
B
uilding high-quality, industrial-
strength software is difficult.
Indeed, it has been argued that
developing such software in
domains like telecommunications,

industrial control, and business process manage-
ment represents one of the most complex construc-
tion tasks humans undertake. Against this
background, a wide range of software engineering
paradigms have been devised.
Each successive development
either claims to make the engi-
neering process easier or
promises to extend the complex-
ity of applications that can feasi-
bly be built. Although evidence
is emerging to support these
claims, researchers continue to
strive for more effective techniques. To this end, this
article will argue that analyzing, designing, and
implementing complex software systems as a collec-
tion of interacting, autonomous agents (that is, as a
multiagent system [4]) affords software engineers a
number of significant advantages over contemporary
methods. This is not to say that agent-oriented soft-
ware engineering represents a silver bullet [2]—there
is no evidence to suggest it will represent an order of
magnitude improvement in productivity. However,
the increasing number of deployed applications [4,
8] bears testament to the potential advantages that
accrue from such an approach.

In seeking to demonstrate the efficacy of agent-ori-

ented techniques, the most compelling argument
would be to quantitatively show how their adoption
improved the development process in a range of proj-
ects. However, such data is simply not available (as it
is not for approaches like patterns, application frame-
works, and componentware). Given this situation,
the best that can be achieved is a qualitative justifica-
tion of why agent-oriented approaches are well suited
to engineering complex, distributed software systems.

Managing Complexity in
Software Systems
Industrial-strength software is
complex: it has a large number of
parts that have many interactions
[9]. Moreover this complexity is
not accidental [2], it is an innate
property of large systems. Given

this situation, the role of software engineering is to
provide structures and techniques that make it eas-
ier to handle complexity. Fortunately for designers,
this complexity exhibits a number of important
regularities [9]:

• Complexity frequently takes the form of a hierar-
chy. That is, a system composed of interrelated
subsystems, each of which is in turn hierarchic in
structure, until the lowest level of elementary sub-
system is reached. The precise nature of these orga-
nizational relationships varies between subsystems,
however, some generic forms (such as client/server,
peer, team, and so forth) can be identified. These

COMMUNICATIONS OF THE ACM April 2001/Vol. 44, No. 4 35

AN AGENT-BASED APPROACH FOR

BUILDING COMPLEX
SOFTWARE SYSTEMS

NICHOLAS R. JENNINGS

�
�

WHY AGENT-ORIENTED APPROACHES ARE WELL SUITED FOR
DEVELOPING COMPLEX, DISTRIBUTED SYSTEMS.

36 April 2001/Vol. 44, No. 4 COMMUNICATIONS OF THE ACM

relationships are not static: they often vary over
time.
• The choice of which components in the system
are primitive is relatively arbitrary and is defined
by the observer’s aims and objectives.
• Hierarchic systems evolve more quickly than
nonhierarchic ones of comparable size (that is,
complex systems will evolve from simple systems
more rapidly if there are clearly identifiable stable
intermediate forms than if there are not).
• It is possible to distinguish between the interac-
tions among subsystems and those within subsys-
tems. The latter are both more frequent (typically at
least an order of magnitude more) and more pre-
dictable than the former. This gives rise to the view
that complex systems are nearly decomposable: sub-
systems can be treated almost as if they are inde-
pendent, but not quite since there are some
interactions between them. Moreover, although
many of these interactions can be predicted at
design time, some cannot.

Drawing these insights together, it is possible to
define a canonical view of a complex system (see Fig-
ure 1). The system’s hierarchical nature is expressed
through the “related to” links, components within a
subsystem are connected through “frequent interac-
tion” links, and interactions between components are
expressed through “infrequent interaction” links.

Given these observations, software engineers have
devised a number of fundamental tools of the trade
for helping to manage complexity [1]:

Decomposition: The most basic technique for
tackling large problems is to divide them into
smaller, more manageable chunks, each of which
can then be dealt with in relative isolation (note
the nearly decomposable subsystems in Figure 1).
Decomposition helps tackle complexity because it
limits the designer’s scope.
Abstraction: The process of defining a simplified
model of the system that emphasizes some of the
details or properties, while suppressing others.
Again, this works because it limits the designer’s
scope of interest at a given time.
Organization1: The process of defining and man-
aging the interrelationships between the various
problem-solving components (note the subsystem
and interaction links of Figure 1). The ability to
specify and enact organizational relationships helps
designers tackle complexity by: enabling a number

of basic components to be grouped together and
treated as a higher-level unit of analysis, and pro-
viding a means of describing the high-level rela-
tionships between various units.

The Case for Agent-Oriented Software
Engineering
The first step in arguing for an agent-oriented
approach to software engineering involves identify-
ing the key concepts of agent-based computing. The
first such concept is that of an agent: an agent is an
encapsulated computer system situated in some
environment and capable of flexible, autonomous

action in that environment in order to meet its
design objectives [10].

There are a number of points about this definition
that require elaboration. Agents are: clearly identifi-
able problem-solving entities with well-defined
boundaries and interfaces; situated (embedded) in a
particular environment over which they have partial
control and observability—they receive inputs related
to the state of their environment through sensors and
they act on the environment through effectors;
designed to fulfill a specific role—they have particular
objectives to achieve; autonomous—they have con-
trol both over their internal state and over their own
behavior; capable of exhibiting flexible problem-solv-
ing behavior in pursuit of their design objectives—
being both reactive (able to respond in a timely
fashion to changes that occur in their environment)
and proactive (able to opportunistically adopt goals
and take the initiative) [11].

When adopting an agent-oriented view, it soon
becomes apparent that most problems require or
involve multiple agents: to represent the decentralized
nature of the problem, the multiple loci of control,
the multiple perspectives or the competing interests.
Moreover, the agents will need to interact with one
another: either to achieve their individual objectives

Figure 1. View of a canonical complex system.

subsystem

subsystem
component

related to

frequent interaction

infrequent
interaction

1Booch actually uses the term “hierarchy” [1]; however, this invariably gives the con-
notation of control. Hence the more neutral term “organization” is used here.

or to manage the dependencies that ensue from being
situated in a common environment. These interac-
tions can vary from simple semantic interoperation,
through traditional client/server-type interactions, to
rich social interactions (the ability to cooperate, coor-
dinate, and negotiate about a course of action).

Whatever the nature of the social process, how-
ever, there are two points that qualitatively differenti-
ate agent interactions from those that occur in other
software engineering paradigms. First, agent-oriented
interactions generally occur through a high-level
(declarative) agent communication language (often
based on speech act theory [6]). Consequently, inter-

actions are conducted at the knowledge level [5]: in
terms of which goals should be followed, at what
time and by whom (compare this with method invo-
cation or function calls that operate at a purely syn-
tactic level). Secondly, as agents are flexible
problem-solvers, operating in an environment in
which they have only partial control and observabil-
ity, interactions need to be handled in a similarly flex-
ible manner. Thus, agents need the computational
apparatus to make context-dependent decisions
about the nature and scope of their interactions and
to initiate (and respond to) interactions that were not
foreseen at design time.

Since agents act either on behalf of individuals or
companies or as part of some wider initiative, there is
typically some underpinning organizational context
to agents’ interactions. This context defines the nature
of the relationship between the agents. For example,
they may be peers working together in a team or one
may be the manager of the others. To capture such
links, agent systems have explicit constructs for mod-
eling organizational relationships (manager, team
member). In many cases, these relationships are sub-
ject to ongoing change: social interaction means exist-
ing relationships evolve (a team of peers may elect a
leader) and new relations are created (a number of

agents may form a team to deliver a service that no
one individual can offer). The temporal extent of
these relationships can also vary enormously, ranging
from providing a service as a one-off option to a per-
manent bond. To cope with this variety and dynam-
ics, agent researchers have devised protocols that
enable organizational groupings to be formed and dis-
banded, specified mechanisms to ensure groupings act
together in a coherent fashion, and developed struc-
tures to characterize the macro behavior of collectives
[4, 11].

Drawing these points together (see Figure 2), it can
be seen that adopting an agent-oriented approach to
software engineering means decomposing the prob-
lem into multiple, autonomous components that can
act and interact in flexible ways to achieve their set
objectives. The key abstraction models that define the
agent-oriented mindset are agents, interactions, and
organizations. Finally, explicit structures and mecha-
nisms are often used to describe and manage the com-
plex and changing web of organizational relationships
that exist between the agents.

The argument in favor of an agent-oriented
approach to software engineering includes:

• Show that agent-oriented decompositions are an
effective way of partititioning the problem space of
a complex system;
• Show that the key abstractions of the agent-ori-
ented mindset are a natural means of modeling
complex systems; and
• Show that the agent-oriented philosophy for
modeling and managing organizational relation-
ships is appropriate for dealing with the dependen-
cies and interactions that exist in complex systems.

The Merits of Agent-Oriented
Decompositions
Complex systems consist of a number of related sub-
systems organized in a hierarchical fashion (see Fig-
ure 1). At any given level, subsystems work together
to achieve the functionality of their parent system.
Moreover, within a subsystem, the constituent com-
ponents work together to deliver the overall func-
tionality. Thus, the same basic model of interacting
components, working together to achieve particular
objectives occurs throughout the system. Given this
fact, it is entirely natural to modularize the compo-
nents in terms of the objectives they achieve.2 In
other words, each component can be thought of as
achieving one or more objectives. A second impor-

COMMUNICATIONS OF THE ACM April 2001/Vol. 44, No. 4 37

agent

interaction

organizational
relationship

Sphere of
visibility
and
influence

Environment

Figure 2. Canonical view of a multiagent system.

2The view that decompositions based upon functions/actions/processes are more intu-
itive and easier to produce than those based upon data/objects is even acknowledged
within the object-oriented community (see [7]).

tant observation is that complex systems have mul-
tiple loci of control: “real systems have no top” [7].
Applying this philosophy to objective-achieving
decompositions means the individual components
should localize and encapsulate their own control.
Thus, entities should have their own thread of con-
trol (that is, they should be active) and they should
have control over their own actions (that is, they
should be autonomous).

For the active and autonomous components to ful-
fill both their individual and collective objectives, they
need to interact (recall complex systems are only nearly
decomposable). However the system’s inherent com-
plexity means it is impossible to a priori know about all
potential links: interactions will occur at unpredictable
times, for unpredictable reasons, between unpre-
dictable components. For this reason, it is futile to try
and predict or analyze all the possibilities at design
time. It is more realistic to endow the components with
the ability to make decisions about the nature and
scope of their interactions at runtime. From this, it fol-
lows that components need the ability to initiate (and
respond to) interactions in a flexible manner.

The policy of deferring to runtime decisions about
component interactions facilitates the engineering of
complex systems in two ways. First, problems associ-
ated with the coupling of components are signifi-
cantly reduced (by dealing with them in a flexible and
declarative manner). Components are specifically
designed to deal with unanticipated requests and can
spontaneously generate requests for assistance if they
find themselves in difficulty. Moreover because these
interactions are enacted through a high-level agent
communication language, coupling becomes a
knowledge-level issue. At a stroke this removes syn-
tactic concerns from the types of errors caused by
unexpected interactions. Secondly, the problem of
managing control relationships between the software
components (a task that bedevils traditional objec-
tive-based decompositions) is significantly reduced.
All agents are continuously active and any coordina-
tion or synchronization that is required is handled
bottom-up through interagent interaction.

From this discussion, it is apparent that the natural
way to modularize a complex system is in terms of
multiple autonomous components that can act and
interact in flexible ways in order to achieve their set
objectives. Given this, the agent-oriented approach is
simply the best fit to this ideal.

The Suitability of Agent-Oriented
Abstractions
A significant part of the design process is finding
the right models for viewing the problem. In gen-

eral, there will be multiple candidates and the dif-
ficult task is picking the most appropriate one.
When designing software, the most powerful
abstractions are those that minimize the semantic
gap between the units of analysis that are intu-
itively used to conceptualize the problem and the
constructs present in the solution paradigm. In the
case of complex systems, the problem to be charac-
terized consists of subsystems, subsystem compo-
nents, interactions and organizational
relationships. Taking each in turn:

• Subsystems naturally correspond to agent organi-
zations. They involve a number of constituent
components that act and interact according to their
role within the larger enterprise.
• The case for viewing subsystem components as
agents has been made previously.

The interplay between the subsystems and
between their constituent components is most natu-
rally viewed in terms of high-level social interactions:
“in a complex system…at any given level of abstrac-
tion, we find meaningful collections of objects that
collaborate to achieve some higher-level view” [1].
This view accords precisely with the knowledge-level
treatment of interaction afforded by the agent-
oriented approach. Agent systems are invariably
described in terms of “cooperating to achieve com-
mon objectives,” “coordinating their actions” or
“negotiating to resolve conflicts.”

Complex systems involve changing webs of rela-
tionships between their various components. They
also require collections of components to be treated as
a single conceptual unit when viewed from a different
level of abstraction. Here again the agent-oriented
mindset provides suitable abstractions. A rich set of
structures are available for explicitly representing
organizational relationships. Interaction protocols
exist for forming new groupings and disbanding
unwanted ones. Finally, structures are available for
modeling collectives. The latter point is especially
useful in relation to representing subsystems since
they are nothing more than a team of components
working together to achieve a collective goal.

The Need for Flexible Management of
Changing Organizational Structures
Organizational constructs are first-class entities in
agent systems—explicit representations are made of
organizational relationships and structures. More-
over, agent-oriented systems have the concomitant
computational mechanisms for flexibly forming,
maintaining, and disbanding organizations. This

38 April 2001/Vol. 44, No. 4 COMMUNICATIONS OF THE ACM

representational power enables agent systems to
exploit two facets of the nature of complex systems.
First, the notion of a primitive component can be
varied according to the needs of the observer. Thus
at one level, entire subsystems can be viewed as sin-
gletons, alternatively teams or collections of agents
can be viewed as primitive components, and so on
until the system eventually bottoms out. Secondly,
such structures provide the stable intermediate forms
that are essential for the rapid development of com-
plex systems. Their availability means that individ-
ual agents or organizational groupings can be
developed in relative isolation and then added into
the system in an incremental manner. This, in turn,
ensures there is a smooth growth in functionality.

Will Agent-Oriented Techniques Be
Widely Adopted?
There are two key pragmatic issues that will deter-
mine whether agent-oriented approaches catch on as
a software engineering paradigm: the degree to
which agents represent a radical departure from
current software engineering thinking and the
degree to which existing software can be integrated
with agents.

A number of trends become evident when examin-
ing the evolution of programming models. There has
been an inexorable move from languages that have
their conceptual basis determined by the underlying
machine architecture, to languages that have their key
abstractions rooted in the problem domain. Here the
agent-oriented world view is perhaps the most natural

way of characterizing many types of problems. Just as
the real-world is populated with objects that have
operations performed on them, so it is equally full of
active, purposeful agents that interact to achieve their
objectives (see the sidebar for more detailed compari-
son). Indeed, many object-oriented analyses start from
precisely this perspective: “we view the world as a set of
autonomous agents that collaborate to perform some
higher level function” [1].

The basic building blocks of the programming
models exhibit increasing degrees of localization and
encapsulation [8], and agents follow this trend by
localizing purpose inside each agent, by giving each
agent its own thread of control, and by encapsulating
action selection. Additionally, ever-richer mechanisms
for promoting reuse are being provided. Here, the
agent view also reaches new heights. Rather than
stopping at reuse of subsystem components (design
patterns and componentware) and rigidly preor-
dained interactions (application frameworks), agents
enable whole subsystems and flexible interactions to
be reused. In the former case, agent designs and
implementations are reused within and between
applications. Consider, for example, the class of agent
architectures that have beliefs (what the agent knows),
desires (what the agent wants) and intentions (what
the agent is doing) at its core. Such architectures have
been used in a wide variety of applications including
air traffic control, process control, fault diagnosis and
transportation [4, 8]. In the latter case, flexible pat-
terns of interaction such as the Contract Net Proto-
col (an agent with a task to complete advertises this

COMMUNICATIONS OF THE ACM April 2001/Vol. 44, No. 4 39

Although there are certain sim-
ilarities between object- and

agent-oriented approaches (both
adhere to the principle of informa-
tion hiding and recognize the
importance of interactions), there
are also a number of important
differences [10]. First, objects are
generally passive in nature: they
need to be sent a message before
they become active. Secondly,
although objects encapsulate
state and behavior realization,
they do not encapsulate behavior
activation (action choice). Thus,
any object can invoke any publicly
accessible method on any other

object. Once the method is
invoked, the corresponding actions
are performed. Additionally,
object-orientation fails to provide
an adequate set of concepts and
mechanisms for modeling complex
systems: for such systems “we find
that objects, classes, and modules
provide an essential yet insuffi-
cient means of abstraction” [1].
Individual objects represent too
fine a granularity of behavior and
method invocation is too primitive a
mechanism for describing the types
of interactions that take place.
Recognition of these facts led to
the development of more powerful

abstraction mechanisms such as
design patterns, application frame-
works, and componentware.
Although these are undoubtedly a
step forward, they fall short of the
desired characteristics for complex
system development. By their very
nature, they focus on generic sys-
tem functions and the mandated
patterns of interaction are rigid and
predetermined. Finally, object-ori-
ented approaches provide only min-
imal support for specifying and
managing organizational relation-
ships (basically relationships are
defined by static inheritance
hierarchies). c

Comparing Object- and Agent-based Approaches

fact to others who it believes are capable of perform-
ing it, these agents may submit a bid to perform the
task if they are interested, and the originator then
delegates the task to the agent that makes the best
bid) and various forms of resource-allocation auction
(for example, English, Dutch, Vickrey) have been
reused in significant numbers of applications. In
short, agent-oriented techniques represent a natural
progression of current software engineering thinking
and, for this reason, the main concepts and tenets of
the approach should be readily acceptable to software
engineering practitioners.

The second factor in favor of a widespread incor-
poration of agents is that their adoption does not
require a revolution in terms of an organization’s soft-
ware capabilities. Agent-oriented systems are evolu-
tionary and incremental as legacy (non-agent)
software can be incorporated in a relatively straight-
forward manner. The technique used is to place wrap-
ping software around the legacy code. The wrapper
presents an agent interface to the other software com-
ponents. Thus from the outside it looks like any other
agent. On the inside, the wrapper performs a two-way
translation function: taking external requests from
other agents and mapping them into calls in the
legacy code, and taking the legacy code’s external
requests and mapping them into the appropriate set
of agent communication commands. This ability to
wrap legacy systems means agents may initially be
used as an integration technology. However, as new
requirements are placed on the system, agents may be
developed and added. This feature enables a complex
system to grow in an evolutionary fashion (based on
stable intermediate forms), while adhering to the
important principle that there should always be a
working version of the system available.

Case Study: Provisioning a Virtual
Private Network
As an exemplar of a complex, distributed system
consider the task of dynamically provisioning a
public communication network (such as the Inter-
net) as a virtual private network for end users. To be
more definitive, let the task in question be setting
up a videoconferencing meeting [3]. This applica-
tion involves a variety of different individuals and
organizations (see Figure 3). There are the end users
that are each represented by their personal commu-
nication agent (PCA). The providers of services on

the network (such as setting up a
videoconference, for example) are
each represented by a service
provider agent (SPA). Finally,
there are the agents that represent
the network provider on whose
telecommunications infrastruc-
ture the services will actually be
delivered (each represented by a
network provider agent (NPA)).
In setting up a videoconference
call, the various PCAs negotiate,
on behalf of their particular users,
with one another in order to find
a suitable time for the call. When
they come to an agreement, one
of the PCAs then contacts, and

subsequently negotiates with, the various SPAs that
offer the videoconference service (not all SPAs will
do this). This negotiation revolves around the cost
of the conference call and the quality of service that
is desired. The SPA that wins the contract then
negotiates with the various NPAs to determine
which of them can deliver the desired quality and
bandwidth at the best price.

This application highlights many of the benefits
that are have been claimed for an agent-oriented
approach to software engineering. Autonomous
agents are the most natural means of representing the
distinct individuals and organizations that are present
in the application. Each such entity is an active prob-
lem-solver that has its own objectives to achieve and
has control over the actions it chooses and the
resources that it expends. The agents need to be
responsive to changes in their environment (for exam-
ple, a NPA may need to arrange additional network
capacity from another NPA in order to maintain its
agreed upon quality of service if part of its network
fails) and they need to be able to opportunistically
adopt new goals as they present themselves (for exam-
ple, two SPAs may discover they have complementary
service capabilities and may decide to act together in

40 April 2001/Vol. 44, No. 4 COMMUNICATIONS OF THE ACM

Figure 3. Dynamic provisioning of virtual
private networks by end users.

Locate videoconference provider negotiation

Select network provider negotiation

End Users

Service
Providers

Network
Providers

Group that
wants to
make call

NPA NPA NPA NPA

SPA SPASPA

PCA PCA
negotiation

Agree time

order to offer a new service).
A second factor is the agents’ need to engage in

knowledge-level interactions in order to achieve their
individual objectives. In this case, agents typically rep-
resent self-interested entities and so the main form of
interaction is negotiation. Thus, to set the time of the
videoconference or to select a particular service or net-
work provider the agents make proposals, trade offers,
make concessions and, hopefully, come to agree-
ments. This rich form of interaction is necessary
because the agents represent autonomous stakeholders
and also to ensure that agents can arrange their activ-
ities in a manner that is appropriate to their prevailing
circumstances.

Finally, there is a very clear and explicit notion of
organizational context. The application involves a
number of different real-world organizations: individ-
ual end users, companies that provide the different
types of services, and network providers that control
the underlying telecommunications infrastructure.
These relationships directly affect the agents’ behavior.
For example, if a SPA and a NPA are in fact part of
the same organization, then their negotiations are
more cooperative in nature than if they represent two
unrelated companies. Similarly, the PCAs that have
agreed to hold a conference call act as a team rather
than a collection of individuals. Additionally, during
the ongoing operation of the application new organi-
zational groupings can appear and then disband. The
PCAs of distinct end users form themselves into col-
lectives when they require a particular service (for
example, all the participants of the videoconference).
Individual SPAs combine their capabilities to offer
new services that are beyond the scope of any individ-
ual provider. Competing NPAs form themselves into
temporary coalitions in order to respond to particu-
larly large requests for network resources.3

Conclusion
Agent-oriented techniques are being increasingly
used in a range of telecommunication, commercial,
and industrial applications. However, if they are to
enter the mainstream of software engineering it is
vital that clear arguments are advanced as to their
suitability for solving large classes of problems (as
opposed to specific point solutions). To this end, this
article has sought to justify precisely why agent-ori-

ented approaches are appropriate for developing
complex, distributed software systems. These general
points are then made more concrete by showing how
they apply in a specific telecommunications applica-
tion. In making these arguments, it is possible for
proponents of other software engineering paradigms
to claim that the key concepts of agent-oriented
computing can be reproduced using their tech-
nique—this is undoubtedly true. Agent-oriented
systems are, after all, computer programs and all pro-
grams have the same set of computable functions.
However, this misses the point. The value of a para-
digm is the mindset and the techniques it provides
to software engineers. In this respect, agent-oriented
concepts and techniques are both well suited to
developing complex, distributed systems and an
extension of those currently available in other
paradigms.

References
1. Booch, G. Object-Oriented Analysis and Design with Applications. Addi-

son Wesley, 1994.
2. Brooks, F.P. The Mythical Man-Month. Addison Wesley, 1995.
3. Faratin, P., Jennings, N.R., Buckle, P. and Sierra, C. Automated nego-

tiation for provisioning virtual private networks using FIPA-compliant
agents. In Proceedings of the 5th International Conference on Practical
Application of Intelligent Agents and Multi-Agent Systems. Manchester,
UK, 2000, p. 185–202.

4. Jennings, N.R. and Wooldridge, M., Eds. Agent Technology: Founda-
tions, Applications and Markets. Springer Verlag, 1998.

5. Newell, A. The knowledge level. Artificial Intelligence 18, 1982,
87–127.

6. Mayfield, J., Labrou, Y., and Finin, T. Evaluating KQML as an agent
communication language in M. Wooldridge, J.P. Müller, and M.
Tambe, Eds., Intelligent Agents II, Springer, 1995, 347–360.

7. Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1988.
8. Parunak, H.V.D. Industrial and practical applications of distributed

AI. In G. Weiss, Ed., Multi-Agent Systems. MIT Press, 1999, 377-421.
9. Simon, H.A. The Sciences of the Artificial. MIT Press, 1996.

10. Wooldridge, M. Agent-based software engineering. In IEE Proceedings
of Software Engineering 144, 1997, 26–37.

11. Wooldridge, M. and Jennings, N.R. Intelligent agents: Theory and
practice. The Knowledge Engineering Review 10, 2 (1995), 115–152.

Nicholas R. Jennings (nrj@ecs.soton.ac.uk) is a professor in the
Department of Electronics and Computer Science at the University of
Southampton, UK.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2001 ACM 0002-0782/01/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 2001/Vol. 44, No. 4 41

3In contrast, an object-oriented approach is less suitable for this problem because: it
cannot naturally represent the autonomous problem-solving behavior of the con-
stituent components (recall objects do not encapsulate action choice); it has nothing
to say about the design of flexible problem-solvers that balance reactive and proactive
problem-solving nor about interagent negotiation (other than the fact that it involves
message exchanges), and it has no innate mechanism for representing and reasoning
with the fact that the agents represent different stakeholder organizations (other than
the fact that they are different classes).

