
2 INTELLIGENT AGENTS

In which we discuss what an intelligent agent does,how it is related to its environment,
how it is evaluated, and how we might go about building one.

2.1 INTRODUCTION

An agent is anything that can be viewed as perceiving its environment through sensors and acting
upon that environment through effectors. A human agent has eyes, ears, and other organs for
sensors, and hands, legs, mouth, and other body parts for effectors. A robotic agent substitutes
cameras and infrared range finders for the sensors and various motors for the effectors. A
software agent has encoded bit strings as its percepts and actions. A generic agent is diagrammed
in Figure 2.1.

Our aim in this book is to design agents that do a good job of acting on their environment.
First, we will be a little more precise about what we mean by a good job. Then we will talk about
different designs for successful agents—filling in the question mark in Figure 2.1. We discuss
some of the general principles used in the design of agents throughout the book, chief among
which is the principle that agents should know things. Finally, we show how to couple an agent
to an environment and describe several kinds of environments.

2.2 HOW AGENTS SHOULD ACT

A rational agent is one that does the right thing. Obviously, this is better than doing the wrongRATIONAL AGENT

thing, but what does it mean? As a first approximation, we will say that the right action is the
one that will cause the agent to be most successful. That leaves us with the problem of deciding
how and when to evaluate the agent’s success.
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Figure 2.1 Agents interact with environments through sensors and effectors.

We use the term performance measure for the how—the criteria that determine howPERFORMANCE
MEASURE

successful an agent is. Obviously, there is not one fixed measure suitable for all agents. We
could ask the agent for a subjective opinion of how happy it is with its own performance, but
some agents would be unable to answer, and others would delude themselves. (Human agents in
particular are notorious for “sour grapes”—saying they did not really want something after they
are unsuccessful at getting it.) Therefore, we will insist on an objective performance measure
imposed by some authority. In other words, we as outside observers establish a standard of what
it means to be successful in an environment and use it to measure the performance of agents.

As an example, consider the case of an agent that is supposed to vacuum a dirty floor. A
plausible performance measure would be the amount of dirt cleaned up in a single eight-hour shift.
A more sophisticated performance measure would factor in the amount of electricity consumed
and the amount of noise generated as well. A third performance measure might give highest
marks to an agent that not only cleans the floor quietly and efficiently, but also finds time to go
windsurfing at the weekend.1

The when of evaluating performance is also important. If we measured how much dirt the
agent had cleaned up in the first hour of the day, we would be rewarding those agents that start
fast (even if they do little or no work later on), and punishing those that work consistently. Thus,
we want to measure performance over the long run, be it an eight-hour shift or a lifetime.

We need to be careful to distinguish between rationality and omniscience. An omniscientOMNISCIENCE

agent knows the actual outcome of its actions, and can act accordingly; but omniscience is
impossible in reality. Consider the following example: I am walking along the Champs Elysées
one day and I see an old friend across the street. There is no traffic nearby and I’m not otherwise
engaged, so, being rational, I start to cross the street. Meanwhile, at 33,000 feet, a cargo door
falls off a passing airliner,2 and before I make it to the other side of the street I am flattened. Was
I irrational to cross the street? It is unlikely that my obituary would read “Idiot attempts to cross

1 There is a danger here for those who establish performance measures: you often get what you ask for. That is, if
you measure success by the amount of dirt cleaned up, then some clever agent is bound to bring in a load of dirt each
morning, quickly clean it up, and get a good performance score. What you really want to measure is how clean the floor
is, but determining that is more difficult than just weighing the dirt cleaned up.
2 See N. Henderson, “New door latches urged for Boeing 747 jumbo jets,” Washington Post, 8/24/89.
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Section 2.2. How Agents Should Act 33

street.” Rather, this points out that rationality is concerned with expected success given what has
been perceived. Crossing the street was rational because most of the time the crossing would be
successful, and there was no way I could have foreseen the falling door. Note that another agent
that was equipped with radar for detecting falling doors or a steel cage strong enough to repel
them would be more successful, but it would not be any more rational.

In other words, we cannot blame an agent for failing to take into account something it could
not perceive, or for failing to take an action (such as repelling the cargo door) that it is incapable
of taking. But relaxing the requirement of perfection is not just a question of being fair to agents.
The point is that if we specify that an intelligent agent should always do what is actually the right
thing, it will be impossible to design an agent to fulfill this specification—unless we improve the
performance of crystal balls.

In summary, what is rational at any given time depends on four things:

The performance measure that defines degree of success.

Everything that the agent has perceived so far. We will call this complete perceptual history
the percept sequence.PERCEPT SEQUENCE

What the agent knows about the environment.

The actions that the agent can perform.

This leads to a definition of an ideal rational agent: For each possible percept sequence, anIDEAL RATIONAL
AGENT

ideal rational agent should do whatever action is expected to maximize its performance measure,
on the basis of the evidence provided by the percept sequence and whatever built-in knowledge
the agent has.

We need to look carefully at this definition. At first glance, it might appear to allow an
agent to indulge in some decidedly underintelligent activities. For example, if an agent does not
look both ways before crossing a busy road, then its percept sequence will not tell it that there is
a large truck approaching at high speed. The definition seems to say that it would be OK for it to
cross the road. In fact, this interpretation is wrong on two counts. First, it would not be rational
to cross the road: the risk of crossing without looking is too great. Second, an ideal rational
agent would have chosen the “looking” action before stepping into the street, because looking
helps maximize the expected performance. Doing actions in order to obtain useful information
is an important part of rationality and is covered in depth in Chapter 16.

The notion of an agent is meant to be a tool for analyzing systems, not an absolute
characterization that divides the world into agents and non-agents. Consider a clock. It can be
thought of as just an inanimate object, or it can be thought of as a simple agent. As an agent,
most clocks always do the right action: moving their hands (or displaying digits) in the proper
fashion. Clocks are a kind of degenerate agent in that their percept sequence is empty; no matter
what happens outside, the clock’s action should be unaffected.

Well, this is not quite true. If the clock and its owner take a trip from California to Australia,
the right thing for the clock to do would be to turn itself back six hours. We do not get upset at
our clocks for failing to do this because we realize that they are acting rationally, given their lack
of perceptual equipment.3

3 One of the authors still gets a small thrill when his computer successfully resets itself at daylight savings time.
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34 Chapter 2. Intelligent Agents

The ideal mapping from percept sequences to actions

Once we realize that an agent’s behavior depends only on its percept sequence to date, then we can
describe any particular agent by making a table of the action it takes in response to each possible
percept sequence. (For most agents, this would be a very long list—infinite, in fact, unless we
place a bound on the length of percept sequences we want to consider.) Such a list is called
a mapping from percept sequences to actions. We can, in principle, find out which mappingMAPPING

correctly describes an agent by trying out all possible percept sequences and recording which
actions the agent does in response. (If the agent uses some randomization in its computations,
then we would have to try some percept sequences several times to get a good idea of the agent’s
average behavior.) And if mappings describe agents, then ideal mappings describe ideal agents.IDEAL MAPPINGS

Specifying which action an agent ought to take in response to any given percept sequence provides
a design for an ideal agent.

This does not mean, of course, that we have to create an explicit table with an entry
for every possible percept sequence. It is possible to define a specification of the mapping
without exhaustively enumerating it. Consider a very simple agent: the square-root function
on a calculator. The percept sequence for this agent is a sequence of keystrokes representing a
number, and the action is to display a number on the display screen. The ideal mapping is that
when the percept is a positive number x, the right action is to display a positive number z such
that z2 x, accurate to, say, 15 decimal places. This specification of the ideal mapping does
not require the designer to actually construct a table of square roots. Nor does the square-root
function have to use a table to behave correctly: Figure 2.2 shows part of the ideal mapping and
a simple program that implements the mapping using Newton’s method.

The square-root example illustrates the relationship between the ideal mapping and an
ideal agent design, for a very restricted task. Whereas the table is very large, the agent is a nice,
compact program. It turns out that it is possible to design nice, compact agents that implement

Percept x Action z

1.0 1.000000000000000
1.1 1.048808848170152
1.2 1.095445115010332
1.3 1.140175425099138
1.4 1.183215956619923
1.5 1.224744871391589
1.6 1.264911064067352
1.7 1.303840481040530
1.8 1.341640786499874
1.9 1.378404875209022

...
...

function SQRT(x)
z 1.0 /* initial guess */
repeat until z2 x < 10 15

z z (z2 x)/(2z)

end
return z

Figure 2.2 Part of the ideal mapping for the square-root problem (accurate to 15 digits), and a
corresponding program that implements the ideal mapping.
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Section 2.3. Structure of Intelligent Agents 35

the ideal mapping for much more general situations: agents that can solve a limitless variety of
tasks in a limitless variety of environments. Before we discuss how to do this, we need to look
at one more requirement that an intelligent agent ought to satisfy.

Autonomy

There is one more thing to deal with in the definition of an ideal rational agent: the “built-in
knowledge” part. If the agent’s actions are based completely on built-in knowledge, such that it
need pay no attention to its percepts, then we say that the agent lacks autonomy. For example,AUTONOMY

if the clock manufacturer was prescient enough to know that the clock’s owner would be going
to Australia at some particular date, then a mechanism could be built in to adjust the hands
automatically by six hours at just the right time. This would certainly be successful behavior, but
the intelligence seems to belong to the clock’s designer rather than to the clock itself.

An agent’s behavior can be based on both its own experience and the built-in knowledge
used in constructing the agent for the particular environment in which it operates. A system is
autonomous4 to the extent that its behavior is determined by its own experience. It would be
too stringent, though, to require complete autonomy from the word go: when the agent has had
little or no experience, it would have to act randomly unless the designer gave some assistance.
So, just as evolution provides animals with enough built-in reflexes so that they can survive long
enough to learn for themselves, it would be reasonable to provide an artificial intelligent agent
with some initial knowledge as well as an ability to learn.

Autonomy not only fits in with our intuition, but it is an example of sound engineering
practices. An agent that operates on the basis of built-in assumptions will only operate success-
fully when those assumptions hold, and thus lacks flexibility. Consider, for example, the lowly
dung beetle. After digging its nest and laying its eggs, it fetches a ball of dung from a nearby heap
to plug the entrance; if the ball of dung is removed from its grasp en route, the beetle continues
on and pantomimes plugging the nest with the nonexistent dung ball, never noticing that it is
missing. Evolution has built an assumption into the beetle’s behavior, and when it is violated,
unsuccessful behavior results. A truly autonomous intelligent agent should be able to operate
successfully in a wide variety of environments, given sufficient time to adapt.

2.3 STRUCTURE OF INTELLIGENT AGENTS

So far we have talked about agents by describing their behavior—the action that is performed
after any given sequence of percepts. Now, we will have to bite the bullet and talk about how
the insides work. The job of AI is to design the agent program: a function that implementsAGENT PROGRAM

the agent mapping from percepts to actions. We assume this program will run on some sort of
computing device, which we will call the architecture. Obviously, the program we choose hasARCHITECTURE

4 The word “autonomous” has also come to mean something like “not under the immediate control of a human,” as in
“autonomous land vehicle.” We are using it in a stronger sense.
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36 Chapter 2. Intelligent Agents

to be one that the architecture will accept and run. The architecture might be a plain computer, or
it might include special-purpose hardware for certain tasks, such as processing camera images or
filtering audio input. It might also include software that provides a degree of insulation between
the raw computer and the agent program, so that we can program at a higher level. In general,
the architecture makes the percepts from the sensors available to the program, runs the program,
and feeds the program’s action choices to the effectors as they are generated. The relationship
among agents, architectures, and programs can be summed up as follows:

agent = architecture + program

Most of this book is about designing agent programs, although Chapters 24 and 25 deal directly
with the architecture.

Before we design an agent program, we must have a pretty good idea of the possible
percepts and actions, what goals or performance measure the agent is supposed to achieve, and
what sort of environment it will operate in.5 These come in a wide variety. Figure 2.3 shows the
basic elements for a selection of agent types.

It may come as a surprise to some readers that we include in our list of agent types some
programs that seem to operate in the entirely artificial environment defined by keyboard input
and character output on a screen. “Surely,” one might say, “this is not a real environment, is
it?” In fact, what matters is not the distinction between “real” and “artificial” environments,
but the complexity of the relationship among the behavior of the agent, the percept sequence
generated by the environment, and the goals that the agent is supposed to achieve. Some “real”
environments are actually quite simple. For example, a robot designed to inspect parts as they
come by on a conveyer belt can make use of a number of simplifying assumptions: that the
lighting is always just so, that the only thing on the conveyer belt will be parts of a certain kind,
and that there are only two actions—accept the part or mark it as a reject.

In contrast, some software agents (or software robots or softbots) exist in rich, unlimitedSOFTWARE AGENTS

SOFTBOTS domains. Imagine a softbot designed to fly a flight simulator for a 747. The simulator is a
very detailed, complex environment, and the software agent must choose from a wide variety of
actions in real time. Or imagine a softbot designed to scan online news sources and show the
interesting items to its customers. To do well, it will need some natural language processing
abilities, it will need to learn what each customer is interested in, and it will need to dynamically
change its plans when, for example, the connection for one news source crashes or a new one
comes online.

Some environments blur the distinction between “real” and “artificial.” In the ALIVE

environment (Maes et al., 1994), software agents are given as percepts a digitized camera image
of a room where a human walks about. The agent processes the camera image and chooses an
action. The environment also displays the camera image on a large display screen that the human
can watch, and superimposes on the image a computer graphics rendering of the software agent.
One such image is a cartoon dog, which has been programmed to move toward the human (unless
he points to send the dog away) and to shake hands or jump up eagerly when the human makes
certain gestures.

5 For the acronymically minded, we call this the PAGE (Percepts, Actions, Goals, Environment) description. Note that
the goals do not necessarily have to be represented within the agent; they simply describe the performance measure by
which the agent design will be judged.
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Agent Type Percepts Actions Goals Environment

Medical diagnosis
system

Symptoms,
findings, patient’s
answers

Questions, tests,
treatments

Healthy patient,
minimize costs

Patient, hospital

Satellite image
analysis system

Pixels of varying
intensity, color

Print a
categorization of
scene

Correct
categorization

Images from
orbiting satellite

Part-picking robot Pixels of varying
intensity

Pick up parts and
sort into bins

Place parts in
correct bins

Conveyor belt
with parts

Refinery controller Temperature,
pressure readings

Open, close
valves; adjust
temperature

Maximize purity,
yield, safety

Refinery

Interactive English
tutor

Typed words Print exercises,
suggestions,
corrections

Maximize
student’s score on
test

Set of students

Figure 2.3 Examples of agent types and their PAGE descriptions.

The most famous artificial environment is the Turing Test environment, in which the whole
point is that real and artificial agents are on equal footing, but the environment is challenging
enough that it is very difficult for a software agent to do as well as a human. Section 2.4 describes
in more detail the factors that make some environments more demanding than others.

Agent programs

We will be building intelligent agents throughout the book. They will all have the same skeleton,
namely, accepting percepts from an environment and generating actions. The early versions of
agent programs will have a very simple form (Figure 2.4). Each will use some internal data
structures that will be updated as new percepts arrive. These data structures are operated on by
the agent’s decision-making procedures to generate an action choice, which is then passed to the
architecture to be executed.

There are two things to note about this skeleton program. First, even though we defined
the agent mapping as a function from percept sequences to actions, the agent program receives
only a single percept as its input. It is up to the agent to build up the percept sequence in memory,
if it so desires. In some environments, it is possible to be quite successful without storing
the percept sequence, and in complex domains, it is infeasible to store the complete sequence.
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38 Chapter 2. Intelligent Agents

function SKELETON-AGENT( percept) returns action
static: memory, the agent’s memory of the world

memory UPDATE-MEMORY(memory, percept)
action CHOOSE-BEST-ACTION(memory)
memory UPDATE-MEMORY(memory, action)
return action

Figure 2.4 A skeleton agent. On each invocation, the agent’s memory is updated to reflect
the new percept, the best action is chosen, and the fact that the action was taken is also stored in
memory. The memory persists from one invocation to the next.

Second, the goal or performance measure is not part of the skeleton program. This is because
the performance measure is applied externally to judge the behavior of the agent, and it is often
possible to achieve high performance without explicit knowledge of the performance measure
(see, e.g., the square-root agent).

Why not just look up the answers?

Let us start with the simplest possible way we can think of to write the agent program—a lookup
table. Figure 2.5 shows the agent program. It operates by keeping in memory its entire percept
sequence, and using it to index into table, which contains the appropriate action for all possible
percept sequences.

It is instructive to consider why this proposal is doomed to failure:

1. The table needed for something as simple as an agent that can only play chess would be
about 35100 entries.

2. It would take quite a long time for the designer to build the table.

3. The agent has no autonomy at all, because the calculation of best actions is entirely built-in.
So if the environment changed in some unexpected way, the agent would be lost.

function TABLE-DRIVEN-AGENT( percept) returns action
static: percepts, a sequence, initially empty

table, a table, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action LOOKUP( percepts, table)
return action

Figure 2.5 An agent based on a prespecified lookup table. It keeps track of the percept
sequence and just looks up the best action.
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Section 2.3. Structure of Intelligent Agents 39

4. Even if we gave the agent a learning mechanism as well, so that it could have a degree of
autonomy, it would take forever to learn the right value for all the table entries.

Despite all this, TABLE-DRIVEN-AGENT does do what we want: it implements the desired agent
mapping. It is not enough to say, “It can’t be intelligent;” the point is to understand why an agent
that reasons (as opposed to looking things up in a table) can do even better by avoiding the four
drawbacks listed here.

An example

At this point, it will be helpful to consider a particular environment, so that our discussion
can become more concrete. Mainly because of its familiarity, and because it involves a broad
range of skills, we will look at the job of designing an automated taxi driver. We should point
out, before the reader becomes alarmed, that such a system is currently somewhat beyond the
capabilities of existing technology, although most of the components are available in some form.6

The full driving task is extremely open-ended—there is no limit to the novel combinations of
circumstances that can arise (which is another reason why we chose it as a focus for discussion).

We must first think about the percepts, actions, goals and environment for the taxi. They
are summarized in Figure 2.6 and discussed in turn.

Agent Type Percepts Actions Goals Environment

Taxi driver Cameras,
speedometer, GPS,
sonar, microphone

Steer, accelerate,
brake, talk to
passenger

Safe, fast, legal,
comfortable trip,
maximize profits

Roads, other
traffic, pedestrians,
customers

Figure 2.6 The taxi driver agent type.

The taxi will need to know where it is, what else is on the road, and how fast it is going.
This information can be obtained from the percepts provided by one or more controllable TV
cameras, the speedometer, and odometer. To control the vehicle properly, especially on curves, it
should have an accelerometer; it will also need to know the mechanical state of the vehicle, so it
will need the usual array of engine and electrical system sensors. It might have instruments that
are not available to the average human driver: a satellite global positioning system (GPS) to give
it accurate position information with respect to an electronic map; or infrared or sonar sensors to
detect distances to other cars and obstacles. Finally, it will need a microphone or keyboard for
the passengers to tell it their destination.

The actions available to a taxi driver will be more or less the same ones available to a human
driver: control over the engine through the gas pedal and control over steering and braking. In
addition, it will need output to a screen or voice synthesizer to talk back to the passengers, and
perhaps some way to communicate with other vehicles.

6 See page 26 for a description of an existing driving robot, or look at the conference proceedings on Intelligent Vehicle
and Highway Systems (IVHS).
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40 Chapter 2. Intelligent Agents

What performance measure would we like our automated driver to aspire to? Desirable
qualities include getting to the correct destination; minimizing fuel consumption and wear and
tear; minimizing the trip time and/or cost; minimizing violations of traffic laws and disturbances
to other drivers; maximizing safety and passenger comfort; maximizing profits. Obviously, some
of these goals conflict, so there will be trade-offs involved.

Finally, were this a real project, we would need to decide what kind of driving environment
the taxi will face. Should it operate on local roads, or also on freeways? Will it be in Southern
California, where snow is seldom a problem, or in Alaska, where it seldom is not? Will it always
be driving on the right, or might we want it to be flexible enough to drive on the left in case we
want to operate taxis in Britain or Japan? Obviously, the more restricted the environment, the
easier the design problem.

Now we have to decide how to build a real program to implement the mapping from
percepts to action. We will find that different aspects of driving suggest different types of agent
program. We will consider four types of agent program:

Simple reflex agents

Agents that keep track of the world

Goal-based agents

Utility-based agents

Simple reflex agents

The option of constructing an explicit lookup table is out of the question. The visual input from
a single camera comes in at the rate of 50 megabytes per second (25 frames per second, 1000
1000 pixels with 8 bits of color and 8 bits of intensity information). So the lookup table for an
hour would be 260 60 50M entries.

However, we can summarize portions of the table by noting certain commonly occurring
input/output associations. For example, if the car in front brakes, and its brake lights come on,
then the driver should notice this and initiate braking. In other words, some processing is done on
the visual input to establish the condition we call “The car in front is braking”; then this triggers
some established connection in the agent program to the action “initiate braking”. We call such
a connection a condition–action rule7 written asCONDITION–ACTION

RULE

if car-in-front-is-braking then initiate-braking

Humans also have many such connections, some of which are learned responses (as for driving)
and some of which are innate reflexes (such as blinking when something approaches the eye).
In the course of the book, we will see several different ways in which such connections can be
learned and implemented.

Figure 2.7 gives the structure of a simple reflex agent in schematic form, showing how
the condition–action rules allow the agent to make the connection from percept to action. (Do
not worry if this seems trivial; it gets more interesting shortly.) We use rectangles to denote

7 Also called situation–action rules, productions, or if–then rules. The last term is also used by some authors for
logical implications, so we will avoid it altogether.
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Figure 2.7 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT( percept) returns action
static: rules, a set of condition-action rules

state INTERPRET-INPUT( percept)
rule RULE-MATCH(state, rules)
action RULE-ACTION[rule]
return action

Figure 2.8 A simple reflex agent. It works by finding a rule whose condition matches the
current situation (as defined by the percept) and then doing the action associated with that rule.

the current internal state of the agent’s decision process, and ovals to represent the background
information used in the process. The agent program, which is also very simple, is shown in
Figure 2.8. The INTERPRET-INPUT function generates an abstracted description of the current
state from the percept, and the RULE-MATCH function returns the first rule in the set of rules that
matches the given state description. Although such agents can be implemented very efficiently
(see Chapter 10), their range of applicability is very narrow, as we shall see.

Agents that keep track of the world

The simple reflex agent described before will work only if the correct decision can be made
on the basis of the current percept. If the car in front is a recent model, and has the centrally
mounted brake light now required in the United States, then it will be possible to tell if it is
braking from a single image. Unfortunately, older models have different configurations of tail
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42 Chapter 2. Intelligent Agents

lights, brake lights, and turn-signal lights, and it is not always possible to tell if the car is braking.
Thus, even for the simple braking rule, our driver will have to maintain some sort of internal
state in order to choose an action. Here, the internal state is not too extensive—it just needs theINTERNAL STATE

previous frame from the camera to detect when two red lights at the edge of the vehicle go on or
off simultaneously.

Consider the following more obvious case: from time to time, the driver looks in the
rear-view mirror to check on the locations of nearby vehicles. When the driver is not looking in
the mirror, the vehicles in the next lane are invisible (i.e., the states in which they are present and
absent are indistinguishable); but in order to decide on a lane-change maneuver, the driver needs
to know whether or not they are there.

The problem illustrated by this example arises because the sensors do not provide access to
the complete state of the world. In such cases, the agent may need to maintain some internal state
information in order to distinguish between world states that generate the same perceptual input
but nonetheless are significantly different. Here, “significantly different” means that different
actions are appropriate in the two states.

Updating this internal state information as time goes by requires two kinds of knowledge to
be encoded in the agent program. First, we need some information about how the world evolves
independently of the agent—for example, that an overtaking car generally will be closer behind
than it was a moment ago. Second, we need some information about how the agent’s own actions
affect the world—for example, that when the agent changes lanes to the right, there is a gap (at
least temporarily) in the lane it was in before, or that after driving for five minutes northbound
on the freeway one is usually about five miles north of where one was five minutes ago.

Figure 2.9 gives the structure of the reflex agent, showing how the current percept is
combined with the old internal state to generate the updated description of the current state. The
agent program is shown in Figure 2.10. The interesting part is the function UPDATE-STATE, which
is responsible for creating the new internal state description. As well as interpreting the new
percept in the light of existing knowledge about the state, it uses information about how the world
evolves to keep track of the unseen parts of the world, and also must know about what the agent’s
actions do to the state of the world. Detailed examples appear in Chapters 7 and 17.

Goal-based agents

Knowing about the current state of the environment is not always enough to decide what to do.
For example, at a road junction, the taxi can turn left, right, or go straight on. The right decision
depends on where the taxi is trying to get to. In other words, as well as a current state description,
the agent needs some sort of goal information, which describes situations that are desirable—GOAL

for example, being at the passenger’s destination. The agent program can combine this with
information about the results of possible actions (the same information as was used to update
internal state in the reflex agent) in order to choose actions that achieve the goal. Sometimes
this will be simple, when goal satisfaction results immediately from a single action; sometimes,
it will be more tricky, when the agent has to consider long sequences of twists and turns to find
a way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 11 to 13) are theSEARCH

PLANNING subfields of AI devoted to finding action sequences that do achieve the agent’s goals.
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Figure 2.9 A reflex agent with internal state.

function REFLEX-AGENT-WITH-STATE( percept) returns action
static: state, a description of the current world state

rules, a set of condition-action rules

state UPDATE-STATE(state, percept)
rule RULE-MATCH(state, rules)
action RULE-ACTION[rule]
state UPDATE-STATE(state, action)
return action

Figure 2.10 A reflex agent with internal state. It works by finding a rule whose condition
matches the current situation (as defined by the percept and the stored internal state) and then
doing the action associated with that rule.

Notice that decision–making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly used, because the designer has precomputed the correct action
for various cases. The reflex agent brakes when it sees brake lights. A goal-based agent, in
principle, could reason that if the car in front has its brake lights on, it will slow down. From
the way the world usually evolves, the only action that will achieve the goal of not hitting other
cars is to brake. Although the goal-based agent appears less efficient, it is far more flexible. If it
starts to rain, the agent can update its knowledge of how effectively its brakes will operate; this
will automatically cause all of the relevant behaviors to be altered to suit the new conditions. For
the reflex agent, on the other hand, we would have to rewrite a large number of condition–action
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rules. Of course, the goal-based agent is also more flexible with respect to reaching different
destinations. Simply by specifying a new destination, we can get the goal-based agent to come
up with a new behavior. The reflex agent’s rules for when to turn and when to go straight will
only work for a single destination; they must all be replaced to go somewhere new.

Figure 2.11 shows the goal-based agent’s structure. Chapter 13 contains detailed agent
programs for goal-based agents.
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What it will be like
  if I do action A
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is like now

What action I
should do now

State

How the world evolves

What my actions do

Goals

Figure 2.11 An agent with explicit goals.

Utility-based agents

Goals alone are not really enough to generate high-quality behavior. For example, there are many
action sequences that will get the taxi to its destination, thereby achieving the goal, but some
are quicker, safer, more reliable, or cheaper than others. Goals just provide a crude distinction
between “happy” and “unhappy” states, whereas a more general performance measure should
allow a comparison of different world states (or sequences of states) according to exactly how
happy they would make the agent if they could be achieved. Because “happy” does not sound
very scientific, the customary terminology is to say that if one world state is preferred to another,
then it has higher utility for the agent.8UTILITY

Utility is therefore a function that maps a state9 onto a real number, which describes the
associated degree of happiness. A complete specification of the utility function allows rational
decisions in two kinds of cases where goals have trouble. First, when there are conflicting goals,
only some of which can be achieved (for example, speed and safety), the utility function specifies
the appropriate trade-off. Second, when there are several goals that the agent can aim for, none

8 The word “utility” here refers to “the quality of being useful,” not to the electric company or water works.
9 Or sequence of states, if we are measuring the utility of an agent over the long run.
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of which can be achieved with certainty, utility provides a way in which the likelihood of success
can be weighed up against the importance of the goals.

In Chapter 16, we show that any rational agent can be described as possessing a utility
function. An agent that possesses an explicit utility function therefore can make rational decisions,
but may have to compare the utilities achieved by different courses of actions. Goals, although
cruder, enable the agent to pick an action right away if it satisfies the goal. In some cases,
moreover, a utility function can be translated into a set of goals, such that the decisions made by
a goal-based agent using those goals are identical to those made by the utility-based agent.

The overall utility-based agent structure appears in Figure 2.12. Actual utility-based agent
programs appear in Chapter 5, where we examine game-playing programs that must make fine
distinctions among various board positions; and in Chapter 17, where we tackle the general
problem of designing decision-making agents.
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  if I do action A
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is like now

How happy I will be
   in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

Figure 2.12 A complete utility-based agent.

2.4 ENVIRONMENTS

In this section and in the exercises at the end of the chapter, you will see how to couple an agent
to an environment. Section 2.3 introduced several different kinds of agents and environments.
In all cases, however, the nature of the connection between them is the same: actions are done
by the agent on the environment, which in turn provides percepts to the agent. First, we will
describe the different types of environments and how they affect the design of agents. Then we
will describe environment programs that can be used as testbeds for agent programs.
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Properties of environments

Environments come in several flavors. The principal distinctions to be made are as follows:

Accessible vs. inaccessible.ACCESSIBLE

If an agent’s sensory apparatus gives it access to the complete state of the environment,
then we say that the environment is accessible to that agent. An environment is effectively
accessible if the sensors detect all aspects that are relevant to the choice of action. An
accessible environment is convenient because the agent need not maintain any internal state
to keep track of the world.

Deterministic vs. nondeterministic.DETERMINISTIC

If the next state of the environment is completely determined by the current state and the
actions selected by the agents, then we say the environment is deterministic. In principle,
an agent need not worry about uncertainty in an accessible, deterministic environment. If
the environment is inaccessible, however, then it may appear to be nondeterministic. This
is particularly true if the environment is complex, making it hard to keep track of all the
inaccessible aspects. Thus, it is often better to think of an environment as deterministic or
nondeterministic from the point of view of the agent.

Episodic vs. nonepisodic.EPISODIC

In an episodic environment, the agent’s experience is divided into “episodes.” Each episode
consists of the agent perceiving and then acting. The quality of its action depends just on
the episode itself, because subsequent episodes do not depend on what actions occur in
previous episodes. Episodic environments are much simpler because the agent does not
need to think ahead.

Static vs. dynamic.STATIC

If the environment can change while an agent is deliberating, then we say the environment
is dynamic for that agent; otherwise it is static. Static environments are easy to deal with
because the agent need not keep looking at the world while it is deciding on an action,
nor need it worry about the passage of time. If the environment does not change with the
passage of time but the agent’s performance score does, then we say the environment is
semidynamic.SEMIDYNAMIC

Discrete vs. continuous.DISCRETE

If there are a limited number of distinct, clearly defined percepts and actions we say that
the environment is discrete. Chess is discrete—there are a fixed number of possible moves
on each turn. Taxi driving is continuous—the speed and location of the taxi and the other
vehicles sweep through a range of continuous values.10

We will see that different environment types require somewhat different agent programs to deal
with them effectively. It will turn out, as you might expect, that the hardest case is inaccessible,
nonepisodic, dynamic, and continuous. It also turns out that most real situations are so complex
that whether they are really deterministic is a moot point; for practical purposes, they must be
treated as nondeterministic.

10 At a fine enough level of granularity, even the taxi driving environment is discrete, because the camera image is
digitized to yield discrete pixel values. But any sensible agent program would have to abstract above this level, up to a
level of granularity that is continuous.
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Figure 2.13 lists the properties of a number of familiar environments. Note that the answers
can change depending on how you conceptualize the environments and agents. For example,
poker is deterministic if the agent can keep track of the order of cards in the deck, but it is
nondeterministic if it cannot. Also, many environments are episodic at higher levels than the
agent’s individual actions. For example, a chess tournament consists of a sequence of games;
each game is an episode, because (by and large) the contribution of the moves in one game to the
agent’s overall performance is not affected by the moves in its next game. On the other hand,
moves within a single game certainly interact, so the agent needs to look ahead several moves.

Environment Accessible Deterministic Episodic Static Discrete

Chess with a clock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
Interactive English tutor No No No No Yes

Figure 2.13 Examples of environments and their characteristics.

Environment programs

The generic environment program in Figure 2.14 illustrates the basic relationship between agents
and environments. In this book, we will find it convenient for many of the examples and exercises
to use an environment simulator that follows this program structure. The simulator takes one or
more agents as input and arranges to repeatedly give each agent the right percepts and receive back
an action. The simulator then updates the environment based on the actions, and possibly other
dynamic processes in the environment that are not considered to be agents (rain, for example).
The environment is therefore defined by the initial state and the update function. Of course, an
agent that works in a simulator ought also to work in a real environment that provides the same
kinds of percepts and accepts the same kinds of actions.

The RUN-ENVIRONMENT procedure correctly exercises the agents in an environment. For
some kinds of agents, such as those that engage in natural language dialogue, it may be sufficient
simply to observe their behavior. To get more detailed information about agent performance, we
insert some performance measurement code. The function RUN-EVAL-ENVIRONMENT, shown in
Figure 2.15, does this; it applies a performance measure to each agent and returns a list of the
resulting scores. The scores variable keeps track of each agent’s score.

In general, the performance measure can depend on the entire sequence of environment
states generated during the operation of the program. Usually, however, the performance measure
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procedure RUN-ENVIRONMENT(state, UPDATE-FN, agents, termination)
inputs: state, the initial state of the environment

UPDATE-FN, function to modify the environment
agents, a set of agents
termination, a predicate to test when we are done

repeat
for each agent in agents do

PERCEPT[agent] GET-PERCEPT(agent, state)
end
for each agent in agents do

ACTION[agent] PROGRAM[agent](PERCEPT[agent])
end
state UPDATE-FN(actions, agents, state)

until termination(state)

Figure 2.14 The basic environment simulator program. It gives each agent its percept, gets an
action from each agent, and then updates the environment.

function RUN-EVAL-ENVIRONMENT(state, UPDATE-FN, agents,
termination, PERFORMANCE-FN) returns scores

local variables: scores, a vector the same size as agents, all 0

repeat
for each agent in agents do

PERCEPT[agent] GET-PERCEPT(agent, state)
end
for each agent in agents do

ACTION[agent] PROGRAM[agent](PERCEPT[agent])
end
state UPDATE-FN(actions, agents, state)
scores PERFORMANCE-FN(scores, agents, state)

until termination(state)
return scores /* change */

Figure 2.15 An environment simulator program that keeps track of the performance measure
for each agent.

works by a simple accumulation using either summation, averaging, or taking a maximum. For
example, if the performance measure for a vacuum-cleaning agent is the total amount of dirt
cleaned in a shift, scores will just keep track of how much dirt has been cleaned up so far.

RUN-EVAL-ENVIRONMENT returns the performance measure for a a single environment,
defined by a single initial state and a particular update function. Usually, an agent is designed to
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work in an environment class, a whole set of different environments. For example, we designENVIRONMENT
CLASS

a chess program to play against any of a wide collection of human and machine opponents. If
we designed it for a single opponent, we might be able to take advantage of specific weaknesses
in that opponent, but that would not give us a good program for general play. Strictly speaking,
in order to measure the performance of an agent, we need to have an environment generator
that selects particular environments (with certain likelihoods) in which to run the agent. We are
then interested in the agent’s average performance over the environment class. This is fairly
straightforward to implement for a simulated environment, and Exercises 2.5 to 2.11 take you
through the entire development of an environment and the associated measurement process.

A possible confusion arises between the state variable in the environment simulator and
the state variable in the agent itself (see REFLEX-AGENT-WITH-STATE). As a programmer imple-
menting both the environment simulator and the agent, it is tempting to allow the agent to peek
at the environment simulator’s state variable. This temptation must be resisted at all costs! The
agent’s version of the state must be constructed from its percepts alone, without access to the
complete state information.

2.5 SUMMARY

This chapter has been something of a whirlwind tour of AI, which we have conceived of as the
science of agent design. The major points to recall are as follows:

An agent is something that perceives and acts in an environment. We split an agent into
an architecture and an agent program.

An ideal agent is one that always takes the action that is expected to maximize its perfor-
mance measure, given the percept sequence it has seen so far.

An agent is autonomous to the extent that its action choices depend on its own experience,
rather than on knowledge of the environment that has been built-in by the designer.

An agent program maps from a percept to an action, while updating an internal state.

There exists a variety of basic agent program designs, depending on the kind of information
made explicit and used in the decision process. The designs vary in efficiency, compactness,
and flexibility. The appropriate design of the agent program depends on the percepts,
actions, goals, and environment.

Reflex agents respond immediately to percepts, goal-based agents act so that they will
achieve their goal(s), and utility-based agents try to maximize their own “happiness.”

The process of making decisions by reasoning with knowledge is central to AI and to
successful agent design. This means that representing knowledge is important.

Some environments are more demanding than others. Environments that are inaccessible,
nondeterministic, nonepisodic, dynamic, and continuous are the most challenging.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

The analysis of rational agency as a mapping from percept sequences to actions probably stems
ultimately from the effort to identify rational behavior in the realm of economics and other forms
of reasoning under uncertainty (covered in later chapters) and from the efforts of psychological
behaviorists such as Skinner (1953) to reduce the psychology of organisms strictly to input/output
or stimulus/response mappings. The advance from behaviorism to functionalism in psychology,
which was at least partly driven by the application of the computer metaphor to agents (Putnam,
1960; Lewis, 1966), introduced the internal state of the agent into the picture. The philosopher
Daniel Dennett (1969; 1978b) helped to synthesize these viewpoints into a coherent “intentional
stance” toward agents. A high-level, abstract perspective on agency is also taken within the world
of AI in (McCarthy and Hayes, 1969). Jon Doyle (1983) proposed that rational agent design is
the core of AI, and would remain as its mission while other topics in AI would spin off to form
new disciplines. Horvitz et al. (1988) specifically suggest the use of rationality conceived as the
maximization of expected utility as a basis for AI.

The AI researcher and Nobel-prize-winning economist Herb Simon drew a clear distinction
between rationality under resource limitations (procedural rationality) and rationality as making
the objectively rational choice (substantive rationality) (Simon, 1958). Cherniak (1986) explores
the minimal level of rationality needed to qualify an entity as an agent. Russell and Wefald (1991)
deal explicitly with the possibility of using a variety of agent architectures. Dung Beetle Ecol-
ogy (Hanski and Cambefort, 1991) provides a wealth of interesting information on the behavior
of dung beetles.

EXERCISES

2.1 What is the difference between a performance measure and a utility function?

2.2 For each of the environments in Figure 2.3, determine what type of agent architecture is
most appropriate (table lookup, simple reflex, goal-based or utility-based).

2.3 Choose a domain that you are familiar with, and write a PAGE description of an agent
for the environment. Characterize the environment as being accessible, deterministic, episodic,
static, and continuous or not. What agent architecture is best for this domain?

2.4 While driving, which is the best policy?

a. Always put your directional blinker on before turning,
b. Never use your blinker,
c. Look in your mirrors and use your blinker only if you observe a car that can observe you?

What kind of reasoning did you need to do to arrive at this policy (logical, goal-based, or utility-
based)? What kind of agent design is necessary to carry out the policy (reflex, goal-based, or
utility-based)?
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The following exercises all concern the implementation of an environment and set of agents in
the vacuum-cleaner world.

2.5 Implement a performance-measuring environment simulator for the vacuum-cleaner world.
This world can be described as follows:

Percepts: Each vacuum-cleaner agent gets a three-element percept vector on each turn.
The first element, a touch sensor, should be a 1 if the machine has bumped into something
and a 0 otherwise. The second comes from a photosensor under the machine, which emits
a 1 if there is dirt there and a 0 otherwise. The third comes from an infrared sensor, which
emits a 1 when the agent is in its home location, and a 0 otherwise.
Actions: There are five actions available: go forward, turn right by 90 , turn left by 90 ,
suck up dirt, and turn off.
Goals: The goal for each agent is to clean up and go home. To be precise, the performance
measure will be 100 points for each piece of dirt vacuumed up, minus 1 point for each
action taken, and minus 1000 points if it is not in the home location when it turns itself off.
Environment: The environment consists of a grid of squares. Some squares contain
obstacles (walls and furniture) and other squares are open space. Some of the open squares
contain dirt. Each “go forward” action moves one square unless there is an obstacle in that
square, in which case the agent stays where it is, but the touch sensor goes on. A “suck up
dirt” action always cleans up the dirt. A “turn off” command ends the simulation.

We can vary the complexity of the environment along three dimensions:

Room shape: In the simplest case, the room is an n n square, for some fixed n. We can
make it more difficult by changing to a rectangular, L-shaped, or irregularly shaped room,
or a series of rooms connected by corridors.
Furniture: Placing furniture in the room makes it more complex than an empty room. To
the vacuum-cleaning agent, a piece of furniture cannot be distinguished from a wall by
perception; both appear as a 1 on the touch sensor.
Dirt placement: In the simplest case, dirt is distributed uniformly around the room. But
it is more realistic for the dirt to predominate in certain locations, such as along a heavily
travelled path to the next room, or in front of the couch.

2.6 Implement a table-lookup agent for the special case of the vacuum-cleaner world consisting
of a 2 2 grid of open squares, in which at most two squares will contain dirt. The agent starts
in the upper left corner, facing to the right. Recall that a table-lookup agent consists of a table of
actions indexed by a percept sequence. In this environment, the agent can always complete its
task in nine or fewer actions (four moves, three turns, and two suck-ups), so the table only needs
entries for percept sequences up to length nine. At each turn, there are eight possible percept
vectors, so the table will be of size 9

i=1 8i = 153, 391, 688. Fortunately, we can cut this down
by realizing that the touch sensor and home sensor inputs are not needed; we can arrange so that
the agent never bumps into a wall and knows when it has returned home. Then there are only
two relevant percept vectors, ?0? and ?1?, and the size of the table is at most 9

i=1 2i = 1022.
Run the environment simulator on the table-lookup agent in all possible worlds (how many are
there?). Record its performance score for each world and its overall average score.
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2.7 Implement an environment for a n m rectangular room, where each square has a 5% chance
of containing dirt, and n and m are chosen at random from the range 8 to 15, inclusive.

2.8 Design and implement a pure reflex agent for the environment of Exercise 2.7, ignoring
the requirement of returning home, and measure its performance. Explain why it is impossible
to have a reflex agent that returns home and shuts itself off. Speculate on what the best possible
reflex agent could do. What prevents a reflex agent from doing very well?

2.9 Design and implement several agents with internal state. Measure their performance. How
close do they come to the ideal agent for this environment?

2.10 Calculate the size of the table for a table-lookup agent in the domain of Exercise 2.7.
Explain your calculation. You need not fill in the entries for the table.

2.11 Experiment with changing the shape and dirt placement of the room, and with adding
furniture. Measure your agents in these new environments. Discuss how their performance
might be improved to handle more complex geographies.
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