
Development and Application of a Formal Agent Framework

Mark d’Inverno
Department of Computer Science

University of Westminster
London, W1M 8JS, UK
dinverm@wmin.ac.uk

Michael Luck
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

mikeluck@dcs.warwick.ac.uk

Abstract

Previous work has addressed the development of a
framework to categorise and understand agent-based sys-
tems. It described and formalised an agent-hierarchy that
included objects, agents and autonomous agents, each with
different levels of functionality, and provided a precise vo-
cabulary with which to discuss agent systems. This paper
reviews a large variety of further work that has built on
that foundation in several ways. First, the framework it-
self has been refined to detail important aspects of agent
functionality such as goal generation and adoption. Sec-
ond, the structures and relationships between agents have
been specified and analysed allowing a more complete un-
derstanding of the dynamics of agent systems. Third, ex-
isting systems and theories have been formalised within the
framework so that they may be evaluated and compared in a
coherent and consistent way. Finally, some steps have been
taken in attempting to construct a methodology for the de-
velopment of agent-based systems. Though this work spans
a large range of concerns, it is based on a single set of basic
concepts providing fundamental structure.

1. Introduction

The problems with existing notions of agency and auton-
omy are now well-understood, but the importance of these
notions remains high, nevertheless. In previous work we
have addressed this by constructing a formal specification
to identify and characterise those entities called agents and
autonomous agents, in a precise yet accessible way. Our
taxonomy provides clear definitions for objects, agents and
autonomous agents that allow a better understanding of the
functionality of different systems. It explicates those fac-
tors that are necessary for agency and autonomy, and is suf-
ficiently abstract to cover the gamut of agents, both hard-
ware and software, intelligent and unintelligent. A signif-
icant claim of that work was that it would provide a gen-

eral mathematical framework within which different mod-
els, and particular systems, could be defined and contrasted.

In particular, we argued that a formal framework should
satisfy three distinct requirements [8, 4] which we sum-
marise below.

1. It must precisely and unambiguously provide mean-
ings for common concepts and terms and do so in a
readable and understandable manner.

2. It should enable alternative designs of particular mod-
els and systems to be explicitly presented, compared
and evaluated.

3. It should be sufficiently well-structured to provide a
foundation for subsequent development of new and in-
creasingly more refined concepts.

Though the framework was, of itself, useful in illuminat-
ing some key issues in agent-oriented systems and in pro-
viding a precise and structured vocabulary for discussing
them much of the merit of our work lies in its ability to
span a range of levels of abstraction, including application
to both existing systems and theories [2, 3], and in allow-
ing further theoretical and practical development. This pa-
per is an attempt to take stock of progress to date in ad-
dressing these concerns, and in evaluating how successful
we have been with regard to the requirements enumerated
above. It brings together much of the work that has pre-
viously been done in our research programme. The next
section briefly reviews the agent framework and the com-
ponents within it as a base for the remainder of the paper.
Then we describe further development of the framework in
mechanisms for goal generation and adoption, the structure
of inter-agent relationships of engagement and cooperation,
and an analysis of those relationships. After that the appli-
cation of the framework to existing systems and theories is
illustrated with the example of the Contract Net, and finally
we consider the implications for practical systems develop-
ment.

2. Agent Framework

In short, we propose a four-tiered hierarchy comprising
entities, objects, agents andautonomous agents. The ba-
sic idea underlying this hierarchy is that all components of
the world are entities. Of these entities, some are objects,
of which some, in turn, are agents and of these, some are
autonomous agents. In this section, we briefly outline the
agent hierarchy. Many details are omitted — a more com-
plete treatment can be found in [7].

Entities can be used to group together attributes into a
whole without adding a layer offunctionality. They serve
as a useful abstraction mechanism by which they are re-
garded as distinct from the remainder of the environment,
and which can organise perception. An object is just an en-
tity with abilities which can affect environments in which it
is situated. An agent is just an object either that is useful
to another agent where this usefulness is defined in terms
of satisfying that agent’s goals, or that exhibits independent
purposeful behaviour. In other words, an agent is an object
with an associated set of goals. One object may give rise
to different instantiations of agents which are created in re-
sponse to other agents. This definition of agency relies upon
the existence of such other agents which provide the goals
that are adopted instantiate an agent. In order to escape an
infinite regress of goal adoption, we can define autonomous
agents which are just agents that generate their own goals
from motivations.

Entity
attributes : PAttribute
capableof : PAction
goals : PGoal
motivations : PMotivation

attributes 6= f g

Object == [Entity j capableof 6= f g]
Agent == [Object j goals 6= f g]
AutoAgent == [Agent j motivations 6= f g]

We also distinguish those objects which are not agents, and
those agents which are not autonomous and refer to them as
neutral-objects andserver-agents respectively. An agent is
then either a server-agent or an autonomous agent, and an
object is either a neutral-object or an agent.

NeutralObject == [Object j goals = fg]
ServerAgent == [Agent j motivations = fg]

With the basic components of the framework in place,
we now go on to develop the framework in order to give an
account of how goals are initially generated by autonomous
agents and subsequently adopted by other entities in the en-
vironment.

3. Goal Generation and Adoption

The four-tiered framework described above involves the
generation ofgoals from motivations in an autonomous
agent, and the adoption of goals by, and in order to cre-
ate, other agents. In this section, we consider issues in
goal generation that must occur before goal adoption can
take place. Specifically, we describe how an autonomous
agent, can construct goals or concrete states of affairs to be
achieved in the environment. We extend the framework in
this way and add more detail by introducing new schemas
that specify the relevant aspects.

An autonomous agent will try to find a way to mitigate
motivations, either by selecting an action to achieve an ex-
isting goal as above for simple agents, or by retrieving a
goal from a repository of known goals. Thus, our model
requires a repository of knowngoals which capture knowl-
edge of limited and well-defined aspects of the world. These
goals describe particularstates or sub-states of the world
with each autonomous agent having its own such repository.

In order to retrieve goals to mitigate motivations, an au-
tonomous agent must have some way of assessing the ef-
fects of competing or alternative goals. Clearly, the goals
which make the greatest positive contribution to the motiva-
tions of the agent should be selected unless a greater moti-
vational effect can be achieved bydestroying some subset of
its goals. The motivational effect of generating or destroy-
ing goals is not only dependent on the current motivations
but also on the current goals of the agent. For example, an
autonomous agent should not generate a goal that it already
possesses or that is incompatible with the achievement or
satisfaction of its existing goals.

Formally, the ability of autonomous agents to assess
goals is given in the next schema,AssessGoals. The schema
describes how an autonomous agent monitors its motiva-
tions for goal generation. First, theAutoAgent schema is
included and the new variable representing the repository
of available known goals,goalbase is declared. Then, the
motivational effect on an autonomous agent of satisfying a
set of new goals is given. Thegenerate function returns a
numeric value representing the motivational effect of satis-
fying a set of goals with a particular configuration of mo-
tivations and a set of existing goals. Similarly, thedestroy
function returns a numeric value representing the motiva-
tional effect of removing some subset of its existing goals
with the same configuration. The predicate part specifies
that the goal base is non-empty, and that all the current
goals must be goals that exist in the goalbase. For ease of
expression, we also define a function related togenerate
called satgen, which returns the motivational effect of an
autonomous agent satisfying an additional set of goals. The
function,satdes, is analogously related todestroy.

2

AssessGoals
AutoAgent
goalbase : PGoal
generate; destroy :
PMotivation ! PGoal ! PGoal ! Z

satgen; satdes : PGoal ! Z

goalbase 6= fg ^ goals � goalbase
8 g : Pgoalbase �
satgen g = generate motivations goals g ^
satdes g = destroy motivations goals g

Now we can describe the generation of a new set of goals
in theGenerateGoals operation schema. This simply states
that there is a set of goals in the goalbase that has a greater
motivational effect than any other set of goals, and the cur-
rent goals of the agent are updated to include the new goals.

GenerateGoals
�AutoAgent
AssessGoals

goalbase 6= f g
9 gs : PGoal j gs � goalbase �

(8 os : PGoal j os 2 (P goalbase) �
(satgen gs � satgen os) ^
goals0 = goals [gs)

Since we are interested in multi-agent systems, we must
consider the world as a whole rather than just individual
agents. A multi-agent system contains entities, objects, neu-
tral objects, agents, server agents and autonomous agents.

MultiAgentSysComponents
entities : PEntity
objects : PObject
agents : PAgent
autoagents : PAutoAgent
neutralobjects : PNeutralObject
serveragents : PServerAgent

autoagents � agents � objects
agents = autoagents[serveragents
objects = neutralobjects[agents

In multi-agent systems, agents may wish, or need, to use the
capabilities of other entities. They can make use of the ca-
pabilities of these others byadopting their goals. For exam-
ple, if agentA needs to move a table and requires the help of
another agent,B, to do so, thenB must first adopt the goal to
move the table. This notion of goal adoption underlies so-
cial behaviour, and an understanding of the ways in which it
can be achieved is fundamental for effective modelling and
simulation. In general, entities may serve the purposes of

others by adopting their goals. However, the ways in which
they adopt goals depends on the kind of entity. They may be
either neutral-objects, server-agents or autonomous agents,
and each requires a separate analysis.

In the description given in the previous section, goals
may be generated only by autonomous agents. Both
non-autonomous (server) and autonomous agents, however,
can adopt goals. With autonomous agents, goal adoption
amounts to a problem ofnegotiation or persuasion, requir-
ing an analysis of thetarget autonomous agent. With non-
autonomous agents, goal adoption requires an analysis of
both the agent intended to adopt the goal, and any other
agentengaging that agent. With objects, no analysis is re-
quired, since agents arecreated from objects with the rele-
vant associated goals.

There are three fundamental cases of goal adoption
which we consider in detail. In the simplest case, goal adop-
tion by non-autonomous agents occurs by instantiating an
agent from a neutral object with the goals to be adopted. In
this case, noagent exists before the goals are adopted, but
the act of goal transfer causes an agent to be created from a
neutral object using those particular goals. Thus, for exam-
ple, the table in my office, which is just an object, becomes
an agent when I use it for supporting my computer, when it
adopts or is ascribed my goal of supporting the computer.
It is only possible to create the agent from the object be-
cause the table is not being used by anyone else — it is not
engaged by another agent. An entity can only be a neutral
object if it is notengaged.

We now specify how a non-autonomous disengaged ob-
ject, or neutral-object, is instantiated as a server-agent. A
neutral-object and a set of goals are input, the entities in
the world change and the sets of objects and agents are
updated accordingly. First, the set of neutral objects no
longer includes the originally disengaged object. Second,
the set of server agents now includes the newly created
server-agent. Finally, there is no change to the set of au-
tonomous agents. In addition, the variables,entities, objects
andagents, are updated by removing the neutral-object and
adding the newly instantiated server-agent. The auxiliary
functionEntityAdoptGoals creates a new entity by ascrib-
ing a set of goals to an existing entity.

NeutralObjectAdoptGoals
o? : NeutralObject; gs? : PGoal
�MultiAgentSysComponents

o? 2 neutralobjects
neutralobjects0 = neutralobjects n fo?g
serveragents0 = serveragents [

fEntityAdoptGoals (o?; gs?)g
autoagents0 = autoagents

If the table was engaged by another (possibly non-

3

autonomous) agent, then it is itself an agent, and the pro-
tocol for goal adoption changes. In this case, there are al-
ternative ways for me toengage the table. The first of these
involves me trying to persuade the engaging agent to re-
lease the table so that I may then subsequently engage it
for my purposes. This relates to the issues of goal adoption
for autonomous agents which are considered later. The sec-
ond involves supplying the agent with more goals, so that
the agent is shared between different engaging agents. The
third possibility involvesdisplacing the engaging agent so
that I become the engaging agent and ascribe to the table my
own goals. For example, the table may currently be used as
a door-stop for my office-mate, and is therefore her agent
with her goal of holding open the door. I can displace the
goal ascribed to the table by removing the table and plac-
ing my computer on it. Now the table is ascribed my goal
of supporting my computer, and it has switched from one
agent to another. In fact, this is equivalent to the agent
reverting to an object and then being re-instantiated as a
new agent. This method may not be an appropriate strategy,
however, because in destroying the agency of the table as a
door-stop, I risk a conflict with the existing engaging agent,
my office-mate. It would be better for me to negotiate first,
to obtain permission to destroy the original agency. Our no-
tion of agency thus contributes to a better understanding of
the world, regardless of whether we are concerned with ta-
bles or robots, since the only important difference between
them is their functionality through agency.

Below, we specify a server-agent being ascribed an addi-
tional set of goals. It describes the table serving as a door-
stop subsequently being given the goal of supporting the
computer. The adopting agent must be a server-agent in
the system and the new goals are distinct from the existing
goals.

ServerAgentAdoptGoals
a? : ServerAgent; gs? : PGoal
�MultiAgentSysComponents

a? 2 serveragents
gs? \ a?:goals = fg
neutralobjects0 = neutralobjects
serveragents0 = serveragents n fa?g

[fEntityAdoptGoals (a?; gs?)g
autoagents0 = autoagents

With autonomous agents, goals must explicitly be adopted,
as opposed to an implicit ascription of goals for non-
autonomous agents. This may be more difficult than the
previous case, since it requires some form of negotiation.
Autonomous agents are motivated agents and will only par-
ticipate in an activity and assist another agent if it is to
their motivational advantage to do so. They create their
own agendas and for them, goal adoption is avoluntary pro-

cess as opposed toobligatory adoption for non-autonomous
agents. The schema below merely states that the set of
new goals which the agent adopts are the best that it can
find in its goalbase at that time. First, an autonomous
agent and set of goals are input, and there is a change to
the MultiAgentSysComponents. The predicate part of the
schema then simply describes a change to the set of au-
tonomous agents by which the old autonomous agent agent
is removed and the new one, formed from the old agent with
new goals, is added, giving the required change. The last
line of the schema states that there is no other set of goals in
the goalbase which could have a better motivational effect
than the set of goals adopted. Note the use of themotiveffect
function originally defined for goal generation, so that au-
tonomous goal adoption requires goal generation.

AutoAgentAdoptGoals
AssessGoals
aa? : AutoAgent; gs? : PGoal
�MultiAgentSysComponents

aa? 2 autoagents
autoagents0 = autoagents n faa?g [

fEntityAdoptGoals (aa?; gs?)g
agents0 = agents ^ objects0 = objects
: (9 hs : PGoal j hs � goalbase ^

hs 6= gs? � satgen hs > satgen gs?)

4. Inter-Agent Relationships

Now, a direct engagement occurs when a neutral-object
or a server-agent adopts some goals. In a direct engage-
ment, aclient-agent with some goals uses anotherserver-
agent to assist them in the achievement of those goals. A
server-agent either exists already as a result of some other
engagement, or is instantiated from a neutral-object for the
current engagement. No restriction is placed on a client-
agent. We define adirect engagement below to consist of a
client agent,client, a server agent,server, and the goal that
server is satisfying forclient. An agent cannot engage itself,
and both agents must have the goal of the engagement.

DirectEngagement
client : Agent; server : ServerAgent
goal : Goal

client 6= server
goal 2 (client:goals \ server:goals)

The set of alldirect engagements in a system is given by
direngs in the following schema. For any direct engagement
in direngs, there can be no intermediatedirect engagements
of the goal, so there is no other agent,y, whereclient en-
gagesy for goal, andy engagesserver for goal.

4

SysEngagements
MultiAgentSysComponents
direngs : PDirectEngagement

8 en : direngs �
: (9 y : Agent; c; d : direngs j

c:goal = d:goal = en:goal �
c:server = en:server ^
d:client = en:client ^
d:client = d:server = y)

An engagement chain represents a sequence ofdirect en-
gagements. Specifically, anengagement chain comprises a
goal, goal, the autonomous client that generated the goal,
auto, and a sequence of server-agents,chain, where each
agent in the sequence directly engages the next. For any
engagement chain, there must be at least one server-agent,
all the agents involved must sharegoal, and each agent can
only be involved once.

EngChain
goal : Goal; auto : AutoAgent
chain : seq

1
Agent

goal 2 auto:goals
goal 2

S
fs : Agent j hsi in chain � s:goalsg

The set of all engagement chains in a system is given
in the schema below byengchains. For every engage-
ment chain,ec, there must be a direct engagement between
the autonomous agent,ec:auto, and the first client ofec,
head ec:chain, with respect to the goal ofec, ec:goal. Fur-
ther, there must be a direct engagement between any two
agents following each other inec:chain with respect to
ec:goal. In general, an agentengages another agent if there
is some engagement chain in which it precedes the server
agent.

SysEngChains
SysEngagements
engchains : PEngChain

8 ec : engchains; s1; s2 : Agent �
(9 d : direngs �

d:goal = ec:goal ^
d:client = ec:auto ^
d:server = head ec:chain) ^
hs1; s2i in ec:chain)
(9 d : direngs �

d:client = s1 ^
d:server = s2 ^ d:goal = ec:goal)

Two autonomous agents are said to becooperating with re-
spect to some goal if one of the agents has adopted goals

of the other. This notion of autonomous goal acquisition
applies both to theorigination of goals by an autonomous
agent for its own purposes, and theadoption of goals from
others, since in each case the goal must have a positive moti-
vational effect. For autonomous agents, the goal of another
can only be adopted if it has such an effect, and this is also
exactly why and how goals are originated. Thus goal adop-
tion and origination are related forms of goal generation.
Thus the termcooperation can be used only when those in-
volved are autonomous and, at least potentially, capable of
resisting. If they are not autonomous, nor capable of resist-
ing, then one simplyengages the other.

A cooperation describes a goal, the autonomous agent
that generated the goal, and those autonomous agents that
have adopted that goal from the generating agent. In addi-
tion, all the agents involved have the goal of the coopera-
tion, an agent cannot cooperate with itself, and the set of
cooperating agents must be non-empty. Cooperation can-
not, therefore, occur unwittingly between agents, but must
arise as a result of the motivations of an agent and the agent
recognising that goal in another.

Cooperation
goal : Goal; genagent : AutoAgent
coopagents : PAutoAgent

goal 2 genagent:goals
8 aa : coopagents � goal 2 aa:goals
genagent 62 coopagents
coopagents 6= f g

The set of cooperations in a multi-agent system is given by
the variable,coops, in the schema,SysCoops. The predi-
cate part of the schema states that for any cooperation, the
union of the cooperating agents and the generating agent is
asubset of the set of all autonomous agents which have that
goal. As a consequence, two agents sharing a goal are not
necessarily cooperating. In addition, the set of all cooperat-
ing agents is a subset of all autonomous agents since not all
are necessarily participating in cooperations.

SysCoops
MultiAgentSysComponents
coops : PCooperation

8 c : coops � c:coopagents[fc:genagentg
� fa : autoagents j c:goal 2 a:goals � agS
fc : coops � c:coopagentsg � autoagents

We define the structure of a multi-agent system in terms
of the set of entities in it, and the inter-agent cooperation
and engagement relationships between them.

5

MultiAgentSysStructure
MultiAgentSysComponents
SysEngChains
SysCoops

Considering the set of engagements and cooperations be-
tween agents provides precise information about the rela-
tionships between them. This allows a richer understanding
of the social configuration of agents, suggesting different
possibilities for interaction. For example, if I am currently
engaging an entity, and no other agent is doing so, then I
can interact with that entity without concern for the poten-
tial effects of the interaction on others. This is because the
engagement is independent of the existing social configura-
tion of the entire system.

We have provided a full taxonomy of these relations but
consider some specific definitions of relations which hold
between two agents. These are:dengs, engages, owns,
downs and cooperates. In what follows, we give an ini-
tial description followed by the formal definition. The basic
relationships between agents are either when one is directly
engaging another or when one is cooperating with another.

Definition An agent,c, directly engages another server-
agent,s, if, and only if, there is a direct engagement between
c ands.

Dengages
MultiAgentSysStructure
dengs : Agent $ ServerAgent

dengs = fe : direngs � (e:client; e:server)g

Definition An agent,c, engages another server-agent,s,
if there is some engagement chain in whichc precedess.

Engages
MultiAgentSysStructure
engages : Agent $ ServerAgent

engages =
fec : engchains � (ec:auto; head ec:chain)g
[fec : engchains; c; s : Agent j

((c; s); ec:chain) 2 follows � (c; s)g

We have made use here of the generic relation,follows as
defined below. It holds between a pair of elements and a
sequence of elements if the first element of the pair precedes
the second element in the sequence.

[X]
follows : (X � X)$ seqX

8 a; b : X; s : seqX � ((a; b); s) 2 follows ,

9 t; u; v : seqX � s = t a haia ua hbia v

If many agents are directly engaging the same entity, then
no single agent has complete control over that entity. Any
actions that an agent takes affecting the entity may destroy
or hinder the engagements of other engaging agents, and
this, in turn, may have a future deleterious effect on any
agents or autonomous agents engaging it. It is thus impor-
tant multi-agent systems analysis to understand and spec-
ify exactlywhen the behaviour of an engaged entity can be
modified without any such deleterious effect. This can oc-
cur between an agent and an entity precisely when there is
no other agent using the entity for adifferent purpose.

Definition An agent,c, owns another agent,s, if, for
every sequence of server-agents in an engagement chain in
whichs appears,c precedes it, orc is the autonomous client-
agent that initiates the chain.

Owns
Dengages
owns : Agent $ ServerAgent

8 c : Agent; s : ServerAgent �
(c; s) 2 owns ,
(8 ec : engchains j s 2 ranec:chain �

(c; s) 2 owns \ dengs)

Definition An agent,A, cooperates with agent,B, if and
only if both agents are autonomous, and there is some co-
operation in whichA is the generating agent, andB is in the
set of cooperating agents.

Cooperates
MultiAgentSysStructure
cooperates : AutoAgent $ AutoAgent

cooperates =
S
fa; b : AutoAgent j

(9 c : coops � a = c:genagent ^
b 2 c:coopagents) � f(a; b)gg

5. Application to Systems and Theories

We have refined the agent framework described above to
arrive at formal specifications of existing multi-agent sys-
tems and in this section we review the specification of the
Contract Net Protocol which retains the structure of the
framework. The Contract Net is by far the most successful
multi-agent system technique and has been used for many
applications as well as a means of relating new agent theo-
ries. As described by Smith [12], it can be distilled to the
basic components described here. Essentially, acontract
net is a collection of nodes that cooperate in achieving goals
which, together, satisfy some high-level goal or task. Each
node may be either amanager, who monitors task execution
and processes the results, or acontractor, who performs the
actual execution of the task.

6

Negotiation to undertake and satisfy tasks arises when
new tasks are generated. These tasks are decomposed into
sub-tasks and, when there may be inadequate knowledge or
data to undertake these sub-tasks directly, they are offered
for bidding by other agents. Atask announcement message
is broadcast, detailing the task requirements. In response
to a task announcement, agents can evaluate their interest
usingtask evaluation procedures specific to the problem at
hand. If there is sufficient interest, then that agent will sub-
mit a bid to undertake to perform the task. Themanager
selects nodes usingbid evaluation procedures based on the
information supplied in the bid. It sendsaward messages
to successful bidders who then becomecontractors to the
manager, and who may in turn subcontract parts of their
task. The manager terminates a contract with atermination
message.

First, we specify the different kinds of entity from which
a contract net is constructed, and which participate in it. A
node in a contract net is just an object. Similarly, aCAgent
is any node currently involved in some task.

CNode == Object; CAgent == Agent

All nodes in the net are therefore either doing nothing, or
doing something, in which case they are agents. The collec-
tion of such nodes is given in the following schema.

AllNodes
nodes : PCNode; conagents : PCAgent

conagents � nodes

This completes the definition of the nodes in the net and we
now need to consider the function of the net. A manager en-
gages contractors to perform certain tasks. A task is defined
to be the same as a goal, as it just specifies a state of affairs
to be achieved.

Task == Goal

In the next schema, we define a contract to comprise a task,
a manager and a contractor. The contractor and manager
must be different, and the task must be a goal of both the
manager and the contractor.

Contract
task : Task; man : CAgent; con : CAgent

man 6= con
task 2 (man:goals\ con:goals)

Now we can define the set of all contracts currently in op-
eration in the contract net. The schema below includes
AllNodes, and definescontracts to be the set of all con-
tracts currently in the net. The managers are the set of nodes

which are managing a contract and the contractors are the
set of nodes which are contracted. The union of the con-
tractors and the managers gives the set of contract agents.

AllContracts
AllNodes
contracts : PContract
mans; cons : PCAgent

mans = fc : Contract j
c 2 contracts � c:mang

cons = fc : Contract j
c 2 contracts � c:cong

mans [cons = conagents

We also need to introduce the notion ofeligibility. A node is
eligible for a task if its actions and attributes satisfy the task
requirements. We defineEligibility to be a type compris-
ing a set of actions and attributes representing an eligibility
specification. This has just the same type as an object.

Eligibility == Object

The first step in establishing a contract is to issue atask
announcement. A TaskAnn is issued by aSender to a set of
Recipients to request bids for a particularTask from agents
with a givenEligibility specification.

Sender == CNode
Recipient == CNode

TaskAnn
sender : Sender; recs : PRecipient
task : Task; elig : Eligibility

Notice that the combination of a task together with an eli-
gibility is, in fact, anagency requirement. A bid is issued
from some node who describes a subset of itself in response
to an eligibility specification which will be used in evaluat-
ing the bid.

Bid
cnode : CNode; elig : Eligibility

elig:capableof � cnode:capableof
elig:attributes � cnode:attributes

The state of the contract net can now be represented as
the current set of nodes, contracts, task announcements and
bids. Each task announcement will have associated with it
some set of bids which are just eligibility specifications as
described above. In addition, each node has a means of de-
ciding whether it is capable of, and interested in, performing
certain tasks (and so bidding for them).

7

ContractNet
AllContracts
bids : TaskAnn 7! PBid
interested : P(CNode� Task)
taskanns : PTaskAnn

taskanns = dombids

The operation of a node making a task announcement is
then given in the schema below where there is a change to
ContractNet, but no change toAllContracts. A node that
issues a task announcement must be an agent. The sec-
ond part of the schema specifies that the recipients and the
sender must be nodes, that the task must be in the senders
goals, and that the sender must not be able to satisfy the
eligibility requirements of the task alone. Finally, the task
announcement is added to the set of all task announcements,
and an empty set of bids is associated with it.

MakeTaskAnn
�ContractNet
�AllContracts
m? : CAgent; ta? : TaskAnn

m? 2 nodes ^ ta?:recs � nodes
ta?:sender = m? ^ ta?:task 2 m?:goals
: ((ta?:elig:capableof � m?:capableof) ^

(ta?:elig:attributes � m?:attributes))
taskanns0 = taskanns [fta?g
bids0 = bids [f(ta?; fg)g

In response to a task announcement, a node may make a
bid. The schema below specifies that a node making a bid
must be one of the receivers of the task announcement, that
it must be eligible for the task, that it is interested in per-
forming the task, and that it is not the sender. As a result of
a node making a bid, the set of task announcements does not
change, but the bids associated with the task announcement
are updated to include the new bid.

MakeBid
�ContractNet
con? : CNode
bid? : Bid
ta? : TaskAnn

bid?:cnode = con? ^ con? 2 nodes
ta? 2 taskanns ^ con? 2 ta?:recs
ta?:elig:capableof � bid?:elig:capableof
ta?:elig:attributes � bid?:elig:attributes
interested (con?; (ta?:task))
con? 6= ta?:sender
taskanns0 = taskanns
bids0 = bids� f(ta?; bids ta? [fbid?g)g

After receiving bids, the issuer of a task announcement
awards the contract to the highest rated bid. The node that
makes the award must be the node that issued the task an-
nouncement, and the bid that is selected must be in the set
of bids associated with the task announcement. In order to
choose the best bid, therating function (rating) is used to
provide a natural number as an evaluation of a bid with re-
spect to a task announcement. Thus the bid with the highest
rating is selected. After making an award, the set of all con-
tracts is updated to include a new contract for the particular
task with the issuer of the task announcement as manager
and the awarded bidder as contractor, where the contractor
is instantiated from the old node as a new agent with the ad-
ditional task of the contract. The task announcement is now
satisfied and removed from the system, and the set of bids is
updated accordingly. The auxiliary function,makeC forms
an contract from its constituent parts and the auxiliary func-
tion addT takes an agent and a task and instantiates a new
agent which has the additional task in its set of goals.

MakeAward
�ContractNet
m? : CAgent
ta? : TaskAnn
b? : Bid
rating : TaskAnn ! Bid ! N

newcon : CAgent

m? = ta?:sender ^ b? 2 bids ta?
8 b : Bid j b 2 bids ta? �

rating ta? b? � rating ta? b
taskanns0 = taskanns n fta?g
bids0 = bids n f(ta?; bids ta?)g
newcon = addT b?:cnode ta?:task
contracts0 = contracts [

fmakeC ta?:task m? newcong
conagents0 = conagents n fb?:cnodeg [

fnewcong

A manager can terminate a contract as specified below
where the contract is removed from the set of all contracts.
Whilst the contractor will remove the task from its set of
goals the manager will not, since it will still be a contractor
for that task or the monitor of that goal. The goal is there-
fore removed from the goals of the contractor agent. If this
node is still an agent, there will be no change toconagents,
but if the node previously had only one goal then it will be
removed fromconagents since it is no longer an agent. The
auxiliary function,remT, reverts an agent to the node it was
before adopting the goal of the contract.

8

TerminateContract
�AllContracts
m?; con? : CAgent; t? : Task

contracts0 = contracts n fmakeC t? m? con?g
remT con? t? 2 CAgent)

conagents0 = conagents n fcon?g
[fremT con? t?g

remT con? t? 62 CAgent)
conagents0 = conagents n fcon?g

The contract net is a useful and effective example of apply-
ing the framework proposed earlier because it is a concrete
and well-understood system. In addition, many of the re-
lationships that arise in the contract net can be generalised
to other goal-directed systems. In this section, we elaborate
the framework described earlier by considering cooperation
and engagement, especially in the light of the contract net
example. Thus we use the contract net case-study as an ex-
emplar which allows us to analyse these relationships, first
in a limited and well-defined way, and then by broadening
them to define properties of multi-agent systems in general.

6. Discussion

The field of agent-oriented systems is growing dramat-
ically in many directions. Coupled with its relative youth,
however, this has given rise to the concentration of research
in distinct niches so that there are very different approaches
to essentially similar problem areas with, in some cases,
little or no interrelation. Such a fragmentation leads to a
lack of consensus regarding such fundamental notions as
agents and autonomous agents as discussed above, but also
impedes progress towards integrated approaches to agent
theory and agent construction. As the field matures, the
broader acceptance of agent-oriented systems will become
increasingly tied to the availability and accessibility of well-
founded techniques and methodologies for system develop-
ment.

A major criticism of much formal or theoretical work is
that while it is important and contributes to a solid under-
lying foundation for practical systems, no direction is pro-
vided as to how it may be used in the development of these
systems. Recently, however, some efforts have been made
to provide a greater harmony between these two camps, and
to integrate the complementary aspects. Wooldridge and
Jennings have developed a model of cooperative problem
solving (CPS) [13] which attempts to capture relevant prop-
erties of CPS in a mathematical framework while serving
as a top-level specification of a CPS system. Rao has at-
tempted to unite theory and practice in two ways. First,
he provided an abstract agent architecture that serves as an
idealization of an implemented system and as a means for

investigating theoretical properties [11]. A second effort de-
veloped an alternative formalization by starting with an im-
plemented system and then formalizing the semantics in an
agent language which can be viewed as an abstraction of
the implemented system, and which allows agent programs
to be written and interpreted [10]. Goodwin has also at-
tempted to bridge the gap by providing a formal description
in Z of agents, tasks and environments, and then defining
agent properties in these terms [5].

More recent work in our research program [9] has aimed
to provide an environment which allows the development
and investigation of a variety of agent systems, within
the confines of the framework. In particular, the frame-
work specifies certain constraints on the design of agents
and describes inheritance of properties between different
classes of entity, from object to agent and from agent to au-
tonomous agent. The system is implemented using object-
oriented methods in C++, based on the formal framework
outlined earlier. It both relies upon the structure of the
framework, and reflects it, so that they are very strongly
related. The formal definitions of agents and autonomous
agents rely on inheriting the properties of lower-level com-
ponents. In Z, this is achieved through schema inclusion
and is easily modelled in C++ by deriving one class from
another. Thus, just as the agents are defined in terms of
objects, and autonomous agents in terms of agents in the
framework, the implemented agent classes are derived from
object classes, and autonomous agent classes are derived
from agent classes. At each point in the design and im-
plementation, the process of refinement to code forces the
clarification of assumptions in the design of agents.

This is not just an elegant means of relating agent ar-
chitecture and design. It provides increasingly more so-
phisticated building blocks with which to construct more
sophisticated agents incrementally in a rigorous and struc-
tured fashion. One question that arises from such a transi-
tion between theory and practice is to what extent this can
be used as a basis for providing a methodology of agent-
based systems. Kinny [6] argues that “a clear conceptual
framework that enables the complexity of the system to be
managed by decomposition and abstraction,” is vital in such
a methodology. This is our starting point, and indeed our
formal framework plays exactly this role, using the stan-
dard properties of the Z specification language to satisfy
these requirements. In particular, we can construct a model
of the computational system by refining the abstract defi-
nitions provided in the framework to include the relevant
system constraints.

The first task is to identify each of the distinct entities
in the application domain through an analysis of their func-
tionality in terms of behaviour. That is to say that the re-
sult of this first step is an enumeration of all entities to-
gether with their purpose. Each of these entities can then

9

be considered in terms of control, both with regard to them-
selves, and of others. This involves the examination of the
dependencies that exist between entities, which rely on oth-
ers to determine current behaviour and which are indepen-
dent of others. At this point we should be able to classify
each entity as an object, agent or autonomous agent, and
then to use the analysis of functionality to design the neces-
sary behaviours and methods for their control (essentially,
the action-selection functions) for each. Finally, the hierar-
chical relationships between entities must be considered in
more detail so that any structural similarities which can be
exploited are revealed.

Object oriented approaches provide an ideal paradigm
for the implementation of the agents designed as a result
of such a process. The structural relationships inherent in
the multi-agent system can be readily captured by the ab-
straction provided by object classes, and the inheritance that
is available within class hierarchies. Perhaps more impor-
tantly, object-oriented methods provide a means by which
the model given in a formal specification can be easily trans-
formed into an executable program with minimal effort, and
making use of existing object or agent class libraries.

Thus we move from principled but abstract theoretical
framework through a more detailed, yet still formal, model
of the system, down to an object-oriented implementation,
preserving the hierarchical structure at each stage.

7. Conclusions

As the fields of intelligent agents and multi-agent sys-
tems move relentlessly forwards, it is becoming increas-
ingly more important to maintain a coherent world view that
both structures existing work and provides a base on which
to keep pace with the latest advances. Our framework has
allowed us to do just that. By elaborating the agent hierar-
chy in different ways, we have been able to detail both indi-
vidual agent functionality and develop models of evolving
social relationships between agents with, for example, our
analyses of goal generation and adoption, and our treatment
of engagement and cooperation. Not only does this provide
a clear conceptual foundation, it also allows us to refine our
level of description to particular systems and theories. For
example, we have shown how the Contract Net Protocol can
be specified within the framework so that it reflects the more
general structure of inter-agent relationships.

Moreover, the move to use the framework as a base for
development, though still early, indicates much promise. In-
deed, one of the key challenges facing agent systems is to
construct development methodologies relevant to the spe-
cific needs of the field. As a result of our previous work,
there has been a great deal of interest in the use of Z in the
specification and development of agent-based systems, both
in academic and industrial circles, and our future work must

seek both to cement this interest and to capitalise on it. Fur-
ther, we would aim to formalise any proposed methodolo-
gies within the framework using Z such as those developed
for the development of high-performance systems [1].

Certainly, much remains to be done, but serious and ex-
tensive application of agent technology will only progress
with such well-founded and coherent approaches which
provide accessible frameworks with which system analysis
and development can take place.

References

[1] M. d’Inverno, G. R. Justo, and P. Howells. A formal frame-
work for specifying design methodologies.Software Pro-
cess: Improvement and Practice, 2(3):181–195, September,
1996.

[2] M. d’Inverno and M. Luck. A formal view of social depen-
dence networks. InProceedings of the First Australian DAI
Workshop - Proceedings of the First Australian Workshop on
Distributed Artificial Intelligence, pages 115–129. Springer
Verlag, 1996.

[3] M. d’Inverno and M. Luck. Formalising the contract net as
a goal directed system. In W. Van de Velde and J. Perram,
editors,Agents Breaking Away - Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a
Multi Agent World, pages 72–85. Springer Verlag, 1996.

[4] M. d’Inverno and M. Priestley. Structuring a Z specification
to provide a unifying framework for hypertext systems. In
J. P. Bowen and M. G. Hinchey, editors,ZUM’95: 9th Inter-
national Conference of Z Users, Lecture Notes in Computer
Science, pages 81–102, Heidelberg, 1995. Springer-Verlag.

[5] R. Goodwin. A formal specification of agent properties.
Journal of Logic and Computation, 5(6), 1995.

[6] D. Kinny, M. Georgeff, and A. Rao. A methodology
and modelling technique for systems of BDI agents. In
W. Van de Velde and J. W. Perram, editors,Agents Break-
ing Away: Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent World,
LNAI 1038, pages 56–71. Springer-Verlag: Heidelberg, Ger-
many, 1996.

[7] M. Luck and M. d’Inverno. A formal framework for agency
and autonomy. InProceedings of the First International
Conference on Multi-Agent Systems, pages 254–260. AAAI
Press / MIT Press, 1995.

[8] M. Luck and M. d’Inverno. Structuring a Z specification to
provide a formal framework for autonomous agent systems.
In J. P. Bowen and M. G. Hinchey, editors,ZUM’95: 9th
International Conference of Z Users, Lecture Notes in Com-
puter Science, pages 47–62, Heidelberg, 1995. Springer-
Verlag.

[9] M. Luck and M. d’Inverno. From agent theory to agent con-
struction: A case study. InIntelligent Agents III: ATAL’96,
pages 215–230. Springer Verlag, 1997.

[10] A. S. Rao. Agentspeak(l): BDI agents speak out in a logical
computable language. In W. Van de Velde and J. W. Per-
ram, editors,Agents Breaking Away: Proceedings of the Sev-
enth European Workshop on Modelling Autonomous Agents

10

in a Multi-Agent World, LNAI 1038, pages 42–55. Springer-
Verlag: Heidelberg, Germany, 1996.

[11] A. S. Rao and M. P. Georgeff. An abstract architecture for
rational agents. In C. Rich, W. Swartout, and B. Nebel, ed-
itors, Proceedings of Knowledge Representation and Rea-
soning, pages 439–449, 1992.

[12] R. G. Smith and R. Davis. Frameworks for cooperation in
distributed problem solving.IEEE Transactions on Systems,
Man and Cybernetics, 11(1):61–70, 1981.

[13] M. J. Wooldridge and N. R. Jennings. Formalizing the co-
operative problem solving process. InProceedings of the
Thirteenth International Workshop on Distributed Artificial
Intelligence, 1994.

11

