
Agent Design Patterns:
Elements of Agent Application Design

Yariv Aridor Danny B. Lange
IBM Tokyo Research Laboratory

Yamato, Kanagawa, Japan
General Magic Inc.

Sunnyvale, California, U.S.A.

tayariv@trl.ibm.co.jp danny@acm.org

1. ABSTRACT
Agent technology is an emerging field and
agent-based application design is still a pio-
neering discipline. We are all pioneers, in-
venting and re-inventing sometimes smart but
perhaps more not-so-smart solutions to recur-
rent problems. It is here that agent design pat-
terns can help by capturing good solutions to
common problems in agent design. No special
skills, language features, or other tricks are
required for you to benefit from these pat-
terns. Simply speaking, agent design patterns
can make your applications more flexible, un-
derstandable, and reusable, which is probably
why you were interested in agent technology in
the first place. In this paper we report on sev-
eral design patterns we have found in mobile
agent applications.

1.1 Keywords
Agent design pattern, agent application, reuse, mobile agent

2. INTRODUCTION
Mobile agents are an emerging technology that makes it
very much easier to design, implement, and maintain dis-
tributed systems. A mobile agent is not bound to the system
in which it begins execution. It has the unique ability to
transport itself from one system in a network to another.
This ability to travel allows a mobile agent to move to a

system that contains an object with which the agent wants
to interact, and then to take advantage of being in the same
host or network as that object.

You will find that mobile agents reduce network traffic,
provide an effective means of overcoming network latency,
and perhaps most importantly, through their ability to oper-
ate asynchronously and autonomously of the process that
created them, help you to construct more robust and fault-
tolerant applications.

However, as in other emerging technologies, we are all
pioneers, repeatedly inventing and re-inventing sometimes
smart but perhaps more often not-so-smart solutions to re-
current problems. During the early work on Aglets [3], the
developers recognized a number of recurrent patterns in the
design of mobile agent applications. Several of these pat-
terns were given intuitive meaningful names such as Mas-
ter-Slave, Messenger, and Notifier. They were implemented
in Java [2] and included in the first release of the Aglets
Workbench [5]. These early patterns were found to be
highly successfully for jump-starting users who were new
to Aglets and the mobile agent paradigm.

This experience tells us that it is important to identify the
elements of good and reusable designs for mobile agent
applications and to start formalizing people’s experience
with these designs. This is the role of design patterns [1].
The concept originated with software engineers and re-
searchers in the object-oriented community, and has been
recognized as one of the most significant innovations in the
object-oriented field.

The focus of this paper is a new set of agent design pat-
terns for creating mobile agent applications. We present a
catalog of agent designs and describe representative pat-
terns. Our patterns have an object-oriented flavor: that is,
we describe them by using the notions of classes, objects,
inheritance, and composition. Although they can be effi-
ciently implemented in object-oriented languages such as
Java, for most of the patterns an object-oriented language is
not essential.

This paper is structured as follows: in Section 3 we present
a classification scheme for agent design patterns; Section 4
describes three selected patterns in greater detail; Section 5
reports our experience in applying agent design patterns;
and Section 6 concludes the paper.

In Proceedings of Autonomous Agents ’98,
ACM Press, 1998.

3. CLASSIFICATION OF AGENT DESIGN
PATTERNS
The patterns we have discovered so far can conceptually
divided into three classes: traveling, task, and interaction.
This classification scheme makes it easier to understand the
domain and application of each pattern, to distinguish dif-
ferent patterns, and to discover new patterns. Below, we
describe the three classes of patterns as well as the patterns
in each class. The space limitations of a conference paper
allow us to provide only a very brief description of each
pattern. We hope, however, that the more detailed descrip-
tion of three of the patterns in Section 4 will make up for
the brevity of the present section.

Itinerary. Objectifies agents' itineraries and routing
among destinations.
Forwarding. Provides a way for a host to forward newly
arrived agents automatically to another host.
Ticket. Objectifies a destination address and encapsulates
the quality of service and permissions needed to dispatch
an agent to a host address and to execute it there.

Figure 1 Travelling Patterns

3.1 Traveling Patterns
Traveling is the essence of mobile agents. The traveling
patterns listed in Figure 1 deal with various aspects of man-
aging the movements of mobile agents, such as routing and
quality of service. These patterns allow us to enforce en-
capsulation of mobility management that enhances reuse
and simplifies agent design.

The Itinerary pattern is an example of a traveling pattern
that is concerned with routing among multiple destinations.
An itinerary maintains a list of destinations, defines a rout-
ing scheme, handles special cases such as what to do if a
destination does not exist, and always knows where to go
next. Objectifying the itinerary allows one to save it and
reuse it later, in much the same way as one saves URLs as
bookmarks. With a graphical user interface, itinerary ob-
jects can be represented as icons that can be dragged and
dropped onto icons of agents to dispatch these agents with
these itineraries.

Another very fundamental travelling pattern is the For-
warding pattern. This simple pattern allows a given host to
mechanically forward all or specific agents to another host.

The Ticket pattern was first described by White [4]. Con-
ceptually, a ticket is an enriched version of a URL that em-
bodies requirements concerning quality of service, permis-
sions, and other data. For example, it may include time-out
information for a dispatching an agent to a remote host.
Thus, instead of naively trying to dispatch to a discon-
nected host forever, the agent now has the necessary infor-
mation to make reasonable decisions while travelling.

Master-Slave. Defines a scheme whereby a master agent
can delegate a task to a slave agent.
Plan. Provides a way of defining the coordination of
multiple tasks to be performed on multiple hosts.

Figure 2 Task Patterns.

3.2 Task Patterns
Task patterns (see Figure 2) are concerned with the break-
down of tasks and how these tasks are delegated to one or
more agents. In general, tasks may be dynamically assigned
to general-purpose agents. Furthermore, a given task can be
accomplished either by a single agent or by multiple agents
working in parallel and cooperating to accomplish it (e.g.,
in the case of parallel search).

A very fundamental task pattern is the Master-Slave pat-
tern, which allows a master agent to delegate a task to a
slave agent. The slave agent will move to a destination
host, perform the assigned task, and return with the possible
result of that task.

The more complex Plan pattern adopts a workflow concept
to organize multiple tasks to be performed in sequence or in
parallel by multiple agents. The plan encapsulates the task
flow, which is then hidden from the agent. The agent
merely provides the mobility capabilities needed to perform
tasks at specific destinations. The plan promotes reusability
of tasks, dynamic assignment of tasks to agents, and even
composition of tasks.

Meeting. Provides a way for two or more agents to initi-
ate local interaction at a given host.
Locker. Defines a private storage space for data left by
an agent before it is temporarily dispatched (send) to an-
other destination.
Messenger. Defines a surrogate agent to carry a remote
message from one agent to another.
Facilitator. Defines an agent that provides services for
naming and locating agents with specific capabilities.
Organized Group. Composes agents into groups in
which all members of a group travel together.

Figure 3 Interaction Patterns.

3.3 Interaction Patterns
The ability of agents to communicate with each other is
vital for cooperation among agents. The interaction patterns
in Figure 3 are concerned with locating agents and facili-
tating their interactions.

The Meeting pattern was first described by White [4], is an
interaction pattern that provides a way for two or more
agents to initiate local interaction at a given host. It ab-
stracts the synchronization in time and place that is required
for local interactions. Agents can dispatch themselves to a

specific destination, called a meeting place, where they are
notified of the arrival of their counterparts and able to en-
gage in local interaction.

Agents can exploit the Locker pattern to temporarily store
data in private. In this way, they can avoid bringing along
data that for the moment are not needed. On a later occa-
sion, agents can return and retrieve the private data stored
in the locker. For example, in an agent-based purchasing
system, an agent may visit a dealer's host outside the com-
pany network. In this case, it can store its sensitive data in a
locker before leaving the company network. The result is a
reduction of network traffic and improved data integrity.

Agents can establish remote communication by using the
Messenger pattern, which objectifies messages in the form
of agents that carry and deliver messages between agents.
For example, if a slave agent wishes to report a possibly
intermediate result back to the master agent, it can send the
result by a messenger agent while continuing with its cur-
rent task.

The Facilitator pattern describes a naming and locating
service for agents. It is often convenient to assign a sym-
bolic (i.e., meaningful) name to an agent in order to locate
it on a later occasion. For instance, an information-
gathering agent may continuously move in the network and
other agents may from time to time wish to retrieve updates
from the information-gathering agent without actually
knowing its present location.

Use the Organized Group pattern to compose multiple
agents into a group in which all members of the group
travel together (we also call this the group tour pattern).
This pattern can be considered as a fundamental element of
collaboration among multiple mobile agents.

4. EXAMPLE PATTERNS
We have selected a pattern from each group for closer ex-
amination. We will start with the Master-Slave pattern
from the group of task patterns, followed by the Meeting
pattern from the group of interaction patterns. The last pat-
tern is the Itinerary pattern from the group of traveling
patterns.

The pattern descriptions follow a common template that
covers intent, motivation, applicability, participants, col-
laboration, and consequences. Associated diagrams all
follow common object-oriented notation [7].

4.1 Master-Slave

4.1.1 Intent
The Master-Slave pattern defines a scheme whereby a
master agent can delegate a task to a slave agent.

4.1.2 Motivation
There are several reasons why agents (termed masters)
would like to create other agents (termed slaves) and dele-
gate tasks to them. One is performance. A master agent can
continue to perform other tasks in parallel with the slave
agent. Another reason is illustrated via the following exam-
ple. Consider an agent-based application that provides a
GUI for inputting data and displaying the intermediate re-
sults of a specific task to be performed remotely. With a
single agent to provide the GUI and perform that task, it
will not be possible to maintain the GUI (e.g., to run the
windows) after the agent has traveled from its origin to a
remote destination. Alternatively, a stationary (immobile)
master agent can provide and maintain a GUI while a slave
agent moves to another destination, performs the assigned
task, sends intermediate results, and finally returns and de-
liver the task’s result to the master agent, which displays it
to the client.

The key idea of the master-slave pattern is to use abstract
classes, Master and Slave, to localize the invariant parts
of delegating a task between master and slave agents: dis-
patching a slave back and forth to other destinations, initi-
ating the task’s execution, and handling exceptions while
performing the task. Master and slave agents are defined as
subclasses of Master and Slave, in which only varying
parts such as what task to perform and how the master
agent should handle the task’s result are implemented.

In practice, the Master class has a getResult abstract
method (i.e., one that should be overridden in subclasses) to
define how to handle the task’s result. The Slave class has
two abstract methods, initializeJob and doJob,
which define the initialization steps to be performed before
the agent travels to a new destination and the concrete task,
respectively. Both classes are defined in terms of these
methods. Figure 4 shows the Slave class implemented as
an aglet.
public abstract class Slave extends Aglet {
 Object result = null

 public void onCreation(Object obj) {
 // Called when the slave is created. Gets the
 // remote destination, a reference to the master
 // agent, and other specific parameters.
 }

 public void run () {
 // At the origin:
 initializeJob();
 dispatch(destination); // Goes to destination
 // At the remote destination:
 doJob(); // Starts on the task.
 result=...;
 // Returns to the origin.
 // Back at the origin.
 // Delivers the result to the master and dies.
 dispose();
}

Figure 4 The Slave Class

4.1.3 Applicability
Use the Master-Slave pattern in the following cases:

• When an agent needs to perform a task in parallel with
other tasks for which it is responsible.

• When a stationary agent wants to perform a task at a
remote destination.

Both of these cases concern tasks to be executed at a single
destination.

4.1.4 Participants
Four classes participate in the Master-Slave pattern. See
Figure 5 for their structural relationships.
• Master. Defines a skeleton of a master agent, using

abstract methods to be overridden in the Concrete-
Master class.

• Slave. Defines a skeleton of a slave agent, using ab-
stract methods to be overridden in the ConcreteS-
lave class.

• ConcreteMaster. Implements abstract methods of
the Master class.

• ConcreteSlave. Implements abstract methods of
the Slave class.

Master

ConcreteMaster

getResult()

getResult()

Slave

doJob()

initializeJob()

ConcreteSlave

doJob()

initializeJob()

master

// Slave behavior
… ..
initializeJob();
… ..
doJob();
… ..

run()

Figure 5 Participants in the Master-Slave Pattern

4.1.5 Collaboration
The collaboration between the participants in the Master-
Slave pattern is as follows (see also Figure 6):
• A master agent creates a slave agent.
• The slave agent moves to a remote host and performs

its task.
• The slave agent returns with the result of the task to the

master.

aConcreteSlave
(at a remote destination)

aConcreteSlave
(at its origin)

aConcreteMaster

create
initializeJob()

dispatch(“remote destination”)

doJob()

dispatch(“origin”)

dispose()

getResult()

Figure 6 Collaboration in the Master-Slave Pattern

4.1.6 Consequences
The Master-Slave pattern provides a fundamental way to
reuse code among agent classes. In practice, the process of
agent design and implementation is simplified by letting
developers implement only the variable aspects of already
defined agents (provided by libraries or agent builder
tools).

One drawback of an inheritance-based pattern is that the
behavior of a slave agent is fixed at the design time. For
example, an agent cannot be transformed into a slave at
runtime nor can a slave agent easily be assigned to perform
new tasks. A more sophisticated version of this pattern can
use a delegation-based model. In this model, the task will
be objectified and a slave agent can be assigned any task
object during its lifetime.

4.2 Meeting

4.2.1 Intent
The Meeting pattern provides a way for agents to establish
local interactions on specific hosts.

4.2.2 Motivation
Agents in different destinations may need to interact locally
between them. Consider, for example, commerce agents
created by different clients (i.e., at different destinations) to
search for, buy, and sell particular goods on behalf of their
clients. To do so, buyer agents and seller agents need to
locate each other and interact extensively to try and make
deals. Having all these commerce agents dispatched from

their origins to a central destination (termed the virtual
marketplace) where they interact locally among themselves
has two major advantages. First, once these agents leave
their origins, they can carry on interactions even if their
origins (e.g., clients’ machines) are disconnected from the
network or located inside firewalls (since agents inside
firewalls cannot receive messages). Second, their local in-
teractions will incur low communication overheads, com-
pared with remote interactions.

The key problem is how to synchronize these commerce
agents, which are initially at different hosts, so that they
can visit the virtual marketplace and find each other. The
Meeting pattern provides a solution to problems of this
type, using the notion of a meeting. It uses a Meeting
class that encapsulates a specific destination (meeting
place) and a unique identifier. In general, agents that need
to interact locally with each other will be equipped with a
meeting object. Each agent will dispatch itself independ-
ently to the meeting place, where it will use the unique
identifier to locate a specific local meeting manager object
to register itself (i.e., add itself to a list of agents that al-
ready have arrived at that host). The meeting manager ob-
ject will then notify the already registered agents about the
newly arrived agent (they get a local reference to it) and
vice versa, so that interactions involving the new agent can
start. Agents should unregister themselves before leaving
the meeting place. Through the use of unique identifiers,
multiple meetings can take place simultaneously at a single
host. Meeting objects can be distributed by messages or
located in central directories

4.2.3 Applicability
This pattern is applicable whenever there is a need for
agents on different hosts to interact locally. Here are three
common situations in which this pattern is applicable:

• When agents need to interact, and the overhead of
travelling to a central place and interact locally is less
than that associated with remote communication.

• When agents cannot interact remotely, since they are
located behind firewalls or on hosts with unreliable and
low-bandwidth network connections, e.g., laptops and
handheld computers. One solution is for these agents to
dispatch themselves to a remote host where they can
interact more efficiently.

• When agents need to access local services on a given
host. In this case the agents need to interact locally
with the service provided by a given host.

4.2.4 Participants
The structural relationships of the participants in this pat-
tern are shown in Figure 7.

• Agent. A base class of a mobile agent.

• ConcreteAgent. A subclass of the Agent class
that maintains meeting objects.

• Meeting. Object that stores the address of the meet-
ing place, a unique identifier, and miscellaneous in-
formation. It also notifies the MeetingManager of
the arrival or departure of agents.

• MeetingManager. This object knows all the agents
currently participating in the meeting. It notifies agents
that have already arrived at the meeting of the arrival
of new agents and vice versa.

agents
ConcreteAgent

meet(agents)

 meetWith(agent)

Agent

dispatch()

 dispose()

clone()

Meeting

getPlace()

 ready(agent)

leave(agent)

MeetingManager

notifyAll()

addAgent(agent)

deleteAgent(agent)

meeting

getId()

getInfo()

Figure 7 Participants in the Meeting Pattern

4.2.5 Collaboration
Collaboration among the participants in the Meeting pattern
is also sketched in Figure 8.

• A Meeting object is created, with a unique identifier
and a meeting place.

• A ConcreteAgent object is dispatched to the
meeting place. Upon arrival, it notifies its Meeting
object of its arrival through the ready method.

• Whenever a Meeting object is informed of the newly
arrived ConcreteAgent, it locates the
MeetingManager object, which registers the agent
by the addAgent method.

• Upon registration, ConcreteAgent is notified by
meet() of all the agents that have already arrived at
the meeting (denoted by arrivedAgents in the in-
teraction diagram ahead). The latter are notified of the
newly arrived agent by meetWith().

• Whenever a Meeting object is informed of an agent’s
leaving a meeting, it locates the MeetingManager

object, which unregisters the agent by the
deleteAgent method.

anAgent
(at ‘meeting place’)

anotherAgent
(at ‘meeting place’)

aMeetingManageraMeeting

dispatch(‘meeting place’)

addAgent(anAgent)

meet(arrivedAgents)

notifyAll()

meetWith(anAgent)

leave(anAgent)

deleteAgent(anAgent)

ready(anAgent)

anAgent
(at ‘A’)

dispatch(‘A’)

getPlace()

Figure 8 Collaboration in the Meeting Pattern

4.2.6 Consequences
The Meeting pattern has the following benefits and draw-
backs:

• It provides a means for inter-agent communication that
complies with the mobile nature of agents; unlike dis-
tributed static objects, mobile agents cannot maintain
private references to directly locate each other and in-
teract. This pattern enables agents to interact locally
without having references to each other in advance.

• It enables an agent to interact locally with an unlimited
number of agents.

• It can simplify inter-agent communication. The Meet-
ingManager object can be implemented as a kind of
mediator to transfer or multicast messages between
agents. Consequently, many-to many interactions be-
tween agents will be replaced by many-to-one interac-
tions between agents and the MeetingManager ob-
ject. Many-to-one interactions are easier to maintain.
From a different perspective, it can allow the Meet-
ingManager object to maintain data shared by mul-
tiple agents and automatically notify them of any
change in those data.

• It may strike a tradeoff between interactions with low
overhead, and agents being idle, waiting for the arrival
of their counterparts of the meeting place. Thus, in
some situations, remote interactions may be preferable.

4.3 Itinerary

4.3.1 Intent
The Itinerary pattern objectifies agents’ itineraries and their
navigation among multiple destinations.

4.3.2 Motivation
Being an autonomous mobile entity, an agent is capable of
navigating itself independently to multiple hosts. Specifi-
cally, it should be able to handle exceptions such as un-
known hosts while trying to dispatch itself to new destina-
tions or make a composite tour (e.g., return to destinations
it has already visited). It might even need to modify its itin-
erary dynamically. For example, it might dispatch itself to
inquire about a local Yellow Pages service, extract relevant
addresses, and add them to its itinerary.

Consequently, it is probably preferable to separate the han-
dling of navigation from the agent’s behavior and message
handling, thus promoting modularity of every part. The
Itinerary pattern lets you do so. The key idea is to shift the
responsibility for navigation from the agent object to an
Itinerary object. The itinerary class will provide an
interface to maintain modify the agent’s itinerary and to
dispatch it to new destinations. An agent object and an
Itinerary object will be connected as follows:

The agent will create the Itinerary object and initialize
it with (1) a list of destinations to be visited sequentially
and (2) a reference to the agent. Then, the agent will use the
go method to dispatch itself to the next available destina-
tion in its itinerary or back to its origin, respectively. To
support the above, it is necessary that the Itinerary object be
transferred together with the agent, and that their references
to each other be maintained at every destination.

4.3.3 Applicability
Use this pattern when you wish to:

• Hide the specifics of an agent’s tour from its behavior
in order to promote modularity of both parts.

• Provide a uniform interface for sequential traveling of
agents to multiple hosts.

• Define tours that can be shared by agents.

4.3.4 Participants
The structural relationships of the participants in this pat-
tern are shown in Figure 9.

• Itinerary. Defines an interface for navigating with
an agent.

• ConcreteItinerary. Implements the Itiner-
ary interface and keeps track of the current destina-
tion of the agent.

• Agent. A base class of a mobile agent.
• ConcreteAgent. A subclass of the Agent class that

maintains a reference to a ConcreteItinerary
object.

Itinerary

go()
atLast()

agent
ConcreteItinerary

go()
atLast()

ConcreteAgent

itinerary

Agent

dispatch()
dispose()
clone()

currentDestination

Figure 9 Participants in the Itinerary Pattern

4.3.5 Collaboration
Figure 10 shows collaboration according to this pattern.

• The ConcreteItinerary object keeps track of the
current destination of the ConcreteAgent and can
dispatch it to new destinations.

• Whenever the ConcreteAgent is dispatched to a
new destination, the ConcreteItinerary is also
transformed, and their references to each other are re-
stored at the target destination.

anAgent
(at destination B)

aConcreteItineraryanAgent
(at destination A)

new ConcreteItinerary(destinations, anAgent)

go()

dispatch(“B”)

Figure 10 Collaboration in the Itinerary Pattern

4.3.6 Consequences
This pattern has three main consequences:

• It supports variations in navigation. For example, a
different exception handling routine can be defined if
an agent fails to dispatch itself to a new destination:
cancel the tour and return to the origin, try to go to an-
other destination and later try again. This pattern

makes it easy to provide such variations by simply re-
placing one Itinerary object with another or by defining
Itinerary subclasses. The agent class is not modified.

• It facilitates sharing of tours by different agents. For
example, two agents may use the same tour to multiple
users’ desktops, one to schedule a meeting between all
users and the other to deliver them notification mes-
sages. This pattern enables agents to share tours by
sharing itinerary objects, although not simultaneous.

• It simplifies the implementation of sequential tasks.
Tasks can be encapsulated in special Task objects
while an Itinerary class is extended with an interface to
associate Task objects with destinations. The itinerary
object keeps track of the current tasks to perform.
Whenever the agent is dispatched to a new destination,
it simply triggers the execution of the current task
saved by its itinerary object. In Java-based agent sys-
tems such as Aglets and Odyssey [6] in which agents
are transported with only their code and data, and not
with their entire execution state, the Itinerary pattern
obviates the need to manually keep track of the execu-
tion state of an agent (i.e. what the agent should do)
when it travels.

5. EXPERIENCE
In this section we briefly describe two agents, showing how
the above patterns were combined to simplify their design
and implementation. Both agents are implemented as
aglets.
public final class FileSearcher extends Slave {
 protected void doJob() throws Exception {
 // Performs a local file search
 Result = …;
 }

 protected void InitializeJob() throws Exception {
 // Performs necessary initialization.
 }
}

public final class FileSearcherMaster extends Master {
 public onCreation(Object obj) {
 // Creates the window.
 }
 public getResult (Object result) {
 // Updates the content of the window.
 }
}

Figure 11 Master and Slave Agents

5.1 File Searcher
The File Searcher is an agent-based application that
searches for files in a remote file archive. Modeled on the
Master-Slave pattern, it consists of two agents. A stationary
agent, FileSearcherMaster, that manages the GUI
and a mobile agent, FileSearcher, that can move to a
remote archive, search for files with a specific substring in

their filenames, and return to the master with the search
result.

Figure 11 shows the implementation of the slave agent,
FileSearcher, and its master agent, FileSearcher-
Master. Notice that only the abstract methods of File-
Searcher need to be implemented. As the example indi-
cates, no particular skills in mobile agent programming are
needed to create these two agents.

agent
Itinerary

go()

itinerary atLast()

FileSearcherMaster

getResult()

Slave

doJob()

 initializeJob()

FileSearcher

doJob()
 initializeJob()

master

itinerary

run()

… ..
doJob();
if (!itinerary.atLast()) {
 go(); // next destination
}
// return to the origin

Master

getResult()

Figure 12 Enhanced File Searcher

5.2 Enhanced File Searcher
We extended the File Searcher to search in multiple remote
file archives, using a combination of the Master-Slave and
the Itinerary patterns, as shown in the class diagram in Fig-
ure 12.

The Slave class was modified to allow a slave agent to
travel among multiple destinations and perform the task, as
defined in the doJob method, at every destination. The
modifications included (1) receiving an itinerary object,
created by the master aglet, to control the tour, instead of a
single destination and (2) changing its behavior, defined by
the run method, so that it dispatches itself to the next avail-
able destination after performing the task at the current
destination. The FileSearcherMaster class remains
unchanged. In general, this modified version of the Slave
class can be used to repeat a task (defined in doJob()) at
multiple destinations, in the order defined by a separate
itinerary object. The only required change to the File-
Searcher class was modification of its doJob method to
combine the result of a local search with previous results.

6. CONCLUSION
In this paper we have reported on several design patterns
that we have found in mobile agent applications. Weary of

inventing and re-inventing solutions to recurrent problems,
we have found that agent design patterns can help by cap-
turing solutions to common problems in agent design. We
have also found that no special skills, language features, or
other tricks are required to benefit from these patterns.

We expect agent patterns to pragmatically fill in the space
between very high-level agent-specific languages and sys-
tem-level programming languages such as Java. Patterns
can also provide a sound foundation for visual agent devel-
opment environments. We envision that the agent devel-
oper can select and combine multiple patterns in a graphical
environment. Based on standard implementations of these
patterns, the development environment can generate agents
with the desired properties.

Design patterns have proved highly useful within the ob-
ject-oriented field, and have helped to achieve good design
of applications through reusability of validated compo-
nents. We hope that the design patterns described in this
paper and the catalog will serve this purpose in the context
of mobile agent-based applications. Specifically, we hope
that this paper will motivate others to continue and discover
more patterns that make it easier for designers of distrib-
uted applications to learn and use of agent technology. We
also believe that non-mobile agent systems will benefit
from the pattern idea, and we strongly encourage the devel-
opment of a pattern catalog for agents of this type as well.

7. ACKNOWLEDGEMENTS
We wish to thank Mitsuru Oshima for his feedback on the
proposed patterns and in particular to acknowledge Kazu-
hiro Minami’s creation of the Plan pattern. We are also
grateful to Mike McDonald of IBM Japan for checking the
wording of this paper.

8. REFERENCES
[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[2] Arnold, K. and Gosling, J. The Java Programming
Language. Addison-Wesley, 1998.

[3] Lange, D. B. and Oshima, M. Programming and De-
ploying Mobile Agents with Java. Forthcoming book.
Addison-Wesley, 1998.

[4] White, J., Telesrcipt Technology: Mobile Agents. In
Bradshaw, J. (ed.) Software Agents. MIT Press, 1997.

[5] IBM. Aglets Workbench.
<http://www.trl.ibm.co.jp/aglets>

[6] General Magic Inc. Odyssey.
<http://www.genmagic.com/agents>

[7] Rumbaugh, J. et al. Object-Oriented Modeling and
Design. Prentice Hall, 1991

