Extended Modeling Languages
for Interaction Protocol Design

Jean-Luc Koning', Marc-Philippe Huget?, Jun Wei and Xu Wang>

! Leibniz-Esisar
50, rue Laffemas - BP 54
26902 Valence, France
Jean-Luc.Koning@esisar.inpg.fr
? Magma-Leibniz
46, avenue Félix Viallet
38031 Grenoble, France
Marc-Philippe. Huget @imag.fr
® Institute of Software
Chinese Academy of Sciences
Beijing, China
wj@otcaix.iscas.ac.cn xuwang@cs.ust.hk

Abstract. Successful development of agent interaction protocols re-
quires modeling methods and tools that support a relatively complete
development lifecycle. Agent-based systems are inherently complex but
exhibit many similarities to object-oriented systems. For these reasons
not only current modeling languages need to be extended, but also re-
lated tools should be provided for agent interaction protocol design to
be supported. In this paper, we focus on the design stage of an agent in-
teraction protocol development cycle. We start by giving general criteria
for comparing agent modeling languages. The ones we take into consid-
eration in this paper are extensions of Agent-UML and FIPA-UAML
languages. We describe these languages and discuss some extensions on
a simplified application of the Netbill electronic commerce protocol. We
then briefly introduce a component-based formal specification language
in order to support the protocol’s design stage and present a tool built
upon the FIPA norm (making use of the PDN or UAML notation) which

supports the analysis and design of interaction protocols.

1 Introduction

The development cycle of agent interaction protocols (AIP) for multiagent sys-
tems does not account for as large a literature as the one dedicated to commu-
nication protocols in distributed systems. Let us quote El Fallah-Seghrouchni’s
work on interaction protocol engineering [16] where it comprises three main
stages:

Design and validation. A dedicated way to tackle stage 1 is through the use
of colored Petri nets since such a formalism supports concurrent processing.
Besides a whole set of validation tools is available.

Observation of the protocols’ execution. Stage 2 deals with a post-
mortem analysis of the message scheduling.

Recognition and explanation of conversations. Stage 3 checks whether
the interactions unfolded according to the protocol and that the overall
behavior corresponds to what the designer expected. It also highlights the
agents’ behavior during those interactions and helps pinpoint possible causes
of failure.

Because of the quite distinctive nature of the two sets of protocols found
in distributed and multiagent systems, it 1s not possible to fully apply results
from works in communication protocols to interaction protocols. Therefore, it is
necessary to define a suited development cycle that, when possible, makes use
of existing techniques from distributed systems, or otherwise derives new ones.

In this paper, we will focus on the design stage of an agent interaction proto-
col development cycle. Section 2 starts by giving general criteria for comparing
agent modeling languages. The ones taken into consideration in this paper are
extensions of Agent-UML and FIPA-UAML languages. We describe these lan-
guages and discuss some extensions on a simplified application of the Nethill
electronic commerce protocol (section 3). Section 4 then briefly introduces a
component-based formal specification language in order to support the proto-
col’s design stage and presents a tool built upon the FIPA norm (making use of
the PDN or UAML notation) which supports the analysis and design of inter-
action protocols. This tool also supports our extension of UAML.

2 Agent Modeling Languages

Essentially two families of agent modeling languages have been used for rep-
resenting AIPs!: one is Agent-UML [12] and the other is FIPA-UAML [4]. In
this section, we briefly compare these two families as well as their respective
extension against a set of general criteria.

2.1 Unified Agent Modeling Language and UAMLe

UAML [4] is probably the first graphical language proposed (by FIPA) for repre-
senting AIPs. Most of the characteristics in UAML also appear in AUML: agents
are denoted via their role, several types of message sendings along with possible
added constraints are allowed (synchronous, asynchronous, broadcast, repeated
sendings, temporal constraints, etc.). As shown in figure 1, concurrent messages
are allowed. Sub-protocols are an interesting notion introduced in UAML that
denotes a sequence of messages inside one protocol.

The letters attached to the edges represent a cardinal value, e.g., the first
edge indicates that m copies of the message are to be sent and n (or o or p)
answers (n < m) can be sent back and so on.

! Both of these forms were combined in 2000 and are now referred to simply as AUML.

I@l Agent-Type-2

cfp-msy

[N

e

3

not-understood-msg

-
>

refuse-msy

propose-msgy

reject-proposal-msg

accept-proposal-msy

a

failure-m:

inform-msg

cancel-msg

-
E)

Fig. 1. Contract Net in UAML.

UAML represents alternatives in interaction states by means of boxes with
separations between the possible cases. Each message is defined via a box con-
taining a message (i.e., with an arrow). A sub-protocol (e.g., see the box start-
ing with the message not-understood-msg) may contain other sub-protocols (as
shown by two other nested boxes in figure 1). Possible choices are separated by
lines and messages to be handled concurrently are separated by dotted lines (like
between inform-msg and cancel-msg).

Compared with UAML, UAMLe essentially enables to synchronize one agent
on several messages of different types and also introduces the notion of excep-
tion at the level of a single message as well as a set of messages. In the classical
Contract Net protocol (with AUML [12] and with UAML [4]) the final message
is a cancel message returned by the initiator after receiving the last inform mes-
sage. Actually, it would be better to send a cancel message only if an exception
arises. In UAMLe (figure 2) this exception handling is denoted by an ezcep-
tionfcancel]. . . end exception statement. Therefore the exception applies to the
whole time interval that corresponds to the waiting for an answer by the agent
in charge of the task. When the exception is caught the cancel message is sent
to that agent.

Agent-Type-1 Agent-Type-2

1 cfp-msy m

1 not-understood-msg n

1 refuse-msg [¢]

1 propose-msg P

1 reject-proposal-msg r

1 accept-proposal-msg q

exceptiol
[cancel] | 4 failure-msg q
1 inform-msg q

iend exceptio

Fig. 2. Contract Net in UAMLe.

2.2 Agent-UML and EAUML

AUML [12] [13] is a proposal for the specification of agent-based systems. It has
been mainly applied to model protocols for multiagent interactions. AUML pro-
vides a set of extensions based on UML sequence diagrams, packages, templates:
protocol diagrams, agent roles, extended message semantics, multi-threaded life-
lines, nested and interleaved protocols, and protocol templates. The core of these
extensions for AIPs is found in what could be called protocol diagrams that com-
bine sequence diagrams with the notation of state diagrams for the specification
of AlPs.

In AUML messages are considered to be exchanged between agents that are
denoted by their role. Loops are taken care both at the level of single messages
and sets of messages. Conditional branching can be represented by means of stan-
dard ¢f-then-else choice and also through some dedicated connectors representing
concurrent threads. Figure 3 respectively shows and, zor and or connectors.

On one hand the simplicity of UML sequence diagrams makes them suitable
for expressing requirement, but lack of semantics makes them sometimes ambigu-
ous and therefore difficult to be interpreted. AUML’s proposal has improved this
situation.

EAUML [19] is essentially based on AUML protocol diagrams. It brings forth
some simplifications and modifications in that it adopts a somewhat different
view from AUML as far as control threads for single agent and message char-

cA-1 CA1 cA-1
iy

CA-2 cA2 cas

CA-n
| CAn_ ’]
@ (b) ©

Fig. 3. Connectors for message sending in AUML.

D

Fig. 4. Connectors for lifeline in AUML.

acterization. EAUML should not be seen as a competing alternative to AUML
but rather as a way of viewing AIP visual modeling from another angle.

The extended notations for agent lifelines (see figure 4) and message sending
(see figure 3) in AUML are kept but with a different semantics as far as the
inclusive-or lifeline. Also only an asynchronous semantics is kept for messages.
Besides, these messages are abstract symbolic messages rather than mere speech
act messages.

[trigger] msg
e R M

Broadcast Synchronization Causality Triggering

Fig. 5. Connectors in EAUML.

The extensions EAUML provides essentially deal with message passing within
sequence diagrams. Figure 5 shows four new connectors. Message broadcast cor-
responds to sending a message n times. Message triggering corresponds to the
guarded messaging in UML and AUML but in EAUML this also implies some
internal events trigger the message sending. Message synchronization and the
keyword “silent” have no direct counterpart in AUML. The former means an
agent has to wait for several messages to arrive. The latter is a constraint that
can be placed on messages to denote that the sending or receiving of a message
has no effect on the current state. Message causality is introduced to indicate
a causal relationship between two messages. The purpose of this construct is to
simplify the dynamic model.

Figure 6 depicts the contract net protocol expressed as a EAUML sequence
diagram. This example very much looks like the one given by Odell et al. [12].
The major difference with the AUML sequence diagram deals with the handling
of message Cancel. This is not a regular message since it appears only in case of
trouble we can make use of the fourth connector of figure 5.

Initiator, Participant

Deadline

FIPA Contract Net Protocol call-for-proposdl, refuse*
notjunderstood, propose,
. . -proposal*, g *,
Participant e V;nce.ﬁﬁﬂzow
call-for-proposal
PN prop!
refuse
D
deadline
not-understood
propose I
accept-proposal
reject-proposal
inform
[problems] cancel T

Fig.6. Contract Net in EAUML.

Regarding organizational structures, some further extensions to AUML have
recently been addressed [14]. Among other things they refine the concept of role
agents may endow from a behavioristic perspective.

2.3 Some General Criteria on Agent Modeling Languages

In order to compare agent modeling languages, let us list a series of nine general
criteria one may want to see supported by AIPs one way or another.

Roles: Agents are not represented by their name but according to their role
within the interaction protocol. Such an approach enables to easily take into
account a variable number of agents. Once those roles are identified there is
no need to modify the design of the interaction protocol when a new agent
is brought into place.

Synchronous/asynchronous communication: When agents send messages
to one another they wait (resp. do not wait) till those messages are read
prior to keep on running.

Concurrency: A number of messages can be sent or received at the same time.

Loop: A set of messages i1s sent a number of times. Either this number is ex-
plicitly known or the loop is based on a condition that must be true for the
loop to keep on being activated.

Temporal constraints: An agent specifies a deadline that corresponds to a
point in time before which some messages are expected.

Exception: A way to handle unexpected events that could either stop the
course of an interaction or lead to a failure.

Design: Connected to the visual modeling langage a set of algorithms and/or
tools to go to a formal corresponding definition is provided. This may involve
a translation of the description into finite state machines (FSM).

Validation: Connected to the visual modeling langage a set of algorithms
and/or tools for validating properties on interaction protocols is provided. It
may either be a structural or a functional validation. For this purpose one
may rely on the SPIN/PROMELA model-checker [6].

Protocol synthesis: Some algorithms and/or tools can lead to some code gen-
eration to make a protocol executable by the agents.

Table 1 gives a synthesized view on the following four graphical languages
AUML, EAUML, UAML, UAMLe against these nine criteria.

The first six criteria deal with the direct characteristics of the visual language,
and as a matter of fact, all four languages provide them. Sharper differences
between these agent modeling languages appear among the last three criteria,
i.e., when one considers them as a stage of an overall AIP life-cycle.

3 Designing Agent Interaction Protocol

3.1 Designing the Netbill Protocol Using EAUML

In order to clarify the extension in EAUML sequence diagrams, let us look at the
agent-based Netbill [3] purchase protocol. Although we give here a simplified ver-
sion of the Netbill protocol (see figure 7) it embodies the primary characteristics
of agent interaction protocols in electronic commerce, including asynchronous
messaging, distributed processing, concurrency, communication uncertainties,
etc. The agent-based modeling of this protocol can be abstracted to involve
only three agents, one consumer, one merchant and a commonly trusted bank.
Consumers buy e-goods through a web-browser from the merchant. Payment
between them is settled by the bank.

Figure 7 illustrates the interaction pattern among the three parties. Message
passing is asynchronous. Causal messaging relates in/out messaging into one
action such as on the Merchant lifeline where in-message “endorsed electronic
payment order” (EEPO) and “electronic payment order” (EPO) are causally
related. The triggered messaging implies that some internal event happened so
that one message sending 1s triggered. The triggered messaging on the lifeline of
Consumer expresses that the timeout event occurred and then caused message
“transaction enquiry” (TE) to be sent out. XOR and OR message sendings are

|| AUML | EAUML | UAML | UAMLe |
Roles O
Asyn-
Sync./ Both Both
chronous
Async.
Concur- Specific connector Separatl.on of the various mes-
sages using boxes
rency
Loop At the level of a message or a group of message
Time Through deadlines
By means
of a special
. . U t of
Exception connector Not directly pon & seb o
. . messages
for triggering
actions
Possible aug- onlrgonthﬁzfns No graphical |Graphical
Design Ef;lsted UML lation into|tools tool DIP
FSM
Translation
. to FSM f
Algorithms © habilit o
No direct |for trans-|No direct lecl Zisl ! ;/n d
Validation ||bridge to|lation into |bridge to SIS,
. . translation
validators ProMELA for|validators
. to PROMELA
use with SPIN
for model-
checking
No known No known
Protocol algorithm dee genera- |algorithm dee genera-
thesi for protocol |tion for protocol |tion
Synthesis synthesis synthesis

Table 1. Some criteria for comparing agent modeling languages.

Consumer Merchant Bank

GR
EG

EPO E
EEPO
[TimeOut] TE
. Py

NP

AN
| NR{ silent} %(

Fig. 7. Transaction Protocol of NetBill in EAUML.

selected depending on some state condition. The XOR message sending between
“payment slip” (PS) and “no payment” (NP) on the bank lifeline is chosen based
on a state condition about payment transaction status. The silent message “no
record” (NR) does not affect the state of the recipient (Consumer) nor the sender
(Bank). GR refers to “Good Request” and EG to “Electronic Good”.

3.2 Designing the Netbill Protocol Using UAMLe

The Netbill protocol is represented with UAMLe in figure 8.

In conjunction with the UAMLe modeling language a formal description is
provided. We give such a detailled description of the Netbill protocol in sec-
tion 4.2.

4 Towards a Component-Based Specification

4.1 Protocols and Micro-Protocols

It i1s important for an interaction protocol to be reusable, i.e., a piece of a protocol
could be replaced by another without having to start a whole new development
cycle and to globally think out the protocol but to be able to reuse parts of a
protocol. This idea has been introduced by Singh [17] and Burmeister et al. [2].

One could define interaction protocols as sets of components, called micro-
protocols (i.e., they represent interaction units that themselves contain a set

10

Customer Merchant NetBill server

PriceRequest(1)
PriceQuote(2)
GoodRequest(3)
EncryptedGood(4)
EncryptedPaymentOrder(5)
exception
[Timeout]
EndorsedEncryptedPaymentOrder(6)
SugnedResult(7)
SignedResult(8)
end exception

Fig. 8. Complete Transaction Protocol of NetBill in UAMLe.

of performatives® and whose contents is the piece of information to be passed
on), that can be assembled in a protocol via a dedicated composition language
called CPDL. See [9] for an extended article on issues related to the modeling of
component-based interaction protocols.

Like components in software engineering, a micro-protocol is defined by an ez-
ecutable part which is a set of performatives and an interface part for connecting
micro-protocols together. Such a micro-protocol is composed of four attributes:

— Its name identifies a unique micro-protocol.

— Its semantics is used to help designers know its meaning without having to
analyze its definition. These two fields make up the micro-protocol’s signa-
ture. The other two attributes refer to its implementation.

— Its parameters’ semantics. When making use of a micro-protocol it is neces-
sary to know all the parameters’ semantics since they are used for building
messages.

— Its definition corresponds to the ordered set of performatives constituting
the micro-protocol. Each performative is described along with its parameters
like the sender, the receiver and the message’s content.

Combining micro-protocols into a general interaction protocol can be done
with some logic-based formulae encompassing a sequence of micro-protocols.
The relation between the micro-protocols’ parameters should also be specified

2 A performative is related to speech act [15] and is a verb plus a content.

11

by telling which are the ones matching. Suppose two parameters v and v are
used in a same protocol, if they handle an identical parameter, this parameter
should have a unique name. This facilitates the agents’ work in allowing them
to reuse preceding values instead of having to look for their real meaning. This
approach is very much oriented towards data reuse.

CPDL is a description language for interaction protocols based on a finite
state automaton paradigm which we have endowed with a set of features coming
from other formalisms such as:

— tokens in order to synchronize several processes as this can be done with
high-level Petri nets.

— timeouts for the handling of time in the other agents’ answers. This notion
stems from, for example, temporal Petri nets.

— beliefs that must be taken into account prior to firing a transition. This
notion is present in predicate/transition Petri nets as well as in temporal
logic. Beliefs within the protocol’s components as it 1s the case in AgenTalk

[11].

Compared with a finite state automaton a CPDL formula includes the fol-
lowing extra characteristics:

1. a conjunction of predicates in first order logic that sets the conditions for
the formula to be executed.

2. the management of loops that enable a logic formula to stay true as long as
the premise is true, with a loop predicate.

These following characteristics are included in micro-protocols:

1. the synchronization of processes through the handling of tokens. Such be-
havior is given through the token predicate.

2. the management of time and time stamps in the reception of messages with
the time predicate. A CPDL well-formed formula looks like:

‘a, {b € B}*, loop(\ p;) — micro-protocol*, 3

A CPDL formula corresponds to an edge going from an initial vertex to a final
one 1n a state transition graph. Such an arc is labeled with the micro-protocols,
the beliefs and the loop conditions. a denotes the state the agent is in prior
to firing the formula and [denotes the state it will arrive in once the formula
has been fired. The star on the micro-protocols denotes that one can have zero
micro-protocol in this formula.

{b € B}* represents the guard of a formula. Such a guard is a conjunction of
first-order predicates that needs to be evaluated to true in order for the formula
to be used. B is the set of the agent’s beliefs. This guard is useful when the set
of formulae contains more than one formula with a same initial state. Only one
formula can have a guard evaluated to true, and therefore it is fired. This requires
that no formula be nondeterministic and that two formulae cannot be fired at

12

the same time. In the current version of CPDL, predicates used for beliefs are
defined within the language, and agents have to follow them.

As indicated earlier the loop predicate aims at handling loops within a for-
mula. Its argument is a conjunction of predicates. It loops on the set of micro-
protocols involved in the formula while 1t evaluates to true.

4.2 Description of Netbill in CPDL

Given that there are three different roles in the Netbill protocol (see figure 8) it
is divided into three interaction parts: PriceRequest where one consumer asks to
the merchant how much is one particular electronic good, GoodsDelivery where
the merchant sends encrypted electronic goods to the consumer and Payment
involving the three roles where the consumer purchases the goods to the mer-
chant via the bank represented by a Netbill server. The consumer receives a key
in order to decrypt the good.
The CPDL expression of the latter protocol is given as

init — PriceRequest(C,M,G), Al
Al, exception{timeout = exit} — GoodsDelivery(C,M,G), A2
A2 — Payment(C,M,G), end

Variables ', M and N correspond to the consumer, the merchant and the
bank. The definition of micro-protocol PriceRequest is:

‘ request-price(C,M,G).inform(M,C,P) ‘

The one for GoodsDelivery is:

‘ request(C,M,G).send(M,C,G) ‘

Micro-protocol Payment is defined as:

| pay(C,M,EPO).pay(M,N,EEPO).inform(N, M R) .inform(M,C R)]

Variable (G corresponds to the requested good and P stands for its price.
request-price is a performative. Performatives inform and request have the same
semantics as the one in FIPA-ACL [4]. Performative send corresponds to the
sending of good G

Variable EPQO corresponds to the Electronic Payment Order sent by the
consumer. When it is passed from the merchant agent to the bank agent, the
former agent i1s adding a key that is necessary for decyphering the good G, thus
leading to the variable EEPO (Endorsed EPO). Variable R is the result of the
financial transaction as well as the key need for decyphering. The semantics of
performative pay is the payment of good G.

The exception inside the second formula corresponds to the case where the
consumer agent is refusing the price given by the merchant agent. In Nethill,

13

nothing is said concerning whether the consumer agent has to let know the
merchant agent that the interaction is over. Therefore an exception allows to take
into consideration the fact that a client agent presumably closed the interaction
whenever the duration between the price offer and the request for the good is
too long.

4.3 A Tool for Supporting AIP Design

We have developed a platform with a tool dedicated to helping design interaction
protocols (DIP). This platform also contains a tool for validation (TAP) and a
tool for conformance testing (CTP). DIP follows the component-based approach
presented here above. As shown on figure 9, such a tool enables to design and
bring into play a protocol in a graphical manner by relying on micro-protocols
and on the compositional language CPDL.

Our platform is endowed with a true graphic editor that enables to define
interaction protocols in the graphic language UAMLe (cf. figure 9). Such a tool
allows to (1) build and (2) modify protocols. For this, DIP maintains some
information about a protocol: its name, its set of micro-protocols, its semantics
and 1ts set of CPDL formulas

Another feature is (3) the automatic translation into CPDL of a protocol
represented by a high-level Petri net. (4) DIP allows to display a protocol in
the alternate FTPA’s notation called the Protocol Description Notation (PDN).
Unlike UAML (and UAMLe), PDN is a tree-like description of a protocol where
each node represents a protocol state and the transitions going out of a node
correspond to the various types of message that can be received or sent at the
time the interaction takes place. Since DIP is also used in analysis and pro-
tocol synthesis phases, it is possible to store a description of the protocol in
natural language and the designer can generate a skeleton of the protocol in a
programming language.

5 Discussion

In the field of multiagent systems, there are very few tools supporting the design
of interaction protocols to date. Let us mention AgentBuilder [18] and AgentTool
[1].

As opposed to the approach advocated in this paper, AgentBuilder does not
allow for an easy reuse of existing protocols in order to build new ones as with
DIP. Protocols in AgentBuilder are defined by means of finite state automata
which unfortunately do not efficiently handle synchronization among agents.
Furthermore, AgentBuilder leans on a proprietary protocol’s structure which
makes it very difficult to utilize any external tool to perform validation tests.

It is also impossible to import protocols expressed in some other formalism
which limits reusing. In the approach we have presented, interaction protocols are
given in an open formalism which makes it possible to import foreign protocols
expressed by means of Petri nets for instance.

14

D esigning Interaction Protocols

col About

FluamLe view: Netgil o

Agent ': =

|Cliel‘lt Merchant |Bank

Token i PriceRedque st :
Time i
Conditions | | " DriceQuote
Exception ;
T | GoodRaguest

s EncrypledGood

£ edb: ehtorde

pime: MNetgill

cro-protocols: |

prmantics: [

pfinition: |

Fig. 9. Tool for designing interaction protocols.

In the domain of distributed systems protocol engineering has been tack-
led for a long time. This has led to numerous effective tools. Let us mention
Design/CPN [7] which allows to manage protocols by means of colored Petri
nets.

Design/CPN enables to graphically design and test Petri nets. Such a soft-
ware tool is capable of simulating the execution of a protocol but is not open to
other tools. Its proprietary formalism for representing protocols forces designers
to address the protocol implementation issue with still another formalism which
is not adequate as far as validation is concerned. On the other hand DIP aims
at keeping a same formalism up to the point of validation [9].

Our work on graphically designing interaction protocols and on CPDL is
included in a whole interaction protocol engineering [10]. This engineering is
decomposed in five phases coming from analysis to conformance testing. In a
very first time, the designer specifies the document of protocol’s requirements,
then formally describes it (with CPDL and UAMLe). The next step is to check
if the protocol fulfills the properties defined in the document written before. The
last two steps of our proposal of interaction protocol engineering tackle on an
executable version of the protocol. First, one generates a program corresponding
to the protocol and finally, one checks if the protocol always fulfills properties
defined before. This proposal of interaction protocole engineering makes benefit

15

of work in distributed systems where one can find one communication protocol
engineering [5].

Acknowledgments

This work was partially supported by the Sino-French Advanced Research Pro-
gram (PRA SI 00-06). CIPE project: Component-based Interaction Protocol Fn-
gineering. J.-L. KoNING & WET Jun).

References

10.

11.

12.

Agenttool information page. http://en.afit.af.mil/ai/agentool.htm, 2000.

B. Burmeister, A. Haddadi, and K. Sundermeyer. Generic, configurable, coop-
eration protocols for multi-agent systems. In C. Castelfranchi and J.-P. Muller,
editors, From Reaction to Cognition, volume 957 of Lecture notes in Al pages
157-171, Berlin, Germany, 1995. Springer Verlag. Appeared also in MAAMAW-
93, Neuchatel.

B. Cox, J. Tygar, and M. Sirbu. Nethill security and transaction protocol. In
Proceedings of the First USENIX Workshop in Electronic Commerce, july 1995.
FIPA. Specification: Agent Communication Language. Foundation for Intelli-
gent Physical Agents, http://www.fipa.org/spec/fipa99spec.htm, September 1999.
Draft-2.

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1991.

. G. J. Holzmann. The model checker spin. TFEF Transactions on Software Engi-

neering, 23(5), May 1997.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use, volume 1, Basic Concepts of Monographs in Theoretical Computer Science,
chapter 6, Overview of Design/CPN. Springer-Verlag, 1992. ISBN: 3-540-60943-1.
J.-L. Koning and M.-P. Huget. A component-based approach for modeling interac-
tion protocols. In 10th Furopean-Japanese Conference on Information Modelling
and Knowledge Bases, Finland, May 2000.

J.-L. Koning and M.-P. Huget. A semi-formal specification language dedicated to
interaction protocols. In H. Kangassalo, H. Jaakkola, and E. Kawaguchi, editors,
Information Modelling and Knowledge Bases XII, Frontiers in Artificial Intelligence
and Applications. [OS Press, Amsterdam, 2001.

J.-L. Koning, M.-P. Huget, J. Wei, and X. Wang. Engineering electronic commerce
interaction protocols. In Proceedings of Intelligent Agents, Web Technologies and
Internet Commerce (IAWTIC 01), Las Vegas, NV, USA, July 2001.

K. Kuwabara, T. Ishida, and N. Osato. AgenTalk: Describing multiagent coor-
dination protocols with inheritance. In Seventh IEFE International Conference
on Tools with Artificial Intelligence, pages 460-465, Herndon, Virginia, November
1995.

J. Odell, H. V. D. Parunak, and B. Bauer. Extending uml for agents. In G. Wag-
ner, Y. Lesperance, and E. Yu, editors, Proceedings of the Agent-Oriented Informa-
tion Systems Workshop at the 17th National conference on Artificial Intelligence,
Austin, Texas, july, 30 2000. [Cue Publishing.

16

13

14.

15.

16.

17.

18.

19.

J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent interaction protocols
in uml. In P. Giancarini and M. Wooldridge, editors, Proceedings of First Interna-
tional Workshop on Agent-Oriented Software Engineering, Limerick, Ireland, june,
10 2000. Springer-Verlag.

H. V. D. Parunak and J. Odell. Representing social structures in uml. In
M. Wooldridge, G. Weiss, and P. Ciancarini, editors, Second International Work-
shop on Agent-Oriented Software Engineering (AOSE-2001), LNCS, Montreal,
Canada, May 2001. Springer-Verlag.

J. Searle. Speech Acts: An Fssay in the Philosophy of Language. Cambridge Uni-
versity Press, Cambridge, 1969.

A. E.-F. Seghrouchni, S. Haddad, and H. Mazouzi. A formal study of interaction
in multi-agent systems. In Modelling Autonomous Agents in Multi- Agent Worlds
(MAAMAW), 1999.

M. P. Singh. Toward interaction oriented programming. Technical Report TR-96-
15, North Carolina State University, May 1996.

R. Systems. Agentbuilder, an integrated toolkit for constructing intelligent software
agents. Technical report, Reticular Systems, 1999.

J. Wei, S.-C. Cheung, and X. Wang. Towards a methodology for formal design and
analysis of agent interaction protocols : An investigation in electronic commerce.
In International Software Fngineering Symposium, Wuhan, Hubei, China., March
2001.

