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Abstract 

The last decade has seen an explosion in the growth and use of the Internet.  Rapidly 

evolving network and computer technology, coupled with the exponential growth of 

services and information available on the Internet, is heralding in a new era of 

ubiquitous computing.  Hundreds of millions of people will soon have pervasive 

access to a huge amount of information, which they will be able to access through a 

plethora of diverse computational devices.  These devices are no longer isolated 

number crunching machines; rather they are on our desks, on our wrists, in our 

clothes, embedded in our cars, phones and even washing machines.  These computers 

are constantly communicating with each other via LANs, Intranets, the Internet, and 

through wireless networks, in which the size and topology of the network is 

constantly changing.  Over this hardware substrate we are attempting to architect new 

types of distributed system, ones that are able to adapt to changing qualities and 

location of service.  Traditional theories and techniques for building distributed 

systems are being challenged.  In this new era of massively distributed computing we 

require new paradigms for building distributed systems.   

This thesis is concerned with how we structure distributed systems.  In Part I, we trace 

the emergence and evolution of computing abstractions and build a philosophical 

argument supporting mobile code, contrasting it with traditional distribution 

abstractions.  Further, we assert the belief that the abstractions used in traditional 

distributed systems are flawed, and are not suited to the underlying hardware substrate 

on which contemporary global networks are built.  In Part II, we describe the 

experimental work and subsequent evaluation that constitutes the first steps taken to 

validate the arguments of Part I. 

 

The experimental work described in this thesis has been published in [Clements97] 

[Papaioannou98] [Papaioannou99] [Papaioannou99b] [Papaioannou2000] 

[Papaioannou2000b].  In addition, the research undertaken in the course of this PhD 

has resulted in the publication of [Papaioannou99c] and [Papaioannou/Minar99].  
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Preface 

Mobile Code is a new and generally untested paradigm for building distributed 

systems.  Although garnering many plaudits and continually increasing in popularity, 

the technology and research field remain relatively immature.  So far, most research 

has focused on the creation of mobile code frameworks, and as yet, there is no 

conceptual framework with which to contrast results.  Equally, there is no clear 

understanding of the new abstractions offered by this paradigm.  Further, many 

conclusions drawn about the technology remain qualitative and subjective.  This 

dearth of quantitative results means as yet it has not been possible to evaluate the 

potential of both the technology and the paradigm. 

It is against this backdrop that the work described in this thesis has been conducted.  

Before an accurate and informed decision about the suitability of mobile code 

technology can be made, a fuller appreciation of the paradigm is required.  It is the 

author’s opinion that the central essence of a new paradigm is the abstraction it offers 

to the designer.  Therefore, the contribution of this thesis addresses the issues of 

understanding and evaluating the design abstractions offered by mobile code.   

The first part of this thesis is concerned with building an understanding of the 

abstractions offered by mobile code, and the implications of using them.  Certainly, it 

would be impossible to undertake this research without a context within which to 

analyse the new paradigm.  To this end, we trace the emergence and evolution of 

abstractions employed throughout the history of computing, in an attempt to 

understand the reasons behind the existence of contemporary traditional distribution 

abstractions.  We also build a philosophical argument supporting mobile code, 

contrasting it with traditional distribution abstractions.  Further, we assert the belief 

that the abstractions used in traditional distributed systems are flawed, and are not 

suited to the underlying hardware substrate on which contemporary global networks 

are built. 

In chapter one, we review the history of computing, and the abstractions that have 

been employed within this field.  We begin our journey by examining the early years 

of computing, and trace the consecutive developments that have shaped the evolution 

of our present day computing landscape.  We build a picture of the key phases in this 
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evolution, and the gradual layering of abstractions, one atop another, that 

characterises evolution in this area. 

In chapter two, we return to focus more directly on the emergence of distribution.  In 

examining today’s distribution mechanisms we show that the fundamental abstraction 

in these systems is one of location transparency.  The chapter demonstrates that the 

emergence of location transparency is a result of the layers of abstraction found 

beneath it.  We argue that by using the location transparency abstraction we are 

attempting to impose an unsuitable abstraction onto the underlying computational 

substrate. 

In chapter three, we begin our examination of the new design abstractions offered by 

Mobile Code.  We discuss what makes mobile code systems different from 

contemporary ones and characterise these new abstractions as embodying local 

interaction.  Finally, we argue that by employing this new paradigm we are using an 

abstraction more wholly suited to the underlying computational substrate, and thus to 

building distributed systems.  This chapter concludes our philosophical argument 

concerning the structuring of distributed systems. 

The philosophical argument built in Part I is extensive, and a full experimental 

investigation is beyond the scope and timescale of a PhD.  Therefore, in Part II we 

take the initial steps required to validate the arguments expressed in Part I.  If Part I 

was concerned with understanding the mobile code abstraction, then Part II is 

concerned with using and evaluating it.  The experimental work is conducted by 

applying the new paradigm to a real world manufacturing system application, based 

on data derived from an industrial case study. 

In chapter four, we present the rational for the experimental research undertaken in 

this thesis, and describe how it will support the arguments made in Part I.  Further, we 

describe the technical issues involved with implementing mobile code abstractions, 

and discuss some of the advantages claimed for this new technology.  Lastly, we 

review several of the better-known mobile code frameworks available to researchers, 

before presenting IBM’s Aglet Software Development Kit, the framework used in our 

experimental work.   
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In chapter five, we describe a case study undertaken in the UK.  The case study has 

been used to generate a real-world model of the Sales Order Process (SOP) of a 

manufacturing enterprise that is used in the subsequent implementation work.  In 

addition, several requirements of the company were identified which will be used in 

later chapters as “scenarios for change” with which to test and measure our 

experimental implementations. 

In chapter six, we describe the creation of two prototype mobile code systems.  Their 

common parts and differences are discussed, along with the supporting tools that have 

been created. 

In chapter seven, we begin our evaluation of the two prototype systems.  Firstly, we 

describe the process through which we have generated several tangible software 

metrics.  We then evaluate the prototypes through the “scenarios for change”, and 

reflect on what has been learnt.  

In chapter eight we conclude the research undertaken in this thesis, and discuss the 

implications of the work, and avenues for further investigation. 



 

 

Part I 

 

Understanding 
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1 Abstraction 

1.1 Introduction 

Computers are fulfilling an increasingly diverse set of tasks in our society.  They are 

silently assuming many mundane but key tasks, providing seamless assistance to 

support our lifestyles.  They control our car engines, our environmental climate and 

even our toasters.  Increasingly, sophisticated hardware is the supporting substrate for 

increasingly complex software.  Yet despite major advances in our understanding of 

the construction of software, building flexible and reliable systems remains a 

considerable task.  Increasingly powerful abstractions are employed by software 

engineers in an attempt to reduce the cognitive complexity of such tasks.   

The emergence of computing abstractions has been instrumental in defining today’s 

computing landscape.  To fully understand its present day shape, we must first 

understand the forces and issues that influenced its evolution.  This chapter presents a 

brief history of computing and the levels of abstraction developed and employed 

within this field, and discusses the emergence of each abstraction. 

1.2 A Brief History of Computing Time 

“In the beginning there was binary.  And 'lo, von Neumann did say 'that's too 

damn tough to understand!  Can't we make it any simpler?’” 

In the 1940’s, the mathematician John von Neumann pioneered research into 

formalising the basic architecture for a computing machine.  The Von Neumann 

architecture specified a computer in terms of three main components:  

• A Memory: a large store of memory cells that contain data and instructions 

• An Input/Output unit: to enable interaction and feedback with the user 

• A Central Processing Unit (CPU): responsible for reading and writing instructions 
or data from the memory cells or from the I/O unit 

During execution, the CPU takes instructions and data from the memory cells one at a 

time, storing them in local cells known as registers.  The instructions cause the CPU 

to manipulate the data via arithmetic or logic operations, before assigning any results 

back to memory.  Thus, the execution of instructions results in a change in the state of 
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the machine [Burks46].  The three components of a computer are able to interact via a 

communications bus (see Figure 1).   

Figure 1. The von Neumann Computer Architecture 

Von Neumann’s research was based on the earlier theoretical work of Church and 

Turing on state machines [Church41] [Turing36].  Importantly though, it established a 

hardware architecture for a computing machine that would serve as a reference 

platform for decades to follow.  Although we are generally accustomed to thinking of 

computers as extremely complex machines, the central architecture itself is quite 

simple.  At the most basic level Harel states: 

“A computer can directly execute only a small number of extremely trivial 

operations, like flipping, zeroing, or testing a bit” [Harel87] 

Nonetheless, von Neumann had taken the first step along a long path of evolution that 

would culminate in the computer systems we take for granted today.  This evolution 

could not have taken place without advances in hardware design and manufacture, 

however, for the scope of this thesis we are interested only in the abstractions and 

technologies that have evolved to support the construction of software.  

Since its creation, the von Neumann architecture has fundamentally influenced the 

way we think about and build our computing systems.  Most contemporary 

programming languages can be viewed as abstractions of the underlying von 

Neumann architecture.  These languages retain as their computational model that of 

the von Neumann architecture, but abstract away the details of execution.  The 

sequential execution of language statements (instructions) changes the state of a 

program (computational machine) through assignment and manipulation of variables 

(memory cells).  These languages, known as imperative languages, have developed 

through the addition of layers of increasingly high levels of abstraction [Ghezzi98].  

In the next section we examine the emergence and evolution of imperative languages, 

I/O CPU 

bus bus 

Memory 
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and discuss the ascending tower of abstractions that we use to construct software 

systems.  

1.3 Procedural Abstractions 

Programming a computer to perform a particular task in the early years of computing 

was extremely difficult and time consuming [MacLennan87].  The von Neumann 

architecture provided a computational model that programmers could use to 

manipulate physical memory locations.  Nevertheless, this was still an arduous task, 

as each memory location was identified by a long binary string.  Humans do not 

naturally think in binary, and programming in this manner was not only complex but 

also prone to error [Hopper68].    

To alleviate the inherent difficulties with working in binary a new family of 

languages, known as assembly languages [Harel96], were developed.  Assembly 

languages served as a primitive form of abstraction, which masked the architecture of 

the underlying hardware.  With this new abstraction, programmers were able to 

specify memory locations symbolically, rather than with an unwieldy binary string. 

The creation of assembly languages was the next step towards unlocking the full 

potential of the computer.  Using them, programmers were no longer concerned with 

the location of individual registers and memory cells.  They were able instead to 

program with symbolic representations of their computing machines.  From here, it 

was a relatively simple matter to begin constructing repeatable computing algorithms 

from assembler symbols [Wexelblat81].  These algorithms became a layer of 

abstraction above the assembly symbols, which themselves were a layer of abstraction 

above the hardware.  Quickly, the pattern for computing evolution had been defined: 

it would evolve through the gradual layering of ever subtler and complex levels of 

abstraction.  Each layer abstracting away the minutiae whilst retaining as their 

underlying computational model the von Neumann architecture.  Figure 2 shows the 

abstractions of assembly languages, and then computing algorithms layered over the 

underlying von Neumann computational model.   
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Figure 2. Early Layers of Abstraction 

These early layers of abstraction were a considerable improvement in the way 

computer programs were constructed.  However, even more significant improvements 

in the usability of computers would occur with the arrival of programming languages.   

A programming language is a formal notation for describing algorithms for execution 

by a computer [Ghezzi98].  They provide abstractions to overcome the complexities 

involved in constructing a software program, so that a programmer does not need to 

be capable of manually producing the many machine level instructions that are 

required to get a computer to perform a particular task.  The first types of 

programming languages developed were known as pseudo code languages.   

Pseudo codes arose because in some instances programmers found that the hardware 

specific instructions available on their particular computing architecture were not 

sufficient to support the range of operations they required.  Pseudo codes are machine 

instructions that differ to those provided by the native hardware on which they are 

being executed.  They are invariably executed within an interpreter [MacLennan87], a 

software simulation of a computational machine, a virtual machine, whose machine 

language is the pseudo codes.  The virtual machine would normally offer facilities 

that were not available in the real computer, for example, new data types (e.g. floating 

point) or operations (e.g. indexing).  Ergo, pseudo codes added yet another, higher 

layer of abstraction, and were the initial steps taken in moving towards a tool that 

allowed a programmer to construct software in a language that bore no resemblance to 

its machine code representation [Hopper68].  Unfortunately, pseudo code languages 

Programmer’s 
perspective 

Assembly Languages 

Computing Algorithms 

   

Von Neumann Machine 
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were hampered by slow execution speeds, since the interpreter had to first convert the 

codes to native instructions prior to execution. To overcome this inefficiency a new 

tool known as a compiler was produced.  A compiler is a computer program that 

translates programs specified in high-level languages, for example pseudo codes, into 

the native hardware’s assembly language [Harel93].  The program need only be 

translated once, but could be executed at native speeds many times, which was a 

distinct advantage over programs that had to be interpreted every time. 

The advent of compilers led to the creation of new programming languages, known as 

1st generation languages.  The best known of these are IBM's Mathematical FORmula 

TRANslating system (FORTRAN) [IBM56], COmmon Business Oriented Language 

(COBOL) [DoD61], and ALGOrithmic Language (ALGOL) [Perlis58] which 

appeared in the mid to late 1950's respectively.  These languages allowed a 

programmer to use a mathematical notation in order to solve a problem.  FORTRAN 

and ALGOL were defined as tools for solving numerical scientific problems, those 

that required complex computations on relatively simple data, for example simulating 

numerically the effects of a nuclear reaction.  COBOL was developed as a tool for 

solving business data-processing problems, those that required computations on large 

amounts of structured data, for example a payroll application.  It was able to satisfy 

the needs of the bulk of the applications of the day, and its success has meant it 

remains in use over thirty years after its introduction [Wilson93].   

The advent of compilers and 1st generation languages meant it was possible to develop 

computer programs without any knowledge of how your program was actually 

transformed into the native instruction set required by the machine upon which it was 

intended to execute; the translation was automatically performed by the compiler.  

One of the most important concepts embodied in the abstractions offered by 1st 

generation languages was the separation of a program into two distinct parts.  The 

description of the data contained within the program was known as the declarative 

part, and the program logic that controlled the execution of the program and 

manipulation of the data was known as the imperative part.   

Once begun, the development of programming languages progressed rapidly, and 

soon 2nd generation languages would emerge.  These new languages were generally 

descendants of 1st generation languages, influenced by the lessons learnt in the early 
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years.  They are characterised by offering a much higher level of structured flow 

control to the programmer whilst simultaneously introducing new techniques to aid 

the composition of computer programs.  Typical of this set of languages is ALGOL 60 

[Naur63].  The product of a committee, ALGOL 60 introduced major new concepts 

such as syntactic language definition [Backus78], the notion of block structure 

[Wilson93] and recursive programming [Ghezzi98].  Further improvements to 

structured flow in languages such as loops, conditional statements, sequential 

constructs and subroutines [Harel93] meant that some of the hardware-influenced 

instructions prevalent in 1st generation languages, such as the infamous GOTO1 

statement [Dijkstra68], could be removed.   

By the 1970's it was becoming clear that the need to support reliable and maintainable 

software had begun to impose more stringent requirements on new programming 

languages [Ghezzi98].  Programming language research in this period emphasised the 

need for eliminating insecure programming constructs.  Among the most important 

language concepts investigated in this period include: strong typing [Cardelli85], 

static program checking [Abadi96], module visibility [Parnas72a], concurrency [Ben-

Ari90] and inter-process communication [Simon96].  Greater significance was now 

placed on building reliable software, and the term software engineering [Naur68] was 

used to describe an emerging methodology for dealing with the full lifecycle of 

software development, from specification to production.  In general, it is fair to say 

that 3rd generation languages built on the previous generation by working at 

improving the software engineering  principles inherent, and enforced by the 

languages.  Some important examples of 3rd generation languages are Euclid 

[Lampson77], Mesa [Geschke77] and CLU [Liskov81].  The development of these 

languages was directly influenced by the need to improve systems programming 

[Wilson93], the creation of operating systems and tools such as compilers, and to 

produce verifiable programs.   

In the last half of the 1970’s new languages such as Pascal [Jensen85] [ISO90b] and C 

[Kernighan78] were developed.  Both offered the programmer power, efficiency, 

modularisation and availability on a wide array of platforms.  With Pascal though, 

Wirth aimed to create a language that would also be suitable for teaching 

                                                

1 Strangely, the much maligned GOTO statement continues to exist in many languages 
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programming as a logical and systematic discipline, thus encouraging well-structured 

and well-organised programs.  C on the other hand combines the advantages of a high 

level language with the facilities, flexibility and efficiency of an assembly language.  

However, to ensure the degree of flexibility required by systems programmers C does 

not include type checking, meaning that it is much easier to write erroneous programs 

in C than in Pascal [Wilson93].  Both languages continue to be widely and 

successfully employed today. 

1.3.1 Commentary 

When von Neumann first specified his computing architecture, he set the direction in 

which our computing landscape would evolve.  Since then, we have evolved through 

the gradual layering of increasingly powerful abstractions upon each other.  The 

progressive development of programming techniques that ascended via early 

unwieldy bit strings, through assembly mnemonics, pseudo codes, compilers and three 

generations of programming languages signified the first phase of our evolution.  In 

this phase programmers were gradually lifted out of the mire, and spared the task of 

remembering the location of each cell or register they wish to use.  They were now 

able to specify programs in powerful and efficient languages, without requiring any 

hardware specific knowledge of the computer they were using.  By progressively 

exploring and building up the layers of abstraction, the computer had been 

transformed from a slow and cumbersome behemoth to a powerful, flexible tool. 

In this thesis we term this period of computing the procedural abstraction phase.  It is 

characterised by the development of new computing abstractions and new techniques 

for controlling program structure and flow.  Figure 3 illustrates the individual layers 

of abstraction discussed in the previous section.  Each box roughly represents the 

beginning of each abstraction, and is intended to depict the progressive layering of 

abstractions as programming languages were developed.  Certainly each box should 

not be interpreted as a finite lifetime for each abstraction.  For example, assembler 

continues to be heavily used in modern military aircraft systems [Bennet94].  
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Figure 3. The layers of abstraction in the Procedural Abstraction Phase  

1.4 Programming Abstractions 
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with modules and while not wholly successful the experiment was an indication of the 

possible advantages [Wilson93].  Language researchers soon realised that it was not 

only advantageous to separate programs into discrete modules, but also to 

conceptually encapsulate data and logic within larger entities.  Such encapsulations 

were known as abstract data types [Hoare72] and enabled the programmer to specify 

new data types in addition to those primitives already supported by the language.  For 

these new abstractions, programmers could define operations through which they 

could be manipulated, while the data structure that implements the abstraction 

remained hidden.  Information or data hiding [Parnas72a] ensures that the internal 

data of a new type will only be manipulated in ways that are expected.  The late 

1970's and early 80's saw an explosion of new programming abstractions, such as type 

extensions [Wirth82], concurrent programming [Andrews83] and exception handling 

[Goodenough75].  Again, the motivation was to make software more maintainable in 

the long term.  A resulting synthesis of many of these new techniques is the language 

Ada [DoD80], which can be viewed as the state-of-the-art for that time.   

The 1980's saw the arrival of Object-oriented Programming (OOP), the origins of 

which can be traced back to Simula 67 [Birtwistle73].  An object is an encapsulation 

of some data, along with a set of operations that operate on that data.  Operations are 

invoked externally by sending messages to the object [Blair91].  Thus, each object is 

an abstraction that both encapsulates and acts upon its logic and data respectively.  

This allows a programmer to view their system as being composed of conceptually 

separate entities, or objects.  The OOP abstraction also builds on the previously 

discussed advances in modularity, data abstraction and information hiding, by 

including facilities for software reuse [Ghezzi98].  Newly created objects in the 

system are not implemented from scratch, rather they may inherit pre-existing 

behaviour from a parent object, and implement only the required new behaviour.  

OOP initially became popular through the success of Smalltalk [Goldberg83], but was 

more widely accepted with the advent of C++ [Stroustrup92], an extension of C.  

Other popular OO languages include Dylan [Apple92], Emerald [Raj91], Modula-3 

[Nelson91] and more recently Java [Gosling96].   
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1.4.1 Commentary 

In this thesis we term this ascendance from building programs, to architecting systems 

as the programming abstraction phase.  It is characterised by the development of new 

techniques for modularity, data abstraction and software reuse, and would result in 

systems that were easier to change and maintain [DeRemer76] and were more reliable 

[Horowitz83].  In Figure 4 below we see the programming abstraction phase continue 

the gradual layering of abstractions.    

Figure 4. Layers of abstraction in the Programming Abstraction Phase 
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So far, we have concentrated solely upon the ascending layers of abstractions that are 

present and supported by imperative or procedural languages.  These languages 
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With the decreasing costs of computer hardware, however, radically different designs 

of computing machine have become possible.  This has opened up the possibility that 

other computational models could be found, and that it may be possible to design the 

computer hardware to fit the model, rather than the other way round [Wilson93].  As 

early as the 1960’s there have been attempts to define programming languages whose 

computational models were based upon well-characterised mathematical principles, 

rather than on efficiency of implementation [Ghezzi98].  These alternative camps can 

be split into functional and logic programming languages. 

Functional languages use as their basis the theory of mathematical functions, and they 

differ greatly from imperative languages as they do not support the concept of 

variable assignment.  Assignment causes a change in value to an existing variable, 

whereas the application of a function causes a new value to be returned.  This has 

important implications for the problem of concurrency, since in an imperative 

language it is possible to refer to a variable or object that has been reassigned without 

your knowledge.  In a functional language, a function may be called at any time, and 

will always return the same value for a given parameter [Hudak89].  Further, since 

variables cannot be altered by assignment, the order in which a program’s statements 

are written and evaluated does not matter; they can be evaluated in many different 

orders.  Thus, programs can be modified as data and data structures can be executed 

as programs.  The key concept in functional programming is to treat functions as 

value, and vice versa [Watt96]. 

The archetypal functional programming language is generally considered to be LISP 

[McCarthy60], which was developed in the late 1950’s.  It is based upon the theory of 

recursive functions and lambda calculus, work that was developed in the early 1940's 

by Church [Church41].  Since its creation LISP has become one of the most widely 

used programming languages for artificial intelligence and other applications 

requiring symbolic manipulation [Pratt84], for example symbolic differentiation, and 

has spawned a plethora of individual dialects.  As with the imperative camp, there 

have been several other implementations of functional languages during the following 

years, for example APL [Iverson62], ML [Milner90], Miranda [Turner85] and Haskell 

[Thompson96].  Latterly, the competing dialects of LISP were unified in Common 

LISP [Bobrow88]. 
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Another variant in the field of programming languages are those defined as logic 

programming languages.  The main difference between functional and logic 

programming languages is that programs in a pure functional programming language 

define functions, whereas pure logic programming defines relations [Ghezzi98].  

Logic programming languages first appeared in the late 1970's and are based on the 

principles of first order predicate calculus [Mendelson64] and eschew all relation to 

the underlying machine hardware.  In contrast to other styles of programming, a 

programmer using a logic language is more involved in describing a problem in a 

declarative fashion than in defining details of algorithms to provide a solution 

[Callear94].  The knowledge about a problem and the assumptions about it are stated 

explicitly as logical axioms [Kowalski79].  This problem description is then used by 

the language’s computational machine to find a solution.  To denote its distinctive 

capabilities, in this case a computational machine that can execute a logical language 

is often referred to as an inference engine.  Synonymous with logic programming, and 

the ancestor of all logic languages is PROLOG [Clocksin87].   

1.5.1 Commentary 

The genres of functional and logic programming languages are an important 

contribution to our computing landscape.  Both are declarative languages and are 

characterised as being independent of the underlying hardware upon which they are 

executed; they are abstractions that are not influenced by the von Neumann 

architecture.  However, to achieve this independence efficiency has been sacrificed 

[Wilson93].    This, and the fundamental change of programming mindset required for 

those accustomed to the imperative style has been detrimental to their widespread 

acceptance and deployment outside of the artificial intelligence and expert systems 

communities. 

Perhaps most revealing in the functional vs imperative language debate is the 1978 

Turing Award lecture given by John Backus [Backus78].  In this, and his paper, 

Backus argues that conventional programming languages are fundamentally flawed in 

their design since as they are inherently linked to the underlying von Neumann 

architecture.  Backus goes on to demonstrate the advantages of functional languages 

over imperative ones, and further introduces a new functional language, FP.  His 
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assertion is that the underlying abstractions we use are important, and can affect the 

way we think, use and build computer systems and software. 

1.6 Conceptual Abstractions 

In the last decade, software engineering has been scaling new heights of abstraction.  

Program development has undergone a tremendous revolution; in the way that 

programs are entered into the computer, and the way programs are assembled from 

existing parts [Ghezzi98].  Programmers are now able to use integrated development 

environments and libraries of predefined modules to rapidly compose software 

systems visually [Zak98].   

Recent developments such as Components [Sun97] allow developers to view their 

systems with a larger granularity than objects.  Components may be large, for 

example a Request Broker consisting of hundreds of objects, or as a small as a GUI 

widget consisting of only a few objects.  In addition, techniques such as Software 

Patterns [Gof93] enforce a rigid literary methodology for expressing the essence of a 

recurring software abstraction.  A pattern may be viewed as a monograph on the 

particular abstraction, and describes the many facets required to consistently select 

and use an appropriate abstraction, what issues are involved and when not to use this 

pattern.  It is a distillation of knowledge gained by many experts over the years.  

Aspect Oriented programming [Kiczales97], Actors [Agha97], and Agent Oriented 

Programming [Wooldridge99] are examples of techniques that attempt to remove any 

notion of hardware from the abstraction.  In fact, one may view them as attempts to 

personify software.  In particular, the autonomous agent community appears to be 

having much success with its approach, allowing designers to view and build systems 

in a new manner, with new perspectives [Jennings et al98].   

These new abstractions are no longer merely based on technological developments in 

language or compiler design.  They are conceptual abstractions, allowing the software 

designer to view their system at a level completely removed from any of the 

underlying hardware issues.  Figure 5 is the culmination of this chapter’s examination 

of the gradual layering of abstractions.  It illustrates chronologically all three phases 

of abstraction we have identified: procedural, programming and conceptual, and how 

each individual abstraction has been layered over those preceding it. 
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Figure 5. The full Layers of Abstraction diagram 
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1.6.1 Commentary 

The computers we build are no longer merely high-powered calculating machines; 

they are useful tools that can be both incredibly flexible, and stubbornly inflexible at 

the same time.  Our on-going affair with computers has been characterised by our 

attempts to harness their power, and apply them to ever more diverse situations.  This 

affair has been tempered, however, by the complexity inherent in a computing system.  

The complexity involved has forced us to continually refine the languages and tools 

we use to build software systems.  In our efforts to understand and use the technology 

we abstract away the details, pasting on ever more elaborate facades to hide us from 

the true complexities involved in creating software.  Gradually we have layered 

increasingly complex abstractions over those lying beneath, until it is no longer even a 

requirement to be aware of those early abstractions.  Modern day programmers have 

rapid development tools and libraries with which to build software.  They employ 

conceptual abstractions that bear no resemblance to underlying hardware upon which 

their creations will be executed.  These layers of abstraction mean that modern day 

programmers are not required to be aware of the abstractions that lie below, that they 

depend on to deliver their creation. 

1.7 Concluding Remarks 

“Each successive language incorporates, with a little cleaning up, all the 

features of its predecessors plus a few more” [Backus78]. 

“Appropriate abstractions and proper modularisation help us confront the 

inherent complexities of large programs” [Ghezzi98] 

Abstractions are an immensely powerful tool.  They allow us to manage the 

complexity of a situation, and to rationalise about it by removing those details we 

consider inessential.  Further, as we attain understanding of complex issues, we 

construct additional layers of abstraction over those beneath, continually ascending.  

If we are to consider abstractions that exist within these layers we must understand the 

reasons for their existence, and the base abstractions that support the grand edifice.   

This chapter has presented a brief history of our progress up the computing 

abstraction tower.  It has examined the chronological development of computing 
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architectures and programming languages, and presented a brief explanation of their 

existence.  Latterly, the discussion continued by examining more recent programming 

and conceptual abstractions and their position in the Tower of Abstractions.  Although 

the functional and logic programming camps offer us a declarative alternative they are 

in the minority.  The overwhelming majority of languages in use today are imperative.  

They are powerful abstractions whose roots are found in the pioneering work of John 

von Neumann in the first half of this century.  Our computing evolution has been 

characterised and dictated by the von Neumann architecture.  It has influenced the 

design of all imperative languages to follow, and therefore those abstractions 

subsequently attained by using the languages. 

The aim of this thesis is to understand the mobile agent abstraction, a new technology 

and abstraction for building distributed systems.  The review in this chapter has 

provided a context and history in which new and existing abstractions can now be 

reviewed.  In the next chapter we examine the abstractions currently used in building 

contemporary distributed systems. 
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2 Towers of Babel 

2.1 Introduction 

In the 1970’s, networking began to emerge as an important aspect of computer 

systems.  Driven by applications in the military and airline industries, computer 

systems were connected and inter-operation became widespread [Cerutti83].  During 

the 1980’s, distributed computing became a vital aspect of many computer systems.  

In the early 2000’s, we are beginning to see the emergence of ubiquitous computing: 

characterised as a massive heterogeneous “sea” of disparate computational devices, 

with varying connection bandwidths and an ever-changing topology of connections 

[Weiser91].   

This chapter examines the emergence of distribution and discusses the path of its 

evolution.  In examining today’s distribution mechanisms we show that the 

fundamental abstraction in these systems is one of location transparency.  Further, we 

demonstrate that the emergence of location transparency is a result of the layers of 

abstraction found beneath it.  We argue that by using this approach we are attempting 

to impose an unsuitable abstraction onto the underlying hardware substrate. 

2.2 The Advent of Distribution 

Before the invention of computers, processing information was both slow and tedious 

[Rose90].  The advent of computers has transformed the world, and the way in which 

we work with information [Simon96].  However, using and storing this information in 

isolation, like any expensive resource, is inefficient [Peters85].  Ergo, unless our 

computers are to exist in isolation, we require methods that allow computers to 

meaningfully interact [Cerutti83], and ways of transferring information between them.  

Communication networks, which interconnect computers and allow them to work in 

concert, are a common solution to this problem [Sloman87].   

However, merely physically connecting computers is not enough to achieve logical 

interaction in its own right.  Computers must adhere to a common set of rules or 

protocols for defining their interactions [Rose90].  By connecting separate computers, 

we make it possible for the programs executing on those computers to interact.  When 
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processes on separate computers interact, we term the whole a distributed system.  In 

the next section, we examine the software architectures used in building networks, 

which ultimately support any communication between networked computers. 

2.3 Distributed Communication 

A network is an interconnected collection of two or more autonomous 

computers [Tanenbaum96].   

Distributed computing as we understand it today is a far cry from the limited facilities 

of early distributed systems, such as remote job entry handlers [Boggs73].  Their role 

however was simple - to allow scarce and expensive information and resources to be 

shared by users.  Ever since computer users began accessing central processor 

resources from remote terminals over 40 years ago, computer networks have become 

more versatile, more powerful and inevitably more complex [Green80].  

At the heart of distributed computing are communication networks.  They are the 

infrastructures that support information flow between computers.  The initial 

development of such networks was fostered through experimental networks such as 

ARPANET [Roberts70] [Cerf74] and CYCLADES [Pouzin73].  ARPANET, which 

went live in December 1969, was initially motivated by the requirements of the US 

Military for a communications network that could survive a nuclear war 

[Tanenbaum96].  This early work established the procedures for connecting 

computers and facilitating their interaction.  Just physically connecting computers was 

not sufficient to ensure successful interaction though.  Two computers wishing to 

communicate must adhere to a common set of rules for defining their interactions.  

This rule set is termed a protocol, and is an agreement between the communicating 

parties on how communication is to proceed [Rose90].   

To reduce their design complexity, network architectures are organised as a series of 

layers or levels of abstraction, each built upon the preceding one.  Whilst the number 

and nature of these layers may differ between architectures, their purpose is similar: to 

offer services to the higher layers, shielding them from the details of how the offered 

services are actually implemented [Tanenbaum96].  Each layer has its own particular 
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communication protocol, and collections of protocols defined in terms of a common 

framework are known as a protocol suite or stack [Rose90].   

In early computer systems, it was common for each application found on a computer 

to employ its own protocol stack.  This communication support was usually built into 

the application, and was not available for use by any other applications.  This 

approach therefore had the inherent disadvantages of duplicated functionality and 

inefficient resource usage.  To alleviate this undesirable situation, research focused on 

providing communication mechanisms at the operating system level through the 

provision of shared communication suites [Sloman87].   

Although a vast improvement, facilities provided by the operating system were 

invariably specific to the particular type of computer on which they were executing.  

In the mid 1970s, computer vendors began to develop their own network 

architectures, to enable communication between their own ranges of machines.  

Important examples of this period are the Internet model [Metcalfe76] [Comer91] that 

emerged from ARPANET [McQuillan77], IBM’s Systems Network Architecture 

(SNA) [McFadyen76] [Cypser78] [Gray83] and Digital’s DECnet [Wecker80] 

[Malamud91].  This meant however, that since each suite was developed for the 

vendors’ own machines, they were usually composed of proprietary (closed) 

protocols.  This situation posed two considerable problems: 

• Systems from competing vendors were not able to interoperate 

• The communication specification was controlled by a single organisation 

Since the vendors controlled the protocol specification, they also had the power to 

change the specification at their discretion [Cerutti93].  Understandably, this made 

third party developers very nervous in adopting and working to a standard whose 

specification might be changed at any given moment.  Although subsequent 

publishing of the protocol specifications aided their widespread adoption, the issue 

remained [Rose90].  Further, as each proprietary communication suite evolved, 

systems from competing manufacturers became even more incompatible.   

The splintered evolution of incompatible communication suites forced the computing 

community to realise that standards were required to enable interaction between 

different types of computer [Mullender93].  In 1977, the International Standards 
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Organisation (ISO) began working towards defining a non-proprietary (open) suite of 

protocols.  The resulting standard is known as the ISO Open Systems Interconnection 

(OSI) reference model [Zimmermann80] [ISO83] [OSI84] [STA87], and is jointly 

defined by ISO and the International Telecommunications Union (ITU-T)2.  Most of 

the proprietary suites that preceded the OSI model have since undergone modification 

and are now considered as specialised incarnations of the OSI model.   

Figure 6. The OSI Reference Model 

The OSI Reference model is structured into seven layers that represent the logical 

sequence of functions carried out when messages are constructed for transmission, 

dispatched, and then dismantled on arrival [Simon96].  It also serves to provide a   

common basis for the co-ordination of communication systems standards 

development and to allow existing standards to be placed into perspective 

[Sloman87].  An example of the OSI Reference Model is shown in Figure 6.  Data at 

Host A is translated by the OSI stack into a form that can be communicated over the 

wire.  It is then sent over the wire (perhaps via some network nodes), before it is 

reconstituted at Host B by the corresponding protocol suite, before finally being made 

available to the destination application. 

                                                
2 Formerly the Consultative Committee for International Telegraph and Telephones (CCITT) 
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Of particular interest to this thesis is Layer 7 – the Application layer.  The Application 

layer is the highest level of abstraction defined in the OSI model and is ultimately 

responsible for managing the communications between applications.  It provides 

programming primitives that a developer is able to use to access the communication 

facilities offered by the full protocol suite.   

2.3.1 Commentary 

In the previous section, we have briefly examined the emergence of communication 

protocols, and protocol suites, that support distributed computing.  Their role and 

existence has been vital in ensuring we are able to successfully network our 

computers.  In themselves, protocol suites form a hierarchy of abstractions.  They 

provide a mechanism for translating a signal on the wire up through the layers of 

abstraction until at the application layer the information can be manipulated via 

programming primitives.  These primitives bear little resemblance to their 

representation ‘on the wire’ but a developer is able to call upon the communication 

facilities with relative ease.  The advent of the OSI model, and particularly the 

Internet incarnation of that model, has made communication between distributed 

computers much simpler.  There are now a number of well-known and widely 

deployed communication suites in existence [Tanenbaum96].   

The OSI model, and the many incarnations of protocol suites in existence are 

important in that they allow computers to communicate in an agreed manner.  They do 

not address how a distributed application may be constructed.  These suites are only 

the enabling infrastructure.  Further techniques and technology are required.  In the 

next section, we examine the emergence of distributed systems and concentrate on 

developments within the application layer of the OSI model. 

2.4 Distributed Systems 

“A distributed system is one in which several autonomous processors and 

data stores supporting processes and/or databases interact in order to co-

operate and achieve an overall goal.  The processes co-ordinate their 

activities and exchange information by means of information transferred over 

a communications network.”  [Sloman87] 
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To understand the evolution of distributed systems, we must briefly return to examine 

the history of computing systems.  As discussed in Chapter 1, the end of the 

procedural abstraction phase indicates a paradigm shift in the way software was 

constructed.  Instead of just building monolithic standalone programs that ran in 

isolation, it became evident that building systems composed of smaller co-operating 

programs was a more effective way to construct software.  Software architects began 

to divide their systems into discrete elements.  These elements were programs in their 

own right, and became known as processes.  A process is a running program that 

consists of an environment for execution and at least one thread of control 

[Coulouris94].  They are smaller, more manageable entities that still execute within 

the same computational machine, but are separately autonomous3.   

Dividing monolithic software systems into distinct processes had advantages for 

manageability, but meant a method was required that would allow executing 

processes to communicate with each other.  Finding a solution to this problem became 

a widely researched issue with many languages gaining new facilities and 

programming primitives.  These new facilities became known as Inter Process 

Communication (IPC) [Cashin80] [Fukuoka82].  

2.4.1 Inter Process Communication 

An early method for communication between separate processes was a unidirectional 

stream of bytes, known simply as a pipe [Coulouris94].  On a UNIX machine, for 

example, a pipe can be used to join the ls and more commands, e.g. ‘ls –l | more’.  

The output of the ls process is piped as input to the more process. 

Pipes were designed as a method for linking chains of simple data-transforming 

programs.  Initially though, they did not support networked communication, and were 

not able to handle large volumes of data4 [Tanenbaum96].  A further drawback was 

that the pipes were bound to a specific source and target process (ls and more 

respectively in the above example).  Named pipes subsequently overcame this latter 

limitation, allowing pipes to exist independently of any particular process.   

                                                
3 With respect to the other processes.  The operating system still controls all of the processes. 

4 Local files are able to overcome this problem. 
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Since all interacting processes are local to each other in IPC, it is also possible to use 

the computer’s RAM to implement a shared memory facility - a common region of 

memory addressable by all concurrent processes.  Shared memory has become an 

important technique for use between communicating local processes.  Unfortunately, 

there is no inherent synchronisation in this mechanism and it is easy for one process to 

write a value to memory for storage, and have another process overwrite it with a new 

value, or even erroneous data.  To combat this problem, new techniques for 

synchronisation between processes were developed such as semaphores [Dijkstra68b], 

monitors [Hoare74] and sequences [Reed79].   

A further communication mechanism developed was known as a Message queue.  

Message queues allow any process to write to a named queue and for any process to 

read from the queue.  Synchronisation is inherent in the read/write operations and the 

message queue, which between them can support asynchronous communication 

between many different processes [Simon96].  Messages are distinguished by a 

unique identifier or message type, but are limited by being able to hold relatively 

small amounts of data.  Table 1 lists the early IPC communication facilities, and 

details their advantages and disadvantages. 

Table 1. Inter Process Communication Facilities 

As the use of these facilities proliferated, it became increasingly useful to provide 

them as standard components of the operating system.  This was normally achieved 

Method Advantages Disadvantages 

Pipes Simple to use; easy to chain 
multiple pipes; 

No network support; 
insecure communication;  

Named Pipes Can exist unconnected to a 
process;  

As above; 

Local Files Can handle large volumes of 
data; Simple to use; 

Synchronisation problems; 
inefficient due to repeated 
disk access; 

Shared Memory Very fast; very efficient;  
Cannot handle large 
volumes of data; no 
inherent synchronisation 

Message 
Queuing 

Inherent synchronisation; 
unique identifiers; 

Can only hold relatively 
small amounts of data; 



On the Structuring of Distributed Systems  Towers of Babel 

 

 28 

by providing programming primitives that system builders could then employ 

[Coulouris94].  An early and well-known example are the IPC primitives provided in 

the BSD 4.x [Leffler89] versions of the UNIX [Ritchie74] operating system.  These 

are implemented as a software layer over the underlying transport and network layers 

and are based on socket pairs, one belonging to each of a pair of communicating 

processes.  Sockets provide a simple way of programming distributed applications 

using indirect message passing communication [Simon96].  

Figure 7. Inter Process Communication 

In Figure 7 we see an example of IPC.  Two processes are communicating by using a 

combination of the techniques mentioned in Table 1.  By employing both local files 

and shared memory an optimum balance can be struck between volume of data and 

speed of access.  Importantly, these techniques are ideal for communicating processes 

that exist within the same von Neumann machine.   

2.4.1.1 Commentary 

IPC was successful because it provided: 

• simple yet effective facilities  

• facilities designed for the local computing context 

• facilities that were able to take advantage of local resources, e.g. memory 
and file space 

The major factor in the success of IPC however, stemmed from the abstraction it 

embodies.  The IPC abstraction takes full advantages of the constituent elements of 

the von Neumann architecture.  Therefore, it is ideally suited to the underlying 

   

Process A Process B 

vNM A 

Shared file
Shared memory
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hardware upon which it is used.  IPC was only useful, however, for communication 

between processes that are executing within the same computing machine.  As 

computer networks increased in number and size, resources were scattered even 

further.  This distribution of resources meant that it was increasingly useful for a 

process on one machine to be able to access a process or resource that was located on 

another.  Unfortunately, the existing IPC mechanisms were designed for 

communication between local processes only.  They were complex and difficult to use 

in a networked manner.  There was therefore a clear need for a simple mechanism to 

allow two networked machines to interact.   

In a seminal paper, Birrel and Nelson [Birrel84] described a new mechanism, Remote 

Procedure Calls (RPC), which they built for the Cedar [Teitelman84] programming 

environment to allow remote communication.   

2.4.2 Remote Procedure Calls 

At their simplest, Remote Procedure Calls (RPC) are a mechanism that facilitate a 

request/reply interaction between two distributed processes [Simon96].  This is 

similar to the traditional mechanism of procedure calls [Harel93] found in high-level 

programming languages.  The fundamental difference is that the calling procedure 

executes in one computing machine, and the called procedure executes in another 

[Cerutti93], whilst data is exchanged between the two communicating parties. 

Birrel and Nelson’s goal was to provide a mechanism through which remote processes 

could interact.  They also aimed to make this mechanism transparent to the 

programmer by ensuring it was syntactically similar, and as simple for the 

programmer to use as ordinary procedure calls [Simon96].  Consequently, the 

mechanism for RPC was modelled directly on the IPC facilities found in the Mesa 

programming language [Mitchel79].  Indeed, so successful were they that RPC has no 

distinction in syntax between a local and a remote procedure call [Colouris94]. 

During an RPC call there are five separate modules that interact to enable the call.  

They are the client, the client-stub, the RPC communications package (RPC 

Runtime), the server-skeleton and the server (see Figure 8).  When the client wishes to 

call a procedure that exists on a remote machine, it invokes the appropriate method in 

the client-stub.  To the client, this resembles a normal local procedure call.  The 
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client-stub then assembles one or more data packets that include the target procedure 

and the required arguments.  These packets are then passed to the local RPC Runtime, 

which transmits them to the remote Runtime.  On receipt, these packages are passed 

to the server-skeleton, where they are unpacked and passed to the target procedure in 

the server.  Once this procedure has been executed, any results are packaged up and 

the process repeated in reverse.  RPC is synchronous in nature, so while the server 

procedure is executing, the client is suspended, awaiting the result. The RPC Runtime 

(or request broker) establishes a client/server relationship between the interacting 

parties, removing the need for each party to be aware of the other’s location.   

Figure 8. A Remote Procedure Call 

Many RPC systems have subsequently been built, and they fall into two categories: 

1] The RPC mechanism is integrated with a particular programming language that 
includes a notation for defining interfaces between communicating processes 

2] A special purpose interface definition language that is used for describing the 
interfaces between clients and servers 

In the first instance, languages such as Cedar, Argus [Liskov88] and Arjuna 

[Shrivastava89] achieve close language integration so that the requirements of remote 

procedure calls are handled by the language constructs themselves.  The second 

instance includes examples such as Sun RPC [Sun89] and the Matchmaker interface 

language [Jones86], which have the advantage of not being tied to a specific language 

environment.  This is achieved by having a platform neutral language that can be used 

to specify the names of procedures, and their required arguments, which the server is 

making available to the client.  These specifications are known as interfaces, and are 

specified with an Interface Definition Language (IDL) [OMG99]. 
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Due to its request/reply nature RPC is an extremely good way of doing Client/Server 

application work [Crichlow88].  Client/Server is a particular paradigm for distributing 

a system, where the server is a manager of one or more resources and a client is a user 

of that resource.  The paradigm was used extensively in the 1970’s to structure 

operating system level process interaction [Simon96] [Walsh85], and is still in 

extensive use today.  One of the best contemporary examples being the World Wide 

Web [Berners-Lee92]. 

2.4.2.1 Commentary 

The major tenets of RPC can be summarised as: 

• The syntax for calling a local or remote procedure is identical 

• The location of a resource is transparent to the programmer and user 

• Communication is synchronous, and engenders the client/server paradigm  

The early 1980’s saw many breakthroughs in the distributed systems arena.  Some 

were influenced by earlier theoretical propositions, such as communication between 

sequential processes [Hoare78], which were now being supported by the increasingly 

widespread adoption of the OSI networking suite.  There were also attempts to 

incorporate RPC into existing programming languages, such as CONIC [Kramer83], 

whilst new programming languages that included distribution facilities were also 

developed, for example SR [Andrews82].  Again, so many proprietary and differing 

RPC solutions meant that the computing landscape became fractured. 

In the same way that the chaos of competing, incompatible and proprietary 

communication protocols necessitated the creation of the OSI model, the need for a 

standardised model for distributed applications was recognised.  In 1987, ISO began 

work on a Reference Model for Open Distributed Processing (RM ODP) [Brenner87] 

[Hutchison91] [ISO92].   

2.4.3 RM-ODP 

The RM-ODP model provides a framework for ODP standardisation and for the 

specification of systems using ODP standards [Cerutti93].  RM-ODP was an attempt 

to unify proprietary RPC systems, and distributed application creation.  As a model, it 

describes in detail the application layer of the OSI model (see Figure 6).  The driving 
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objective behind its creation was to develop a distribution infrastructure that would 

compliment and support the existing computing infrastructures.   

Table 2. Network Transparency 

Like the OSI model, RM-ODP was purely a reference model.  Its specification 

however, extends the concepts of transparency first visited by RPC, and identifies 

eight separate forms of transparency.  These are discussed further by [Colouris94], but 

for the purpose of this thesis, it is suffice to demonstrate that transparency is a 

fundamental tenet of the RM-ODP model.  We are only concerned with access and 

location transparency, collectively known as network transparency (see Table 2).  

Their presence or absence most strongly affects the utilisation of distributed resources 

[Colouris94]. 

Since its specification there have been a number of distributed infrastructures created 

that are based upon the RM-ODP model.  These include the Open Software 

Foundation (OSF)’s Distributed Computing Environment (DCE) [OSF92], the 

Computer Integrated Manufacturing – Building Integrated Open SYStems framework 

(CIM-BIOSYS) [Gascoigne94], Sun’s Remote Method Invocation (RMI) [Sun98], 

Microsoft’s Distributed Component Object Model (DCOM) [Redmond97] and the 

Object Management Group’s (OMG) Common Object Request Broker Architecture 

(CORBA) [OMG94].  Some of the more recent infrastructures integrate RPC with the 

object paradigm in an attempt to combine the benefits of the latter, in terms of 

modularity, with the established communication mechanism of the former [Picco98].  

2.4.3.1 Commentary 

In a manner similar to the process observed in Chapter 1, the abstractions that have 

been created to support the construction of distributed systems have gradually been 

layered upon each other, continually reaching ever higher.   

Transparency Type Proposed Advantages 

Access Transparency Enables local and remote information objects to be 
accessed using identical operations 

Location 
Transparency  

Enables information objects to be accessed without 
knowledge of their location 
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In Figure 9 we see the evolution of distribution abstractions.  IPC first came into 

existence as an abstraction to enable communication between processes executing 

within the same computer, or von Neumann machine (vNM).  So successful was this 

abstraction that Birrel and Nelson designed RPC in an attempt to enable remote and 

local calls to appear identical.  Out of the confusion of proprietary RPC 

implementations, the RM-ODP model was born, which in turn has led to 

contemporary distribution infrastructures such as CORBA or RMI.   

Figure 9. The evolution of Distribution Abstractions 

By following the location transparency abstraction, contemporary distribution 

infrastructures in effect attempt to provide a virtual von Neumann machine.  That is, 

by trying to fool every component in the system that they exist within the same 

address space, the overall effect is the creation of a virtual machine.  Figure 10 shows 

an example of a distributed system built with the RM-ODP abstraction.  The request 

broker provides a “plane of transparency” to the interacting processes.   
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Figure 10. Request Broker providing location transparency  

In reality, processes A and B exist within two complete separate vNMs, as do the 

resources they share.  However, the infrastructure attempts to create the illusion that 

they exist within the same vNM.  It also ensures that any required resources appear to 

each process as if they were in their local computing machine, thus achieving the 

location transparency described above.   

We have now examined the emergence of contemporary abstractions and 

infrastructures for distribution.  If we are to compare and contrast them with the 

Mobile Code abstraction then they must be generically categorised. 

2.5 Characterisation of Traditional Distribution Architectures 

So far in this chapter, we have discussed the history and emergence of contemporary 

distribution infrastructures.  Although vendor specific (with the exception of 

CORBA), these infrastructures are competing implementations of the same generic 

type of distributed system.  They share a common heritage and are each instantiations 
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of the RM-ODP abstraction, which itself can be traced back to RPC.  For example, 

CORBA IDL is directly modelled on RPC. 

Figure 11. Mobile Data in a Traditional Distributed System  

In this thesis, these systems will be characterised as distributed system infrastructures 

whose fundamental tenet for distribution is one of location transparency.  They 

achieve this by allowing distributed systems to interact via an intermediary 

communications bus.  The bus (or request broker) establishes a client/server 

relationship between the interacting parties, removing the need for each party to be 

aware of the other’s location.  The underlying communication mechanism supporting 

distribution will be characterised as mobile data.  

2.6 Commentary 

We have seen in Chapter 1 that modern day computing abstractions can trace their 

ancestry back to the original von Neumann architecture.  As each abstraction has 

emerged, bringing with it new facilities and technologies, it has added a new layer to 

the continually ascending edifice.  At their root though, the von Neumann architecture 

remains, influencing modern day designs even from the past.  It is the base 

abstraction, the underlying model for our computational machines.  As each new 

abstraction is layered onto the others, it must take into account those that preceded it. 

When Birrel and Nelson first designed RPC in 1984, their intention was to allow the 

programmer to access and communicate with processes on remote machines, in the 

same easy manner in which they were able to access local processes.  They wished to 

make calls to remote processes appear identical to those made locally, thereby making 

the location of the process transparent to the programmer (and ultimately the user).  It 

should not matter if the process was being executed locally or on a machine on the 

other side of the world, it would appear exactly the same in both cases. 

This phase in the development of distributed systems is pivotal.  RPC was directly 

modelled on IPC, which had been an extremely successful mechanism for enabling 
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processes to communicate, and so Birrel and Nelson’s intentions were not without 

merit.  However, IPC had evolved by extending the abstractions offered by existing 

programming languages and by taking advantage of local facilities such as memory or 

file space, each fundamental constituents of the vNM.  IPC therefore was a perfect 

abstraction for communication between processes executing in the same 

computational machine, i.e. in the same von Neumann machine.     

RPC on the other hand attempts to mask any details of location from communicating 

processes.  In effect, blurring the demarcation between separate vNMs to make local 

and remote calls look identical.  The technique required to achieve this is complex; for 

two processes to communicate, a set of five separate modules is required (see Figure 

8).  Nonetheless, this technique was successful for the time, and the central tenet of 

the abstraction, location transparency, became one of the underlying principals for the 

RM-ODP model, and consequently most contemporary distribution infrastructures.  

Part of the reason behind the success of RPC is because it is perfectly suited to 

building client/server software systems.  At the time, business software was 

predominately hosted on centralised mainframe computers, computer networks were 

predominately LANs or WANs and the number of personal computers was 

dramatically lower than today.  Equally, concurrent programming was slowly 

becoming a reality and objects were only just gaining momentum.  Thus, is it is not 

difficult to see why the RPC abstraction was employed successfully for the types of 

software system being constructed at the time.  Further, it follows that such a 

successful technique would be used as the baseline for newer distribution 

infrastructures such as CORBA.  These new infrastructures take this issue further, 

creating what in effect is a virtual vNM, where the illusion is created that all 

components in the system exist within the same computational machine (see Figure 

10).   

Since that time, the nature of the environment in which these distributed systems exist 

has been changing.  Fuelled by the Microsoft vision of a PC on every desk, personal 

computers have taken over many of the responsibilities that used to be the domain of 

the mainframe.  The network has also seen a dramatic enlargement with the explosion 

of the Internet, but has also suffered from quality of service issues.  Object-oriented 

programming has fundamentally changed the way we view software systems, moving 
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us away from the synchronous single threaded model, to one that includes 

asynchrony, multi-threading, encapsulation and component reuse.  In short, many of 

the assumptions made in the creation of RPC have now become erroneous.  For 

example, RPC implicitly assumes that the network is 100% reliable, and thus that 

remote procedures will always be available.  Anyone who has used the Internet will 

attest this as a fallacy.  

By 1994, the first strong doubts over the validity of the RPC approach were being 

raised.  In a seminal paper, Waldo et al [Waldo94] argue that objects5 acting in a 

distributed system are intrinsically different to those in a local system and therefore 

must be treated very differently.  They identify four major problem areas when 

comparing local and distributed systems (see Table 3).   

Table 3. Problems of a Distributed System 

In particular, partial failure is identified as an extreme problem for distributed 

computing.  Sloman had earlier expressed the view that: 

“If the programmer is to take advantage of location transparency, this means 

that the behaviour must be the same in both cases [local and remote].  This 

can be costly and difficult to achieve, especially in the face of failures” 

[Sloman87] 

                                                
5 This applies equally to processes and procedures, etc  

Problem Details 

Latency 
• Can be up to a difference of 4-5 orders of magnitude 
• Most obvious 
• Least worrisome  

Memory 
Access 

• Unable to use pointers 
• Because memory is both local and remote, call types 

have to differ 
• No possibility of shared memory 

Partial Failure 
• Is a defining problem of distributed computing 
• Not possible in local computing 

Concurrency 
• Adds significant overhead to programming model 
• No programmer control of method invocation order 
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In addition, even before the Waldo paper, Nelson himself had suggested that: 

“If the aim is to provide location transparency then we must aim to provide 

the same behaviour as in the case of a failure in a local procedure call, 

although this can be costly.” [Nelson81] 

In Figure 12, we see a software system built with the RM-ODP abstraction distributed 

over three vNMs.  Each component has access to certain resources, but of course, 

there is no way for the component to tell if the resource is local (within the same 

vNM) or remote.  In the case of remote resources, the request broker is required to 

support the illusion that they are indeed local, by providing the relevant connections 

“behind the scenes”.  This is depicted by the lines flowing through the plane of 

transparency.  From this very simple hypothetical system, it is evident just how many 

lines cross the boundaries of vNMs.  At each crossing, the system is subject to the 

types of problem identified in Table 3.   

Figure 12. Back flips required by ORB to ensure location transparency  

The central thesis of the Waldo paper is that local and remote computing are just plain 

different, and should be treated as such.  They argue that distributed systems should 

be built with the premise that there are two distinct types of objects: local objects and 

Von Neumann 
Machine C 

Von Neumann 
Machine A 

Von Neumann 
Machine B 

Operating System Operating System 

Network 
Stack 

Operating System 

Network 
Stack 

Network 
Stack 

Distribution Infrastructure 

Plane of Transparency 

Component C  Component A  Component B 

Inter-component 
communication 



On the Structuring of Distributed Systems  Towers of Babel 

 

 39 

remote objects.  Although Waldo et al identify the key differences between local and 

distributed computing, their discussion of why these make distributed computing 

different are pragmatic.  The differences are eloquently stated, but there is no reason 

given for exactly why these differences are evident, just that they are – and that the 

two types of computing should be treated differently.  In this part of the thesis, we go 

further and present an argument as to the cause of these differences.   

We have seen that IPC was an ideal abstraction for interacting processes within the 

same vNM.  Its success was built on the fundamental elements of a vNM, i.e. a single 

memory (that could be shared), a single CPU and local files (I/O).  RPC attempts to 

take this effective abstraction and make it apply to many vNMs, by making location 

transparent.  This is similar to many contemporary distribution infrastructures.  

Indeed, the stated goal of the Millennium experiment undertaken at Microsoft 

Research is: 

“… to eliminate completely the distinction between distributed and local 

computing … by raising the level of abstraction so that programmers are not 

even aware of distribution” [MSR98] 

However, practice has shown that this approach is fraught with difficulties [Waldo94], 

and the discontinuation of this project serves as a clear indication. 

Certainly then, there are two diametric views as to how we may build reliable 

distributed systems. 

1] Use an abstraction that completely removes any knowledge of location 

2] Use an abstraction that views remote and local objects as completely different  

This thesis supports the assertions of Waldo et al, i.e. that we should treat local and 

remote objects differently.  However, we go further and argue that the fundamental 

reason that RPC, and thus contemporary distributed systems based on the RM-ODP 

abstraction, suffer from the problem mentioned above is because of the underlying 

abstraction they embody.  The RPC abstraction pays little regard to the supporting 

layers beneath it; rather it attempts to strike out on a new course of its own and is 

unsuitable for the underlying hardware substrate.  Instead of continuing the long line 

of abstractions that have served so well, RPC attempts to impose an abstraction that is 

perfect for one vNM onto many.  It pays little attention to the underlying hardware 
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abstraction, which as we have seen is the vNM.  RPC has broken the abstraction 

tower, and it is this fact that causes the acute problems associated with distributed 

systems that Waldo et al have identified.  While the RPC approach has been, and 

continues to be, useful under certain circumstances, it no longer supports the type of 

distributed system we wish to build in today’s networks with current software 

engineering techniques and technologies.   

2.7 Concluding Remarks 

“It can be argued that RPCs should not be entirely transparent as their 

semantics and performance differ from those of local procedure calls.” 

[Colouris94] 

“… a number of distributed systems have attempted to paper over the 

distinction between local and remote objects [and failed].  These failures have 

been masked in the past by the small size of the systems.” [Waldo94] 

As computers have become more prevalent, and the resources they represent the 

lifeblood of business, we have developed methods for connecting computers and 

enabling them to communicate with each other.  Once communication was achieved it 

was only natural that we pursue techniques for building software systems that span 

multiple hosts, allowing us to harness the additional power and multiple resources 

made available.   

In this chapter, we have examined the emergence of distribution, and traced the 

evolution of abstractions used to build networks.  Networks are an essential 

constituent of distribution, they enable communication between computers.  They are 

the substrate over which distributed systems can be built.  Next, we have examined 

the evolution of abstractions used in contemporary distributed systems.  We have seen 

how RPC attempts to extend the extremely successful IPC abstraction, ultimately 

leading to the location transparency abstraction, embodied in many contemporary 

distributed infrastructures.  In effect, these infrastructures attempt to create a virtual 

von Neumann machine.  This approach has been shown to be unreliable. 

The central thesis in this chapter is that by attempting to create the illusion that all 

components exist within the same machine, location transparency is breaking the 
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layers of abstractions upon which computing has been built since the dawn of 

computing.  The abstraction is unsuitable for the underlying computational machine 

upon which it must execute.  We need new techniques and abstractions for distributed 

computing that do not break our layers of abstraction, rather they continue to 

appreciate what has preceded them, and are suited to the underlying computational 

machine.  In the next chapter, we review mobile code, a new technology that promises 

to fulfil these requirements. 
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3 Mobility 

3.1 Introduction 

Code mobility is not a completely new idea.  There have been several widely used and 

successful mechanisms for moving code around a network previously employed, 

perhaps the best known being the PostScript language [Adobe85] that is used to 

control printers.   

Recently though, mobility has been examined from a different perspective, and has 

become a burgeoning topic for discussion in mainstream distributed systems research.  

Mobility currently boasts a flourishing research community dedicated to investigating 

the potential of this new paradigm [Mobility99].  So far in this thesis, we have built an 

argument against using location transparency, the abstraction embodied in 

contemporary distributed systems.  We have identified the need for new abstractions 

for distribution, which are entirely suited to the underlying computational machine, 

and are able to distinguish between local and remote resources.   

In this chapter, we conclude Part I of the thesis, the philosophical argument 

concerning the abstractions employed in building distributed systems.  We begin by 

reviewing mobile code abstractions and examining the differences between systems 

built with these abstractions and contemporary distributed systems.  Finally, we 

discuss what makes mobile code systems different, and why the abstractions they 

embody are more suited to distribution than location transparency. 

3.2 A Brief History of Code Mobility 

There have been previous examples of code mobility.  One of the earliest being 

remote batch job submission [Boggs73].  Employed at the time of hugely expensive 

central mainframes, batch job submission allowed users to submit code for execution 

on the server.  Although working at a very basic level, this technique was a mainstay 

of computing life when both processor time and core resources were scarce.  In effect, 

batch job submission allowed computation to be moved from one location to another 

to take advantage of local resources, although the movement required manual 

intervention by the user.   
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This basic concept was the seed for further research, and out of it grew projects such 

as Accent [Rashid81] and RIG [Rashid86], which culminated in the MACH 

[Accetta86] operating system.  These were experiments in building distributed 

operating systems, which attempted to present the same abstractions regardless of the 

underlying hardware substrate.  Latterly, this work has been embodied in migratory 

systems such as Locus [Thiel91] and Cool [Lea93], which support process and object 

migration respectively.  Both systems provide mobility at the operating system level, 

and therefore any migration is transparent to the user and system programmer.  As 

argued in Chapter 2 though, complete transparency can be counter-productive.  

Certainly, the designers of Emerald [Jul88] concur, as they offer the programmer 

explicit control over migration, as well as automatic migration.   

Thus far, the techniques described have been positioned at the operating system level 

and are particularly useful when dealing with small scale distributed systems.  They 

do not tend to be suitable for large-scale networks and systems, particularly those of 

the scale of the Internet, and have mainly been used for techniques such as load 

balancing [Picco98].  Although process migration never took off as a commercial 

reality, the research was widely regarded as successful [Milojicic99].   

The notion of mobile computation at a higher level of abstraction was first suggested 

in “Objectworld” [Tsichritzis85], a hypothetical computing environment geared 

towards information dissemination in which all objects could be mobile.  This, and the 

ideas embodied in migratory systems have spawned a new field of research that is 

investigating similar solutions but on a much larger scale and at a higher level of 

abstraction.  This field has many names, amongst them mobile code systems, mobile 

object systems, active networks and mobile agents.  For the remainder of this thesis, 

we use the terms interchangeably unless explicitly stated otherwise.  Unfortunately, 

there is still no consensus among the mobility research community as to what exactly 

each term refers to, or a standard definition for each to which everyone subscribes.  

Therefore, in this thesis we define a mobile agent as: 

“a software agent that is able to autonomously migrate from one host to 

another in a computer network.” [Papaioannou99] 
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The notion of a mobile agent was first established in 1994 with the release of a white 

paper by White [White94] that described a computational environment known as 

“Telescript” [White96].  In this environment, executing programs were able to 

transport themselves from one node to another in a computer network, in order to 

interact locally with resources at those nodes.  Telescript was never a commercial 

success, but it did generate a lot of academic interest.   

Since that time, this field has exploded in popularity, with a plethora of new 

frameworks and infrastructures appearing almost continually [MAL99].  This 

profusion of experimental frameworks is reminiscent of the explosion of new 

programming languages in the early days of computing (see Chapter 1) and is 

indicative of a new and immature research field.  Although we review some of the 

more popular mobile code systems in the next chapter, to fully understand this new 

paradigm we must first examine the differences between contemporary and mobile 

code based distributed systems.   

3.3 The Differences 

In Chapter 2, we saw that the central tenet and abstraction of contemporary distributed 

systems is location transparency, with inter-component communication being 

achieved via an intermediary communications broker.  For both the programmer and 

the system components, this abstraction provides no notion of location.  Instead, the 

distribution infrastructure enforces a “plane of transparency” in an attempt to create a 

virtual computational machine above the network layer.  The abstraction hides any 

details of the underlying hardware, and attempts to create the illusion that every 

component of a distributed system exists within the same computational machine.  

Unfortunately, this approach is subject to the many problems identified by Waldo et 

al (see Section 2.6).  This thesis argues that the location transparency abstraction is 

fundamentally flawed, as it breaks the Tower of Abstractions by attempting to impose 

an unsuitable abstraction on the underlying computational substrate. 

Distributed systems built around the tenet of mobile code are quite different.  Instead 

of masking the physical location of a component, mobile code infrastructures make it 

evident.  These systems embody a completely different abstraction.  Each node in the 

network has an Executing Environment (EE) through which components are able to 
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access the facilities of the network layer.  These facilities can then be used to 

communicate with other remote components as normal.  However, if components 

require access to a resource that is not located at their current host, or wish to interact 

locally with another component, they are able to migrate to the new host.  In Figure 

13, we see examples of the mobile code paradigm.  Component A is in 

communication with Component B, both of which have references to local resources.  

However, in contrast to contemporary distributed systems, A requires explicit 

knowledge of the location of B so that they may communicate.  There is no request 

broker to mediate the communication.  Component C is separate, and demonstrates 

the mobility aspect of this approach.  Instead of communicating with a data source 

across the network, C is able to migrate to the data source’s host, and interact with it 

locally.  In a contemporary system, C would not even be aware that the data source 

resided on a different host.  

Figure 13. Communcation across the network, and mobile agent migration. 

The major differences between mobile and contemporary distributed systems are well 

described by Picco [Picco98] and are summarized here: 

• Code mobility is geared for Internet-scale systems – systems such as Emerald and 
Locus were designed with small-scale networks in mind.  Thus, they assume high 
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bandwidth, reliable networks, small latency, trust, and homogeneity.  Mobile agents 
on the other hand are built with the opposite criteria in mind. 

• Programming is location aware – mobile agent systems provide an abstraction in 
which the notion of location is available to the programmer and the constituent 
components of the system.   

• Mobility is a choice – migration is controlled by the programmer or at runtime by the 
agent, instead of being triggered transparently by the system. 

• Load balancing is not the driving force - process and object migration operating 
systems were primarily designed to assist with resource and load balancing.  Mobile 
agents are used to design systems supporting flexibility, autonomy and disconnected 
operation. 

Mobile code is a powerful programming abstraction offering many possibilities.  To 

fully appreciate and employ successfully, it is important to understand all the nuances 

of the different architectural abstractions afforded to the system designer.  In the 

following sections, we describe the different flavours of the mobile code paradigm. 

3.4 Mobile Code Design Abstractions 

To discuss differences in design abstraction we require a context in which to examine 

each abstraction.  Further, we must define common concepts that may be used to 

perform our analysis.  In the following examples, Components are the constituent 

parts of a software system.  They execute within an execution environment at a 

particular Host.  Components may contain Logic, an encapsulation of the knowledge 

required to perform a certain Task.  Completion of this task may also require access to 

a Resource.  Components may interact with each other via Message passing, in which 

each message may contain pure data, logic or both.  In addition, components are able 

to migrate to a new host if they so desire.  Examples of each abstraction are shown in 

Figure 14.  

3.4.1 Remote Computation 

In remote computation, components in the system are static, whereas logic can be 

mobile.  For example, component A, at Host HA, contains the required logic L to 

perform a particular task T, but does not have access to the required resources R to 

complete the task.  R can be found at HB, so A forwards the logic to component B, 

which also resides at HB.  B then executes the logic before returning the result to A.  

This is how the aforementioned remote batch entries [Boggs73] work.  
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Figure 14. Examples of the different mobile code abstractions.  

3.4.2 Code on Demand 

In Code on Demand, component A already has access to resource R.  However, A (or 

any other components at Host A) has no idea of the logic required to perform task T.  

Thus, A sends a request to B for it to forward the logic L.  Upon receipt, A is then 

able to perform T.  An example of this abstraction is a Java applet, in which a piece of 

code is downloaded from a web server by a web browser and then executed. 

3.4.3 Mobile Agents 
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with R to perform T.  This method is quite different to the previous two examples, in 

this instance an entire component is migrating, along with its associated data and 

logic.  This is potentially the most interesting example of all the mobile code 

abstractions.  There are currently no contemporary examples of this approach, but we 

examine its capabilities in the next section.   

3.4.4 Client/Server 

Client/Server is a well known architectural abstraction that has been employed since 

the first computers began to communicate.  In this example, B has the logic L to carry 

out Task T, and has access to resource R.  Component A has none of these, and is 

unable to transport itself.  Therefore, for A to obtain the result of T, it must resort to 

sending a request to B, prompting B to carry out Task T.  The result is then 

communicated back to A when completed.  

3.4.5 Subtleties of the Mobile Agent abstraction 

Although all of the mobile code abstractions are ostensibly similar, there are some 

fundamental differences, which have substantial implications for which particular 

abstraction to employ.  In this section, we highlight one of the key issues that 

differentiate the abstractions, multi-hop mobility.  Multi-hop mobility refers to the 

ability of a mobile agent to migrate to more than one host, taking action at successive 

hosts in order to fulfill some goals.  The destination of the next host may only be 

determined at the present host, and does not have to be known at the outset of the 

journey.  In contrast, the other mobile code abstractions are utilized at best as mobile 

messengers, that do not continue to further hosts once they have performed their tasks, 

or at worst as techniques for shipping code around a network.  For example, let us 

hypothesize a situation where a BookAgent has queried all StoreFrontAgents and is 

unable to fulfil its Order.  It then has to contact the WarehouseAgent to ask whether a 

copy can be allocated from there, or when the next copy will arrive.  In a 

contemporary client/server architecture, this would require many calls to remote 

processes before the task had been complete.  Each time a call is made across the 

network the system runs the risk of the Waldo problems.  On the other hand, a mobile 

agent is able to migrate from host to host, and interact with the StoreFrontAgents 

locally, before finally arriving at the host of the WarehouseAgent.  Once there, it can 
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begin a new dialogue with the WarehouseAgent to establish when the required book 

will become available.  This scenario is depicted in Figure 15 below. 

Figure 15. Network routing of Client/Server and Mobile Agent architectures 

From these diagrams, it is evident that a mobile agent architecture involves less 

recourse to network communication than a client/server architecture in this particular 

scenario.  In addition, each time the mobile agent is using the network it is to transport 

itself, not make a remote call to a component on another machine.  If we imagine that 

each interaction entailed more than a simple request/reply dialogue then the 

client/server diagram would quickly become littered with communication arrows, 

whilst the mobile agent one would remain identical.  The ability to move the 

computation to the data source and continue locally is one of the biggest advantages 

of mobile agents. 

3.5 Characterisation of Mobile Agent Systems 

Although we have examined several abstractions that are part of the mobile code 

family, the one with the greatest potential is undoubtedly the mobile agent abstraction.  

In this thesis, mobile agent systems will be characterised as enabling distributed 

systems by supporting local interaction and mobile logic and data. 

Figure 16. Mobile logic and data in the Mobile Agent Abstraction 

This is very different to the characterisation in Section 2.5 of the messaging in a 

distributed system built with the location transparency abstraction.  
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3.6 Commentary 

In Chapter 1, we traced the evolution of computing from the early work of von 

Neumann through to the present day.  We followed the emergence of computing 

abstractions, and saw how those we employ have been gradually layered upon each 

other, forming a continually ascending tower of abstractions, whilst retaining as their 

underlying computational model and base abstraction the von Neumann machine.   

In Chapter 2, we examined the emergence of distribution.  We saw how RPC attempts 

to extend the successful abstraction of IPC onto many computational machines by 

promoting location transparency, an abstraction that would manifest itself in 

distributed systems built around the tenets of RM-ODP.  Ultimately, distributed 

systems built with this abstraction suffer from several major problems (see Table 3).  

We have argued and demonstrated that this is due to the location transparency 

abstraction breaking the Tower of Abstractions that has been built to enable and 

support computing.  In short, we argue that location transparency is an unsuitable 

abstraction for distribution for the underlying computational model.   

In this chapter, we have reviewed a new paradigm, with new abstractions, that 

potentially fulfils the requirements for a distribution abstraction put forward earlier in 

Chapter 2.  Our requirements may be summarised as follows.  

A distribution abstraction: 

• that remains faithful to the underlying von Neumann machine 

• that does not break the tower of abstractions 

• that is able to differentiate between local and remote components 

It is precisely these requirements that the mobile code paradigm fulfils.  As we have 

seen, its central tenet is one of local interaction.  Components in a distributed system 

that wish to communicate are able to transport themselves across the network so they 

may interact locally at the same host.  In addition, components are also able to 

communicate by exchanging messages across the network.   

In each case, the core abstraction remains faithful to the underlying von Neumann 

machine and the Tower of Abstractions.  Instead of attempting to remove location 

from the abstraction, and build a virtual computational machine, mobile code makes 
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location evident.  It is a central aspect of the abstraction, and enables designers to 

make a judgement on how components might communicate.  Indeed, the execution 

environment of a mobile code system may itself be viewed as an additional virtual 

computational machine being added to the Tower, but it remains consistent with the 

underlying base abstraction.  By ensuring that any protracted communication is done 

locally, components are able to return to the successes of IPC by taking advantage of 

the core facilities of the vNM, e.g. shared memory and files.  Instead of attempting to 

achieve distribution by imposing an unsuitable abstraction across many machines, 

mobile code simply layers a new abstraction upon the existing tower; a time honoured 

route to success.  In fact, we argue that local interaction as embodied in mobile code 

systems should be viewed as a successful adaptation of IPC to distribution. 

Figure 17. A distributed system built with mobile code  

In Figure 17, we see the same hypothetical distributed system that was first 

encountered in Chapter 2.  However, this time the system has been built with the 

mobile code paradigm.  Again, each process has access to certain resources, but this 

time there is clear knowledge of the location of each resource, i.e. in which vNM it 

resides.  Local references are shown in yellow, whilst remote references are shown in 

red.  Knowledge of the location of a resource, allows each component to make a 

judgement about the type of reference it holds to that resource.  In comparison to the 

RM-ODP version of this model, there is no illusion being created by the “plane of 

transparency”.  While network references may still suffer from the problems depicted 

in Table 3, the components themselves are aware that this is a potential problem.  In 
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addition, if a component decides it would be beneficial to be located at the same host 

as a resource it may migrate to take advantage of local interaction.  For example, in 

the case of component C, when it has finished interacting with the green cube, it may 

migrate to vNM A to communicate locally with the red triangle. 

The major conceptual difference between the two distribution abstractions is clear, 

location.  With location transparency, location is removed from the abstraction and a 

virtual computational machine is created which attempts to create the illusion that all 

components in a system reside within the same address space.  The illusion, however, 

can be shattered by any number of problems associated with trying to create a rock 

solid abstraction across the network.   

In contrast, local interaction makes location evident and components are able to make 

a judgement themselves about how to communicate with other components.  It is this 

fundamental difference that the author believes is vitally important.  In Chapter 1, we 

discussed how abstraction is an immensely powerful tool.  It allows us to manage the 

complexity of a situation, and to rationalise about it by removing those details we 

consider inessential.  It is the author’s belief that when it comes to distribution, 

location is a vital piece of information.  We are no longer attempting to build 

distributed systems in networks in which location can be papered over, in which the 

size of the system can mask the fallacies in the paradigm.  We are now building large 

systems in which the network is unreliable, in which the topology of the network or 

availability of resources may change rapidly.  In such an environment, information 

about location becomes essential.  If we examine perhaps the most successful 

distributed system of all time, the Internet, we see that location is central to its 

success.  The URL [Berners-Lee92b] abstraction is purely a reference to location, but 

has been fundamental to the evolution and success of the web.  We must learn from 

these lessons. 

3.7 Concluding Remarks 

“Keep design as simple as possible, but no simpler” [Einstein39] 

"A designer knows that he has arrived at perfection not when there is no 

longer anything to add, but when there is no longer anything to take away” 

[Antoine de Saint-Exupery] 
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We have seen throughout Part I of this thesis how important abstraction is to 

computing.  It is the central essence of an idea or design.  Abstractions allow us to 

remove the details and focus on the essence of a situation.  Any specific example of a 

technology is merely an instantiation of the abstraction.  The majority of the history 

and evolution of computing has been concentrated on the development of new 

abstractions.  Our current abstractions for distribution have proved limiting and 

unreliable.  We require new abstractions to support distributed computing on a 

hitherto unforeseen scale.  Mobile Code systems are one such solution. 

In Part I of this thesis we have built a philosophical argument concerning the 

abstractions used in building distributed systems.  It is our belief that the location 

transparency abstraction, as embodied in the RM-ODP model, is fundamentally 

unsuited to the underlying hardware substrate.  Instead of attempting to utilise the 

strengths of preceding abstractions, location transparency enforces a “plane of 

transparency” whose purpose is to create the illusion of co-location and to mask any 

details of distribution from components in the system.  The abstraction views location 

as a detail that can be removed. 

Local interaction on the other hand remains faithful to the core abstraction, and makes 

use of the core facilities embodied in IPC.  Instead of masking location, it makes it 

evident.  Communicating components are aware if they are local or remote to each 

other, and are able to make a judgement about how to communicate.  By utilising the 

strengths of the von Neumann machine and the network, the local interaction 

abstraction allows us to build distributed systems that do not suffer from the Waldo 

[Waldo94] problems.   

The central argument of Part I is that local interaction should be the abstraction of 

choice for building distributed systems.  In hindsight, we should view location 

transparency as an evolutionary blip, a wrong fork in the road.  If we are to build 

successful distributed systems in the myriad of new networks, we must be bold and 

admit our mistakes of the past. 
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4 Mobility in the Real World 

4.1 Introduction 

Mobile Code is a new and generally untested paradigm for building distributed 

systems.  Although garnering many plaudits and continually increasing in popularity, 

the technology and research field remain relatively immature [Picco98].  To date, 

most research has focused on the creation of mobile code frameworks, and as yet 

there is no consensus on a conceptual framework with which to compare results.  

Further, there is no clear understanding of the new abstractions offered by this 

paradigm.  Part I of this thesis aspires to address the conceptual deficiencies of the 

research field by offering a philosophical argument and critique of mobility. 

In Part II we begin our study of mobility in the real world.  In later sections of the 

chapter, we will see that there are many advantages claimed for mobile code systems.  

Unfortunately, these claims remain qualitative and subjective in their nature.  The 

dearth of quantitative results, however, means it has not yet been possible to properly 

evaluate the potential of either the technology or the paradigm.  In the last year a 

trickle of results is beginning to validate some of the claims [Papastavrou99] 

[Picco98b], and these results are certainly important in establishing the credibility of 

mobile code systems.  Nonetheless, it is the author’s belief that these types of 

improvement are optimisations, or incremental improvements.  The true benefit of the 

paradigm is in the type of software architecture that can be built.  In support of our 

arguments presented in Part I, in Part II we provide an insight into how well mobile 

code architectures respond to real world pressures.   

4.2 Research Motivation 

In Part I, Understanding, we have presented an argument built around a philosophical 

understanding and critique of the abstractions used to build distributed software 

systems.  The central thesis is that contemporary distributed systems built with the 

location transparency abstraction are fundamentally flawed and that we require new 

abstractions for distribution.  Our proposal is that a new abstraction, local interaction, 

is better suited to the underlying hardware substrate upon which distributed systems 

are built.  To demonstrate this we have traced the emergence and evolution of 
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computing, and the abstractions that exist in this field, beginning with the early 

pioneering work of John von Neumann.  We believe that Part I contributes to raising 

the level of conceptual understanding surrounding the mobile code paradigm, 

especially when examined in the wider context of the different abstractions embodied 

by distributed systems. 

Although we believe the essence of any technology is the core abstraction it 

embodies, we understand that pure academic reasoning is never sufficient to make a 

valid judgement about a new technique or technology.  What is required is first hand 

experience.  Therefore, in addition to our philosophical argument, we aim to support 

these arguments by investigating the application of mobile code in the real world.  We 

wish to demonstrate the feasibility of actually building distributed systems with this 

technology.  Certainly, the arguments presented in Part I are extensive, and a full 

experimental investigation is beyond the scope and timescale of a PhD6.  Instead, we 

must shorten our horizons and take the first steps along the long path of validation.  

Part II is therefore a report on our experiences of Using and Evaluating mobile code 

in the real world.   

As we have seen, the technology base in the field of mobile code remains immature.  

Whilst the plethora of new frameworks continues to increase, the amount of real 

distributed systems built with this technology remains low [Milojicic99].  Although 

abstractions are the central essence of a paradigm, the technological instantiation of 

that abstraction must successfully embody it.  To support our argument of Part I, we 

must prove that mobile code can be used to build real world systems.  Thus, our 

research motivation is to investigate and use mobile code, as it would be in the real 

world, and to analyse the issues involved and the lessons that can be learnt.   

In Chapter 3, we described the choice of design abstractions available to the system 

architect who wishes to employ mobile code.  These were Remote Computation, Code 

on Demand, Mobile Agents and Client/Server.  Since many examples of Code on 

Demand currently exist [Hopson96], and Client/Server architectures are an extremely 

well known approach, we feel these abstractions are of less interest to this study.  

Therefore, the implementation described in this thesis will encompass prototype 

                                                
6 Indeed, an entire academic career could be pursued with these arguments! 
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systems of the Remote Computation and Mobile Agent abstractions.  We have gained 

an understanding of each abstraction, and have been able to compare the two.  For 

ease of use, and because of the conceptual abstraction they support, from herein we 

refer to the former as the Mobile Object system, and the latter as the Mobile Agent 

system. 

4.2.1 Research Objectives 

As the software systems that underpin industry have become ever more complex and 

interlinked, the inherent flexibility of the underlying software designs has been 

compromised.  On the small scale and under the right circumstances software systems 

can be extremely responsive, flexible and easy to change, for example the existence of 

the requisite skills.  Therefore, matching a change in business practice should not be a 

problem.  However, when examined in the large this is not the case.  As observed by 

Cox: 

"There was a time when the virtue of software over physical media like paper 

and pencil was in its very responsiveness … Although this may be to some 

extent true for small projects (program building), it is not (and has never 

been) true for ambitious undertakings (system building).  In fact, software 

systems are usually the least responsive element in many organisations today. 

The organisation as a whole is able to adapt more fluidly than the software 

upon which it has grown dependent.”  [Cox87] 

Recent experience has shown that attempts to create large scale supporting 

infrastructures have resulted in complex monolithic systems that are the least flexible 

element within an enterprise [Barber98].  Most companies require a change in their 

software at some point, and so software change is one of the most important issues 

currently facing the software industry [Booch94].  A software system will have a 

limited lifetime if it cannot be altered to accommodate a change in the business 

process it is intended to support.   

This issue is well known to the software engineering community, and in this thesis we 

refer to it as System Agility.  There already exists a substantial body of work relating 

to the issue of system agility, e.g. [ICSE’99], and the full variety of issues is vast.  We 
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cannot hope to consider them all in our experimental study, so we initially select two 

broad but vitally important factors on which to focus: 

1] How easy the system is to understand 

2] How easy it is to modify  

These are still broad issues, with many factors contributing to each, so we refine our 

focus even further.  To represent each facet, we have selected the specific issues of 

Semantic Alignment (SA) and Component Coupling (CC).  System integration and 

agility has been one of the main issues of research at the MSI Research Institute for 

nearly a decade, and therefore SA and CC augment the research undertaken by other 

members of the institute [MSI99] [Coutts98b].  In the next sections, we briefly review 

both concepts. 

4.2.2 Semantic Alignment 

The ability to communicate ideas clearly and effectively was a concern for the human 

race even before written records began [Pinker95].  Whenever two people talk, they 

have only an approximate understanding of each other.  When they speak the same 

language, share intellectual assumptions, and have common backgrounds and training, 

the alignment may be closer.  As these factors diverge, there is an increasing need to 

put effort into constant calibration and readjustment of interpretations, since ordinary 

language freezes meanings into words and phrases, which then can be 

"misinterpreted" (or at least differently interpreted).  Clear communication requires a 

shared understanding of the meaning of terms; and this understanding is known as 

Semantic Alignment [Clark96].  While this term has its roots in linguistics, it is also 

applied to software engineering.  For example, if information is being shared between 

two company databases that have a table for "employee," they are apparently in 

alignment.  However, if one was created for facilities planning and the other for tax 

accounting, they may not agree on the status of part-time, off-site, on-site contract, or 

other such “employees.” 

A software system is invariably built to support a business process.  Therefore, in the 

context of system agility we define Semantic Alignment as: 
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“Semantic Alignment refers to how successfully a software system embodies 

the real world business process is it intended to support, i.e. how well the 

software models the real world.” 

For example, if in the real world a business process contained the concepts of Apples, 

Oranges, Potatoes and Tomatoes, but the software model only contained the concept 

of Food, then this system would not be as successfully aligned as a system that 

contained the concepts of Fruit and Vegetables. 

4.2.3 Component Coupling 

Component Coupling was first defined in the 1970’s by Constantine and Yourdon 

[Yourdon79].  It is a technique for measuring the inherent maintainability and 

adaptability of a software system, both of which are important issues that directly 

affect the overall agility of a software system.  In short, component coupling measures 

the dependencies between two software components, i.e. how many times a 

component depends on the functionality of another object to perform its role.  It is 

considered desirable to limit the number of inter-object dependencies in a system, 

since this not only affords greater flexibility to the designer during construction, but 

also ensures the system remains easy to change in the future.  Therefore, the objective 

of a designer is to limit these dependencies, thus making the system "loosely" 

coupled, so that objects can be interchanged or updated more easily. 

The benefits of loose coupling are potentially huge and include [Clark96]: 

• Higher component reuse 

• Higher productivity 

• More robust systems, since failures cascade less 

• Fewer bugs, as increased reuse means what is reused needs less testing. 

• Complex systems become easier to alter, due to higher component reuse. 

• Easier component enhancement, modification and bug fixing 

Coupling is usually associated with cohesion [Yourdon79], which is a measure of the 

inter-relationships between functions of a single component.  Since our study is to 

examine distributed systems, we feel cohesion is of secondary interest in this case.  

Therefore, we concentrate on how component coupling is affected by the choice of 

mobile code abstraction, and define coupling as: 
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“A measure of the external dependencies of a component defined by the number 

of links that component has to other components within a software system.” 

4.3 Research Statement  

The main aims of the research undertaken in Part II can be summarized as follows:  

1] To demonstrate mobile code can be used to build real world software systems 

We describe the construction of two prototype mobile code systems.  They are used to 

investigate the effectiveness of the two selected abstractions in building real world 

distributed systems.  To simulate real world software problems the prototypes are 

constructed to support the Sales Order Process of a UK manufacturing enterprise.  

This real world business process was identified during an industrial case study (for 

further details see Chapter 5).   

2] To learn how mobile code responds to real software problems 

Merely building proof-of-concept systems is a worthy exercise, but systems in the real 

world very rarely fulfil all the requirements of a business for any length of time.  In 

the majority of cases, the capabilities of a software system will need to be later 

upgraded to support new functions or features, usually due to a change in a business 

process.  In addition to their creation, we aim to evaluate the prototypes with respect 

to the issues of understanding and changing a system that currently confront system 

designers.  To achieve this we have extracted several “Scenarios for Change” from 

data collected during our case study, which will be used to evaluate how well the 

prototypes respond to change.  Three common and related problems facing the 

software industry today have been identified as candidates for examination.  These 

are: 

• System agility – how well a system responds to change 

• Semantic alignment – how well a system embodies the business process it is 
intended to support 

• Component coupling - how intermeshed the components of a software system are 

From the experiments, we hope to gain an insight into how successful mobile code 

systems are when subjected to the kinds of pressures prevalent in industry.   
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However, before proceeding with the construction of the prototype systems, it is 

important to first examine the technical issues associated with using mobile code.  To 

support our philosophical understanding, we must also appreciate the requirements 

and consider the limitations of mobile code infrastructures before employing them.  

For the remainder of this chapter we focus on issues relating to mobility in the real 

world. 

4.4 Technical Issues and Enabling Technology  

We have seen in Chapter 3 that distributed systems built with mobile code technology 

usually consist of execution environments that are hosted at different nodes of a 

network.  Mobile agents are able to migrate between these hosts in order to interact 

locally with static resources and other static agents resident at the hosts.  This hosting 

and migration can be achieved through several different mechanisms, and 

combinations thereof.  In this section, we examine several of the key issues and 

decisions that must be taken when implementing and using a mobile agent framework. 

4.4.1 Strong vs Weak Mobility 

The terms strong and weak mobility refer to the method and nature of the mobile 

agent migration.  In strong mobility, the entire computational entity, i.e. its code, data, 

execution state and program counter migrate to the new host.  There are two ways of 

achieving this, firstly by true migration and secondly by remote cloning.  With true 

migration, the mobile agent is suspended before being transferred in its entirety to the 

new host.  Upon arrival, the agent is restarted and is able to continue its execution at 

exactly the point at which it was suspended.  Remote cloning on the other hand 

achieves migration by stopping the entity at the first host before creating a copy at the 

new host.  Indeed, some might argue that since computers can only copy and delete 

[Cox98], both methods are actually the same.  Some important examples of mobile 

agent frameworks that exhibit strong mobility include Agent Tcl [Gray97], Ara 

[Peine97] and Telescript [White]. 

Weak mobility on the other hand is only able to migrate the code associated with the 

entity across the network.  Any state or non-constant data that is required by the entity 

must be packaged up for travel before migration.  The onus of this packaging is 
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placed upon the programmer at design time.  Weak mobility is generally easier to 

achieve technically, especially with programming languages such as Java available, 

but is burdened by its limitations when complex applications are considered.  The 

programmer must be fully aware of any data that may be required after migration and 

take care to package it, or it will be lost.  The majority of (if not all) mobile agent 

frameworks based on Java are weakly mobile (see Section 4.6. for examples) 

4.4.2 Interpretation vs Compilation 

By their very nature, mobile agents are inherently distributed [Clements97].  As such, 

they must be executable across a variety of platforms and operating systems to 

achieve their full potential, although in a closed and privately controlled network they 

may benefit from homogeneity.  Their true advantage however, comes from being 

able to migrate and continue functioning in a heterogeneous network of systems.  This 

advantage is implementation dependent and has greatly influenced the way in which 

mobile agent systems are created.  To enable heterogeneous execution it is usual for 

these frameworks to be written in some type of script or bytecode that can 

subsequently be interpreted, usually by a dedicated executing environment.  Indeed, 

the spiralling popularity of Java, combined with its platform independence, has made 

it the de facto language for mobile agent systems.  Interpretation removes the need to 

recompile an agent at a new host and instead places the onus on merely ensuring an 

environment exists at the new host that is capable of uniformly executing the agent on 

arrival.  Most examples of this type of system have a server or some type of executing 

environment in which the mobile agents are executed [Lange98][Gray97].  

Interpretation does of course have the previously discussed limitation of execution 

speed, but this is often seen as a minor trade-off, due to the ease in which portability is 

achieved. 

Compilation is not particularly popular in the field of mobile agents, since it forces the 

sending machine to be aware of the platform and hardware architecture of the 

receiver, so that it may choose the appropriate compiler or the appropriate library of 

native code.  As the number of different platforms being supported increases the 

complexity is wont to spiral out of control.  Compilation does however have the 

advantage of speed of execution. Some examples are [Knabe96] [UCI96]. 
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4.4.3 Resource Management 

When a mobile agent migrates to a remote host, any references it has to local 

resources are likely to become invalid.  Before execution can be resumed, all its 

references must be evaluated and reassigned.  This problem can be overcome in a 

number of ways: 

• Copy - If the resource can be copied, then the mobile agent can take a copy of the 
resource with it to the new host. 

• Move - The mobile agent can take the only copy of the resource along with it.   

• Network reference - If the resource is static, then the reference can be changed into a 
network reference that points back over the network to the resource.   

• Reference removal – If the reference is no longer needed, or cannot be accessed 
remotely via a network reference, it can be removed.  

• Rebinding of reference – If another copy or instance of the resource, or a similar 
resource, is found at the new host, the reference can be rebound to it. 

Which tactic to adopt is often determined by the nature of the resource in question, 

and the programming language being employed.  For example, it would be 

nonsensical to copy or move an entire database to a new host.   

4.4.4 Security 

Security is one of the most emotive issues raised when discussing mobile agent 

systems.  It is often quoted [Johansen99] as the major reason mobile agent systems 

have not taken off in the mainstream.  There is currently a wealth of research being 

done on this particular subject [Vigna98].  A brief summary of the most important 

security issues are describe below in Table 4. 

The work described in this thesis is concerned with private networks, in which all the 

hosts and agents are trusted and their origins known.  Thus, the only class of 

applicable attack is that of a third party eavesdropping on a transmission.  This could 

be overcome by the usual cryptographic techniques employed in such exchanges as 

email, for example.  Therefore, the issues of security are considered external to the 

scope of this thesis.   
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Table 4. Summary of mobile agent security issues 

4.4.5 Communication 

Communication among mobile agents in a network can take several different forms.  

Since there is no guarantee that there is actually another agent at the present node, the 

most basic inter-agent communication usually begins by using the executing 

environment to pass messages to another agent.  This can be achieved directly, if the 

agent’s identity is known, or can be broadcast to the entire node.  Once the presence 

of the agent is established, communication can then proceed more privately with both 

agents being involved in a one-to-one dialogue.  

Mobile agents are also able to communicate over the network, in a similar way to 

traditional Internet applications, such as ftp, telnet, etc.  Once again, the initial 

establishment of a dialogue between agents is achieved via the hosting executing 

environments.  Communication with remote mobile agents does have associated 

problems, caused by the mobility of the agent.  Passing messages between two agents 

requires some type of address, which refers to the receiving agent’s location.  

Attacked Type of Attack Explanation 

Host compromised by 
arriving agent 

An incoming agent may try to access and 
corrupt the host’s local files, resources or even 
try stopping the server in a denial of service 
attack. 

Host 

Host compromised by 
external third party 

Someone who wishes to bring down the host 
may send a huge number of agents to the host 
to tie up all the resources, or even crash the 
host 

Agent is compromised 
by the new host 

If the host is untrusted it may try to access 
private information, e.g. a credit card number, 
a password, etc, for later use, or replay. 

Agent is compromised 
by another agent 

During an inter agent conversation the other 
agent again tries to access private information, 
or to crash the agent to stop it fulfilling its task Agent 

Agent is compromised 
by a third party 

Since some inter agent comm’n takes places 
over the network a third party may try to alter 
exchanged messages for their own benefit, 
e.g. to recommend their host instead of 
another, or to reveal content of agent 

Network Network compromised 
by incoming agent 

An incoming agent attempts to flood the 
network with copies of itself 
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Obviously, this can cause problems if the receiver is able to move to a new location, 

as the address is no longer valid.  New techniques for overcoming this particular 

problem are in the early phases of research and development, but include multicast 

messaging, where a message is broadcast to the entire network, instead of just to the 

local node.   

At the higher levels of abstraction, communicating mobile agents will usually do so 

by purely message passing.  However, at lower levels of abstraction, for example 

communicating mobile objects, some sort of remote procedure call mechanism is 

usually provided, that allows objects to interact in the same manner as contemporary 

systems.   

4.5 Advantages Claimed for Mobile Code Systems 

In the previous section, we examined several key technical issues that shape how we 

may utilise and implement mobile code infrastructures.  Simply understanding the 

technological issues however, will not allow us to make an informed judgement of 

this new technology.  We must also understand what advantages mobility might 

bestow upon distributed systems built with this new paradigm.   

So far, there have been many advantages claimed for mobile agents 

[Chess97][Lange99].  These claims are usually in the form of qualitative assessments 

but unfortunately, very few quantitative measures exist to support these claims.  

However, a summary of some of the more frequently quoted and accepted claims are 

described in the following sections. 

4.5.1 Bandwidth Savings 

Distributed systems by their nature are required to communicate over the network.  

This communication can sometimes be in the form of multiple consecutive 

interactions between two components, for example, a query client and a database.  

This type of data querying can result in heavy network traffic.  Mobile agents are able 

to overcome this problem by relocating to the host of the database.  Instead of 

shipping data back and forth across the network, they are able to migrate the required 

business logic to the data source.  Once in situ, they can perform any required queries 

and process the returned information without saturating the network.  After 
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processing, they are able to continue with their work, transporting merely the result to 

a new host, if it is in fact needed.   

4.5.2 Reducing Latency 

Many manufacturing and robotic systems must be controlled in real time.  Controlling 

these systems through a factory wide network can be affected by latency and data 

timeliness.  Mobile agents are able to overcome this problem by migrating to be local 

to the process and control it in real time, thus bypassing the problems of latency. 

4.5.3 Disconnected Operation  

As the amount of Internet traffic increases, the response from the telecommunications 

companies in installing new carrier infrastructure is immense [Kotz99].  Nevertheless, 

this effort may still not be enough to satisfy the expanding base of users.  Moreover, 

many users will not have access to the high-speed bandwidth available to wealthy 

corporations.  Currently, most home users in the UK still connect via a modem and 

copper telephone lines.  Further, the proliferation of mobile devices, such as palm top 

computers, which employ wireless networks implies that many users and devices will 

be extremely limited in the bandwidth available to them.  This disparity in quality of 

connection means that performing tasks that require a continuous connection to the 

network will be probably not be feasible financially, if not technically.   

Mobile agents are a solution to this problem.  A particular task can be encapsulated 

within a mobile agent.  The agent is then dispatched to a host that is part of the 

network backbone, and enjoys massive bandwidth access.  Once there, the mobile 

agent is able to carry out its task in the resource rich environment before returning 

home.  A further advantage of this paradigm is that since the mobile agent is now 

independent of the device, the device can go offline, or even be switched off, before 

again connecting later for the agent to return with the results. 

4.5.4 Increased Stability  

One of the major problems with distributed systems is failure, and the identification of 

the particular type of failure.  Traditional distributed systems are built with the 

philosophy that the network is permanent, and any failure is unexpected.  When it 

does happen it is very difficult to tell whether the network has failed, the machine that 
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was hosting the component you were communicating with has died or the component 

itself has frozen.  

One of the underlying philosophies behind mobile agents is that the network is not a 

permanent resource.  By building software with mobile agents, distributed systems 

can be less dependent on the network, since the underlying tenet is local interaction.  

Discovering the nature of a failure in a local context is a much easier proposition, and 

so systems built this way can be more stable.  Mobility can also be used to achieve 

replication for fault tolerance, and support robust distributed systems.  If a host is 

being shut down, or experiencing problems, an agent is able to react to this by 

migrating to a new host where it can continue with its operations. 

4.5.5 Server Flexibility   

In contemporary distributed systems, when data is exchanged between 

communicating hosts, each host owns a copy of the code that is required to package 

outgoing and interpret incoming messages.  As protocols are evolved to better support 

efficiency and security, the effort required to upgrade protocols becomes immense.  

By using mobile agents, the protocols can be encapsulated within the agents, and 

removed from the servers.  Thus, if a protocol requires an upgrade the mobile agent 

population can be upgraded gradually as and when required, instead of the entire 

server base. 

Further, since mobile agents are able to carry around their own code, the distributed 

system can become more flexible since the mobile agent is not merely limited to the 

functions a server predefines.  It is able to bring along new or improved code and can 

extend the functionality of the server in which it is executing.  

4.5.6 Simplicity of Installed Server Base  

An additional advantage of relocating the computational logic and protocols within 

the mobile agent is that the installed servers become much simpler.  Effectively, a 

server becomes merely an executing environment for hosting mobile agents.  As this 

requires far less functionality pre-engineered into the software from the outset, it can 

help with preventing legacy.  Further capabilities can be added by mobile agents at a 

later date. 
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4.5.7 Support distributed computation  

Mobile agents are inherently distributed, and as such can be a fundamental enabler for 

distributed computation.  However, they are also heterogeneous, often separated from 

both hardware and software dependencies by their executing environment.  This 

means they are an ideal technology for integrating disparate legacy systems that have 

dependencies already. 

4.5.8 Commentary 

The advantages we have seen described for mobility are certainly exciting.  Whilst 

very few quantitative results exist to verify the claimed advantages, the overall picture 

painted is one of a completely new paradigm for building distributed systems.  Such is 

the excitement that many research labs have already begun to produce mobile code 

infrastructures [Lange98] [Concordia].  In later years, this initial group may become 

known as 1st generation infrastructures.   

As the mobile code research field has matured, a few quantitative measures are 

beginning to be published [Picco98b].  Papastavrou et al [Papastavrou99] have shown 

that using mobile agents to perform your database queries locally can have a dramatic 

affect on system performance.  Johansen has shown that bandwidth usage can indeed 

be reduced by significant levels by using mobile agents when compared to traditional 

client/server architectures [Johansen99].   

It is the author’s belief, however, that the majority of advantages discussed in the 

previous sections are merely optimisations.  Many of these advantages could be 

achieved with contemporary distributed systems, for example by redesigning 

communications protocols.  The true advantage of this new paradigm is the types of 

distributed system that can be built: ones that do not suffer from the Waldo problems.  

In the next section, we review some of the well-known frameworks to see how these 

new abstractions are manifesting themselves. 

4.6 Survey of Mobile Agent Systems 

The rapid explosion of interest in this field of research means that there are a large 

number of new mobile agent frameworks appearing, almost continually.  The Mobile 

Agent list [MAL99] currently numbers the known packages at 64.  In this section, we 
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review some of the better-known frameworks and analyse how they embody the 

mobile code abstractions discussed in Chapter 3. 

4.6.1 Java  

Although not marketed as a mobile agent framework, the Java [Gosling96] 

Development Kit does provide enough native facilities to support weakly mobile 

code.  This should not be a surprise since the original goal of Java’s designers was to 

provide a portable, easy to learn, network aware object-oriented language.  To ensure 

portability, Java was designed to be platform independent.  Instead of compiling Java 

into native instruction codes, it is compiled into an intermediary format known as 

bytecodes.  The bytecodes can then be interpreted on any platform that has a suitable 

java interpreter; the interpreter is known as the Java Virtual Machine (JVM) 

[Lindholm99].  By having the intermediary bytecode stage, Java is an ideal language 

for weak code mobility.  The most widely known examples of Java’s mobile code 

capabilities are probably applets and servlets [Hopson96], mobile snippets of code 

that can be transferred over the network in an asynchronous manner.  Applets and 

servlets should not be viewed as mobile agents however, since they are merely single-

hop pieces of code that contain no notion of autonomy.  They do embody the Remote 

Computation (RC) and Code on Demand (CoD) design abstractions (see Section 3.4). 

Inherent platform independence supported through interpretation has made Java an 

extremely popular choice among mobile agent framework implementers.  One might 

even argue it is the de facto language.  These facilities in conjunction with its security 

model [Gong99] and object serialisation [Sun98b] make it a particularly useful 

technology base from which to begin.   

4.6.2 D’Agents 

Developed at Dartmouth College, D’Agents [Rus97] is one of the new breeds of 

mobile agent framework.  In its first incarnation as Agent Tcl [Gray97], D’Agents 

employed a Tcl [Ousterhout94] interpreter, extended to support strong mobility.  

When an agent wishes to migrate to another machine it need only call a single 

function, agent_jump, which triggers the interpreter to package up the complete state 

of the agent and send it to a destination machine.  Strong mobility has always been a 

design goal of the Dartmouth Group and recently, D’Agents has been updated to be a 
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multi-language framework and now supports strong mobility in Java.  However, this 

facility has come with a price; in order to support strong mobility in Java the 

D’Agents team had to modify the JVM, which means that the framework will only 

work with the specialised JVM.  With the current rate of change in the Java world, 

this means that the D’Agent interpreter can quickly become out of date. 

4.6.3 Mole 

Mole [Straßer96] was the first mobile agent framework developed in Java, and was 

initially released in 1995 by the IPVR group of Stuttgart University.  Mole supports 

weak mobility only, a choice the designers justify in [Baumann97].  Interestingly, the 

Mole group assert that their choice of weak mobility was to avoid the problems of 

using a modified JVM that quickly became out of date.  Their goal was to provide a 

pervasive framework the worked ‘out-of-the-box’ with any standard JVM.  This is in 

contrast to the D’Agents group and demonstrates the generally unexplored nature of 

the research field.  Whether strong or weak mobility is the correct methodology 

remains an open question within the mobility community.   

Mole provides the notions of places, the executing environment, where user agents 

are able to meet and communicate.  They can interact with the underlying operating 

system resources via service agents, which are always stationary.  Mole supports a 

number of communication mechanisms including badges, sessions and events.  An 

ascending hierarchy of increasingly anonymous and wider scope of influence 

mechanisms, they are fully described in [Baumann97].   

4.6.4 Hive 

Hive is a distributed agents platform, a decentralized system for building applications 

by networking local system resources, and taking advantage of mobile code 

[Minar99].  Its designers, a group at the MIT Media lab, are using it to provide the 

infrastructure for connecting their many Things That Think [Gershenfeld99] research 

initiatives.  Hive is built using the standard Java features of object serialisation and 

interpretation used by so many mobile agent frameworks and therefore supports weak 

mobility.  
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The Hive architecture consists of the following three abstractions: cells, shadows and 

agents.  A cell is the executing environment in which agents are hosted.  Cells also 

contain shadows, which are placeholders for local resources, for example a display or 

printer.  The designers of Hive have made particular efforts to address the problems of 

agent description and Hive supports both a syntactic and semantic ontology. 

Inter-agent communication in Hive has been achieved by using RMI as the 

communication mechanism.  This allows the methods of Hive agents to be executed 

remotely.  While this approach is simple, and uses built in capabilities of the Java 

language, it has the disadvantages of loss of control and security.  In the author’s 

opinion, it also blurs and lowers the abstraction level of the mobile agent to one of 

merely a mobile object.  If an agent’s methods can be called and executed remotely, 

then any notion of autonomy for the agent has been lost.  Hive thus embodies a hybrid 

abstraction, drawing elements from the autonomous agents research arena, and from 

contemporary RPC distributed systems.  This hybrid abstraction has caused the Hive 

team some considerable headaches in achieving their goals [Minar99b].  This is a 

shame, since the ontological descriptions supported by Hive are superior to many if 

not all of the other frameworks reviewed. 

4.6.5 Voyager 

ObjectSpace’s Voyager platform is a one-size-fits all communication infrastructure.  

At the time of writing Voyager currently supports EJB [Sun99], CORBA, DCOM, 

and RMI.  In its early days ObjectSpace promoted the capability of Voyager to take 

existing CORBA IDL classes and “virtualise” them, effectively making them weakly 

mobile.  This was a major selling point for Voyager, but recently the company has 

been playing down these capabilities [Glass99].  Voyager should really be viewed as a 

Java based messaging broker that has some added capabilities from the mobile agent 

field.  This allows programmers to create network applications by choosing between 

traditional and mobile distribution technologies, and has been a widely successful 

product. 

4.6.6 Jini 

Jini [Arnold99] is Sun Microsystem’s proposed architecture for embedded network 

applications.  It is built using Java and RMI in much the same way as Hive.  Jini 
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provides simple mechanisms that enable devices to plug together to form an 

impromptu distributed system.  Each device provides services that other devices in the 

system may use.  These devices provide their own interfaces, which Sun claims 

“ensures reliability and compatibility”.  Much to the chagrin of the Hive team, Jini is a 

very similar framework, although it does not have the shadow/agent conceptual split.  

Most important however is that Jini’s creators do not consider location to be an 

important part of the abstraction.  Where a particular service resides in the network is 

not of importance to Jini, the interfaces and lookup services are intended to handle 

this sort of issue.  Further, Jini only supports single-hop mobility, and as such can be 

categorized as embodying merely the CoD abstraction.  This continued support of the 

location transparency abstraction and only a basic mobile code abstraction are 

surprising as Waldo is one of the authors of the Jini specification.   

4.6.7 Aglets 

The Aglet Software Development Kit (ASDK) [Lange98] has been developed by 

IBM’s Tokyo Research Labs, and was one of the first and most publicised Java based 

mobile agent frameworks released.  The core abstractions supported by the ASDK are 

that of an aglet, a proxy and a context.  

An aglet is a mobile autonomous agent, whose structure can be considered to consist 

of two distinct parts, the aglet core and the aglet proxy.  The core is the heart of the 

aglet and contains all of the aglet's internal data and logic.  It provides interfaces 

through which the aglet may communicate with its environment.  The aglet core is 

then encapsulated by an aglet proxy that acts as a shield against any attempt to 

directly access any of the aglet’s private internals, and can hide the real location of the 

aglet from malicious aglets.   

The aglet context is the executing environment in which the aglets exist.  It provides 

an interface to the underlying operating system through which aglets are able to 

access core facilities, and gain references to other aglets’ proxies.  The context also 

manages the lifecycle of an aglet.  Since the ASDK only provides weak mobility, this 

lifecycle is one of the ASDK’s most valuable features since it allows the programmer 

to describe behaviour an aglet should perform in reaction to certain events, for 

example, the shutdown of the current host, or a request to migrate to a new host.  This 
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lifecycle is supported through an event-based scheme that is well known in the 

window system programming world.  Aglets implement a number of event handling 

methods that can be customized by the programmer.  These methods cover all the 

important events in the life cycle of an aglet (creation, dispatch, arrival, deletion, etc.).  

For example, if you move an aglet it will be notified upon leaving its host and upon 

arrival at the new host.  Of all the frameworks reviewed, Aglets enforces the mobile 

agent abstraction and metaphor most strongly.  In contrast to Hive, all communication 

between aglets is via messaging.  On receipt of a message, an aglet is able to decide 

what to do with the message, and when, thus sustaining the autonomy of the agent. 

4.6.8 The Mobile Agent Graveyard: Telescript and Odyssey 

Developed by General Magic Telescript [White96] was an object-oriented 

programming language designed for the development of Personal Intelligent 

Communicators (PICs).  PICs were defined as being handheld palmtop-like devices 

with little memory and low bandwidth capability.  Telescript was the first of its kind 

to appear and ground breaking in the facilities it offered.   

Telescript was an interpreted language that supported strong mobility.  There were 

actually two levels of the language: High Telescript, the actual language used for 

implementation, and Low Telescript, a Postscript like language which could be 

interpreted better by the top level executing environment, the engine. 

Other abstractions supported by Telescript included agents, mobile agents that were 

able to migrate on a single command of go; places, stationary processes that provide 

interfaces to services, and were normally inhabited by agents; tickets, objects that 

describe an agents journey; permits, objects that define the capabilities and resource 

constraints of an agent. 

There is an important programming paradigm difference between Aglets and 

Telescript that demonstrates the differences between strong and weak mobility: 

Telescript is focused on process migration that allows you to "go" in the middle of a 

loop and resume the execution in the middle of that loop on another machine.  Aglet 

developers must consider how to deal with migration of non-static data.  
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Sadly, Telescript is no longer available, having gone to the Mobile Agent Graveyard7.  

Odyssey was General Magic’s attempt to revive its flagging fortunes with a Java 

based mobile agent framework that resembled Telescript.  It never made it out of beta. 

4.7 Choosing a Mobile Agent Framework 

Whilst there are an increasing number of mobile agent frameworks, when the study 

described in this thesis began the choice was limited to perhaps half a dozen.  From 

those available, IBM’s Aglet framework was selected.  It would be appealing to be 

able to demonstrate a methodology employed for selecting the framework, but there is 

none.  The Aglets package was chosen due to the connections of Danny Lange, the 

inventor and chief architect of Aglets, to researchers at MSI.  However, in defence, 

several important factors support the choice of the ASDK:   

• it was one of the first to use the Java programming language; 

• it contains the notion of agent itinerary which systems such as Telescript did not 
support; 

• it is being proposed for submission to the Object Management Group (OMG) Mobile 
Agent Facility RFP; 

• it includes a fine grained security model 

• aglets has proven to be an extremely popular framework in the mobile agent 
community for its clear agent abstractions and lifecycle facilities 

Actual mobility in the ASDK is enabled by the provision of two facilities:  

• the Agent Transfer Protocol (ATP) 

• the Java Agent Transfer and Communication Interface (J-ATCI). 

The ATP is an application level protocol for distributed agent based information 

systems and facilitates migration of the aglets over a network.  Based on the naming 

conventions of the Internet, ATP uses the Universal Resource Locator (URL) 

[Berners-Lee92b] for specifying host locations, whilst maintaining a platform 

independent protocol for enabling the transfer of mobile agents between networked 

computers.  Although this protocol has been released with the ASDK, its domain of 

use is by no means exclusive to aglets, as it offers the opportunity to handle mobile 

                                                
7 It lives on though, through furtively copied gold CD’s!   
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agents from any programming language and a variety of agent systems, as long as 

they implement the protocol interfaces. 

Reinforcing the ATP at a higher communication level is J-ATCI, an independent 

agent protocol enabling agents to move and communicate within a network.  J-ATCI 

is a simple and flexible programming interface that enables programmers to develop 

platform independent agents without having to build into them the necessary protocols 

for wire communication.  By ensuring a native implementation of the J-ATCI 

designers can expect their agents to function on any platform.  The J-ATCI has also 

been submitted to the OMG. 

Figure 18. The Aglet Environment 

4.8 Concluding Remarks  

Pure academic thought might have been encouraged in the classical world, but in ours, 

we require facts too.  To support the philosophical argument of Part I, we construct 

two prototype distributed systems with mobile code technology. To evaluate the 

systems we have identified several issues that are constantly engaging the software 

industry:  system agility, semantic alignment and component coupling.  The business 

process our systems are intended to support has been extracted from an industrial case 

study.  The prototypes will be subjected to several Scenarios for Change, which will 

allow us to gain an insight into how well they perform.   

This chapter also contains a review of the technical issues involved with 

implementing the mobile code abstractions, a summary of many of the claimed 

advantages for mobile code and a roundup of several of the more established mobile 

code infrastructures.  In the following chapters, we report on the implementation and 
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evaluation of our prototypes.  Before that however, we describe the case study that 

was used to generate a business model and process for the prototypes to support.  
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5 I.T.L. : An Industrial Case Study 

5.1 Introduction 

This chapter describes the industrial case study undertaken in the course of the 

research described in this PhD.  It was performed at Instrument Technology Ltd 

(ITL), a high performance vacuum component manufacturer based on the south coast 

of the UK, in Q1 1997.  In the next section, we discuss the methodology and the 

objectives of the case study. 

5.2 Why a case study? 

"A case study is an exploration of a question or phenomenon when little is 

known in advance, and where the situation may be complex."  [Yin94] 

Case studies are able to examine processes within a specific context, draw on multiple 

sources of information, and relate a story, usually in a chronological order.  In case 

studies, we are able to ask: "How or why does this occur?"  We can create a rich, 

textured description of a social, economical or infrastructural process [Scanlon97].  

This information can give an insight into how to gain answers to more specific 

questions, or produce conceptual models of a business process.   

It has already been shown that the mobile code community recognises the lack of real 

world examples of their technology [Picco98] [Milojicic99].  We aim to prove that 

mobile code can be used to build real software systems.  Therefore, the scope of this 

particular study was to gain an insight into I.T.L. and identify a suitable business 

process.  The extraction of an industrial process model would provide a suitable 

reference around which the subsequent prototype implementations could be built.  

Further, the case study allows us to generate real world scenarios that can be used to 

evaluate the prototype systems after their construction.   

When performing a case study it is extremely important to select an appropriate 

methodology [Jones97].  To achieve our objectives, the methodology selected was to 

carry out a qualitative, exploratory case study.  Qualitative studies are particularly 

useful in attempting to answer questions such as 'Why?' or 'How?’ [Strauss90], while 

exploratory studies are those that attempt to gain an initial insight into a situation.  
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Together they allow the examiner to create a 'snap-shot' in time of a particular process 

or situation.  The methodology was considered appropriate, as it was capable of 

fulfilling our requirements: 

1] To produce an SOP model, 

2] which was based on a real world example,  

3] upon which a set of experimental scenarios could be based.  

The models generated from the case study are presented and discussed later in the 

chapter, following an overview of I.T.L. 

5.3 Who are I.T.L.? 

Instrument Technology Limited (I.T.L.) is a British manufacturing company based in 

East Sussex.  It has been established for over twelve years, and usually performs 

steadily.  A recent diversification in product range had reaped benefits however, and 

at the time of the case study, the company had shown a growth in turn-over from 

£500k to nearly £10m in five years, whilst concurrently developing an extensive, 

global customer and distributor base.  More recently, the company has been affected 

by the crash of the Asian tiger economies.   

5.3.1 What does I.T.L. do? 

I.T.L.'s core business is manufacturing high performance vacuum components, 

primarily for the semi-conductor industry.  The scope of the product range ensures 

that there are few other companies in the world that manufacture a greater diversity of 

standardised vacuum components.  At the time of the case study, there were over 

2,000 modular products and almost 7,000 items in the product catalogue.  In an 

interview with the managing director [Barlow97] it became clear that these figures 

were expected to increase.  The company has been quick to recognise the trend 

towards customer-driven specialised services and part production.  This is supported 

by an extremely flexible design service offering almost unlimited choice to customers, 

who are able to submit their own specifications for product manufacture.  Co-existing 

with the standardised product group is the specialised vacuum chamber division, 

which builds intricate, high pressure chambers and vacuum chambers, usually for 

advanced research facilities such as CERN.  
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5.3.2 How does I.T.L. work? 

Until 1997, I.T.L. perceived8 its largest market to be in the UK and Export direct 

sales, in which they have a substantial market share.  However, the emphasis for the 

company is now shifting to much larger, more lucrative contracts with several 

international OEM's.  Deals with a number of multinationals have consolidated 

previously successful working relationships, and ensured good market standing for 

I.T.L., which is now emerging as a global “player” in the vacuum component market.  

For direct sales, a network of Sales agents deals with the promotion and marketing of 

brand products.  The network encompasses Europe, the Far East and Central and 

Southern Africa, with several more slated for adoption in the short term.  All orders 

are still supplied from I.T.L.’s headquarters in the UK.  OEM partners are offered 

exceptional configurability in delivery and service.  For example, specialised 

packaging, branding or invoicing. 

Figure 19. An overview of I.T.L. around the world. 

I.T.L. now perceives the greatest potential for sustained growth in expanding its net-

work of Sales Agents into new markets, whilst attempting to broker new OEM deals 

with further American companies [Barlow97].  Consolidation with its oriental 

partners has also brought new opportunities in reducing manufacturing costs, and the 

company is investigating the viability of investing in new manufacturing facilities in 

the Far East.   

                                                
8 The term “perceived” used here is factually correct, at the time of writing no one at I.T.L. was able to give exact figures for any 
of their markets.  
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Finally, I.T.L. has settled on a long-term strategy of expanding its global presence.  In 

doing so, I.T.L. has realised that it will no longer be economical to continue with 

centralised stock control since transportation of its products is expensive.  Ergo, the 

company is considering adding new stock control centres or warehouses at globally 

strategic locations. 

5.3.3 Commentary 

With the increasingly extensive portfolio of products and parts, the configurability 

that I.T.L. offers to its customers, coupled with the long term strategy of expansion 

and the need to remain responsive in the market place, it is clear that I.T.L. requires a 

high degree of flexibility from both its business practices and the supporting IT 

infrastructure.   

I.T.L. is also hoping to expand both its network of Sales Agents and its stock control 

centres.  This requires a radical change in the company’s business practices.  It must 

transform from a central and localised operating model to a distributed one.  The 

pitfalls and problems associated with transformations of this kind are well 

documented [Peters82] [Hammer93] [Goldman95]. 

Equally, as the Asian Tiger economies example demonstrates, I.T.L. is competing in a 

fluctuating market.  Responding to such problems as, for example, changing suppliers 

or meeting 'Just In Time' (JIT) manufacturing requirements mean the company must 

strive to remain agile.  Here, agility is considered the ability to respond quickly to 

market pressures.  For example, both up and downturns in orders, adding or removing 

suppliers, adding or removing sales agents, etc. 

It was our aim to generate a process model from a real company.  This would then 

form the basis for our implementations, and would allow us to evaluate their 

performance when subjected to the kinds of pressures a real software system may 

experience.  From the case study, it is clear that I.T.L. is a prime example of a 

manufacturing enterprise facing the very real pressures of remaining agile and 

competitive.  The requirements of I.T.L. can be summarised as: 

• It requires a high degree of flexibility in its IT infrastructure 

• It must be able to add new sales agents quickly 
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• It needs to add new stock control centres  

• It must be able to upsize and downsize with equal ease 

5.4 Process Modelling 

Having established I.T.L. was a suitable candidate upon which to base our 

implementations it was important to identify a suitable business process.  The 

requirements of I.T.L. listed in the previous section all pertain to the Sales Order 

Process (SOP).  Indeed, the SOP plays a pivotal role in any business that relies on 

constant orders for survival, and involves links to customers, distributors and 

suppliers throughout the world.  This is a perfect process to support with a distributed 

software system, and therefore, the decision was taken to use I.T.L.’s SOP as the 

process model. 

Understanding the internal process of a company can be complex.  A simple but 

effective tool that is often used for this purpose is a data flow diagram (DFD) 

[DeMarco78].  Using DFDs, the core business processes of I.T.L. were modelled in 

an attempt to understand how I.T.L. responds to a new order (see Figure 20).  In this 

diagram, the many processes are defined by the senior management figures that are 

responsible for those particular areas.  Each core process is surrounded by a dotted 

line for further clarification. 

From this rather complex diagram, it is possible to extract the core business processes 

and represent them in a higher level, abstract view.  Figure 21, the Abstract Process 

Model (APM), shows this simplified view and depicts the interactions between the 

each process upon receipt of a new order.  The decision branch shown in Figure 21 

has been intentionally omitted from Figure 20 for reasons of clarity.  By examining 

the interactions between the major components of the APM a basic visual model was 

generated to represent the entire process.  This can be seen in Figure 22.  To better 

understand this model we will walk through an example of a new order being placed. 
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Figure 20. Information flow through I.T.L. on receiving an order  
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Figure 21. Abstract Process Model 
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Figure 22. The Sales Order Process 
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we decided to concentrate on the interactions of sales agents handling order requests 

and the stock control centres.  These particular facets are fundamental to the SOP as a 

whole, and are intrinsically associated with the issues of building distributed software 

systems.  Thus, these processes form the major components of the subsequent 

prototype implementations. 

The Production Control process was removed from the model since scheduling is an 

entire field of research in its own right and was deemed external to the objectives of 

this thesis.  In addition, the greyed out areas of Dispatch and Manufacturing represent 

processes that were considered of secondary importance to the requirements identified 

in Chapter 4.  These would make excellent candidates for investigation and expansion 

in any future work.  The finalised model used in the implementation can be seen in 

Figure 23. 

Figure 23. Modified Sales Order Process model 
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resulting in the identification of a set of requirements that I.T.L. had of their software 

system.  These are summarised below. 

I.T.L.:  

• requires a high degree of flexibility in its software systems 

• must be able to add new sales agents quickly 

• needs to add new stock control centres  

• must be able to remove new additions with equal ease. 

In the next chapter we describe the implementation of our two prototype systems. 
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6 Implementation 

6.1 Introduction 

It has been stated that the field of mobile code research lacks examples of real world 

applications [Picco98].  Therefore, the work in Part II of this thesis has been 

undertaken with that fact in mind.  In support of our philosophical argument for 

mobile code, we wish to demonstrate the feasibility of actually building real 

distributed systems with this technology.   

In the previous chapter, we described the generation of a Sales Order Process model, 

which we aim to support with mobile code technology.  We have further refined the 

model to focus our investigative work on those aspects that depend on distribution by 

choosing to concentrate on the interactions of sales agents dealing with order requests 

and the stock control centres.   

In this chapter, we describe the implementation of our two prototype systems, a 

mobile object version of the business model and a mobile agent version.  First, we 

begin by presenting a top down view of the implemented SOP model, before going on 

to discuss the common parts of the two prototype systems and detail their differences.   

6.2 The Model 

Figure 24 depicts the implemented mobile agent model of the SOP.  The fundamental 

operation of the process is as follows: following an enquiry from a customer to a 

SalesAgent (SA), an OrderAgent (OA) is dispatched to the StockControlAgent (SCA) 

where it requests the fulfilment of its order by passing an Order object.  The 

StockControlAgent, which is resident at a distribution point, queries the stock 

database to see if enough products are in stock.  If there are enough products, the 

StockControlAgent then returns a DeliveryDate object to the OrderAgent.  The 

OrderAgent then returns and reports to its parent SalesAgent, which is then able to 

notify the customer of the delivery date.  
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Figure 24. Agent Sales Order Process Model – with example routes for OrderAgents 
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object containing a standard delivery date.  If there are not enough raw materials in 

stock, agents within the manufacturing plant server generate a PurchaseOrderAgent 

that encapsulates details of all the required materials. 

The mobile object model is very similar to that described above, the key difference 

being that the results from stock database queries are gathered from remote 

StockControlAgents by a mobile OrderObject guided by a specific itinerary.  Instead 

of processing this information locally to the data source, it is returned to the 

SalesAgent for processing.  At arrival, the OrderObject delivers the results before 

being terminated.  If further excursions are necessary, the SalesAgent creates new 

mobile objects and dispatches them as required.  The mobile object does not make 

autonomous decisions based on the acquired information. 

6.3 The Bestiary 

The implementation work described in this thesis was undertaken using IBM's Aglet 

Software Development Kit [Lange98], a mobile agent development framework that 

was extensively described in Section 4.6.7.  This framework has been used as the base 

upon which to implement the two different versions of the SOP model.  Each major 

process has been embodied as an agent, and there is quite a large overlap in 

commonality between the two systems.  Similar amongst both models are the static 

agents consisting of SalesAgents, StockControlAgents, ManufacturingAgents, 

PurchasingAgents and DispatchAgents.  As one might expect, there are also mobile 

components to the systems, and it is here that each system differs from the other.  In 

the mobile agent system, there are OrderAgents, whilst in the mobile object system 

there are OrderObjects.  Generically, we will refer to these as the Order components 

of the systems.  This is primarily, although not entirely, where the distinction between 

the Remote Computation and Mobile Agent abstraction is evident.  It should be noted 

that in a static analysis of the system, the mobile Order components are a single entity 

in the design.  However, during execution the number of migrating mobile 

components in the system would be significantly more than the number of static 

components.  In the following sections, we discuss each agent type and its relationship 

to other agents. 
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6.3.1 OrderAgents 

OrderAgents represent the mobile components in the Mobile Agent system.  The 

agents discussed in this paper can be classified in line with Franklin and Graesser 

[Franklin96] as goal oriented, communicative, and mobile i.e.: 

• Goal oriented – they do not simply act in response to the environment 

• Communicative – they are able to communicate with other agents 

• Mobile – they are able to transport themselves from one host to another. 

On creation, each OrderAgent is given a copy of a new Order and an Itinerary 

that contains details of which hosts they must visit to enquire about completion of 

their Order.  Encapsulated within the Itinerary are Tasks, which the OrderAgent 

carries out on arrival at a new host.  Once the OrderAgents have been given an 

Order, they are then responsible for completion of that order.  Some example 

program listings of an OrderAgent and a Task can be found in the Appendices.   

After creation, the OrderAgents migrate to the first host in their Itinerary to interact 

with the resident StockControlAgent.  This interaction will involve the OrderAgent 

querying the StockControlAgent as to whether the Order it is carrying can be satisfied 

by the levels of stock currently held.  The actual stock database is queried by the 

StockControlAgent; the OrderAgent does not interact with it.  The OrderAgent 

processes the results returned by the StockControlAgent.  If the relevant stock is 

available the OrderAgent asks the StockControlAgent to book out the stock to its 

Order number before returning to the SalesAgent that created it to report on the 

delivery date, whilst the StockControlAgent sends a message to the DispatchAgent 

with details of where to send the products.  If the stock levels at the first 

StockControlAgent are unsatisfactory, the OrderAgent is able to migrate to the next 

host in its list to begin the process again.  However, if no StockControlAgents are able 

to satisfy the Order then the OrderAgent will proceed to the ManufacturingAgent to 

request production of the relevant components.  Although this behaviour remains 

unimplemented, it is intended that the ManufacturingAgent would then interact with 

some scheduling software system to ascertain an estimate on the required time for 

manufacture that the OrderAgent could use to report to the SalesAgent.  Currently, 

this communication consists of a simple message and acknowledgement from the 

ManufacturingAgent.   



On the Structuring of Distributed Systems  Implementation 

 

 91 

The valid outcome for the goal of the OrderAgent is reporting a delivery date for the 

order to the SalesAgent.  If all else fails, it will return and report that it has failed, 

allowing the SalesAgent to begin the process again.  In the future, this may also 

include reporting an allocation for raw materials, an internal works order number and 

time to manufacture.  While not complex, OrderAgents usually make up the majority 

of the agent population in the system, although this is dependent on the number of 

enquiries received by the SalesAgents.  Potentially, there could be hundreds of mobile 

OrderAgents migrating through the network, attempting to fulfil their own particular 

Order.  Since OrderAgents require no interaction with a user, they have no Graphical 

User Interface (GUI).   

6.3.2 Order Objects 

OrderObjects are the mobile components of the Remote Computation system.  

However, in contrast to the mobile agent system, it is more appropriate to view the 

mobile objects as mobile messengers.  Initially they appear to perform the same 

function as the OrderAgents described above, and in many respects, this is true.  On 

creation, the OrderObjects are given an Itinerary and an Order and are dispatched 

to the first host on their list.  There, they again query the StockControlAgent to 

establish whether the order may be fulfilled at that host.  Although OrderObjects are 

still able to migrate to a data source and take advantage of local interaction and all the 

advantages that brings, they do not contain the business logic to autonomously 

process any results.  They merely add them to their records before migrating to the 

next host in the Itinerary.  Once all hosts in the list have been visited, and all stock 

databases queried, the OrderObjects return to their origin to report the findings to their 

parent SalesAgent, after which they are terminated.  In this system, the processing of 

the results is performed by the SalesAgent, which creates a new OrderAgent and 

dispatches it to one of the hosts to commit the stock to the Order.  Again, during 

execution there may be many hundreds of mobile OrderObjects instantiated within the 

system. 

6.3.3 SalesAgents 

SalesAgents are static agents that are responsible for generating Order components, 

giving them an Order and Itinerary, and sending them out into the network so they 
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may interact with StockControlAgents.  SalesAgents are the human users’ main 

interaction with the SOP system and therefore they have a GUI with which the sales 

person can create a new Order.  SalesAgents are more complex than the Order 

components, since they must keep track of current orders, but they still remain “slim” 

and can be manifest as a client for sales persons working on terminals or NetPCs, or 

be hosted on a laptop for travelling sales persons.     

In the mobile agent version the only logic contained within these agents is that 

required to create a new OrderAgent, with its accompanying Order and Itinerary.  

They are capable of maintaining a list of spawned OrderAgents, and thus are aware of 

which Orders have been fulfilled.  In the mobile object version, they also contain the 

business logic required to process the results returned by their slave OrderObjects.   

6.3.4 StockControlAgents 

The StockControlAgents are another example of static agents within the systems, but 

as they do not interact with human users, they have no user interface.  They are 

responsible for handling all requests for products and materials made by the Order 

components, and act as custodians for the information contained in the stock 

databases.  As such, they are a communications bridge between the data sources and 

the other agents in the system.  All requests for stock levels and allocation must be 

made through the StockControlAgents.   

Manufacturing enterprises are usually supported by a heterogeneous mix of hardware 

and software, with many different types of database systems employed at any given 

time.  When designing StockControlAgents so they may connect to such a variety of 

database systems it became apparent that some of the required features of these agents 

were particular to each database, whilst others were generic and could be applied to 

any StockControlAgent.  In the initial stages of the implementation, the 

StockControlAgents had been using text files as their storage medium, modelled on 

MICROS records.  Many new database systems no longer use text files however, so it 

was later decided to improve their capability to allow them to communicate with any 

ODBC enabled database.  ODBC is an industry standard for database access.  The 

work on this problem has yielded a common design that can be used as a base pattern 
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and applied to all StockControlAgents [Papaioannou99].  The DataQueryAgent is dis-

cussed later in Section 6.4.1. 

6.3.5 ManufacturingAgents, MaterialsAgents, 

PurchasingAgents and DispatchAgents 

These particular agent types have been classified as having secondary importance to 

this initial study.  Currently all three are represented in the SOP systems by “dumb” 

static agents.  By dumb we mean that they are merely communicative and possess no 

internal logic to perform any particular tasks.  They are able to simply acknowledge 

communication from other agents, and represent a definite avenue for further 

investigation and research.  However, their presence in the systems allows us to begin 

to explore the issues involved with multi-hop mobile agents vs the client/server 

paradigm.   

6.4 Considering Lifecycle and Maintenance Issues 

The implementations described in this thesis are proof-of-concept systems.  They are 

used in our experimental work to demonstrate that real world software can be built 

with mobile code systems.  In addition, we wished to measure the degree of 

flexibility, coupling and semantic alignment offered by the mobile code abstraction.  

Further, to fully consider the support provided for building real world systems we 

examine the full lifecycle phases of software systems.  These include issues relating to 

design, implementation, runtime and maintenance.  The resulting knowledge and 

supporting tools and are discussed in the next sections. 

6.4.1 DataQueryAgent: A Proto-Pattern for Database Query 

A major goal of the work described in this thesis has been to build agile software 

systems.  For the software architectures implemented in this study to achieve this 

throughout their lifetimes, they must be capable of querying a variety of new or 

legacy databases.  Investigation into this problem has generated an effective and 

reusable proto-pattern that can be used to build agent database query systems 

[Papaioannou98].  The DataQueryAgent, shown in Figure 25, can be decomposed into 

several constituent parts, which are described in the following sections.  
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Figure 25. DataQueryAgent Architecture 

6.4.1.1 The Infrastructure 

The infrastructure provides the system creator with the facilities to communicate with, 

and manage the lifecycle of agents in the system.  The environment in which the agent 

will execute normally dictates the infrastructural requirements, although they are 

usually accessible through the framework libraries or via class inheritance.  For 

example, in our implementations these facilities are attained by extending the abstract 

Aglet class. 

6.4.1.2 The Identifier 

The Identifier plays an essential role in system security and traceability.  Whilst it is 

more usual for mobile agents to carry an Identifier, static agents must also be able to 

prove their credentials.  In future implementations, we imagine that 

StockControlAgents would be able to generate PurchaseOrderAgents and 

WorksOrderAgents in order to fulfil unsatisfied orders.  Part of the parent’s Identifier 

would be handed to these child agents, as proof of their origin on dispatch to another 

host. 

6.4.1.3 The Communication Package 

The Communication Package handles the incoming communication from querying 

agents and translates this into a format the Business Logic Unit or Database Handler 

components are able to understand.  Inter-agent communication methods vary 

between different agent environments, as do the communication protocols and 

requirements of differing agent solutions.  In some examples, simple String 

matching is sufficient for simple communication.  However, interactions that are more 
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Business  
Logic Unit Identifier 
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complex may require an attempt at semantic level communication.  The use of Agent 

Communication Languages (ACL’s) such as KQML [Labrou96] is typical of the more 

advanced approaches that are being proposed to solve these problems.  To handle the 

requirement for a variety of communication methods, the Comms Package can be 

interchanged by the software designer with respect to their particular requirements.   

6.4.1.4 Business Logic Unit 

The Business Logic Unit is used to understand communication and queries from other 

agents, and generate a course of action to fulfil those requests.  In the SOP scenario, 

when an OrderAgent is dispatched by the SalesAgent, it encapsulates an Order object.  

Upon arrival at the StockControlAgent, it will attempt to fulfil that order, a task that in 

itself can require some simple logic.  For example, for simplicities sake an Order 

object only contains descriptions of the full products that are expected.  Although the 

OrderAgent may only be aware that it requires one hundred widgets by Tuesday, the 

StockControlAgent may include some logic that translates this request into one where 

a widget must be supplied with a grommet and two nuggets.  Thus, the Order actually 

requires one hundred widgets and grommets, plus two hundred nuggets.  More 

probably, the StockControlAgent will query another database to retrieve the Bill of 

Materials for the product.  Since all the OrderAgents will require this same logic, it is 

clear that including it as part of the DataQueryAgent is the best solution.  By keeping 

the size of the Order and the encapsulated logic low, the size of the OrderAgent is 

kept small, reducing network traffic.   

6.4.1.5 The Database Handler 

The Database Handler deals with connecting to a database, retrieving information 

from it, updating it, or even switching databases transparently to the requesting agent.  

It works in tandem with the Business Logic Unit to fulfil the request of a querying 

agent.  The Database Handler ensures that the DataQueryAgent is capable of 

interfacing with many different types of data source. 

The examples shown in Figure 26 address a large percentage (but by no means all) of 

the real world situations and the methods currently being employed to query databases 

within a manufacturing enterprise.  Connecting to a new type of database ostensibly 

requires only the production of a new Database Handler.  However, we make no 
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claims about the ease of this task.  It is understood that access to a database is not all 

that is required; there remains the difficult problems of understanding the schema 

used in the new database before specific information can be retrieved.  Work towards 

this goal can be seen in the efforts of the EDI and STEP/PDES community. 

Figure 26. The DataQueryAgent with examples of different DataHandler modules 

6.4.2 The Data Connector Tool 

When constructing the StockControlAgents for our implementations, using the 

DataQueryAgent pattern, it became apparent that the most arduous task involved was 

in making the connection to a database.  Whilst on the surface a relatively simple task, 

there are several variables that must be configured correctly, and a number of JDBC 

interfaces that must be used accurately.  To alleviate the problems this caused, the 

DataConnector tool was produced to automate some of these tasks. 

The DataConnector Tool is a Java program, with a user interface that allows the user 

to insert the required parameters for connection to a JDBC compliant data source.  

The validity of these parameters can be repeatedly tested, using the refresh, update 

and test facilities, until the correct configuration is achieved.  Once a satisfactory 

connection has been made, this data is then exported by serialising it to disk.  Each 

StockControlAgent can then be given a reference to the file that contains the 

particular information they require to connect to their specific database.   
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6.4.2.1 Benefits of DataConnector 

 
The biggest advantage in using this tool is the ability to test connections to a database 

and server across the network, or even the Internet.  If a virtual enterprise were to 

decide to use mobile agent technology as a tool for 

rapid integration, it is likely that one of the 

collaborators (or their systems administrator) will 

have some prior experience in using the 

technology.  The DataConnector tool allows a 

single administrator to test all the required 

database connections between the relevant 

systems, and produce a set of connection 

information files that can be forwarded to the 

respective sites.  Moreover, if the agent 

environments and servers have already been set 

up, a Messenger agent could deliver the files, and the DataHandlers could be 

completed and initialised automatically.  The lightweight nature of a connection 

information file means that continued use of the agent system would allow an 

administrator to build up a set of predefined files for various configurations that 

would accelerate the speed with which new collaborators or data sources could be 

added in the future, increasing the system agility and responsiveness of the enterprise. 

6.5 Concluding Remarks 

In this chapter, we have described the realisation of our Sales Order Process model.  

We have produced two prototype implementations in order to evaluate the mobile 

object and mobile agent abstractions.  The major processes identified in the overall 

business logic of the SOP have been embodied as agents in these systems, which 

comprise a mixture of static and mobile agents.  Each individual type of agent created 

has been reviewed and discussed and their relationships examined.   

The major difference between the two systems is the physical and conceptual location 

of the business logic associated with processing stock query results.  In the mobile 

object version, this logic remains in the SalesAgent and is in an analogous position to 

where it would be found in a traditional client/server system.  In the mobile agent 

Fig 27  Screenshot of DataConnector 
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version, this logic is encapsulated within the mobile OrderAgent.  In the former, the 

processing of the results must take place after all the data has been returned to the 

client, whilst in the latter the decision can be made locally to the data source by the 

mobile agent. 

At the start of this chapter, we mentioned that part of the rational for this study was to 

demonstrate the feasibility of building real distributed systems with this new 

technology.  We have accomplished that.  We have built two prototype Sales Order 

Process software systems, based on a real world model, with mobile code technology.  

In addition, through consideration of the lifecycle and maintenance issues of these 

systems we have developed a proto-pattern to assist in the modular creation of 

DataQueryAgents.  Supporting this pattern is a small tool, the DataConnector tool, 

which allows system administrators to rapidly connect DataQueryAgents to their data 

sources. 

During the case study, described in Chapter 6 we also established several real world 

requirements for such systems.  These have been identified as “scenarios for change” 

that can be used to evaluate how well each prototype responds to the types of 

pressures experience by real world software systems.  The evaluation process and 

results are described in the next chapter.   
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7 Evaluation 

7.1 Introduction 

The previous chapter described the implementation of two mobile code systems.  The 

rational for their construction was to evaluate the mobile object and mobile agent 

abstractions, in an attempt to understand exactly what each has to offer, and how that 

might affect how we build distributed systems.  In this chapter, we evaluate how 

successfully each prototype responds to the scenarios for change that were generated 

from data collected in the case study of I.T.L, and report on the lessons learned and 

insights gained during these experiments. 

7.2 Generating Useable Metrics 

Evaluating software architectures is a notoriously hard task [Whitmire97].  There are 

very few established techniques or measurements for gathering data, and although 

software engineering as a discipline strives to emulate the classical sciences, we are 

still a long way off.  Instead of formal equations, we have methodologies for 

developing metrics.  They include: the Quality Function Deployment approach 

[Kogure83], the Software Quality Metrics approach [Boehm76] [McCall77] and the 

Goal Question Metric (GQM) approach [Basili94] [Solingen99].  Basili’s GQM 

methodology was selected to evaluate the systems as it enjoys widespread popularity 

and support within the software engineering community.   

In the next sections, we present an overview of the GQM methodology, and the 

principle goals, questions and metrics identified for the systems. 

7.2.1 The Goal 

The GQM methodology is based upon the assumption that to gain a practical measure 

one must first understand and specify the goals of the software being measured, and 

the goals of the measuring process.  More specifically, it is important to specify what 

is being evaluated, what task it should fulfill and from what perspective to view the 

measurements.  Once this framework has been established, it is possible to direct 

investigation and measurement towards the data that defines the goals operationally.  

The generated framework is also useful when interpreting the data. 



On the Structuring of Distributed Systems  Evaluation 

 

 100 

The overall goal of our evaluation can be stated as:  

“To evaluate each prototype system from the industrialist’s perspective, with 

respect to satisfying the industrial motivations to support system agility” 

(see section 5.5)  

7.2.2 The Questions 

Having stated the goal, the process is continued by generating a broad set of questions 

that may provide some indication of the individual issues encapsulated by the main 

goal.  The objective is to generate as many questions as possible, including redundant 

or invalid questions.  As the process continues, it is usual to develop a hierarchical set 

of questions that can subsequently be narrowed.  This refined set can then be 

answered through tangible measurements made on the system. 

To this end two workshops were held, one at MSI, Loughborough University, and one 

in the Computer Science Department of Reading University.  In order to evaluate the 

prototypes with respect to the issues identified in section 5.5, the initial questions 

focused on system complexity (how easy is it to understand), and system agility (how 

easy is it to change).  The results of these workshops were a large and varied set of 

questions, with many superfluous or duplicate entries.  This is an expected part of the 

Basili methodology.  Table 5 lists the focused set of questions that remained after 

refining.  

7.2.3 The Metrics 

After several iterations of refinement, and some healthy pruning, a set of usable 

software metrics remained that could be used to evaluate the two mobile code 

systems.  These are shown in Table 6. 

On their own, most of the generated metrics are extremely narrow in their focus.  

However, through combination, it is possible to arrive at some useful measures of a 

software system.  In the following sections, we examine how these metrics can be 

used to evaluate the implemented systems, and discuss how well each prototype 

performs.   
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Table 5. Questions generated using the Basili GQM Method 

 

Generated Questions Metric Number 

How well does the system support change?  

  How easy is it to understand the system?  

      How many business entities map onto data 
abstractions 

(1) 

      How many business processes map to software 
methods 

(2) 

      Which real world entities that are mobile are also 
mobile in the system 

(3) 

      Which real world entities that are static are also 
static in the system 

(4) 

      How many components are there in the system (5) 

      How many lines of code are there (6) 

      How many comments are there (7) 

How easy it was to modify the system?  

      How many conceptual entities must be changed - for 
example requirement a)  

(8) 

      How many objects must be changed (9) 

      How many src files must be changed (10) 

      How many interactions must be changed (11) 

      How many components are there in the system 
relative to the size 

(5) + (6) 

      How many real world entities map to a software 
component 

(1)+(2)+(3)+(4) 

      How many components must be changed (9) 

      How many interactions must be changed (11) 

      How many inter-entity connections are there  (12) 

      How many methods of the object are public (13) 
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Table 6. Metrics Generated using the GQM Method 

7.3 Evaluating Semantic Alignment 

It has been demonstrated that semantic alignment between real world abstractions and 

components of a software system is important when attempting to build agile software 

systems [Coutts98b].  It is also a factor in how responsive a software system may be 

to change.  To understand what the implications are for semantic alignment, when 

using mobile code, and to compare the two mobile code prototypes, we require some 

way of measuring how well the abstractions of the real world are embodied in 

software, and how well they resemble the real world model.  For this, we have 

developed a term called Conceptual Diffusion. 

Metric Nature of metric 

(1) Identify information-based abstractions in the real world. Compare 
with info based abstractions in the software 

(2) Identify process-based abstractions in the real world. Compare 
with processes evident in the software. 

(3) 
Identify mobile elements of the real world, compare with mobile 
elements in the software 

(4) 
Identify static elements of the real world, compare with static 
elements in the software 

(5) Count the components 

(6) Count lines of code 

(7) Count comments, and get ratio of comments/method 

(8) Count num changes to entities for each requirement 

(9) Count num changes to objects for each requirement 

(10) Count num changes to interactions for each requirement 

(11) Count how many files are changed for each requirement 

(12) Count number of inter object method invocations 

(13) Count number of public methods 
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7.3.1 Conceptual Diffusion 

Conceptual Diffusion is defined as a measure of:  

“The degree to which a single concept or semantic abstraction in the 

application domain maps to the components in a software system.” 

Therefore, we may say that: 

 CD = A/B  

Where CD is conceptual diffusion, A is the number of concepts included in this 

abstraction, and B is the number of components in which this abstraction is embodied.  

Conceptual diffusion can be examined at different levels of granularity to gain 

different perspectives on a situation.  For example, in a software system that is 

intended to support a Sales Order Process we expect the concept of an Order to be 

present.  On analysis, we find that in both the agent and the object systems the 

concept of an Order is split over four separate components.  Thus, in these two 

systems, the concept of an Order can be said to have a conceptual diffusion rating of 

four (see Table 7).   

Table 7 also shows the results of metrics (1) and (2).  These metrics are examples of 

examining conceptual diffusion at a larger level of granularity.  For example, metric 

(1) requires the identification of all the information-based concepts within the real 

world, and a comparison with their counterparts in the software systems.  Since Order 

is an information-based abstraction, it is therefore included in the results of metric (1).  

We may use Conceptual Diffusion to gain an insight into how well concepts or 

abstractions are embodied in software. 
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Table 7. Analysis of Conceptual Diffusion Present in Mobile Code 

Info 
Abstractions Process Abstractions SOP Logic 

Objects 

Order Customer SA SCA PC M P D MobAg MobOb 

BaseAglet   P P  P P P   
DBAglet    P       
OrderAglet P        P P 
SlaveItin         P P 
SlaveDetails    P       
SalesAglet   P       P 
Result         P P 
GenericTask         P P 
StockCommit 

Task 
        P P 

DBStockRequest 

Task 
        P P 

NewOrderDialog   P        
Order P          
OrderListEntry   P        
OrderList   P        
Product P          
ProductList    P       
FutureLevels P          
OrderNumbers   P        
SlaveList   P        
Conceptual 
Diffusion 

4 N/A 7 4 N/A 1 1 1 6 7 
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7.3.2 Semantic Alignment 

Conceptual Diffusion in itself is a measure of how well a software system is 

semantically aligned with those business processes it is trying to support.  As it stands 

however, the conceptual diffusion measure remains relatively fine grained in its 

perspective.  It does not offer an overall view of a system, rather an insight into a 

particular abstraction.   

To gain an overall perspective of a system, a compound metric has been devised.  It is 

a combination of metrics (1) to (4) and is termed the Semantic Alignment Metric: 

where SA is semantic alignment, I is information based abstractions, P is process 

based abstractions, M is mobile components, S is static components, s denotes in 

software and r denotes in the real world.  Thus, 
Pr

Ps
is the ratio of process-based 

abstractions in the software to the process based abstractions in the real world. 

Mobile elements Mobile agent Mobile object 

Order PP PP 
Products OO OO 
Materials OO OO 

Static elements Mobile agent Mobile object 

Sales PP PP 
Stock Control PP PP 

Production Ctrl OO OO 
Manufacturing PP PP 

Purchasing OO OO 
Dispatch PP PP 

Table 8. Results of Metrics (3) and (4) 
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This metric can be used to analyse a system and to assess how well the software 

system reflects the semantics of the application domain.  A comparison with the ideal 

alignment of {1,1,1,1} can be used as a measure to gauge how difficult it might be to 

understand the software, given an understanding of the application domain.  Table 8 

shows the results of metrics (3) and (4). 

By combining the results of the first four metrics, we are able to state that: 

For the Mobile Object System Semantic Alignment = {4,22/6,1/3,2/3} 

For the Mobile Agent System Semantic Alignment = {4,21/6,1/3,2/3} 

7.3.3 Commentary 

The results of the Conceptual Diffusion and Semantic Alignment analysis show that 

both Mobile Agent and Mobile Object systems should be easy to understand, as the 

abstractions in the real world align reasonably well with the components of the 

software systems.  The information abstractions from the real world are on average 

spread over four components in the implementations.  When considering mobile and 

static component alignment, for both systems, a third of the components in the domain 

are modelled as mobile in the implementation, and two thirds of the static components 

in the domain are modelled as static elements in the implementations. 

The difference in the two systems is shown when considering the semantic alignment 

of the business process.  Here the mobile agent system is shown to have better 

semantic alignment than the mobile object system as the process logic for the SOP is 

contained solely within the OrderAgent and not diffused across both the SalesAgent 

and the OrderObject.  Therefore, we can conclude that the mobile agent solution 

provides better semantic alignment with the real world business processes it supports.   

If we consider contemporary distributed systems, we find they have no facility to 

support mobile components in a system.  Therefore, they would be unable to 

implement any of the mobile abstractions.  Instead, these abstractions would have to 

be diffused over several static components.  If we consider the requirement for a stub, 

skeleton and IDL file, in addition to the client and server implementations, then the 

conceptual diffusion would be considerable.  Since mobile code systems are equally 

adept at building static components, we can also postulate that mobile code systems 
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increase the semantic alignment between the real world and its supporting software 

systems, for any system that is not constructed from completely static components.  

In addition, these new metrics are not merely restricted to use after the fact, but can be 

used proactively during the specification process, before any software has actually 

been built.  Ensuring good semantic alignment of a software system before production 

will undoubtedly save both time and money in the long term.  In particular, these 

metrics can be useful for identifying those components that should be mobile, and 

those that should be static.  With increasing numbers of mobile code systems being 

built, this will prove an increasingly important aspect of system analysis and design    

7.4 Evaluating System Agility 

In order to evaluate the agility of a system it is necessary to make changes to that 

system.  The case study of I.T.L. highlighted several real-world industrial 

requirements for agility that a company may have for a distributed SOP system.  

Using these requirements as scenarios for change, modifications to both the mobile 

agent and mobile object implementations were undertaken, in order to evaluate the 

agility of each system.   

7.4.1 Change Capability 

The GQM methodology enabled the derivation of several metrics that can be used to 

measure certain changes in a software system after modification.  These 

measurements are specified by metrics (8), (9), (10) and (11).  Individually, they 

enable us to measure narrow slices of change to a system.  However, by combining 

these metrics it is possible to produce a more encompassing measure of agility.  This 

set has been termed Change Capability, and is described by: 

where Change Capability CC, for a required change, is the set of the changes to the 

number of objects (o), the number of src files (s), the number of interactions (é) and 

the number of conceptual entities (å), between states á and â.  A conceptual entity is 
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analogous to the abstraction or concept referred to in the previous sections.  For 

example, it could be an Order, or a StockControlAgent.  Interactions are those 

exchanges of information between objects, usually via method invocations, although 

for agents this also applies to any messaging dialogue they might enter.  Changes to 

those interactions will usually imply changing a method signature. 

Change Capability can be used to compare systems or to get a measure of the agility 

of the system relative to the ideal {0,0,0,0}.  For the mobile object and mobile agent 

systems Change Capability for each requirement is summarised in Table 9. 

Table 9. Change Capability metric sets after “scenarios for change” 

7.4.2 Commentary 

Again, these results show that both systems are relatively easy to change.  Adding 

new sales facilities requires only the instantiation of new SalesAgents that incurs zero 

changes to the system code.  New stock control centres can be added through a low 

number of changes that are the same for both systems.  The difference between the 

systems becomes apparent when making changes to the Sales Order Process logic.  In 

the mobile agent system, this logic is contained solely in the single mobile 

OrderAgent, whereas in the mobile object system it is contained in both the 

SalesAgent and the OrderObject.   

The Change Capability metric can be used by a system designer to evaluate how 

responsive to change their system has been after a specific change.  It is possible to 

System 

Industrial Requirement 
Mobile 
Agent 

Mobile 
Object 

The addition of new sales agents {0,0,0,0} {0,0,0,0} 

The addition of new stock control centres {3,3,1,2} {3,3,1,2} 

The removal of new additions As A or B As A or B 

Allowing changes to the business logic of 
the SOP to be made easily 

{1,1,0,1} {2,2,0,2} 
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deduce areas that require refactoring, or are particularly troublesome when 

undertaking change.  For example, consider the CC set {5, 20, 20, 1}.  We see that for 

this change, although only one conceptual entity was changed, there were twenty 

changes to source files, five changes to objects, and twenty changes to the interactions 

of those objects.  Changing the signature of twenty methods in five objects to enable a 

change in a single entity can cause serious problems and should lead the designer to 

review how diffuse this particular entity actually was.  Of course, this is also revealed 

by the Conceptual Diffusion metric. 

While both implementations have demonstrated they are relatively agile, the question 

of whether they are more agile than a contemporary distributed system remains open.  

Certainly, it is unlikely that a traditional system will be any more agile than the 

mobile object system, since Remote Computation and Client/Server are very close in 

terms of the abstraction they offer.  Nevertheless, we are able to assert that the mobile 

agent system has shown that it is more agile than the mobile object system.  This 

increased agility was due to the reduced conceptual diffusion and improved semantic 

alignment that the mobile agent abstraction allows.  In the next section, we pursue this 

matter by examining loose coupling, a central issue to building agile software 

systems. 

7.5 Evaluating Loose Coupling 

To build loosely coupled systems, components of that system should not be linked 

directly to form a complex network of interactions and inter-dependencies.  Instead, 

they should remain distinct abstractions, embodying the concept of their real world 

equivalents.  Components can then be assembled into a software system, with no prior 

knowledge of each other.   

7.5.1 Evaluating Coupling in Mobile Code Systems 

We have already seen in the preceding sections that distributed systems built with 

mobile code are able to minimise conceptual diffusion.  This enables an extremely 

good alignment between real world processes and their supporting software 

counterparts.  On examination of the static software entities in our systems, for 

example SalesAgents, StockControlAgents, ManufacturingAgents, etc, we find that 
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they are fully decoupled from each other.  During execution of the system, there is no 

communication or interaction between any of the static components.  Any 

communication that does take place within the systems is between static and mobile 

entities.  Until a mobile entity alights at a host and attempts to interact with a static 

one, there is no coupling between any of the components.  This is significant, since 

the system only experiences tighter coupling during a dialogue between components, 

i.e. when a mobile entity wishes to communicate with a static one.  Of course, this 

dialogue depends upon prior knowledge on the part of the mobile entity as to what 

language the other agent understands, be it a syntactic dialect, or a more complex 

semantic conversation.  In a private, controlled system however, this knowledge will 

always be available.  In addition, since there are very few types of component that are 

mobile it is simple to alter the interactions, by updating the mobile agent population.  

Research is being undertaken so a dialogue may be established with no 

foreknowledge [Martin99].  Although this is currently in the static, intelligent agents 

domain, in time it will naturally be applied to that of mobile agents. 

7.5.2 Commentary 

Our prototype systems have demonstrated extremely low, if not non-existent, 

component coupling until runtime.  Contemporary distributed systems such as 

CORBA do support loose coupling in the same inherent manner [Coutts98b].  

Components in these systems that wish to communicate require implicit knowledge of 

each other’s interfaces.  These interfaces are the central aspect of building distributed 

systems with traditional technology.  

“You should be able to look only at the IDL and know precisely how to 

implement against it.” [Vinoski99] 

Therefore, even if the key conceptual abstractions remain embodied in large grained 

components, for these components to interact they must be aware of each other a 

priory, and inevitably end up intermeshed with each other.  The work of Coutts and 

Edwards has shown that it is possible to build loosely coupled systems with traditional 

technology by employing additional design patterns and forethought.  The author 

believes that being required to follow this enforced route is simply increasing the 

cognitive complexity of building distributed systems.  Something that is already an 

onerous task. 
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This circumstance arises since location transparency, the abstraction employed in 

contemporary distributed systems, does not support loose coupling inherently.  

Distributed systems built with this abstraction rely on component interface signatures 

for identification, and to facilitate communication.  Coutts and Edwards [Coutts98b] 

have demonstrated that with further software architectures a certain degree of loose 

coupling can be achieved.  Their use of the Mediator pattern has one drawback 

however – all components that wish to interact must do so via the Mediator.  The 

strength of this approach is also its main weakness.  By enforcing a policy of 

mediation, the distributed system is also subjected to centralised control, and thus the 

Mediator is a single point of failure.  Building distributed software systems with a 

single point of failure is known as a bad technique. 

In a contemporary distributed system the concept of physical location is hidden.  

However, for two components to interact there must be some form of identification 

involved.  This identification manifests itself through the interface types of the 

interacting components.  Therefore, in reality the purpose of identification by 

interface is to enable the location of a component that can provide the required 

services.  The core information in the task of locating a component is no longer 

physical location, rather it is the interface.  Although the major tenet of this 

abstraction is location transparency, it is clear that the task of locating components 

remains.  It has merely been replaced by an alternative method.  Of course, 

practitioners of contemporary distributed systems argue that location transparency as 

provided by the abstraction is for the benefit of those who build and use the system.  

This may be the case, but we must also consider the implications of using this 

abstraction on the supporting technology, i.e. the distribution infrastructure. 

Table 10. Requirement of Distributed Systems 

Distributed System 
Technology 

Locator   
Requirement 

Dialogue 
Requirement 

Traditional Technology Interface Interface 

Mobile code systems Location  Interface 
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On the other hand, components in distributed systems built with the local interaction 

abstraction do not rely on interface signatures to be located.  Instead, they employ 

physical location as the information required for location.  This is an important 

difference.  By retaining location as the locator, the mobile code abstraction divorces 

the distribution mechanism from the dialogue constraints.  This is shown in Table 10. 

This separation has important implications for how tightly coupled a system might be.  

By divorcing distribution from dialogue, distributed systems can be much more 

loosely coupled until runtime.  At the outset, all that two components who wish to 

communicate must know about each other is their respective locations.  It is only 

when they actually wish to interact that they become more tightly coupled.  The 

difference to contemporary technologies is in the timing of when it is required. 

The implications of this subtle change are fundamental.  System agility is affected by 

the coupling of components within a system, and in this respect, we argue that local 

interaction does indeed support looser coupling than traditional distribution 

technologies.  By divorcing the mechanism for distribution from the dialogue, 

components in a system can be loosely coupled right up until the moment of 

interaction.  Although once engaged in dialogue the components become tightly 

coupled, the moment of coupling has been delayed.  Therefore, we may conclude that 

mobile code systems are more loosely coupled, and this looser coupling enables 

improved system agility when compared with traditional distribution technology. 

The important issue to understand is why there are such marked differences between 

the abstraction offered by current distribution technologies and that offered by mobile 

code.  In chapter one we examined the history of computing and saw how the 

computing landscape we inhabit today has been formed through the gradual layering 

of ascending abstractions.  This is not a problem, since abstractions are an extremely 

useful tool for reducing the complexity of a situation, removing the minutiae so one 

might contemplate the problem at hand with clarity.  However, what is important 

about abstraction is the importance of using an appropriate one.  One that is able to 

accurately describe the real situation, without losing any important information. 

It has been the author’s belief that the major tenet of RM-ODP systems, that of 

location transparency, is fundamentally flawed in this respect.  The first notion of this 
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abstraction arose when Birrel and Nelson attempted to take the extremely successful 

abstraction of IPC, and apply it to many networked machines, in order to make local 

and remote calls look identical.  This philosophy has prevailed and been extended so 

that we currently employ an abstraction that attempts to make every object or 

component in a distributed system believe they are executing in the same computing 

machine.  However, by attempting to “shoehorn” an abstraction that was perfectly 

suited for the underlying hardware, i.e. a single von Neumann machine, onto many 

computing machines an important piece of information has been lost from the 

abstraction – location.  Waldo et al identify several problems of distributed systems 

but do not offer a clear reason for these problems.  We propose that it is due to the 

loss of location from the distribution abstraction.  Identification of components in the 

network can no longer be achieved via their location, instead they must be identified 

by their interface signatures.  

The assertion of the author is that although this technology can indeed build 

successful distributed systems, the drawbacks do not warrant the effort.  The price for 

using the interface as a locator is tightly coupled systems that are difficult to change.  

Instead of enabling location transparency, mobile code systems enable local 

interaction, an abstraction ideally suited to single von Neumann machines.  By using 

physical location as a locator, mobile code systems are able to separate the issues of 

distribution from the issues of dialogue, and thus these systems are more loosely 

coupled.  Additionally, they provide improved semantic alignment, and thus reduce 

the cognitive complexity of the system.  

Employing the correct abstraction can have fundamental consequences to building 

distributed systems.  Instead of a flat plane of components that all believe they are in 

the same host, the mobile code abstraction removes this opacity of RM-ODP and 

exposes the rich network environment.  

7.6 Concluding Remarks 

Evaluating software systems is never an easy task.  The evaluation in this thesis has 

been undertaken following Basili’s GQM methodology.  Using this technique a set of 

tangible metrics was developed to assist in the evaluation of the two mobile code 

systems.  The motivation for the experimental work carried out in this thesis was to 
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demonstrate the feasibility of actually building distributed systems with mobile code 

technology, and to investigate the implications for system agility when using this new 

paradigm. 

We initially examined the issue of semantic alignment and compared our two 

prototype systems.  The experimental work has shown that by reducing the conceptual 

diffusion in a system, the mobile agent abstraction is able to offer improved semantic 

alignment with the business process it is intended to support when compared to the 

mobile object system.  The difference is barely significant in our systems, but could 

easily be magnified in a full size system.  In the process of this evaluation, two 

software metrics have been developed to assist the system designer in identifying 

which components, if any should be mobile. 

On examination, system agility is a harder issue to resolve.  The experimental work 

has shown that mobile code systems are relatively agile, with the mobile agent 

abstraction being slightly more so than the mobile object abstraction.  The differences 

in each implementation with respect to agility are identical to the differences in 

semantic alignment.  This is due to lower conceptual diffusion in the mobile agent 

system, something that is enabled by the autonomy of the agent metaphor.   

When looking at loose coupling we see no difference between the mobile object and 

mobile agent prototypes.  However, in general component coupling in these systems 

is extremely low.  This is in marked contrast to distributed systems built with the 

location transparency abstraction.  Although our work does not shed any further 

quantitative light onto this matter, our observations do support the argument made in 

Part I of this thesis: that location transparency is fundamentally flawed.  Our 

conclusion is that this is further exacerbated by combining the information used for 

location of components with that required for a dialogue.  Local transparency on the 

other hand separates these two issues, and is thus able to build more loosely coupled 

systems that are more responsive to change. 
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8 Conclusions 

Building distributed systems is not a new endeavour.  We have been doing so for as 

long as we have been networking computers.  However, the types of system being 

built, and the nature of the underlying network are evolving beyond the wildest 

dreams of the early network pioneers.  Networks are becoming pervasive in society, 

and the dream of ubiquitous computing is finally being realised.  These new networks 

bring new requirements for how we build distributed systems.  We can no longer 

guarantee network reliability or even topology.  Our existing technologies and 

infrastructures are beginning to creak under the strain.   

This thesis has been concerned with how we build distributed systems.  Instead of 

focusing merely on the technology used to implement them, we have also focused on 

the abstractions employed in their construction.  These immensely powerful concepts 

allow us to manage the complexity of a situation, by removing those details we 

consider inessential.  After all, the central essence of any paradigm is the abstractions 

it embodies.  The major contributions of this thesis have been: 

• An extensive philosophical argument and critique of abstractions for 
distribution  

• The demonstration of the feasibility of building real-world distributed systems 
with mobile code infrastructures 

• The creation of the new software metrics of Conceptual Diffusion, Semantic 
Alignment and Change Capability 

• Quantitative comparisons of the Mobile Agent and Remote Computation 
abstractions  

In Part I, Understanding, we traced the emergence of abstractions in computing, and 

built a philosophical understanding and critique of the abstractions used to construct 

distributed software systems.  The central thesis of this work is that by employing the 

location transparency abstraction, and attempting to create the illusion that all 

components exist within the same computational machine, contemporary distributed 

systems are fundamentally flawed as they break the Tower of Abstractions by 

attempting to impose an unsuitable abstraction on the underlying computational 

substrate.  We have demonstrated that location transparency was a wrong fork in the 

evolutionary road of distribution.  Our proposal is that a new abstraction, local 

interaction (embodied in mobile code infrastructures), that returns to the core 
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successes of the von Neumann computational machine is a more suitable abstraction 

with which to build distributed systems in today’s ubiquitous networks.  Removing 

location from the abstraction has proven detrimental to the agility of systems built 

with this technology, since the issues of distribution have become tied with those of 

dialogue.  Whilst we advocate the use of abstraction, we believe that location 

transparency loses essential information when employed.  We believe that Part I of 

this thesis contributes by raising the level of conceptual understanding surrounding 

the mobile code paradigm. 

The arguments presented in Part I are extensive, and a full experimental investigation 

was deemed beyond the scope and timescale of a PhD.  Instead, our horizons were 

shortened to encompass the first steps along the long path of validating the argument.  

Part II, Using and Evaluating, is therefore a report on our experiences of mobile code 

in the real world.  To date, the mobile code research arena has remained relatively 

immature, and the dearth of real systems has hampered its development.  With this in 

mind, our experimental work was based upon a business process model generated 

from an industrial case study.  We reported on the creation of two prototype systems 

that embodied the Mobile Agent and Remote Computation abstractions, part of the 

mobile code family of abstractions.  In this, we have achieved our first aim; to 

demonstrate the feasibility of building real world distributed systems with mobile 

code.  We also wish to comment on the relative merits of each prototype. 

In the course of the experimental work, we subjected our systems to real world 

pressures in the form of Scenarios for Change, also generated from the case study.  

During the subsequent evaluation, we developed several metrics using the Basili 

GQM methodology.  The metrics of Conceptual Diffusion, Semantic Alignment and 

Change Capability have proved to be useful techniques for evaluation that can be used 

during both the specification process, and post construction.  In addition, we have 

tried to consider the full lifecycle of our systems, an exercise that has produced 

several supporting tools and proto-patterns.   

Our evaluation of the two mobile code prototypes draws us to conclude that the 

mobile agent abstraction is the more useful to employ.  From our experiments, we 

observe that mobile agents enjoy increased semantic alignment and system agility 

when compared to the remote computation abstraction.  The differences in each 
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implementation arise due to the lower conceptual diffusion of the mobile agent 

system, something that is enabled by the autonomy of the agent metaphor.   

We believe that this thesis is a beginning, an initial monograph on abstractions for 

distribution.  It is clear that location transparency is unsuitable for some types of 

system we wish to build, and that mobile code offers a viable alternative.  This is not 

to say that all distributed systems should be built with mobile code.  Mobile agents 

offer us a solution for networks where topology, quality of service and varying 

bandwidth are the core issues.  We should appreciate the nuances of each abstraction, 

so that we may apply them in the correct situation. 

8.1 Future work 

As has been mentioned, the arguments made in Part I are extensive, and their scope 

beyond that which can be considered in the timescale of a PhD.  This is not to say we 

have not contemplated what would be required.  The experiments described in this 

thesis have been a first step.  We have demonstrated the viability of mobile code, and 

our results indicate that the mobile agent abstraction supports good system agility.  

The question of whether mobile code technology is superior to contemporary 

technology remains open.  It is very difficult to compare the two, since the maturity 

levels of the technologies differs greatly.  Distributed systems built around the RM-

ODP model have been around for over a decade with much industry development, 

whilst mobile agent systems have been around merely a few years.   

We believe the next stage of validation for our philosophical argument would be to 

undertake a course of research to directly compare Mobile Agents with RM-ODP.  To 

avoid the differences in technology maturity, we envisage building each abstraction 

from the ground up.  A clean room implementation of both abstractions would allow a 

more valid and comprehensive comparative analysis.  Further, it is clear that software 

patterns and software metrics evolve throughout their lifetime.  Through use, 

practitioners are able to refine them.  We believe additional software metrics would 

support this investigative work. 

As has already been mentioned, an obvious avenue for future work would be to 

continue the SOP implementation undertaken in this thesis.  The current model 
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embodied in our prototypes has many areas where it can be expanded.  Increasing the 

size and complexity of our systems would allow us to reapply the scenarios for 

change.  A comparative study with our current results would be a valuable exercise to 

ascertain how much of an effect size and complexity has on system agility.  We 

should also be searching for collaborative partners on other continents to truly test 

how successfully each system supports distribution. 

Finally, the creation of a modelling language that includes the facility to specify 

mobile components would be an invaluable addition to the system designer’s toolbox.  

Current modelling languages, such as UML [Booch97], do not include the concept of 

mobility.  Extending de facto industry methodologies is a sure fire way to ensure 

widespread adoption of new ideas and technologies. 

8.2 Commentary 

Using mobility is not just about what the technology can do for you. It is also about a 

fundamental change of mindset.  By removing the conceptual block that is the plane 

of transparency, distributed systems designers can begin to appreciate the rich 

environment that is the network.  If we remain faithful to the Tower of Abstractions, 

and employ the network as our communications infrastructure, we draw on the 

strengths of the von Neumann machine and the network suite, whilst divorcing the 

issues of distribution from those of dialogue.   

In hindsight, it is easy to illustrate the reasons our computing evolution meandered 

down the location transparency fork.  Recently an expanding community has realised 

there are problems with this approach.  As a software engineering community in the 

large, we must be brave enough to face up to those problems, and admit our mistakes.  

It is better to attack the problem as early as possible, than build ever more elaborate 

software constructs to support a dying abstraction.  The ideas generated during the 

work undertaken in this thesis have allowed the author to view distribution from a 

different perspective.  Local interaction is beginning to establish itself as a valid tool 

for building earthbound distributed systems, but it has already been considered for 

perhaps the ultimate distributed system - a space based network [Papaioannou99c].  

There can be no question of location transparency being employed when the distances 

involved in this type of network are considered!   
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Mobile agents have shown considerable early promise.  The future they depict is one 

of a rich network environment, inhabited by an ecology of autonomous agents.  Nodes 

in the network become islands of resources, on which agents may alight to take 

advantage of resources locally.  The population consists of mobile and static agents, 

all enjoying some level of autonomy, ranging from simple task specific instructions, 

to complex autonomous agent architectures.  The mobile agents live in the network, 

able to migrate, clone, sleep, wake, but in reality insert a new layer of abstraction over 

the underlying computation substrate.  They act for other agents, or their human 

owners.  The static agents are brokers for immovable resources such as printers or 

databases.  In this virtual ecology, we see the glimpses of our future computing. 
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Appendices 

Appendix A 

Program listing of an example OrderAgent: 

package uk.ac.lboro.todd.aglets.mascenario; 
 
import uk.ac.lboro.todd.aglets.mascenario.tasks.*; 
import uk.ac.lboro.todd.aglets.*; 
import uk.ac.lboro.todd.aglets.order.*; 
import uk.ac.lboro.todd.aglets.utils.*; 
 
import com.ibm.aglet.*; 
import com.ibm.aglet.event.*; 
import java.net.URL; 
import java.util.Date; 
 
/** 
* A simple QueryAglet that can be created by a Master and tasked 
* with tracking down the stock levels of a product from a list of  
* hosts. 

 * 
 * @version   2.1   10/11/98    Changed from a properties lookup for  
 *                              the DataSource to multicast messaging 
 *  version   2.0   21/10/98    Most of the required logic has now  
 *                              been refactored and shifted to the   
 *                              Task classes. Allows for far more  
 *                              modularity. 
 *  version   1.2   18/10/98    Query can now handle missing data  
 *                              sources and also the addition of  
 *                              subsequent tasks, after the  
 *                              completion of the first one. 
 *  version   1.1   08/10/98    Query aglet is now able to complete  
 *                              Itinerary and request a retraction 
 *                              Removed MakeRequest and added it to  
 *                              StockRequestTask. Makes more sense. 
 *  version   1.01  25/09/98    Added capability to create with  
 *                              details and receive an Itinerary. 
 *  version     1.00        23/09/98    First attempt. 
 * 
 * @author      Todd Papaioannou 
 */ 
 
public class QueryAglet extends BlindAglet { 
 
    // Our data variables 
    AgletProxy dataProxy = null; 
    ResultSet resSet = null;     
    AgletProxy mProxy = null; 
    SlaveItin itin = null; 
    Order order = null; 
 
    // Do some tasks when the aglet is created 
    public void onCreation(Object init) { 
         
        // Pass up the hierarchy 
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        super.onCreation(init); 
         
        SlaveDetails det = (SlaveDetails)init; 
         
        // Must make a note of the master here 
        mProxy = det.getMaster(); 
 
        // Initialise our important internals 
        resSet = new ResultSet(getAgletID()); 
        order = det.getOrder(); 
         
        // Add our own listener and adapter 
        addMobilityListener( 
            new MobilityAdapter() { 
 
                int counter = 0; 
 
                // Using this as a safety check in case we get caught  

    // in a loop in the same host 
                public void onArrival(MobilityEvent event) { 
                     
                    if (counter > 1) 
                        System.out.println("ACounter = " +  

new Integer(counter).toString()); 
                    counter++; 
                     
                    if (counter > 3) { 
                        System.out.println("Self destructing!"); 
                        try { 
                            event.getAgletProxy().dispose(); 
                        } catch (Exception e) { 
                            System.out.println(e.toString()); 
                        }     
                    }  
                } 
                 
                public void onDispatching(MobilityEvent event) { 
                    counter = 0; 
                }     
                 
                public void onReverting(MobilityEvent event) { 
                    appendMessage("Being retracted by Master to  

homebase."); 
                } 
            }     
 
        ); /* End of Adapter */ 
         
    } 
     
    // Test run 
    public void run() { 
         
        //System.out.println("\nInto run"); 
   
        // Just a safety check, in case of delay 
        while (itin == null) { 
            for (int i = 0; i < 3; i++) { 
                 
                waitMessage(1 * 1000); 
            }     
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        }     
 
        // Do we have an itinerary and is this the last stop? 
        if ((itin != null) && itin.atLastDestination()) { 
             
            // Let's get a reference to the final Task object. 
            GenericTask task = 

 (GenericTask)itin.getTaskAt(itin.size()-1); 
             
            try { 
                task.finishTasks(itin); 
            } catch (Exception e) { 
                System.out.println(e); 
            }     
        }        
    } 
     
    /** 
     * Handle ourselves being killed gracefully 
     * 
    public void onDisposing() { 
 
        // Clear up and get rid of our itinerary 
        itin.clear(); 
        removeMobilityListener(itin); 
    }*/ 
     
    /** 
     * Returns true if the current host is our origin 
     */ 
    public boolean atHome() { 
         
        if (getAgletInfo().getOrigin().equals(getAgletContext(). \ 

getHostingURL().toString())) 
            return true; 
        else 
            return false; 
    }         
     
    /** 
     * Allows a slave to contact it's master and ask for a  
     * retraction. Useful since the Master has no idea where the  
     * Slave might have ended up. 
     */ 
    public void returnHome() { 
         
        try { 
            Message msg = new Message("RetractMe"); 
            msg.setArg("url", getAgletContext().getHostingURL()); 
            msg.setArg("id", getAgletID()); 
            mProxy.sendOnewayMessage(msg); 
        } catch (InvalidAgletException iae) { 
            System.out.println("1 " + iae.toString()); 
        } catch (Exception e) { 
            System.out.println("2 " + e.toString()); 
        }     
     }     
     
    /** 
     * Find out who is the data source in this context 
     */ 
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    public boolean whoSource() { 
 
        try {     
            ReplySet set = getAgletContext().multicastMessage 

                            (new Message("DataSource?")); 
             
            // Give any sluggards a chance 
            while (!set.isAnyAvailable()) 
                waitMessage(1*10); 
             
            FutureReply future = set.getNextFutureReply(); 
            Object reply = future.getReply(); 
            AgletID aid = (AgletID)reply; 
            dataProxy = getAgletContext().getAgletProxy(aid); 
             
        } catch (NotHandledException ex) { 
            System.out.println(ex); 
            dataProxy = null; 
        } catch (MessageException ex) { 
            System.out.println(ex); 
            dataProxy = null; 
        } 
 
        if (dataProxy != null) 
            return true; 
        else 
            return false; 
    } 
     
    /** 
     * Attempt to handle any incoming messages 
     */ 
    public boolean handleMessage(Message msg) { 
         
        if (msg.sameKind("Itinerary")) { 
            itin = (SlaveItin)msg.getArg(); 
            appendMessage("Itinerary received, starting trip.");  
            itin.startTrip(); 
        } else {     
            System.out.println(msg.toString()); 
            return false; 
        }     
         
        return true; 
    }         
 
    /** 
     * Override super class method to allow for easy redirection  
     * during testing. 
     */ 
    public void appendMessage(String text) { 
        System.out.println("[" + getName() + "] " + text); 
    }     
     
    /** 
     * Return the current order we are dealing with 
     */ 
    public Order getOrder() { 
        return order; 
    }     
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    /** 
     * Return our current result set 
     */ 
    public ResultSet getResults() { 
        return resSet; 
    } 
     
    /** 
     * Allow someone to try to clear our result set 
     */ 
    public void clearResults() { 
        resSet = null; 
    }     
     
    /** 
     * Return a reference to our Master's proxy 
     */ 
    public AgletProxy getMasterProxy() { 
        return mProxy; 
    } 
     
    /** 
     * Return a reference to the DataAglet's proxy 
     */ 
    public AgletProxy getDataProxy() { 
        return dataProxy; 
    } 
     
    /** 
     * Return a reference to our Itinerary 
     */ 
    public SlaveItin getItin() { 
        return itin; 
    }     
     
} /* End of Class */ 
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Appendix B 

Program listing of an example Agent Task: 

package uk.ac.lboro.todd.aglets.mascenario.tasks; 
 
import uk.ac.lboro.todd.aglets.*; 
import uk.ac.lboro.todd.aglets.utils.*; 
import uk.ac.lboro.todd.aglets.mascenario.*; 
import uk.ac.lboro.todd.aglets.order.*; 
 
import com.ibm.aglet.*; 
import com.ibm.agletx.util.*; 
import java.net.URL; 
 
/** 
 * StockRequestTask - a task that allows an agent to make a request  
 * to a DataSource aglet. The request is encapsulated within the  
 * Order object the slave carries around with it. 
 * 
 * @version   2.1   04/11/98    First attempt with MA instead  
 *                              of MO's. Added evalResult(). 
 * @version   2.0   21/10/98    Massive refactoring of the  
 *                              code. Very little of the behaviour of  
 *                              the Aglet relies on code in run() 
 *                              The addition of finishTasks allows  
 *                              for a much simpler and more modular  
 *                              approach to design of Slave agents. 
 * @version   1.11  08/10/98    MakeRequest has been added from  
 *                              QueryAglet. Makes more sense. 
 * @version   1.10  08/10/98    StockRequest now fully functional 
 * @version   1.00  28/09/98    First attempt. 
 * 
 * @author      Todd Papaioannou 
 */ 
 
public class StockRequestTask extends GenericTask { 
     
    /** 
     * Use this to allow us a better view of what goes on at a host 
     */ 
    static boolean pause = true; 
     
    // Our owner aglet 
    QueryAglet qag = null; 
    Result result = null; 
             
    /** 
     * The actual work associated with this Task.         
     */ 
    public void execute(SeqItinerary itin) throws Exception {  
 
        // Find out who the data source is 
        AgletProxy proxy = itin.getOwnerAglet(); 
        qag = (QueryAglet)proxy.getAglet(); 
        URL currentHost = qag.getAgletContext().getHostingURL(); 
 
        // Is this the last desination? 
        if (itin.atLastDestination() == false) { 
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            // We must still have some tasks to do.                 
            // Is there a data source handy? 
            if (qag.whoSource() != true) { 
                qag.appendMessage("No damn data source!"); 
                 
                // Are we actually at the last address? 
                if (!currentHost.toString(). 
                         equals(itin.getAddressAt(itin.size()-1)) ) { 
                     
                    // Make it easier to see what's actually going on 
                    if (pause) 
                        qag.waitMessage(2*1000); 
                    qag.appendMessage("Proceeding to next stop on \ 
                                                         Itinerary");                
                }     
            } else { 
                qag.appendMessage("Found a data source."); 
         
                // Get our info from the data source 
                makeRequest(); 
                qag.appendMessage("Finished Request, evaluating \ 
                                                          results."); 
                evalResult(); 
            }  
        } 
    } // End of execute 
     
    /** 
     * Make a request for an Order to be checked.  
     */ 
    public void makeRequest() { 
     
        try { 
 
            Object reply = qag.getDataProxy().sendMessage( 
                  new Message("Order", new NamedOrder(qag.getName(),  
                                                  qag.getOrder()))); 
            result = (Result)reply; 
 
        } catch (InvalidAgletException ex) { 
            System.out.println(ex); 
        } catch (NotHandledException ex) { 
            System.out.println(ex); 
        } catch (MessageException ex) { 
            System.out.println("[ERROR] Make Request Failed because \ 
                                         of:\n" + ex.getException()); 
            System.out.println(ex); 
        }     
 
        // Let's put some artificial pausing in. Looks good for the            
        // humans! 
        if (pause) { 
            for (int i=0; i < 160; i++) { 
               System.out.print("."); 
            } 
            System.out.println("\n"); 
        }     
         
    } // End of makeRequest 
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    /** 
     * Can this host satisfy our order? 
     */ 
    private void evalResult() { 
         
        boolean success = false; 
         
        if (result.getIndicator() == Result.YES) { 
 
            qag.appendMessage("We have a RESULT!"); 
            qag.appendMessage("Result " + result.getHost() + " will \ 
                                               satisfy this order."); 
            success = true; 
        }      
 
        // Add this result to our set for future reference. 
        qag.getResults().addResult((Result)result);            
         
        if (success) { 
            commitOrder(); 
        } else { 
            qag.appendMessage("Current host cannot satisfy order. \ 
                                               Going to next host."); 
        }     
    }         
 
    // This routine allows us to attempt to commit and order 
    private void commitOrder() { 
 
        try { 
 
            String reply = (String)qag.getDataProxy().sendMessage( 
                  new Message("Commit", new NamedOrder(qag.getName(),  
                                                   qag.getOrder()))); 
 
            // We have successfully committed the Order 
            if (reply.equals("Committed")) { 
               
                qag.appendMessage("Order successfully committed."); 
                qag.getMasterProxy().sendOnewayMessage(new Message 
                     ("Committed", qag.getOrder().getOrderNumber())); 
                qag.appendMessage("Tasks have been completed. \ 
                                              Disposing of myself."); 
                 
                // Kill ourselves 
                qag.dispose(); 
                 
            } else if (reply.equals("OutOfStock")) { 
                qag.appendMessage("Out of Stock!"); 
                qag.getMasterProxy().sendOnewayMessage(new Message 
                    ("OutOfStock", qag.getOrder().getOrderNumber())); 
                qag.dispose(); 
            } else { 
                qag.appendMessage("Something messed up! Getting rid \ 
                                                        of myself."); 
                qag.dispose(); 
            } 
             
        } catch (InvalidAgletException ex) { 
            System.out.println(ex); 
        } catch (NotHandledException ex) { 
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            System.out.println(ex); 
        } catch (MessageException ex) { 
            System.out.println("[ERROR] Make Request Failed because \ 
                                         of:\n" + ex.getException()); 
            System.out.println(ex); 
        } 
 
    } 
     
    // Must define this since it's abstract 
    public void finishTasks(SeqItinerary itin) throws Exception { 
    }     
 
} /* End of Class */
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