
The explosion of the World Wide Web as a global information network brings
with it a number of related challenges for automation. First, nontechnical
users should be able to benefit from the information available on the Web

without being overwhelmed by technical detail. Second, users should be freed from
mundane and repetitive browsing tasks. Third, and most critical, information from
the Web should be available in the format and combination that best fit the user’s
task, regardless of the pages on which the information was originally found.

This report looks at these issues for Internet automation in the context of
new software agent technologies that act as user surrogates for carrying out rou-
tine Web activity. Such surrogates enable automation of all interactions with
HTML pages and forms—not merely the retrieval of specific URLs—and also
the flexible integration of Web information into customized reports and other
applications.

CHALLENGES OF WEB AUTOMATION
The tasks performed on the Internet and on intranets are as diverse as the infor-
mation they contain and the people that make use of that information. Because of
this diversity, and because of the inherent complexity of the information and ser-
vices available, the goal of automating routine Internet behavior is formidable.
Consider the following routine Internet tasks:

■ scanning a dozen newspaper sites each day to gather articles relating to a com-
pany’s business into a single report for executives;

■ looking up price and recent performance on stock leads, collecting profiles on
companies from evaluation services, and reading recent relevant articles from
online newspapers and magazines;

I N D U S T R Y R E P O R T

34

1089-7801/ 97/$10.00 ©1997 IEEE IEEE INTERNET COMPUTING

AUTOMATING
THE INTERNET:
Agents as User
Surrogates

BRUCE KRULWICH,
Agentsoft Ltd.

.

■ adding permission information to
an intranet server, printer drivers,
an Internet firewall, and the local
file servers for a new user to the
office network;

■ scanning online newspapers and
magazines for articles that mention
a company’s clients or competitors,
using the latest client and competi-
tor databases on the company’s
intranet.

Each of these examples raises a differ-
ent challenge for automation. The first,
scanning online news for a fixed set of
keywords, is by far the simplest, and in
fact is a service offered by a number of
Internet service companies. It is, how-
ever, a task that cannot be handled
directly by “scheduled download” soft-
ware because the user must fill in forms
and collect results rather than have
fixed URLs regularly downloaded.
Additionally, the recipient executives
may want a news report in a particular
format, based on their business, rather
than a collection of articles.

The second example, collecting a
variety of information about a given
stock, illustrates the need to automate
tasks that are performed on demand
with minor variations (in this case, the
name of the company), rather than on
a fixed schedule with no variation. It
also requires that highly disparate
information, such as data, graphs, and
articles, be gathered into a single com-
mon report.

The third example is the most
unusual one in that it doesn’t involve
collecting information, but rather
using Web-based forms to carry out
specific actions on a network. This
again highlights the need to perform
arbitrary online functions rather than
simply gather Web pages.

The fourth example, searching
online news for companies mentioned
in a company’s client and competitor
databases, involves using information
from a private source, perhaps requir-
ing customized programming, to drive
information search on the Web.

From these four examples we can
see the following desiderata for Web
automation:

■ automate arbitrary Web activity,
including filling out forms;

■ gather information from various
Web pages into a single report;

■ act on a scheduled basis or on
demand;

■ integrate information from a vari-
ety of sources, both private and
public; and

■ smoothly operate with custom pro-
gram modules.

These functions clearly go beyond the
simple automation technologies found
in today’s download systems or in
products for information push. At
AgentSoft, these Web automation goals
motivated the development and use of
AgentSoft’s LiveAgent product.

USER SURROGATES
The key feature of LiveAgent’s agents
(hereafter “LiveAgents”) is that they
can act on the Web as surrogates for
the user. Virtually any activity that a
user can perform in a Web browser can
be automated by a LiveAgent.
Furthermore, LiveAgents carry out the
activity in a fashion that exactly simu-
lates the user so that servers on the Web
cannot distinguish the agent from the
user. Agents can have parameters, such
as names or keywords, that are used in
the course of this activity as inputs to
forms or to otherwise control the
agent’s activity. These agents can act
either on demand or according to a
schedule.

In the first example above, an agent
could be scheduled to execute every
morning, say at 6:00 a.m. The agent
would go to the search forms for a
dozen online news sites, enter a fixed
set of keywords, and collect the articles.
The report would be waiting each
morning for the user’s arrival, and
could also be sent automatically to the
recipient executives or made available
on the company’s intranet.

In the second example, the agent
could use a company name as a para-
meter to retrieve the desired informa-
tion from each of the online informa-
tion providers. The agent would then
insert the data, graphs, and articles into
a report template designed for that pur-
pose. The agent could automatically
adapt to unavailable Web sites by try-
ing alternative information sources.

In the third example, a user could
create an agent that takes the name and
status of a new employee, goes to the
intranet-based device management
page for the various network subsys-
tems, and enters or edits the employee’s
data at each site. Through the agent, the
user would have a single point of entry
to all of the systems without having to
reenter the information for each one.

In the fourth example, a user could
have an agent that uses customized Java
methods to retrieve the company’s
clients and competitors from a data-
base, and proceeds to search Web-
based news sources for each of them.

In each of these cases agents act as
user surrogates in accessing the Web, a
corporate intranet, or both. These agents
access pages or forms, gather informa-
tion into customized reports, and utilize
arbitrary Java code as needed.

AGENT CREATION
IN LIVEAGENT
Using LiveAgent, a developer can eas-
ily create Java-based agents that gather
information from the Web. While the
developer browses, LiveAgent’s record-
ing mechanism “learns” the actions
taken: which links were clicked, what
was typed in a form, and so on. The
recording mechanism acts as a kind of
high-level macro recorder for creating
Web automation scripts. The develop-
er can also specify that some items will
be changeable each time the agent is
run based on the values for the agent’s
input parameters, and can assign these
items new values before each run for
the agent to use when it browses.
Changeable items include the contents
of text boxes, radio boxes, and list

A U T O M A T I N G T H E I N T E R N E T

35

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

boxes. Lastly, the developer can speci-
fy which pages or portions of pages to
include in a report.

While a developer records an agent,
LiveAgent’s agent engine, also called
the AgentSoft proxy, alters the Web
pages being browsed so that user events
can be monitored and recorded. The
proxy monitors browsing sessions and
inserts appropriate code onto browsed

Web pages. This
involves adding
and routing event
handlers, such as
“onClick()”
events for links,
buttons, and
input fields to the
appropriate
recording func-
tion. The activity
occurs in the
main browsing
frame. Hidden
frames store data
and functions
that persist across
pages.

The AgentSoft
proxy effectively
sits between the

browser and the Web (see Figure 1).
Unlike conventional proxies, which are
generally used to implement caching or
to provide more secure network access,
the AgentSoft proxy is designed to
allow arbitrary filtering of HTTP
requests and responses via dynamically
loaded Java classes. A design theme
repeated throughout the proxy is that
of dynamic filter chaining—a set of eas-

ily configured classes, loaded at run-
time, that sequentially handle different
filtering functions.

When an HTTP request header is
passed from the browser to the proxy,
the proxy forwards the request to a
chain of request filters, which alter the
request arbitrarily. Request filters can
carry out tasks as subtle as changing
one or more of the HTTP request
fields. They can also completely redi-
rect the requested URL to a new URL
or, more drastically, create the resulting
HTML (akin to a client-side CGI
script) without querying the Web at all.

When data returns from the Web in
response to a query, the proxy passes
the response header and the byte
stream to the response filters. Like their
request counterparts, response filters
optionally modify the information
according to their programming.
Response filters can either modify the
response header (that is, change the
response code or other header fields) or
filter the actual body of the response.
Coupled with this is an HTML parser
that enables response filters to process
at the HTML level rather than at the
character level. After all of the appro-
priate response filters have processed
the stream, it is passed to the browser
as the result of the original URL
request.

The use of the proxy in this capaci-
ty enables LiveAgent recording to be as
close as possible to normal browsing
for the user, and indifferentiable from
normal browsing to the Web site whose
pages are being browsed.

HTML POSITION DEFINITION
LANGUAGE
Whenever the user records clicking on a
link, the proxy must try to understand
the user’s action for future replay. The
same user action, for example, could be
understood as clicking on the fifth link
on the page, or the link with the word
“profile” in the link anchor text, or the
second link after the first image, or any
number of other generalities. Live-
Agent’s approach is to ask users to spec-

I N T E R N E T - B A S E D A G E N T S

36

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

ReqFilter2

RespFilter1

RespFilter2
HTML

response filter

ReqFilter1CmdHandler

YCmdHandler

XCmdHandler

Altered HTTP request

Web
AgentSoft

proxy

Stream regeneration

HTML
RespFilter1

HTML
RespFilter1HTML parser

Browser

HTML request

Altered HTTP response

Figure 1. The architecture for the AgentSoft proxy server.

Figure 2. Link specification box for selecting use.

ify their intentions using AgentSoft’s
HTML Position Definition Language
(HPD), as shown in Figure 2. HPD is
a simple, flexible expression syntax that
allows the specification of an arbitrary
HTML element on a page.

The HPD language is also used to
specify regions of the browsed pages
that should be included in the agent’s
report. Report items are extracted from
the browsed page based on two HPD
expressions, one for the start of the
region and one for the end. For exam-
ple, a developer recording an agent to
retrieve stock information could
include a company’s stock price in a
report by specifying the region starting
with “the <nobr> tag in a table cell
whose text starts with ‘Last price’” and
ending with “the first </nobr> tag after
the start.” An agent’s set of result items
are collected into a single report for the
agent user either as a simple list, by
insertion into an HTML template, or
through execution of developer-speci-
fied Java code.

The HPD language is also used to
specify conditional branching and
looping logic for an agent. Agents
regard each set of actions that take the
user away from the current page as a
task. Each task can have a conditional
associated with it to determine whether
or not the task should be performed.

Consider Web browsing as a tree,
with each Web page a node on the
tree. Each node could contain sub-
tasks, such as other links to follow or
forms to complete. These subtasks can
have associated conditions for execut-
ing the task. For example, “If it is
Sunday, follow the link to the cross-
word puzzle and retrieve it.” If it is not
Sunday, then the link is simply not fol-
lowed and another node is visited.
There can also be loops with tasks
(“Download stories while there are still
stories about the Internet”) and inter-
dependencies with conditions (“If the
Sunday puzzle was downloaded, then
download the sports section,
too”).These conditions are specified
using HPD expressions.

In short, the HPD language pro-
vides a mechanism for user specifica-
tion of an agent’s conditions, actions,
and results. The language can also be
used programmatically by Java devel-
opers extending the capabilities of a
LiveAgent. In this way the language
enables agent developers at any stage
to refer to HTML content in a stan-
dard, clean, and efficient manner.

THE MASTERAGENT TOOL
MasterAgent is a developer’s tool that
uses a set of mini-agents (actual
LiveAgents) to collect information in
parallel (Figure 3) , and then merges
the information into a single table for
reporting to the user. MasterAgent pro-
vides a framework for running multi-
ple, parallel agents from a single point
of entry. Additionally, it allows the
developer to insert value-added Java
classes for more intelligent filtering of
results.

This tool is particularly useful in
applications that require collating sim-
ilar information from a variety of
sources. For example, a client planning
a business trip wants to compare data
from five different airlines the client

frequently uses for a particular route.
Specifically, the client wants to com-
pare prices, stop-over information, and
departure times from all five airlines.
This scenario requires an agent with
more intelligence, such as being able to
compare alternatives rather than sim-
ply report them. It must be able to
handle the specific question “Which
choice is best for me?”

To define a MasterAgent, the devel-
oper provides an input form, a set of
mini-agents, a description of an output
table (including the set of fields and
their types), and various control fields.
MasterAgent prompts the user for the
variables needed by all of the mini-
agents (such as departure and arrival
destinations), and then launches the
mini-agents in parallel.

For each mini-agent, the developer
provides a class that maps input from
the MasterAgent to the specific mini-
agent, and an output mapper mecha-
nism that takes output data from each
mini-agent and projects it to the rows
of the output report table. These
input/output wrappers adapt the stan-
dard LiveAgents for use in the Master-
Agent.

A U T O M A T I N G T H E I N T E R N E T

37

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

Figure 3. MasterAgent running three agents in parallel.

.

As the agents report their data,
MasterAgent merges the similar, tabu-
lar-oriented data into a single report
table. This resulting merged report is
far more friendly and usable than the
five individual reports from the five
individual mini-agents. More impor-
tantly, the developer can write table-
processing filters in Java to arrange the
output table into the desired format for
the user. Through these table filters
developers can add custom intelligence
to their agents.

By default, the MasterAgent tool
provides routine sorting/merging capa-
bilities. The MasterAgent developer
needs only to insert the value-added
sorting or marking criteria to create a
more complete, intelligent agent.

LOOKING TO THE FUTURE
To date, AgentSoft has emphasized
four target functions in the develop-
ment of LiveAgent:

■ the easy record and replay of agents,
■ the definition and integration of

the HPD language,
■ the ability of agents to include

branches and loops, and
■ the hooks for easy and focused

development of Java code that inte-
grates seamlessly into LiveAgents.

As the Web grows, the amount of
available information valuable to a
wide variety of users increases.
Achieving the most benefit from this
information requires making it easily
accessible, on demand, to users of vary-
ing technical backgrounds, and inte-
grating it into user-centric reports.
AgentSoft’s LiveAgent is a development
toolkit that makes this possible, and we
expect it to grow in power as the Web
continues to develop.

The primary ongoing research
involves better integrating LiveAgents
with other applications and developing
agents that can reason about the infor-
mation a user seeks and find Web sites
where that information is available. ■

ACKNOWLEDGMENTS
Thanks to Jeff Rosenschein and Joe Weisblatt for

their perspectives on LiveAgent technology and

their assistance in writing this article, to Deborah

Weisblatt for contributions to the article, and to

the whole LiveAgent team for making the prod-

uct a reality.

Bruce Krulwich is a senior research scientist at

AgentSoft Ltd., where he directs the

Advanced Technology Group. Prior to

joining AgentSoft he was a research sci-

entist at Andersen Consulting’s Center

for Strategic Technology Research,

where he was the principal investigator

for the intelligent agents project. He

received his PhD in artificial intelligence

from the Institute for the Learning

Sciences at Northwestern University.

Readers can contact Krulwich at AgentSoft Ltd.,

38 Pierre Koenig Street, Jerusalem, Israel, or by

e-mail at brucek@agentsoft.com. More informa-

tion about AgentSoft is available at http://www.

agentsoft.com.

I N T E R N E T - B A S E D A G E N T S

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

