiar with object-oriented software development
but new to developing agent systems to understand what multi

agent systems are about, and to understand the principles of
looking at a system as a society of agents rather than a distributed
collection of objects. Secondly, our estimate is that the time spent
for design can be reduced by a minor amount, which grows with
the number of agent-based projects. However, we expect that as
soon as components are provided to support the implementation

based on Agent UML specifications, this will widely enhance the
benefit.

Areas of future research include aspects such as

• description of mobility, planning, learning, scenarios, agent
societies, ontologies and knowledge

• development of patterns and frameworks

• support for different agent communication languages and
content languages

• development of plug-ins for existing CASE-tools

At the moment we plan to extend the presented framework and
take inheritance and the benefits and problems of inheritance into
consideration.

5. REFERENCES
[1] AUML: http://www.auml.org
[2] Bauer, B.; Müller, J. P.; Odell, J.: An Extension of

UML by Protocols for Multiagent Interaction,
Proceeding, Fourth International Conference on Multi
Agent Systems, ICMAS 2000, Boston, IEEE Computer
Society, 2000.

[3] Booch, G., Rumbaugh, J., Jacobson, I., The Unified
Language User Guide, Addison-Wesley, Reading,
MA, 1999.

[4] Brazier, F.M.T., Jonkers, C.M., Treur J., ed.,
Principles of Compositional Multi-Agent System
Development Chapman and Hall, 1998.

[5] Bryson, J., McGonigle, B. "Agent Architecture as
Object Oriented Design," in: Intelligent Agents IV:
Agent Theories, Architectures, and Languages. 1998.

agent head automata

State

state

CA-1 /
protocol

CA-1 /
protocol

fig. 9 extended state automata

[6] Burmeister, B., ed., Models and Methodology for
Agent-Oriented Analysis and Design 1996.

[7] Burmeister, B., Haddadi A., Sundermeyer K., Generic,
Configurable, Cooperation Protocols for Multi-Agent
Systems, Lecture Notes in Computer Science, Vol.
957, 1995.

[8] Garijo, F. J., Bomaned J., ed., Multi-Agent System
Engineering: Proceedings of MAAMAW'99, 1999.

[9] Gustavsson, R. E., "Multi Agent Systems as Open
Societies," in: Intelligent Agents IV: Agent Theories,
Architectures, and Languages, 1998.

[10] Herlea, D. E., Jonker C. M., Treur J., and Wijngaards
N.J.E., in: Specification of Behavioural Requirements
within Compositional Multi-Agent System Design,
1999.

[11] Iglesias, C. A., Garijo, M., González J.E., A Survey of
Agent-Oriented Methodologies, in: Intelligent Agents
V: Agent Theories, Architectures and Languages
(ATAL-98), 1998.

[12] Iglesias, C. A., Garijo, M., González, J. C., Velasco, J.
R. "Analysis and Design of Multiagent Systems using
MAS-CommonKADS," in: Intelligent Agents IV:
Agent Theories, Architectures, and Languages, 1998.

[13] Jonker, C. M., Treur, J., in: Compositional Verification
of Multi-Agent Systems: a Formal Analysis of Pro-
activeness and Reactiveness, 1997.

[14] Kinny, D., Georgeff, M., "Modelling and Design of
Multi-Agent Systems," in: Proceedings ATAL'96,
1996.

[15] Kinny, D., Georgeff, M., Rao, A., "A Methodology and
Modelling Technique for Systems of BDI Agents," in:
MAAMAW'96, 1996.

[16] Lee, J., Durfee, E. H., "On Explicit Plan Languages for
Coordinating Multiagent Plan Execution," in: ATAL
98, 1998.

[17] Martin, J., Odell, J., Object-Oriented Methods: A
Foundation, (UML edition), Prentice Hall, 1998.

[18] Nodine, M. H., Unruh, A., "Facilitating Open
Communication in Agent Systems: the InfoSleuth
Infrastructure," ATAL 98, 1998.

[19] Parunak, H. Van D., Visualizing Agent Conversations:
Using Enhanced Dooley Graphs for Agent Design and
Analysis, in: Proceedings of the First International
Conference on Multi--Agent Systems, MIT Press, 1995.

[20] Parunak, H. Van D., Odell J., Engineering Artifacts for
Multi-Agent Systems, ERIM CEC, 1999.

[21] Parunak, H. Van D., Sauter, J., Clark, S. J., Toward the
Specification and Design of Industrial Synthetic
Ecosystems, in: ATAL 98,1998.

[22] Rumbaugh, J., Jacobson, I., Booch G., The Unified
Modeling Language Reference Manual, Addison-
Wesley, 1999.

[23] Schoppers, M., Shapiro, D., Designing Embedded
Agents to Optimize End-User Objectives, in: ATAL 98,
1998.

[24] Singh, M. P., A Customizable Coordination Service for
Autonomous Agents, in: ATAL 98, 1998.

[25] Singh, M. P., Towards a Formal Theory of
Communication for Multi-agent Systems, Proceedings
of the 12th International Joint Conference on Artificial
Intelligence, pp. 69-74, Morgan Kaufmann, August
1991.

[26] Wooldridge, M., Jennings, N. R., Kinny, D., "The Gaia
Methodology for Agent-Oriented Analysis and
Design," International Journal of Autonomous Agents
and Multi-Agent Systems, 3, 2000.

[27] Ciancarini, P., Wooldridge, M. J., eds, Agent-Oriented
Software Engineering, First International Workshop,
AOSE 2000, Limerick, Irland, June 2000, 2001.

	INTRODUCTION
	BACKGROUND
	UML and AUML

	UML CLASS DIAGRAMS - REVISITED
	Basics
	Relating Objects with Agents
	Agent class diagrams
	Agent-Head-Automata

	EVALUATION AND CONCLUSION
	REFERENCES

