JEdit 3.2 User’s Guide

JEdit 3.2 User’s Guide
Copyright © 1998, 2001 by Slava Pestov
Copyright © 2001 by John Gellene

Legal Notice

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
“Invariant Sections”, “Front-Cover Texts” or “Back-Cover Texts”, each as defined in the license. A copy of the
license can be found in the fi@OPYING.DOC.txt included with jEdit.

Table of Contents

U 0 | N e
(RS = T T T I = || S 1
I O {0 1Y, = 11T i L= 1
2. Platform-Tndependent TNSTTUCTIDNS.......cccververiereerie e nie e see e 1
3. Starting [EAITON WINAOWS.ccovereeeereenieeeesieeee e see e 2
L. 4. ComMMAaNd LiNE USAGE........ceerueruerieriesierieriessesiessessessessessessessessessessessenns 3
7 AdItT B S ettt ettt ettt e e e e eeaeaeatatataraeesasasaeatatatatateta e e et ra e e e rrr e e et raraan G
R R T 1 1=T 5 =3P 18
D2 NIBWUS. ..ottt ettt sttt e bt st e b et e bt et e sbe et e s et e b e sae et e eneenreenee e 1K)
22T WINAOW DOCKINIG. ... veveverierieniesiesiesie sttt 7
A W A T=0S F= T TSN = - | SRS (W
G T N AT =T Y AN = - OSSR 8
24 CommMand REPETTINN.ccouerieierieriereesieeee e 9
BoWOTKING WITN FITEE. ... veveeeiesie sttt sttt 20
B CrealiNng NEW FlBS......cccveieieeieeiesieeeese et ae e see e s sne e 20
I O o T=] 1T To I 11 20
B3 SaAVING FIIBS....eeiieeeee et 20
B3I Autosave and CraSh RECOVELY......ccuuverrereeriereerieeeesieesnesieennens 21
B3 Z BACKUDS. ...c.veiveeeeeneenieeiesieeiesieeeesaeeseesseestesneesseeseesseensesseensesneensens 21
B LiNE SEPATATGIS . cueeuvereeeererressesressessessessessessessessessessesseasessessessesseenesseens 22
B5. CharaCler ENCOUIMUS . .ccveereeereesieeseeeseesieessesssseesseesseessessseessesssessssesnne 22
B5. 1. Commonly USEA ENCOUIMGS. .. .ceveevereerrereesiereesseeeesseesnesseennens 23
B.6. TE FIlE SYSTEM BIOWSEL ... cccveeveeieeiesieeeesreeeesseeseesseeseesseessesneesseseesns 24
IR =] (O F= 1o [T L 2

3 8 Milfi-Threaded 170
B9, PIINTNG FITES ...cicieiiiiii ettt e s e s sine e nne e nnnee e i
B-10. Closing Files and EXITING JEHIL.......cccvveeereee e 21
/ 0 0 L T 7
4 N Y (Y7 [T o LI AT =T =] ST 2C
B2 SEIECHNG TEKL...cueiiteeeieieeee ettt 2C
2T Rectanqular SEIECTIQN.ueeiiiceie e e e ereee e sreee s e saeee e 29
4322 Y/ (V] L1 0] (ST =] [T 1o) o IR 30
g3 TnSerting and DEIETNG TEXE......coveieriereee e 31
749 50 B TaTo (o - TaTo I 2 Z=T o J R 32

6. WOTKING WITN LINEIS. .. eveeveereesieeere e e B3
A7 WOTKING WITN ParagraiS.......ccceeerereerienieesieeie s sie e siesee e sesseesen e 37
4.8 3 [PPSR 37
A9, TTaNSTEIMING TEXL....eeieereereesiesie sttt 35

I I N O T o3 @] o |V 35
B.9.2.The SYSTEM CHPDOAI........cceeierieeiieneesieeee e 35
B.9.3-General ReQiSTEr COMMANAS......cccereeriereeriereeseeee e 36

A TO TVIATKETIS. ...ttt bbb sbe b bbb be s e s e 37

4 S =Y- Vo] 1= Vo [=T 0] Vot S 39
BIT.T. SearChiNg FOT TeXE....ocoiiiiieeie e eee s 39

BTT. 2. REPIACING TEXL...coiuieiiiieiesieeie et 3°

4 R 1Y O T=T S TS U o S Al

4 Y [V) (=3 | (RS == T] o 1O a1

A I Y N AT IS Y=Y T ol A = 7= SO a1

B EdITING SOUMCE CTOUE.... ..ottt a3
SV Yo [T 1V oY [= = USROS PR TPS a3

SV I IV, [0 Yo [=30S =) [=Tou 170 o SRS a3

L.Z SYNTaX HIGNNMGATING. oo a3

SYVZI Y o) 0T =17 =i [0 Ta LS YU a4

B 7 T PoSifioNal PATAMETRLS.......cooeeiieiieesieesee e a4

5.3 BraCKET MIAICIIMIG.cuveiveeeeeeeerieeeesieeeesieeeesseeeesreeseesseeseesneesseeneessesneenns 5
5.4, Tabbing and TNAENTATIAN.ceoveeeereeeereeiesieeie e e a5

ST S ST i =T L= YRR 48

B4 7 AUTOMATCTAAENL.......cceieiiiicieee e az

5.5, CommeNntiNg OUT COME........ccervriereeiereeieseeee e see e seesee e eeesseeee e RS

5.0 T i%s

S ST R\ F= T 0T/ PRSPPI 50

B. CUSTOMIZING JEQIL.....eiiieeeiiei ettt nna e sne e e b1
6.1. The Buffer OplioNS DIalog BDX....cocvecvereereereeieseeseeseeseeseesseseesseeseenns b1
SOV =V (=] o M L= [d (0] 0= 1] =2 b1
6-3-The GIobal OptioNS Dialog BlOX......cccuerveerierrerreereereeseesieseeseesesssesseeses 53
6.4 The [EAIT SETINGS DITECTGNY. ... veeueeveeeerreeeesieeee e seesieeseeseesseseeseeeee e 9K]
[7-TUSING IVIACTOS e veeuvesreeneeaseeseeaseessesseessesseesseesessseesesssesssessesssssseessesseesseseessensensses 58
[[-L.RECOTAING IVTACTDIS. .ecueeiveeeesreeeeeseesieeseesseeseesseessesseessesseessessesssesnsessessenns 58
[[Z RUNNMING IVTACTDS ... cveeueereeeeesieesiesseesieseesseeeesseeeesseeseesseessessesssesnssssesnsesns 50
[7-3 HOW [EJIT OTGANIZES IVIACTIOS ... eeveeueereeueesreeeesieeseesieeseesaessseseessesee e 5C

B-Tnstalling and USING PIUGINS.ccveeeereeeerieeeeseeeseesreeseesseessesseessesseessssssesssseesees 624

B.L. TNE PIUGIN IVIANAGET.cveveeereeeeseesiesieseesiesieseesiessesie e s sse e ssesaesseens 62
SV [1SS = [T T0 T d [VT0 L SR 62
B3 UPAATING PIUGIMS ...cvveeveeireeiieecreeireesreeseesereesreesseessreesseessessnsesseessessanesnns 63

A KEYDOATA SNOTICULScveeireeieeiteecteere et esre et e sreesae e e e sreesreesnneesreesanesnneeseens 64
S I TS0 YW 117 Y7 Eo T« [P 1
o HISTOTY TEXT FICIUS. .o cveeteeceeete ettt ettt e et e st e sreesbeesreesnreeebeesreesnneenreens 2
D GIOD PATTEITIS.ccoveeiteeiiee et et steesteseteesteesaeesbeesseesaeesaseesseesaessnseessessaeesnsennsenns 73
E. REQUIAT EXPIESSIONS. c.eeveeiteeteesteeeteeireesteessresseesseesseessessseesssssssesssesssssssessseens 3
F-MacroS TNCIUded WITA JEQIL......cceeieeeieceeee ettt st s ene e 78
F I File ManagEmMeENT IVTACKOS.........ceeeeiueeereeireecreesseeereesseesseesseeseessessnnesnns 78
o =4 1Y, - ToT o [OOSR 78

G S - 1V7= W O aTo [N, F= Tt 0 OO SR OSRROR 80
B S (=T T ol A LY F= Yot 0 1 g1
FZ. T The Find_OCCUITENCE MACTO GIDLP......coeereererrrereerreereeseaneens 82

F.5. MacroS TOr LISTING PTOPETTIES.....c.ccoueeveeireecteeeteeereeetee st ereesreesree e 84
EB6 MiSCellaneOUS IVIACTQS.ccveeveeereeireeereeiseesseesssesseesseessesssessseessessasesnns RZ

[o [M TV o] A T=T i O T AT TR [0 £ 84
... 88
RSy T (Lo =T | USSR 84

G 3 The Confext MEAU HANALEL..........ccccecvveeireeciee e 89

4. Uninstalling JEdiT and JEJITCAUNCHEL..........ccooeeeeiee e 0(

G.5. The [EdITCauNCREr TNTEMTACE.cveieeeie ettt 07

(G 6. SCrIPING EXAMPIBS ... oiiiieiiecrieiree et eereesreessreereesseesseesreesseessessanesnne Y.
G 7 LEOAIINOTICE. .. .coveeiteeeteeireecee ettt ettt sre e st e e be e ebeesae e sreebeesaeesaneenns 97

47 The WHITESPATE RUIE. ... mm
SO I N AT=BY=/- W = | o]
U4 TRE EOL_SPANTRUIE.oooooeeeeeeeeeeeeeeeeeeeseeeseeeeeeeeeeeeeeeeeeeeeeeee 07
945 The MARK_PREVIOUS RUIE.oovvooeeeeeeeeeeeeeeeeenesessssssssssnn 03
p.4.0. 1he MARK FOLLOWING RUIE........ccooeviiiiiiiiiiceiens 103

B2 7 TRESEQ RUIE........ce e 104

B4 8 The KEYWORDS RUIE.......cccccoiieiieeieectee et see e o4

BT, TOKEN TYPBS...cuveivieiteeciieeieesteesieesteeteesreesaesreesreesressneeereenneens 105

[0, TNSTAlNG EQITIVIOUBS.eeeceeeciee et cree s re e e srre e s sae e e sreeereeesnneeens L7
ITTVVTITING IVTACTOS | .eeuveeveeveeseesieeseesseeeesseessesseesesseessesseessesssesssssessssssssssesssssssssessessenns 103
LI TNIroducing BEANSNELL.......coieeeecee e 109
[CI.T.SIiNQIE EXECUTION MACHOS.c.vveeereeeeiieeereeeeireeereeesaseeereeesnseesreeessneas 109

[LZ. A TFEW SIMPIE TVIACTDS. ... eeeeeeeeiieresieeesieeesieeessieessssessseeesssesssseessssessnseessnsenans L1
2.1, The Mandatory FIFSTEXAMLE........ccceiveeeiieeiee e I11
2.2 Helpful MethodsS in The MAcCrOS CIRSS......cccoveeveerveeiee e cee e 13
2.3 Now For SOmMething USEfUL.......cceeeiieeceeeeee e, 16

[[3 A DIalOg-BaSEU IVIACTD......cccveeerieeeieeeieeesteeecreeesreesereeesareessreeesareeenreeesnneeens 20
G 30 I O LY =00 A T= W01V, = T o O UPRRURRS 120
3.2, LiSTING OF TNE IMTACKD.veeiveeeeee e eteesiee e et stee s ere e reeeeeereennee s 20
33 ANAlYSIS OT TNE MACKQ.....ccviiiiecieeiiesee et rz3
L3371 TMPOM STATEMENLS......ccccieeeceeecee e e rz3

[3.3.2. Creat€ e DialRg.......cceereerrereerirreerreseesseseesseeseessesseesseeessees 23

reafe The TEXTFIEIAS. ...t 125

reate TNE BUITONS. .. .cveiie e ccieeee e e e eeccireeee e e e e eesneneeee e e e e esanneees

[[3.3.5. ReqiSter the ACTON LISTEMELS.....ccoveeeiee e ecreeecree e e rzZ6

.3.6. Make the Dialog VISIGI..........ccovveeveneeeceeseeec e 27

337 The ACTION TISTEMIEL......ccceeiieeceeecreeereesteeceeere e e sreesneenreenneens 27
[3.3.8. GEeTTNE USErS TNPUL.......ceeeiveeciieerecieectee et see e e 28

[[3-3.9. CalljEdit Methods 1o Manipulate TEXL........ccccevveeeiveeeneenne 29
3310 The MAin ROUIINE......cccveecreeereeeereeecreeesreeesreeesseeesseeessneens 30
[[Z4.Macro TIPS and TECANIGUES. ...c.eeieeereereeeteecee e esreesreeesreesreesreesreenreesaeeenees 31
M4 T, Getling TNPUTTOT @ VTGO, ...vveeveereeeieeereeteesreeseeereesseesreesneenneesneeas 31

L. T. Getting a Single Line 0 | USROS 31

4. 1.2 Getting MUltiple Data TeMS.......cecvveeeiee e eceeecree e 32

L4 T3 Selecting TNPUT FromM @ LUSL......cceeieevee e 35
L4.T.4.UsSing a Single KEYPress as IMPUL........ccceeeeeceeiieeciieecieesneans 36

(I S - T (U O S Yol [0 €TSS PRSP r33
4.3, Running Scripts from the Command [LiNe..........cccoeeeveeveeeiveecveennenne 39
4.4 Advanced BeanShell TECNNIGUES.cceeireeieerieeereesreecee e esree e 40
[Z4.4.T. BeanShell'S CONVENIENCE SYNIAX........ccceverererererieeeeenns 40

4472 Special BeEanShell KEYWOIAS.cocveecveeeeiee e 41

L4.4.5. Implementing Interfages

14.4. 4 Beanshell Commalt

M4.5. DEDUGTING IVIACTDS. ..ceuveeveereeareesreeseesseseessesesssesssssseessessesssesseessesseessens 43
L4551, TdeNtiTYiNg EXCEPTIONS. . ..cevverrereereereeseeseesseesseseesseseeseesessees 43
[4.5.2.Using the Activity Log as a Iracing Tpo0k......c.cccvvevvenceene. 43

IV WWTITING PIUGINS . vttt sttt sneeneas 46
[[5. TNTroducing The PTUGIN APL.....ooieeeeeeeee e a7
(S| =0 (1RSI0 d (VT T i 0] SO O USTRN 49

6. 1. T0AadING PIUGIMS. ...veiiiieieiiieesieeesiesesieeesiesesssesssesssssessseessssessseesssness 49
M6 T T The JARCIASSIOAHEL.cccovireireriisieeeseeesese e 29
[6. 1.2, STarting the PTUGIN......ccoeeieeeerieeeeseeseeseeeeeseeeee e ses e enessees 51

[[6.2. The USer INterface Of @ PIUGIN........ccoceierirreeiie e 51

2.1, The ROIe 0T The VIEW ODJ@CL........cvvvveiiiieeriee e 51

.Z2.Z. The DockableWindowManager and the EditBus................ r52

.2.3. Message Routing and Dockable Window Creation........... rs3

A N L= = [d [T LAY 5 A SRS 55
L7 T PIUGIN COME CIAaSSES....cueeiieiieiieeesieeee sttt sse e nae s 55
PSS = [d [T a5

ass [0 1 PR RURURURUSORON 1Y

17 7 Interface DOCKADIEWIRADW.ccoeeeeereeieeereeie et sre e

7.3 Plugin OplioN PAne CTIASSES.......cccoereerierierieeeesieesee e siee e 59

.3.1. ClasSS ADSTraCtOPIIONPANE.cccvevveeeiie e 159
[[7.3.2. ClaSS OPUONGTOMP. «.vcververrerierrerresiessessessessessessessessesessesesens 160

7.4 OTher PIUQIN RESOUTEES.ceiueeeerieeeesieeeesieeeesseeseesseessesseeseesseeseeas 160
L7471 The ACHON CalalDQ.....eereereerieeierieriesee e el
L7472 PIUQIN PTOPETTIES. . .ccvveeiteeesieeeeieeesiieeesieeesieessieesssee e s snee e 162
[L7.4.3. Plugin DOCUMENTATION.cveieeeeeereeneeeeeneeeeeeseeeeeseeseeseeeeesees 164

(RS T[T To T= N d [V 1 OO USTRSN 166
: uickNotepad: AN EXample PIUGLN........ccooveriereerieneeseseeeseeins 166

8.2 WritiNg @ PIUIN COIE TIgSS......ecovertereerieeiesieeiesieesee e seeseeseennens 67
[[8.2.1. CNOO0SING @ BASE CTIASS......ceceereereerieeieseeeesie e e seneee e 67
[8.Z2.Z. Tmplementing Base Class Methods.........cccooevervriererenee. 163

16.7.a5.7. Action 1 abels and Menu Items

I8.3. Tmplementing a DocKable WINAOW CIass.........ccocevvieeevversnieennenn. 73

SINg @ SINGIE WINAOW CIASS.....ccveviieeeriee e 73

16.5.7. AN ACtlon Inferiace

Ightwelg ockable WIndow CIass...........ccceveiiiiennnne L7%

UJIN'S VISIBIE WINAGW.vveeviieiieee e 7%

[[8.4.T. ClassS QUICKNOTEAAM.........ccieeeeeereereeriee et sree e e nnens 7%

[[8.4.2. Class QUICKNOTEPAA TOOIBAL...........ccoeeierrreereesee e e 180

8.5, Designing an OPTiON PANE.........ccoiveiieiieeiieesiee e cieesreesesseesnneesseeas g1

[8.6. Creating OTNer PIUQIN RESOUKCES........cceevveereesieeereesteesessnsensesssenns 183

OMPING TNE PIUGIN.....c.veeiveecte ettt 185

[V =0 [T AN e R S (=T L= PR 189
T9_BeanshellComman

9. T OUtPUT COMIMANIAS.....cveeeeiee ettt eree e sare e e e e eare e s ree e enneas 189

9.2, File Management COMMANAS.......ccccueireeireeieeieeereesreesreeseesnreesneens 189

[9.3. ComponeNt COMMAMAS......cccceiririreeiieiieeireeseeseeereesreesreeseeenreesneens 190

M9.4. Resource Management COMMANAS.......cccccvevieeriieeieeseesieeeseeesieens T90

[[9.5.Script EXECUTION COMMAMAS.......eeeiieeerieeitee e e e sree e 91

[9.6. BeanShell Object Management CommRAnds..........ccccevveevvveeeveennenne 192

T9. 7 OTREr COMMANIAS.veeeeeiieeeeiiieeeeeireeeeeireeeeeeareeeeensreeesesseeeessseeesns o3

|2 LT AT = I =0 [O ET [S 94

24 O R I O F= YT | = [USSR 94

24 O I O F= TSI VA 1= [PSS UPRRUPRURRO 97

0.3, ClaSS RETISIBIScecviciieitie ettt stee e ettt s e eneeneennee 199

204 TnTerface REQISTEIS. RETIBLEL......cciiveiieeieeireesee et 99

0.5, Class DOCKableWINAOWMANAGEL.........ceeeeveeeireeeereeereeeereeeeveeeenneas 199

PU0.6.2. T Adding and removing SEIECToNS........ccoeeeveeecveeennen. 202
P0.6.2.Z. Getiting and Seftting Selected|text.........ccccvveeevveeeneen. 203
P06 7 3 Ofher selection METADAScoeeeeeeeeeeeeeeeeeeeeeeeeeeee e
706 3 Other methodS N JEAITTEXTALEA........ccvveeeecreeeeeireeeeeireeeenns
PU.6.3. T Edifing careTmetnods.........cccceeeveeeeveecciee e, 205
P0.6.3.Z. Methods for scrolling the text grea........ccccceeeeevveeneen. 206
20.6.3.3. Methods for calculating editing posifians................. 2o7
P0.6.3.4. Other methods Tor retrieving teXt.........ccccevevveeireennnnne 2o7
P0.6.3.5. Methods Tor deleling TeXt.....cceeeveeevieeccee e, 207

£0.6.3.6. Methods for modifying t@Xt........cccccvcviiiiiiniiiiininnns 200

P0.6.3.7. Methods for creating COMME@Nts..........cccceveeevereeennnne 200

20.6.3.8. Methods for getting buffer Statistics..............ccoeee.e. 209

O A O F= 1S3 = U 1] SRR
PO Z T File afffibufe MEeTNAAS.cooeveeeenee e
R0.7.Z Editing attribute Metngds..........c.ccvverererienineneseneseseseeins 210
P0.7.3 Editing aclion METNGAS.......ccoceerereerenieneseesieeeesieseeseesee e 211
R0.7.3. 1. General editing Methods........cccovereererinnenieseeene 211

PO 737 Marker METNOAS.........cceervereenereenienee e P12
R0.7.3.3. FOIdiNg METNOMS.ccveveririirierenereseseseeeses e K13
R0.7.3.4. Virtual and physical iN€ INAIGeS..........cccocereererreenenne 214

24 O S O F= T3S Y = ol € 1SRRI P15
9. Class SEarCNANAREPIACE.cooieiiiieciie e 215
PO TO CIASS GUITTNIIBS.cveeveesieeeeeereesiee e r19
PO TT CIaSS TEXTUTIITIRS.veeveeeeeeeeneeeeesieeseeseeeessseeeesseeneesseessesseessesseenenns 719
POTZ CIaSS VISCUTINTIRS.ccueeveeeeesieeeesieseesiesessieeseesseesee e essesseeseesneeneeas P20
POT3CIASSBeanShell.. ... 71
PT EATBUSTIASSES.....cctieiteeiee e eree e sse e s e neesseesmeeseesneesneesnnas P73
A O O O F= 1= =T 11 =11 PSS P23
RI.Z. Tnterface EBTOMPONENL........ccveierieeierieeeesieeeeseeeseesreeseesseeseesneeneeas 2Z3
3. Class [SSTSTz [0 = RS 223
1.4 ClaSS BUTETUDAALE.cciveeeiieesiee et siee st 2723
2T 5 ClasS CreateDOCKADIEVWINAQW.covvereveeieesiee e siee e 275
ASS EQITOTEXITIMG. .. eeveeeeeeereesiee e s 2725

/. ClasSS EAIOTEXITREQUESLEM.covereeriereesieeie e 2726
PT8 ClaSS EAITOISTATE.......cocerereerererienie e P76
9. ClaSS EdITPANCUPUALE......cooieeieeieeeeeecee e e e ZZ%
PT.T0. ClasS MacrOSCTRANEM.........cccveeererieerieeeesieeiesiee e 226
1. ClasS ProperlieSTRANgeM.cccovereerieeie e 2Z7
RT.1Z. Class SearchSetlingSCTRanged.........ccocvvvverenenenenieneseseeeeenes 2Z7
.13. Class [ST0 F: XU 227
2 N I O P T Y/ [T O 0T F- | =SSR 2z7

|. Using JEdit

This part of the user’s guide covers jEdit’s text editing commands, along with basic
usage of macros and plugins.

This part of the user’s guide was written by Slava Pestava@jedit.org ~ >.

Chapter 1. Starting jEdit

1.1. Conventions

Several conventions are used throughout the manual. They will be described here.

When a menu item selection is being described, the top level menu is listed first,
followed by successive levels of submenus, finally followed by the menu item itself. All
menu components are separated by greater-than symbols (“>"). For example,
View>Scrolling>Scroll to Current Line refers to theScroll to Current Line command
contained in th&crolling submenu of th&iew menu.

As with many other applications, menu items that end with ellipsis (...) display dialog
boxes or windows when invoked.

Many jEdit commands can be also be invoked using keystrokes. This speeds up editing
by letting you keep your hands on the keyboard. Not all commands with keyboard
shortcuts are accessible with one key stroke; for example, the keyboard shortcut for
Scroll to Current Line is Control-E Control-J. That is, you must first pressontrol -E,
followed by Control-J.

MacOS

When running on MacOS, the primary modifier keydemmand, notControl. If
you are a Mac user, mentally substit@emmand whenever you se€ontrol in
this guide.

1.2. Platform-Independent Instructions

Exactly how jEdit is started depends on the operating system; on Unix systems, usually

you would run the “jedit” command at the command line, or select jEdit from a menu; on

Windows, you might use the jEditLauncher package, which is documenfed in Section
13

If JEdit is started while another copy is already running, control is transferred to the
running copy, and a second instance is not loaded. This saves time and memory if jEdit is

11

Chapter 1. Starting jEdit

12

started multiple times. Communication between instances of jEdit is implemented using
TCP/IP sockets; the initial instance is known assbever and subsequent invocations
areclients

If the -background command line switch is specified, jEdit will continue running and
waiting for client requests even after all editor windows are closed. The advantage of
background mode is that you can open and close jEdit any number of times, only having
to wait for it to start the first time. The downside of background mode is that jEdit will
continue to consume memory when no windows are open.

For more information about command line switches that control the server feature, see
Seciion TH.

Unlike other applications, jEdit automatically loads any files that were open last time in
was used, so you can get back to work immediately, without having to find the files you
are working on first. This feature can be disabled inltbeding and Saving pane of

the Utilities>Global Options dialog box; se¢ Section 6.3.

The edit server and security

Not only does the server pick a random TCP port number on startup, it also

requires that clients provide authorization keya randomly-generated number
only accessable to processes running on the local machine. So not only will “pad
guys” have to guess a 64-bit integer, they will need to get it right on the first try;
the edit server shuts itself off upon receiving an invalid packet.

In environments that demand absolute security, the edit server can be disabled by
specifying thenoservercommand line switch.

1.3. Starting jEdit on Windows

On Windows, jEdit comes witfEditLauncher- an optional package of components that
make it easy to start jEdit, manage its command line settings, and launch files and macro
scripts.

The jEditLauncher package provides three shortcuts for running jEdit: one in the
desktop’sStart menu, a entry in the Programs menu, and a second shortcut on your
desktop. Any of these may be deleted or moved without affecting jEdit's operation. To

Chapter 1. Starting jEdit

launch jEdit, simply select one of these shortcuts as you would for any Windows
application.

The jEditLauncher package includes a utility for changing the command line parameters
that are stored with jEditLauncher and used everytime it runs jEdit. You can change the
Java interpreter used to launch jEdit, the amount of heap memory, the working directory
and other command line parameters. To make these changes Szl ¢eilit

Parameters from the jEdit group in the Programs menu, or fadit /p froma

command line that has jEdit’s installation directory in its search path. A dialog will
appear that allows you to change and save a new set of command line parameters.

The package also add menu items to the context or “right-click” menu displayed by the
Windows shell when you click on a file item in the desktop window, a Windows Explorer
window or a standard file selection dialog. The menu entries allow you to open selected
files in jEdIt, starting the aplication if necessary. It will also allow you to open all files in
a directory with a given extension with a single menu selection. If a BeanShell macro
script with a.bsh extension is selected, the menu includes the option of running that
script within jEdit. If you have the JDiff plugin installed with jEdit, you can also select
two files and have jEdit compare them in a side-by-side graphical display.

For a more detailed description of all features found in the jEditLauncher package, see
ADPP adix G.

1.4. Command Line Usage

On operating systems that support a command line, jEdit can be passed various
arguments to control its behavior.

When opening files from the command line, a line number or marker to position the caret
on can be specified like so:

$ jedit MyApplet.java +line:10
$ jedit thesis.tex +marker.c

A number of options can also be specified to control several obscure features. They are
listed in the following table.

If you are using jEditLauncher to start jEdit on Windows, only file names and marker
and line number specifications can be specified on the command line; other parameters
must be set as describedin"Section G.2.

13

Chapter 1. Starting jEdit

14

Option

Description

-background

Runs jEdit in background mode. In background mode, the
server will continue listening for client connections even aft
all views are closed. Sée Chapipr 1.

-norestore

jEdit will not attempt to restore previously open files on
startup. This feature can also be set permanently ihdlaeling
and Saving pane of the Utilities>Global Options dialog

box; see ﬁectlon G.q.

-run=script

Runs the specified BeanShell script. There can only be on

details.

-server

Stores the server port info in the file nanmsedver inside
the settings directory.

-serverfaame

Stores the server port info in the file nameaime. File
names for this parameter are relative to
the settings directory.

-noserver

not start one either. For information about the edit server, S
apter

-settingsir

nameddir, instead of the default
user.home/.jedit. dir will be created if it does
not exist. Has no effect when connecting to
another instance via the edit server.

-nosettings

Starts jEdit without loading user-specific settings. See Se

-nostartupscripts

Causes jEdit to not run any startup scripts. See Section 14
Has no effect when connecting to another instance via the
server.

-usage Shows a brief command line usage message without start
JEdit. This message is also shown if an invalid switch was
specified.

-version Shows the version number without starting jEdit.

edit
er

e of

these parameters on the command line.[See Sectign 14.3 for

Does not attempt to connect to a running edit server, and does

ee

Loads and saves the user-specific settings from the directory

tion

1.2.
edit

ng

Chapter 1. Starting jEd

Option

Description

Specifies the end of the command line switches. Further

it

parameters are treated as file names, even if they begin with a

dash. Can be used to open files whose names start with a
and so on.

15

dash,

Chapter 2. JEdit Basics

2.1. Buffers

Several files can be opened and edited at once. Each open file is referredotaffas a
The combo box above the text area selects the buffer to edit. Different emblems are
displayed next to buffer names in the list, depending the buffer’s state; a red disk is
shown for buffers with unsaved changes, a lock is shown for read-only buffers, and a
spark is shown for new buffers which don’t yet exist on disk.

In addition to the buffer combo box, various commands can also be used to select the
buffer to edit.

View>Go to Previous Buffer (keyboard shortcutControl-Page Up switches to the
previous buffer in the list.

View>Go to Next Buffer (keyboard shortcutControl-Page Dowr) switches to the next
buffer in the list.

View>Go to Recent Buffer (keyboard shortcutControl-‘) switches to the buffer that
was being edited prior to the current one.

2.2. Views

Each editor window is known aswew. It is possible to have multiple views open at
once, and each view can be split into multiple panes.

View>New View creates a new view.

View>Close View closes the current view. If only one view is open, closing it will exit
jEdit, unless background mode is on; §ee Chapter 1 for information about starting jEdit
in background mode.

View>Splitting>Split Horizontally (shortcut:Control-2) splits the view into two text
areas, above each other.

View>Splitting>Split Vertically (shortcut:Control-3) splits the view into two text
areas, next to each other.

16

Chapter 2. jEdit Basics

View>Splitting>Unsplit (shortcut:Control-1) removes all but the current text area from
the view.

When a view is split, editing commands operate on the text area that has keyboard focus.
To give a text area keyboard focus, click in it with the mouse, or use the following
commands.

View>Splitting>Go to Previous Text Area (shortcut:Alt-Page Up shifts keyboard
focus to the previous text area.

View>Splitting>Go to Next Text Area (shortcut:Alt -Page Down) shifts keyboard
focus to the next text area.

Clicking the text area with the right mouse button displays a popup menu. Both this
menu and the tool bar at the top of the view offer quick mouse-based access to
frequently-used commands. The contents of the tool bar and right-click menu can be
changed in théJtilities>Global Options dialog box.

2.2.1. Window Docking

The file system browser, HyperSearch results window, and many plugin windows can
optionally be docked into the view. This can be configured inDbeking pane of the
Utilities>Global Options dialog box; se¢ Section 6.3. Note that changes made in this
option pane will not take effect immediately; you must restart jEdit or open a new view
first.

When windows are docked into the view, the commands iViee/>Docking menu
(shortcutsControl-E 1, 2, 3, 4) can be used to show or hide the top, bottom, left and
right docking areas, respectively. Double-clicking on the borders of docking areas has
the same effect.

2.2.2. The Status Bar

A status barat the bottom of the view displays the following information, from left to
right:

« The line number containing the caret

« The column position of the caret, with the leftmost column being 1.

17

Chapter 2. jEdit Basics

If the line contains tabs, thide position (where a hard tab is counted as one
column) is shown first, followed by th&creenposition (where each tab counts for
the number of columns until the next tab stop).

- Prompts displayed by commands such as those dealing with registers and markers
(see[Section 4.9 arid Section 4.10)

« The current buffer’'s edit mode. Clicking this displays thidities>Buffer Options
dialog box. Se¢ Section 5.1 apd Section 6.1.

- The current buffer’s character encoding. Clicking this displaysitigies>Buffer
Options dialog box. Seé Section 3.5 ahd Section 6.1.

« If multiple selection is enabled, the texiulti is shown in black, otherwise it will be
grayed out. Clicking her or pressit@pntrol -\ turns multiple selection on and off.
SeeSeciion42.2.

- If overwrite mode is enabled, the texter is shown in black, otherwise it will be
grayed out. Clicking here or pressihgsert turns overwrite mode on and off. See
Seciion 473.

- If portions of the buffer are invisible due to folding, the téadd is shown in black,
otherwise it will be grayed out. Sée Section 5.6.

- If input/output operations are in progress, a small disk icon and progress bars for
each running operation are displayed. Clicking here will displayUtidies>I/O
Progress Monitor dialog box. Se¢ Section 3.8.

2.3. The Text Area

Text editing takes place in the text area. It behaves in a similar manner to many Windows
and MacOS editors; the few unique features will be described in this section.

The text area will automatically scroll up or down if the caret is moved closer than three
lines to the first or last visible line. This feature is caliddctric scrollingand can be
disabled in théfext Area pane of theltilities>Global Options dialog box; se€ Section

[63.

To aid in locating the caret, the current line is drawn with a different background color.
To make it clear which lines end with white space, end of line markers are drawn at the

18

Chapter 2. jEdit Basics

end of each line. Both these features can be disabled ifettteArea pane of the
Utilities>Global Options dialog box.

The strip on the left of the text area is calleduatter. The gutter displays marker and
register locations; it will also display line numbers if tieew>Line Numbers
(shortcut:Control-E Control-T) command is invoked.

2.4. Command Repetition

To repeat a command any number of times, invokiéties>Repeat Next Command
(shortcut:Control-Enter) and enter the desired repeat count, followed by the command
to repeat (either a keystroke or menu item selection). For exanm@tfol-Enter 1 4
Control-D” will delete 14 lines, and Control-Enter 8 # will insert “########” in the
buffer.

If you specify a repeat count greater than 20, a confirmation dialog box will be
displayed, asking if you really want to perform the action. This prevents you from
hanging jEdit by executing a command too many times.

19

Chapter 3. Working With Files

3.1. Creating New Files

File>New File (shortcut:Control-N) opens a new untitled buffer. When it is saved, a file
will be created on disk. Another way to create a new file is to specify a non-existent file
name when starting jEdit from your operating system’s command line.

3.2. Opening Files

File>Open File (shortcut:Control-O) displays a file selector dialog box and loads the
specified file into a new buffer. Multiple files can be opened at once by holding down
Control while clicking on them in the file system browser.

File>Insert File displays a file selector dialog box and inserts the specified file into the
current buffer.

TheFile>Current Directory menu lists all files in the current buffer’s directory.

TheFile>Recent Files menu lists recent files. When a recent file is opened, the caret is
automatically moved to its previous location in that file. The number of recent files to
remember can be changed and caret position saving can be disableGenbel pane

of the Utilities>Global Options dialog box; se¢ Section 6.3.

Files that you do not have write access to are opened in read-only mode, and editing will
not be permitted.

GZipped Files

JEdit supports transparent editing of GZipped files; files with.¢ae extension arg
automatically decompressed before loading, and compressed when saving.

3.3. Saving Files

Changed made to a buffer do not affect the file on disk until the buffeaved

20

Chapter 3. Working With Files

File>Save (shortcut:Control-S) saves the current buffer to disk.

File>Save All Buffers (shortcut:Control-E Control-S) saves all open buffers to disk,
asking for confirmation first.

File>Save As saves the buffer to a different specified file on disk. The buffer is then
renamed, and subsequent saves also save to the specified file.

File>Save a Copy As saves the buffer to a different specified file on disk, but doesn’t
rename the buffer, and doesn’t clear the “modified” flag.

3.3.1. Autosave and Crash Recovery

The autosave feature protects your work from computer crashes and such. Every 30
seconds, all buffers with unsaved changes are written out to their respective file names,
enclosed in hash (“#”) characters. For examptegram.c will be autosaved to

#program.c#

Saving a buffer using one of the commands in the previous section automatically deletes
the autosave file, so they will only ever be visible in the unlikely event of a jEdit (or
operating system) crash.

If an autosave file is found while a buffer is being loaded, jEdit will offer to recover the
autosaved data.

The autosave feature can be configured inlibading and Saving pane of the
Utilities>Global Options dialog box; se¢ Section 6.3.

3.3.2. Backups

The backup feature can be used to roll back to the previous version of a file after changes
were made. When a buffer is saved for the first time after being opened, its original
contents are “backed up” under a different file name.

The default behavior is to back up the original contents to the buffer’s file name suffixed
with a tilde (“~”). For examplepaper.tex will be backed up t@aper.tex~

The backup feature can also be configured to do any of the following:

« Save numbered backups, nanfi@shame ~number ~

« Add a prefix to the backed-up file name

21

Chapter 3. Working With Files

- Adds a suffix, other than “~”, to the backed-up file name

- Backups can optionally be saved in a specified backup directory, instead of the
directory of the original file. This can reduce clutter

The above features can be configured inltbading and Saving pane of the
Utilities>Global Options dialog box; se¢ Section 6.3.

3.4. Line Separators

The three major operating systems use different conventions to mark line endings in text
files. The MacOS uses Carriage-Return characterin(Java-speak) for that purpose.

Unix uses Newline characterns (). Windows uses bothr{n). jEdit can read and write

files in all three formats.

When loading a file, the line separator used within is automatically detected, and will be
used when saving a file back to disk. The line separator used when saving the current
buffer can be changed in théilities>Buffer Options dialog box; se¢ Section 6.1.

By default, new files are saved with your operating system’s native line separator. This
can be changed in tHevading and Saving pane of theJtilities>Global Options
dialog box; se¢ Section 6.3. Note that changing this setting has no effect on existing files.

3.5. Character Encodings

Internally, Java programs like jEdit store text as a stream of 16-bit numerical values, with
each value a character in the Unicode character set. Unicode is a standardized character
set that can represent characters in almost all human languages.

Unfortunately, most other computer programs use far less flexible methods of storing
text; therefore, if jEdit loaded and saved all files as raw Unicode, it would be useless.

To get around this, jEdit converts Unicode text to other character encodings and vice
versa when loading and saving files. jEdit can use any encoding supported by the Java
platform.

The default encoding, used to load and save files for which no other encoding is
specified, can be set in th®ading and Saving pane of thdJtilities>Global Options
dialog box; se€ Section 6.3. The setting is presented as an editable combo box; the

22

Chapter 3. Working With Files

combo box contains a few of the more frequently used encodings, but the Java platform
defines practically hundreds more you can use.

Unfortunately, there is no programmical way to obtain a list of all supported encodings,
and the set is constantly changing with each Java version. So to play it safe, jEdit has a
few pre-defined defaults, but allows you to use any other supported encoding, assuming
you know its name.

Unless you change the default encoding, jEdit will use your operating system’s native
encodingMacRomanon the MacOS¢Cp1252 on Windows, an@g859_1 on Unix.

TheFile>Open With Encoding lets you open a file with an encoding other than the
default. The menu contains a set of items, one for each common encoding, along with
System Default andjEdit Default commands. Invoking a menu item displays the usual
file dialog box, and opens the selected file with the chosen encoding.

The Open With Other Encoding command in the same menu lets you enter an
arbitriary encoding name, assuming it is supported by your Java implementation.

Once afile has been opened, the encoding to use when saving it can be set in the
Utilities>Buffer Options dialog box.

The current buffer’s encoding is shown in the status bar. If a file is opened without an
explicit encoding specified, jEdit will use the encoding last used when working with that
file, if the file is in the recent file list. Otherwise, the default encoding will be used.

3.5.1. Commonly Used Encodings

The most frequently-used character encoding is ASCII, or “American Standard Code for
Information Interchange”. ASCII encodes Latin letters used in English, in addition to
numbers and a range of punctuation characters. The ASCII character set consists of 127
characters only, and it is unsuitable for anything but English text (and other file types
which only use English characters, like most program source). jEdit will load and save
files as 7-bit ASCII if theascll encoding is used.

Because ASCII is unsuitable for international use, most operating systems use an 8-bit
extension of ASCII, with the first 127 characters remaining the same, and the rest used to
encode accents, ulmauts, and various less frequently used typographical marks.
Unfortunately, the three major operating systems all extend ASCII in a different way.

Files written by Macintosh programs can be read usingvtii®Romanencoding;

23

Chapter 3. Working With Files

24

Windows text files are usually stored @s1252. In the Unix world, thesgs9_1
(otherwise known as Latinl) character encoding has found widespread usage.

Windows users are accustomized to dealing with files in a wide range of character sets,
known ascode pageslava supports a large number of code pages; the encoding name
consists of the text “Cp”, followed by a number.

Raw Unicode files are quite rare, but can be read and written witbirtkede encoding.

One reason raw Unicode has not found widespread usage for storing files on disk is that
each character takes up 16 bits. Most other character sets devote 8 bits per character,
which saves space. ThigFg encoding encodes frequently-used Unicode characters as 8
bits, with less-frequent ones stretching up to 24 bits. This saves space but allows the full
range of Unicode characters to be represented.

Many common cross-platform international character sets are suppeaisdR for
Russian textBigs andGBKfor Chinese, andJis for Japanese.

Java even supports a few downright obscure encodings, sucheBabec character
encoding used on IBM mainframes.

3.6. The File System Browser

Utilities>File System Browser displays a file system browser. By default, the file
system browser is shown in a floating window; it can be set to dock into the view in the
Docking pane of theJtilities>Global Options dialog box; se¢ Section Z.2.1.

The directory to browse is specified in tRath text field. A subset of the current
directory to display can be specified in the form of a glob pattern id-ther text field.
SegAppendix D for information about glob patterns. Both text fields remember
previously entered strings; see Appendjx C for details.

You can view an entire directory hierarchy at once by clicking the expander controls next
to directories in the tree.

The toolbar buttons perform the following actions, from left to right:

« Up - displays the current directory’s parent in the file system view. The popup arrow
next to this button displays a menu listing all the parent directories of the current
directory, up to the filesystem root

Chapter 3. Working With Files

- Reload - reloads the file list

« Local Drives - displays all local drives. On Windows, this will be a list of drive
letters; on Unix, the list will only contain one entry, the root directory

- Home Directory - displays your home directory in the file system browser

- Parent Directory of Current Buffer - displays the directory containing the current
buffer in the file system browser

Clicking theMore button displays a menu containing several less frequently-used
commands:

- Show Hidden Files - a check box menu item that controls if hidden files will be
shown in the file list

- New Directory - creates a new directory, prompting for the desired name

- Search in Directory - displays the search and replace dialog box for searching in
all files in the current directory that match the current filename filter[See Section
[4711 for information about the search and replace feature

- Add to Favorites - adds the currently selected (or the currently displayed, if there
is hothing selected) directory to the favorites list

« Go to Favorites - displays the favorites list. To remove a directory from the list,
right-click on it and seledDelete from the resulting popup menu

Right-clicking on a file in the file system browser displays a popup menu, containing
commands for manipulating that file, in addition to all the commands fronviibre

menu. If the file is already open, the popup will have commands to display it or close it.
Unopened file popups have commands for opening, opening with a different encoding,
deleting and renaming. Note that attempting to delete a directory containing files will
give an error; only empty directories may be deleted.

The file system browser can be navigated from the keyboard:

- Enter - opens the currently selected file or directory

Left - goes to the current directory’s parent

Up - selects previous file in list

Down - selects next file in list

25

Chapter 3. Working With Files

26

« Typing the first few characters of a file’'s name will select that file

The file system view must have keyboard focus for these keys to work. dpgke File
dialog box, it is given keyboard focus by default. In other instances, it can be given
keyboard focus by clicking with the mouse.

The file system browser can be customized inkhe System Browser pane of the
Utilities>Global Options dialog box. The following settings can be changed:

- The directory to display initially (either the directory containing the current buffer,
your home directory, the favorites list, or the most recently visited directory)

- Ificons should be shown (disabling icons can save a lot of screen space)
- If hidden files should be shown by default

- If the file list should be sorted

- If the sort should be case-insensitive

- Iffiles are directories should be sorted together, as opposed to directories always
being at the top of the list

- If double-clicking an open file should close it

- If the file name filter inOpen andSave dialog boxes should be based on the
current buffer's name

3.7. Reloading Files

If an open buffer is modified on disk by another application, a warning dialog box is
displayed, offering to either continue editing (and lose changes made by the other
application) or reload the buffer from disk (and lose any usaved changes). This feature
can be disabled in théeneral pane of theJtilities>Global Options dialog box; see
Seciion 613.

File>Reload can be used to discard unsaved changes and reload the current buffer from
disk at any other time; a confirmation dialog box will be displayed first if the buffer has
unsaved changes.

File>Reload All Buffers discards unsaved changes in all open buffers and reload them
from disk, asking for confirmation first.

Chapter 3. Working With Files

3.8. Multi-Threaded 1/0O

To improve responsiveness and perceived performance, jEdit executes all input/output
operations asynchronously. While 1/O is in progress, a small disk icon and progress
meters for each running operation are shown in the status batJflliiees>I/O

Progress Monitor command displays a window with more detailed status information.
Requests can also be aborted in this window. Note that aborting a buffer save can result
in data loss.

By default, four I/O threads are created, which means that up to four buffers can be
loaded or saved simultaneously. The number of threads can be changed aatlireg
and Saving pane of thdJtilities>Global Options dialog box; se¢ Section 6.3. Setting
the number to zero disables multi-threaded 1/0 completely; doing this is not
recommended.

3.9. Printing Files

File>Print (shortcut:Control -P) will print the current buffer. By default, the printed
output will have syntax highlighting, and each page will have a header with the file
name, and a footer with the current date/time and page number. The appearance of
printed output can be customized in tAenting pane of thdJtilities>Global Options
dialog box. The following settings can be changed:

« The font to use when printing

- If a header with the file name should be printed on each page

- If a footer with the page number and current date should be printed on each page
« If line numbers should be printed

- If the output should be styled according to the current mode’s syntax highlighting
rules

- If the output should be colored according to the current mode’s syntax highlighting
rules (might look bad on grayscale printers)

- The page margins

27

Chapter 3. Working With Files

28

3.10. Closing Files and Exiting jEdit

File>Close Buffer (shortcut:Control-W) closes the current buffer. If it has unsaved
changes, jEdit will ask if they should be saved first.

File>Close All Buffers (shortcut:Control-E Control-W) closes all buffers. If any

buffers have unsaved changes, they will be listed in a dialog box where they can be saved
or discarded. In the dialog box, multiple buffers to operate on at once can be selected by
clicking on them in the list while holding dow@ontrol .

File>Exit (shortcut:Control-Q) will completely exit jEdit.

Chapter 4. Editing Text

4.1. Moving The Caret

The most direct way to move the caret is to click the mouse at the desired location in the
text area. It can also be moved using the keyboard.

ThelLeft, Right, Up andDown keys move the caret in the respective direction, and the
Page UpandPage Downkeys move the caret up and down one screenful, respectively.

When pressed once, thme key moves the caret to the first non-whitespace character
of the current line. Pressing it a second time moves the caret to the beginning of the line.
Pressing it a third time moves the caret to the first visible line.

The End key behaves in a similar manner, going to the last non-whitespace character, the
end of the line, and finally to the last visible line.

Control-Home andControl-End move the caret to the beginning and end of the buffer,
respectively.

More advanced caret movement is coveredin Sectiorf 4.5, Sectjon 4.6 and Secttion 4.7.

4.2. Selecting Text

A selectionis a a block of text marked for further manipulation. Unlike many other
applications, jEdit supports both range and rectangular selections, and several chunks of
text can be selected simultaneously.

Dragging the mouse creates a range selection from where the mouse was pressed to
where it was released. Holding dov@hift while clicking a location in the buffer will
create a selection from the caret position to the clicked location.

Holding downShift in addition to a caret movement kelygft, Up, Home, etc) will
extend the selection in the specified direction. If no selection exists, one will be created.

Edit>Select All (shortcut:Control-A) selects the entire buffer.

Edit>Select None (shortcut:Escapg deactivates the selection.

29

Chapter 4. Editing Text

30

4.2.1. Rectangular Selection

Holding downControl and dragging will create a rectangular selection. Holding down
Shift andControl while clicking a location in the buffer will create a rectangular
selection from the caret position to the clicked location.

It is possible to select a rectangle with zero width but non-zero height. This can be used
to insert a new column between two existing columns, for example. Such zero-width
selections are shown as a thin vertical line.

Rectangles can be deleted, copied, pasted, and operated on using ordinary editing
commands.

Note: Rectangular selections are implemented using character offsets, not
absolute screen positions, so they might not behave as you might expect if a
proportional-width font is being used, or hard tabs are enabled. For information
about changing the font used in the text area, see Section 6.3. For more
information about hard and soft tabs, see Seciion 5.4.1.

4.2.2. Multiple Selection

PressingControl -\ turns multiple selection mode on and off. In multiple selection mode,
multiple fragments of text can be selected and operated on simultaneously, and the text
multi is shown in black in the status bar.

While multiple selection mode is active, you can click and drag the mouse to reposition
the caret and create new selections.

Various jEdit commands behave differently with multiple selections:

- Commands that copy text place the contents of each selection, separated by line
breaks, in the specified register. Note that the selections are appended in the order
they were created, not the order they appear in the buffer. For example, if you select
a chunk of text near the end of the buffer, another near the beginning, then invoke
Copy, the clipboard will contain the later chunk, followed by a line break, followed
by the earlier chunk.

- Commands that insert (or paste) text replace each selection with the entire text that
is being inserted.

Chapter 4. Editing Text

- Commands that filter text (such 8paces to Tabs, Range Comment, and even
Replace in Selection) operate on each selection, in turn.

+ Line-based commands (such&isift Indent Left, Shift Indent Right, andLine
Comment) operate on each line that contains at least one selection, in addition to
the line containing the caret.

- Caret movement commands that would normally deactivate the selection (such as
the arrow keys, whil&hift is not being held down), move the caret, leaving the
selection as-is.

- Some older plugins may not support multiple selection at all.

Tip: Deactivating multiple selection mode while a fragmented selection exists will
leave the selection in place, but it will prevent you from making further fragmented
selections. If a fragmented selection exists but multiple selection mode is not
active, the text multi will be shown in dark blue in the status bar.

4.3. Inserting and Deleting Text

Text entered at the keyboard is inserted into the buffer. If overwrite mode is on, one
character is deleted from in front of the caret position for every character that is inserted.
To activate overwrite mode, preBssert. The caret is drawn as horizontal line while in
overwrite mode; the texdver also appears in the status bar.

Inserting text while there is a selection will replace the selection with the inserted text.

Inserting text at the end of a line beyond the wrap column will automatically break the
line at the appropriate word boundary. The wrap column is indicated in the text area as a
faint blue line and its location (specified in number of character positions from the left
margin) can be changed in one of several ways:

« On a global or mode-specific basis in taditing andMode-Specific panes of the
Utilities>Global Options dialog box; se¢€ Section 6.3.

« In the current buffer for the duration of the editing session inldkities>Buffer
Options dialog box; se¢ Section 6.1.

31

Chapter 4. Editing Text

« In the current buffer for future editing sessions by placing the following in one of
the first 10 lines of the buffer, whemmlumn is the desired wrap column position:

:maxLineLen= column :

To disable word wrap completely, set the wrap column to O using any of the above
means.

Note: Word wrap is implemented using character offsets, not screen positions, so it
might not behave like you expect if a proportional-width font is being used. For
information about changing the font used in the text area, see [Section 6.3.

When inserting text, keep in mind that thab andEnter keys might not behave entirely
like you expect because of various indentation featureg; see Seclion 5.4 for details.

The simplest way to delete text is with tBackspaceandDeletekeys. If nothing is
selected, they delete the character before or after the caret, respectively. If a selection
exists, both delete the selection.

More advanced deletion commands are describédin Seciion 4.5, Section 4.6 and Section

[—

32

4.4. Undo and Redo

Edit>Undo (shortcut:Control-Z) undoes the effects of the most recent text editing
command. For example, this can be used to restore unintentionally deleted text. More
complicated operations, such as a search and replace, can also be undone. By default, the
undo queue remembers the last 100 edits; older edits are discarded. The undo queue size
can be changed in thiediting pane of thdJtilities>Global Options dialog box.

Edit>Redo (shortcut:Control-R) goes forward in the undo queue, redoing changes
which were undone. For example, if some text was insetiedo will remove it from
the buffer.Redo will insert it again.

4.5. Working With Words

Holding downControl in addition toLeft or Right moves the caret a word at a time.
Holding downShift andControl in addition toLeft or Right extends the selection a

Chapter 4. Editing Text

word at a time.

A single word can be selected by double-clicking with the mouse, or using the
Edit>Text>Select Word command (shortcuontrol-E W). A selection that begins
and ends on word boundaries can be created by double-clicking and dragging.

PressingControl in addition toBackspaceor Deletedeletes the word before or after the
caret, respectively.

Edit>Word Count displays a dialog box with the number of characters, words and lines
in the current buffer.

Edit>Complete Word (shortcut:Control-B) searches the current buffer for possible
completions of the current word. This feature be used to avoid retyping previously
entered identifiers in program source, for example.

If there is only one completion, it will be inserted into the buffer immediately. If multiple
completions were found, they will be listed in a popup below the caret position. To insert
a completion from the list, either click it with the mouse, or select it usindyh@nd

Down keys and presEnter. To close the popup without inserting a completion, press
Escape

4.6. Working With Lines

An entire line can be selected by triple-clicking with the mouse, or using the
Edit>Text>Select Line command (shortcuControl-E L). A selection that begins and
ends on line boundaries can be created by triple-clicking and dragging.

Edit>Go to Line (shortcut:Control-L) displays an input dialog box and moves the caret
to the specified line number.

Edit>Select Line Range (shortcutControl-E Control-L) selects all text between
between two specified line numbers, inclusive.

Edit>Text>Join Lines (shortcut:Control-J) removes any whitespace from the start of
the next line and joins it with the current line. For example, invokKlog Lines on the
first line of the following Java code:

new Widget(Foo
.createDefaultFoo());

Will change it to:

33

Chapter 4. Editing Text

34

new Widget(Foo.createDefaultFoo());

Edit>Text>Delete Line (shortcut:Control-D) deletes the current line.

Edit>Text>Delete to Start Of Line (shortcut:Shift-Backspacé deletes all text from
the start of the current line to the caret.

Edit>Text>Delete to End Of Line (shortcut:Shift-Deletd deletes all text from the
caret to the end of the current line.

Edit>Text>Remove Trailing Whitespace (shortcut:Control-E R) removes all
whitespace from the end of each selected line, or the current line if there is no selection.

4.7. Working With Paragraphs

As far as jEdit is concerned, “paragraphs” are delimited by double newlines. This is also
how TeX defines a paragraph. Note that jEdit doesn’t parse HTML files for “<P>" tags,
nor does it support paragraphs delimited only by a leading indent.

Holding downControl in addition toUp or Down moves the caret to the previous and
next paragraph, respectively. As with other caret movement commands, holding down
Shift in addition to the above extends the selection, a paragraph at a time.

Edit>Text>Select Paragraph (shortcut:Control-E P) selects the paragraph containing
the caret.

Edit>Text>Delete Paragraph (shortcut:Control-E D) deletes the paragraph containing
the caret.

Edit>Text>Format Paragraph (shortcut:Control-E F) splits and joins lines in the
current paragraph to make them fit within the wrap column position[See Seciion 4.3 for
information and word wrap and changing the wrap column.

4.8. Scrolling

View>Scrolling>Scroll to Current Line (shortcut:Control-E Control-J) centers the
line containing the caret on the screen.

View>Scrolling>Center Caret on Screen (shortcut:Control-E Control-1) moves the
caret to the line in the middle of the screen.

Chapter 4. Editing Text

View>Scrolling>Line Scroll Up (shortcut:Control-’) scrolls the text area up by one
line.

View>Scrolling>Line Scroll Down (shortcut:Control-/) scrolls the text area down by
one line.

View>Scrolling>Page Scroll Up (shortcut:Alt-") scrolls the text area up by one
screenful.

View>Scrolling>Page Scroll Down (shortcut:Alt-/) scrolls the text area down by one
screenful.

The above scrolling commands differ from the caret movement commands in that they
don’t actually move the caret; they just change the scroll bar position.

View>Scrolling>Synchronized Scrolling is a check box menu item, that if selected,
forces scrolling performed in one text area to be propagated to all other text areas in the
current view. Invoking the command a second time disables the feature.

4.9. Transferring Text

JEdit provides a rich set of commands for moving and copying text uggigters A

register is a holding area with a single-character name that can hold once piece of text at
a time. Registers are global to the editor; all buffers share the same set. With the
exception of the clipboard, register contents are only accessable inside jEdit.

jEdit has three sets of commands for working with registers. The “quick copy” and
system clipboard features allow easy access to two specific registers. A third set of
commands allows access to all other registers.

4.9.1. Quick Copy

Holding down theAlt key and clicking the left mouse button in the text area inserts the
most recently selected text at the clicked location. If you have a three-button mouse, you
can simply click the middle mouse button, without holding do%n

Internally, this is implemented by storing the most recently selected text mitbgister
(recall that registers have single-character names).

35

Chapter 4. Editing Text

36

X Windows primary selection

If jEdit is being run under Java 2 version 1.4 on Unix, you will be able to transter
text with other X Windows applications using the quick copy feature. On othef
platforms and Java versions, the contents of the quick copy register are only
accessable from within jEdit.

4.9.2. The System Clipboard

Quick copy is very useful in many situations, but it has a number of drawbacks; it
requires the use of the mouse, it cannot be used to replace an existing selection, and it
cannot be used to transfer text between different applications (unless you are using Java
2 version 1.4 on Unix).

The system clipboard, internally known as theegister, does not have these limitations,
but can be slightly less convinient to use.

Edit>Cut (shortcut:Control-X) places the selected text in the clipboard and removes it
from the buffer.

Edit>Copy (shortcut:Control-C) places the selected text in the clipboard and leaves it
in the buffer.

Edit>Cut Append (shortcut:Control-E Control-U) appends the selected text to the
clipboard, then removes it from the buffer. After this command has been invoked, the
clipboard will consist of the former clipboard contents, followed by a newline, followed
by the selected text.

Edit>Copy Append (shortcut:Control-E Control-A) appends the selected text to the
clipboard, and leaves it in the buffer. After this command has been invoked, the clipboard
will consist of the former clipboard contents, followed by a newline, followed by the
selected text.

Edit>Paste (shortcut:Control-V) inserts the clipboard contents in place of the selection
(or at the caret position, if there is no selection).

Chapter 4. Editing Text

4.9.3. General Register Commands

These commands are slightly less convinient to use than the two methods of transferring
text described above, but have the advantage that they allow any number of strings to be
copied simultaneously.

These commands all expect a single-character register name to be typed at the keyboard
after the command is invoked, and subsequently operate on that register. Pressing
Escapeinstead of specifying a register name will cancel the operation.

Edit>Registers>Cut to Register (shortcut:Control-R Control-X key) stores the
selected text in the specified register, removing it from the buffer.

Edit>Registers>Copy to Register (shortcut:Control-R Control-C key) stores the
selected text in the specified register, leaving it in the buffer.

Edit>Registers>Cut Append to Register (shortcut:Control-R Control-U key) adds
the selected text to the existing contents of the specified register, and removes it from the
buffer.

Edit>Registers>Copy Append to Register (shortcut:Control-R Control-A key)
adds the selected text to the existing contents of the specified register, without removing
it from the buffer.

Edit>Registers>Paste from Register (shortcut:Control-R Control-V key) replaces
the selection with the contents of the specified register.

Edit>Paste Previous (shortcut:Control-E Control-V) displays a dialog box listing
recently copied and pasted text. By default, the last 20 strings are remembered; this can
be changed in th&eneral pane of theJtilities>Global Options dialog box; se¢ Seciipn

[63.

Edit>Registers>View Registers displays a dialog box for viewing the contents of
registers (including the clipboard).

4.10. Markers

Each buffer can have any numberoérkersdefined, pointing to specific locations
within that buffer. Each line in a buffer can have at most one marker set pointing to it.
Markers are persistent; they are savedftename .marks , wherefilename is the file

37

Chapter 4. Editing Text

38

name. (The dot prefix makes the markers file hidden on Unix systems.) Marker saving
can be disabled in theoading and Saving pane of theJtilities>Global Options

dialog box; se¢ Section 6.3.

Markers are listed in thmarkers menu; selecting a marker from this menu is the

simplest way to return to its location. Each marker can optionally have a single-character
shortcut; markers without a shortcut can only be returned to using the menu, markers
with a shortcut can be accessed more quickly from the keyboard.

Lines which contain markers are indicated in the gutter with a highlight. Moving the
mouse over the highlight displays a tool tip showing the marker’s shortcut, if it has one.
Seg Section 2.3 for information about the gutter.

Markers>Add/Remove Marker (shortcut:Control-E Control-M) adds a marker

without a shortcut pointing to the current line. If a marker is already set on the current
line, the marker is removed instead. If text is selected, markers are added to the first and
last line of each selection.

Markers>Add Marker With Shortcut (shortcut:Control-T key) reads the next

character entered at the keyboard, and adds a marker with that shortcut pointing to the
current line. If a previously-defined marker already has that shortcut, it will no longer
have that shortcut, but will remain in the buffer. Presdtisgapeinstead of specifying a
marker shortcut after invoking the command will cancel the operation.

Markers>Go to Marker (shortcut:Control-Y key) reads the next character entered at
the keyboard, and moves the caret to the location of the marker with that shortcut.
Pressingescapeinstead of specifying a marker shortcut after invoking the command
will cancel the operation.

Markers>Select to Marker (shortcut:Control-U key) reads the next character entered

at the keyboard, and extends the selection to the location of the marker with that shortcut.
Pressingescapeinstead of specifying a marker shortcut after invoking the command

will cancel the operation.

Markers>Swap Caret and Marker (shortcut:Control-U key) reads the next character
entered at the keyboard, and swaps the position of the caret with the location of the
marker with that shortcut. PressiBgcapeinstead of specifying a marker shortcut after
invoking the command will cancel the operation.

Markers>Go to Previous Marker (shortcut:Alt-Up) goes to the nearest marker before
the caret position.

Chapter 4. Editing Text

Markers>Go to Next Marker (shortcut:Alt-Down) goes to the nearest marker after the
caret position.

Markers>Remove All Markers removes all markers set in the current buffer.

4.11. Search and Replace

4.11.1. Searching For Text

Search>Find (shortcut:Control-F) displays the search and replace dialog box.

The search string can be entered in 8®arch for text field. This text field remembers
previously entered strings; see Appendix C for details.

The search can be made case insensitive (for example, searching for “Hello” will match
“hello”, “HELLO” and “HeLlO") by selecting thelgnore case check box. Regular
expressions may be used to match inexact sequences of texRéthdar expressions
check box is selected; sge Appendix E for more information about regular expressions.
Note that regular expressions can only be used when searching forwards.

Clicking Find will locate the next (or previous, if searching backwards) occurrence of
the search string after the caret position. If Keep dialog check box is selected, the
dialog box will remain open; otherwise, it will be closed after the search string is located.

If no occurrences could be found and #eto wrap check box is selected, the search

will automatically be restarted and a message will be shown in the status bar to indicate
that. If the check box is not selected, a dialog box will be displayed, offering to restart
the search.

Search>Find Next (shortcut:Control-G) locates the next occurrence of the most recent
search string without displaying the search and replace dialog box.

Search>Find Previous (shortcut:Control-H) locates the previous occurrence of the
most recent search string without displaying the search and replace dialog box.

Search>Find Selection (shortcut:Control-E Control-F) displays the search and
replace dialog box with the currently selected text entered irstaach for text field.

39

Chapter 4. Editing Text

4.11.2. Replacing Text

Occurrences of the search string can be replaced with either a replacement string or the
result of a BeanShell script snippet. Two radio buttons in the search and replace dialog
box can be used to choose between these two behaviors.

The replace string text field remembers previously entered strings; see Appéendix C for
details.

Clicking Replace will perform a replacement in each text selection. Clickitgplace

& Find will perform a replacement in each text selection and locate the next occurrence
of the search string. ClickinBeplace All will perform a replacement in each buffer to

be searched.

In text replacement mode, the search string is replaced with the replacement string. If
regular expressions are enabled, positional parameiersi, $2, and so on) can be

used to insert the contents of matched subexpressions in the replacement text; see
for more information.

In BeanShell replacement mode, the search string is replaced with the return value of a
BeanShell snippet. The following predefined variables can be referenced in the snippet:

« _0 —the text to be replaced

- _1-_9 —ifregular expressions are enabled, these contain the values of matched
subexpressions.

BeanShell syntax and features are covered in great defail in ParfH#iin3.2 USers_|

but here are some examples:

40

To convert all HTML tags to lower case, search for the following regular expression:

<(.*?)>

Replacing it with the following BeanShell snippet:

"<" + 1.toLowerCase() + ">"

To replace arithmetic expressions between curly braces with their result, search for the
following regular expression:

\{(-+)\}
Replacing it with the following BeanShell snippet:

Chapter 4. Editing Text

eval(_1)

These two examples only scratch the surface; the possibilities are endless.

4.11.3. HyperSearch

If the HyperSearch check box in the search and replace dialog box is selected, clicking
Find will list all occurrences of the search string, rather than locating them one by one.

By default, HyperSearch results are shown in a floating window; the window can be set
to dock into the view in th®ocking pane of theJtilities>Global Options dialog box;
see[Secfion 7.4.1.

Running searches can be stopped inUltiéties>1/O Progress Monitor dialog box.

4.11.4. Multiple File Search

Searching, replacement and HyperSearch can also be performed in all open buffers or all
files in a directory.

If the All buffers radio button in the search and replace dialog box is selected, all open
buffers whose names match the glob pattern entered iRiltes text field will be
searched. Sge Appendix D for more information about glob patterns.

If the Directory radio button is selected, all files in the directory whose names match the
glob will be searched. The directory to search in can either be enteredirttory

text field, or chosen in a file selector dialog box by clicki@igoose. If the Search
subdirectories check box is selected, all subdirectories of the specified directory will
also be searched. Keep in mind that searching through directories with many files can
take a long time and consume a large amount of memory.

TheDirectory andFilter text fields remember previously entered strings;[See Appendix
[0 for details.

Two convinience commands are provided for performing multiple file searches.

Search>Search in Open Buffers (shortcut:Control-E Control-B) displays the search
and replace dialog box, and selects #&lebuffers radio button.

Search>Search in Directory (shortcut:Control-E Control-D) displays the search and
replace dialog box, and selects theectory radio button.

41

Chapter 4. Editing Text

42

4.11.5. The Search Bar

The search bar at the top of the view provides a convenient way to perform simple
searches without opening the search and replace dialog box first. Neither multiple file
search nor replacement can be done from the search bar.

Unless theHyperSearch check box is selected, the search bar will perform an

incremental searchin incremental search mode, the first occurrence of the search string

is located in the current buffer as is it is being typed. PresBmtgr andShift-Enter

searches for the next and previous occurrence, respectively. Once the desired occurrence
has been found, pre§scapeto return keyboard focus to the text area.

If the HyperSearch check box is selected, entering a search string and preSsiteg
will perform a HyperSearch. When in HyperSearch mode, the search bar remembers
previously entered strings; see Appendjx C for details.

The search bar can be accessed from the keyboard usig&g#reh>Quick
Incremental Search (shortcut:Control-,) andSearch>Quick HyoerSearch (shortcut:
Control-.) commands.

The search bar can be disabled in @eneral pane of theJtilities>Global Options
dialog box.

Note that incremental searches cannot be not recorded in macros. Use the search and
replace dialog box instead.

Chapter 5. Editing Source Code

5.1. Edit Modes

An edit modespecifies syntax highlighting rules, auto indent behavior, and various other
customizations for editing a certain file type. This section only covers using and
selecting edit modes; information about writing your own can be foundin Par{Hdii

L 37 Users Guide

5.1.1. Mode Selection

When a file is opened, jEdit first checks the file name against a list of known patterns.
For example, files whose names end with “.c” are edited in C mode, and files named
Makefile —are edited in Makefile mode. If a suitable match based on file name cannot be
found, jEdit checks the first line of the file. For example, files whose first line is
“#1/bin/sh” are edited in shell script mode.

If automatic mode selection is not appropriate, the edit mode can be specified manually.
The current buffer’s edit mode can be set on a one-time basis idtthiges>Buffer

Options dialog box; se¢€ Section 6.1. To set a buffer’'s edit mode for future editing
sessions, place the following in one of the first 10 lines of the buffer, weditemode

is the name of the desired edit mode:

:mode= edit mode :

5.1.2. Syntax Highlighting

Syntax highlighting is the display of programming language tokens using different fonts
and colors. This makes code easier to follow and errors such as misplaced quotes easier
to spot. All edit modes except for the plain text mode perform syntax highlighting.

The colors and styles used to highlight syntax tokens can be changedStytes pane
of the Utilities>Global Options dialog box; se¢ Secfion 6.3.

Syntax highlighting can be enabled or disabled in one of several ways:

43

Chapter 5. Editing Source Code

44

« On a global or mode-specific basis in tRditing andMode-Specific panes of the
Utilities>Global Options dialog box.

« In the current buffer for the duration of the editing session inUhities>Buffer
Options dialog box; se¢ Section 6.1.

- In the current buffer for future editing sessions, by placing the following in one of
the first 10 lines of the buffer, wheflag is either “true” or “false”

syntax= flag :

5.2. Abbreviations

Using abbreviations reduces the time spent typing long but commonly used strings. For
example, in Java mode, the abbreviation “sout” is defined to expand to
“System.out.printin()”, so to insert “System.out.printin()” in a Java buffer, you only need
to type “sout” followed byControl-;. Each abbreviation can either be global, in which
case it will expand in all edit modes, or mode-specific. Abbreviations can be edited in the
Abbreviations pane of thdJtilities>Global Options dialog box; se¢ Section 6.3. The
Java, SGML and VHDL edit modes include some pre-defined abbreviations you might
find useful.

Edit>Expand Abbreviation (keyboard shortcutControl-;) attempts to expand the word
before the caret. If no expansion could be found, it will offer to define one.

Automatic abbreviation expansion can be enabled irAlbigreviations pane of the
Utilities>Global Options dialog box; se¢ Section 6.3. If enabled, pressing the space bar
after entering an abbreviation will automatically expand it.

If automatic expansion is enabled, a space can be inserted without expanding the word
before the caret by pressi@pntrol-E V Space

5.2.1. Positional Parameters

Positional parameters are an advanced feature that make abbreviations much more
useful. The best way to describe them is with an example.

Suppose you have an abbreviation “F” that is set to expand to the following:

for(int $1 = 0; $1 < $2; $1++)

Chapter 5. Editing Source Code

Now, simply entering “F” in the buffer and expanding it will insert the above text as-is.
However, if you expan@#j#array.length# , the following will be inserted:

for(int j = 0; j < array.length; j++)

Expansions can contain up to nine positional parameters. Note that a trailing hash
character (“#") must be entered when expanding an abbreviation with parameters.

5.3. Bracket Matching

Misplaced and unmatched brackets are one of the most common syntax errors
encountered when writing code. jEdit has several features to make brackets easier to deal
with.

If the character immediately before the caret position is a bracket, the matching one will
be highlighted (assuming it is visible on the screen). Bracket highlighting can be disabled
in the Text Area pane of theUtilities>Global Options dialog box; se¢ Section 6.3.

Edit>Source Code>Go to Matching Bracket (shortcut:Control-]) goes to the bracket
matching the one before the caret.

Double-clicking on a bracket in the text area will select all text between the bracket and
the one matching it.

Edit>Source Code>Select Code Block (shortcut:Control-[) selects all text between
the two brackets nearest to the caret.

Edit>Source Code>Go to Previous Bracket (shortcut:Control-E [) moves the caret
to the previous opening bracket.

Edit>Source Code>Go to Next Bracket (shortcut:Control-E]) moves the caret to the
next closing bracket.

Note: jEdit’s bracket matching algorithm only checks syntax tokens with the same
type as the original bracket for matches. So brackets inside string literals and
comments will not cause problems, as they will be skipped.

45

Chapter 5. Editing Source Code

46

5.4. Tabbing and Indentation

jEdit makes a distinction between ttab width which is is used when displaying tab
characters, and thiedent width which is used when a level of indent is to be added or
removed, for example by mode-specific smart indent routines. Both can be changed in
one of several ways:

« On a global or mode-specific basistaiting andMode-Specific panes of the the
Utilities>Global Options dialog box.

« In the current buffer for the duration of the editing session inUlities>Buffer
Options dialog box; se¢ Section 6.1.

« In the current buffer for future editing sessions by placing the following in one of
the first 10 lines of the buffer, whereis the desired tab width, andis the desired
indent width:

tabSize= n:indentSize= m
Edit>Source Code>Shift Indent Left (shortcut:Alt-Left) adds one level of indent to
each selected line, or the current line if there is no selection.

Edit>Source Code>Shift Indent Right (shortcut:Alt-Right) removes one level of
indent from each selected line, or the current line if there is no selection.

5.4.1. Soft Tabs

Because files indented using tab characters may look less than ideal when viewed on a
system with a different default tab size, it is sometimes desirable to use multiple spaces,
known assoft tabs instead of real tab characters, to indent code.

Soft tabs can be enabled or disabled in one of several ways:

- On a global or edit mode-specific basis in tgiting andMode-Specific panes of
the Utilities>Global Options dialog box.

- In the current buffer for the duration of the editing session inlkities>Buffer
Options dialog box; se¢ Section 6.1.

+ In the current buffer for future editing sessions by placing the following in one of
the first 10 lines of the buffer, wheflag is either “true” or “false”:

Chapter 5. Editing Source Code

:noTabs= flag :

Changing the soft tabs setting has no effect on existing tab characters; it only affects
subsequently-inserted tabs.

Edit>Source Code>Spaces to Tabs converts soft tabs to hard tabs in the current
selection.

Edit>Source Code>Tabs to Spaces converts hard tabs to soft tabs in the current
selection.

5.4.2. Automatic Indent

The auto indent feature inserts the appropriate number of tabs or spaces at the beginning
of a line.

If indent on enter is enabled, pressiBgter will create a new line with the appropriate
amount of indent automatically. If indent on tab is enabled, presgbgn an

unindented line will insert the appropriate amount of indentation. Pressing it again will
insert a tab character.

By default, indent on enter is enabled and indent on tab is disabled. This can be changed
in one of several ways:

« On a global or mode-specific basis in tditing andMode-Specific panes of the
Utilities>Global Options dialog box.

« In the current buffer for the duration of the editing session inukikties>Buffer
Options dialog box; se¢ Section 6.1.

« In the current buffer for future editing sessions by placing the following in the first
10 lines of a buffer, wherflag is either “true” or “false”:

:indentOnEnter= flag :indentOnTab= flag :

Auto indent behavior is mode-specific. In most edit modes, the indent of the previous
line is simply copied over. However, in C-like languages (C, C++, Java, JavaScript),
curly brackets and language statements are taken into account and indent is added and
removed as necessary.

Edit>Source Code>Indent Selected Lines (shortcut:Control-1) indents all selected
lines, or the current line if there is no selection.

47

Chapter 5. Editing Source Code

48

To insert a literal tab or newline without performing indentation, prefix the tab or
newline withControl-E V. For example, to create a new line without any indentation,
type Control-E V Enter.

5.5. Commenting Out Code

Most programming and markup languages support “comments”, or regions of code
which are ignored by the compiler/interpreter. jEdit has commands which make inserting
comments more convenient.

Edit>Source Code>Range Comment (shortcut:Control-E Control-C) encloses the
selection with comment start and end strings, for exarmplend*/ in Java mode.

Comment start and end strings can be changed on a mode-specific basis in the
Mode-Specific pane of theJtilities>Global Options dialog box, or on a buffer-specific
basis using buffer-local properties. For example, placing the following in one of the first
10 lines of a buffer will change the range comment strings tand*) :

:commentStart=(*:commentEnd=*):

Edit>Source Code>Line Comment (shortcut:Control-E Control-K) inserts the line
comment string, for example in Java mode, at the start of each selected line.

The line comment string can be changed on a mode-specific basisMotie Specific

pane of thdJtilities>Global Options dialog box, or on a buffer-specific basis using
buffer-local properties. For example, placing the following in one of the first 10 lines of a
buffer will change the line comment string#o

lineComment=#:

5.6. Folding

The folding feature allows lines to be hidden or shown depending on their indent level.
Since most programming languages use indentation to nest code, folding away lines with
a lot of indent has the effect of displaying an “overview” of the file only, while

displaying higher indent levels “zooms in” on the contents and shows more “detail”.

Chapter 5. Editing Source Code

A set of consecutive lines with the same leading indent is referred tdodd. & he

visibility of each fold can be set independently. A fold that is hidden is said to be
“collapsed”; a visible fold is “expanded”. Text hidden by folding is still present in the

buffer, and can be made visible again using the appropriate commands. Cursor movement
commands skip over the hidden text, but text manipulation commands act on it.

The initial fold visibility level, in multiples of the indent width, can be specified on a
mode-specific or global basis in thiilities>Global Options dialog box; se¢ Secfion]

[6.3. Folds with a level higher than this will be automatically collapsed after a buffer is
loaded. Setting this value to zero makes all folds expanded initially (this is the default).

The simplest way to expand and collapse folds is to click the fold markers in the gutter to
the left of the text area; a fold marker is drawn next to the first line of each fold. An
empty square is drawn next to an expanded fold; a filled square next to a collapsed fold.
Unless theshift key is held down, clicking a filled square will expand the fold by one

level only; nested folds will remain collapsed. Holding do®inift while clicking will

fully expand the fold and all nested folds.

View>Folding>Collapse Fold (keyboard shortcutAlt -Backspacé collapses the fold
containing the caret.

View>Folding>Expand Fold One Level (keyboard shortcuilt -Enter) expands the
fold containing the caret. Nested folds will remain collapsed.

View>Folding>Expand Fold Fully (keyboard shortcutlt -Shift-Enter) expands the
fold containing the caret, also expanding any nested folds.

View>Folding>Expand All Folds (keyboard shortcutControl-E Enter key) reads the
next character entered at the keyboard, and expands all folds in the buffer with a fold
level less than that specified, and collapsed all others.

View>Folding>Expand All Folds (keyboard shortcutControl-E X) expands all folds
in the buffer.

View>Folding>Select Fold (keyboard shortcuControl-E S) selects all lines in the
fold containing the caret. Control-clicking on a fold marker in the gutter on the left of the
text area has the same effect.

Because folding is based on indent levels, changing the leading indent of a line while
folds are collapsed may result in portions of the buffer becoming temporarily
inaccessable. In such a case, simply invBkeand All Folds to restore the visibility of
the hidden lines.

49

Chapter 5. Editing Source Code

50

The textfold is shown in black the status bar if portions of the buffer are invisible due to
folding. Otherwise, it is grayed out.

5.6.1. Narrowing

The narrowing feature hides all parts of the buffer except for one specified region. While
that region appears to be all there is, the rest of the text is still in the buffer; just not
visible. While it may seem unrelated to folding, both folding and narrowing are
implemented using the same code internally.

View>Folding>Narrow Buffer to Selection (keyboard shortcuControl-E N) hides all
lines the buffer except those in the selection.

View>Folding>Expand All Folds (keyboard shortcutControl-E X) will make visible
any lines hidden by narrowing.

Chapter 6. Customizing jEdit

6.1. The Buffer Options Dialog Box

Utilities>Buffer Options displays a dialog box for changing editor settings on a
per-buffer basis. Any changes made in this dialog box are lost after the buffer is closed.

The following settings may be changed here:

The edit mode (see Sections.1)

« The tab width (seg_Section 5.4)

+ The indent width

« The wrap column (s€e_Section4.3)
« The line separator (s¢e Section 3.4)

« If syntax highlighting should be enabled (§e€ Section b.1.2)
- If auto indent and soft tabs should be enabled [See Secition 5.4)

The “Corresponding buffer-local properties” text field displays buffer-local properties
that duplicate the current settings in the dialog box.

6.2. Buffer-Local Properties

Buffer-local properties provide an alternate way to change editor settings on a per-buffer
basis. While changes made in the Buffer Options dialog box are lost after the buffer is
closed, buffer-local properties take effect each time the file is opened, because they are
embedded in the file itself.

When jEdit loads a file, it checks the first 10 lines for colon-enclosed name/value pairs.
The following example changes the indent width to 4 characters, enables soft tabs, and
sets the buffer’'s edit mode to Perl:

:indentSize=4:noTabs=true:mode=perl:

51

Chapter 6. Customizing jEdit

52

The following table describes each buffer-local property in detail.

Property name

Description

collapseFolds

Note that adding buffer-local properties to a buffer only takes effect after the next time
the buffer is loaded.

Folds with a level of this or higher will be collapsed when the

buffer is opened. If set to zero, all folds will be expanded
initially. See[Section 5]6.

le the

ting

commentEnd The range comment end string. For example, in Java mode the
default value is “*/”. Se¢ Section 5.5.

commentStart The range comment start string. For example, in Java mog
default value is “/*". Se¢ Section %.5.

indentOnEnter If set to “true”, pressingenter will insert a line break and
automatically indent the new line. Se¢ Section 3.4.

indentOnTab If set to “true”, indentation will be performed when thab
key is pressed. Seg Seciion b.4.

indentSize The width, in characters, of one indent. Must be an integet
greater than 0. Sée Section|5.4.

lineComment The line comment string. For example, in Java mode the
default value is “//". Se@ Section 5.5.

maxLineLen The maximum line length and wrap column position. Inser|
text beyond this column will automatically insert a line break at
the appropriate position. SEe Section 4.3.

mode The default edit mode for the buffer. See Section 5.1.

noTabs If set to “true”, soft tabs (multiple space characters) will be
used instead of “real” tabs. Sge Section 5.4.

noWordSep A list of non-alphanumeric characters that ac# to be treate
as word separators.

syntax If set to “false”, syntax highlighting will be not be performe
Seg Section 5.1.2.

tabSize The tab width. Must be an integer greater than 0.[See Se

tion

Chapter 6. Customizing jEdit

Property name Description

wordBreakChars |Characters, in addition to spaces and tabs, at which lines may
be split when word wrapping. S€e Section 4.3.

6.3. The Global Options Dialog Box

Utilities>Global Options displays the global options dialog box. The dialog box is
divided into several panes, each pane containing a set of related options. Use the list on
the left of the dialog box to switch between panes. Only panes created by jEdit are
described here; some plugins add their own option panes, and information about them
can be found in the documentation for the plugins in question.

The General Pane
The General option pane lets you change various miscellaneous settings, such as the
number of recent files to remember, the Swing look & feel, and such.

The Loading and Saving Pane

TheLoading and Saving option pane lets you change settings such as the autosave
frequency, backup settings, file encoding, and so on.

The Editing Pane

The Editing option pane lets you change settings such as the tab size, syntax highlighting
and soft tabs on a global basis.

Due to the design of jEdit's properties implementation, changes to some settings in this
option pane only take effect in subsequently opened files.
The Mode-Specific Pane

TheMode-Specific option pane lets you change settings such as the tab size, syntax
highlighting and soft tabs on a mode-specific basis.

TheFile name glob andFirst line glob text fields let you specify a glob pattern that
names and first lines of buffers will be matched against to determine the edit mode.

53

Chapter 6. Customizing jEdit

This option pane does not change XML mode definition files on disk; it merely writes
values to the user properties file which override those in mode files. To find out how to
edit mode files directly, sge Part ITjadit 3.2 User’s Guide

The Text Area Pane

The Text Area option pane lets you customize the appearance of the text area.

The Gutter Pane

The Gutter option pane lets you customize the appearance of the gutter.

The Colors Pane

The Colors option pane lets you change the text area’s color scheme.

The Styles Pane

The Styles option pane lets you change the text styles and colors used for syntax
highlighting.

The Docking Pane

The Docking option pane lets you specify which dockable windows should be floating,
and which should be docked in the view.

The Context Menu Pane

The Context Menu option pane lets you edit the text area’s right-click context menu.

The Tool Bar Pane

TheTool Bar option pane lets you edit the tool bar, or disable it completely.

The Shortcuts Pane

The Shortcuts option pane let you change keyboard shortcuts. Each command can have
up to two shortcuts associated with it.

The combo box at the top of the option pane selects the shortcut set to edit (command,
plugin or macro shortcuts).

54

Chapter 6. Customizing jEdit

To change a shortcut, click the appropriate table entry and press the keys you want
associated with that command in the resulting dialog box. The dialog box will warn you
if the shortcut is already assigned.

The Abbreviations Pane

The Abbreviations option pane lets you enable or disable automatic abbreviation
expansion, and edit currently defined abbreviations.

The combo box labelled “Abbrev set” selects the abbreviation set to edit. The first entry,
“global”, contains abbreviations available in all edit modes. The subsequent entries
contain mode-specific abbreviations.

To change an abbreviation expansion, click the appropriate table entry, which will
display a dialog box for doing so.

To add an abbreviation, enter it in the last line of the list, which is always blank. When
the last line is changed, a new, blank, line is added.

Sed Section 5.2.1 for information about positional parameters in abbreviations.

The Printing Pane

ThePrinting option pane lets you customize the appearance of printed output.

The File System Browser Pane

TheFile System Browser option pane lets you customize jEdit’s file system browser.

6.4. The jEdit Settings Directory

jEdit stores all settings, macros, and so on as files insideeitigs directoryln most

cases, editing these files is not necessary, since graphical tools and commands can do the
job. However, being familiar with the structure of the settings directory still comes in

handy in certain situations, for example when you want to copy jEdit settings between
computers.

The location of the settings directory is system-specific; it is printed to the activity log
(Utilities>Activity Log). For example:

[message] jEdit: Settings directory is /home/slava/.jedit

55

Chapter 6. Customizing jEdit

Specifying the-settingsswitch on the command line instructs jEdit to store settings in a
different directory. For example, the following command will instruct jEdit to store all
settings in thgedit subdirectory of the: drive:

C:\jedit> jedit -settings=C:\jedit
The-nosettingsswitch will force jEdit to not look for or create a settings directory.

Default settings will be used instead.

If you are using jEditLauncher to start jEdit on Windows, these parameters cannot be
specified on the MS-DOS prompt command line when starting jedit; they must be set as
described inCSeciion G.2.

jEdit creates the following files and directories inside the settings directory; plugins may
add more:

. jars - this directory contains plugins. Sge Chapier 8.
« macros - this directory contains macros. See Chapter 7.

« modes - this directory contains custom edit modes. S5ee Partfjidit 3.2 Users |
| Guide

+ PluginManager.download - this directory is usually empty. It only contains files
while the plugin manager is downloading a plugin. For information about the plugin

manager, see Chapier 8.
+ session - alist of files, used when restoring previously open files on startup.

- abbrevs - a plain text file which stores all defined abbreviations. [See Sectipn 5.2.

« activity.log - a plain text file which contains the full activity log. See Appendix
—

 history - a plain text file which stores history lists, used by history text fields and
the Edit>Paste Previous command. Seg Section 4.9 gnd Appendix C.

- properties - a plain text file which stores the majority of jEdit’s settings.

+ recentxml - an XML file which stores the list of recently opened files. jEdit
remembers the caret position, selection state and character encoding of each recent
file, and automatically restores those values when one of the files in the list is
opened.

56

Chapter 6. Customizing jEdit

« server - a plain text file that only exists while jEdit is running. The edit server’s
port number and authorization key is stored here.[See Chapter 1.

57

Chapter 7. Using Macros

Macros in jEdit are short scripts written in a scripting language ca@leahShellThey

provide an wasy way to automate repetitive keyboard and menu procedures, as well as

access to the objects and methods created by jEdit. Macros also provide a powerful

facility for customizing jEdit and automating complex text processing and programming

tasks. In this section we describe how to record and run macros. A detailed guide on

writing macros appears later in a separate part of the user’s guide; see PaiEdilia.2
[_Users Guide

7.1. Recording Macros

The simplest use of macros is to record a series of key strokes and menu commands as a
BeanShell script, and play them back at a later time. While this doesn’t let you take
advantage of the full power of BeanShell, it is still a great time saver and can even be
used to “prototype” more complicated macros.

Macros>Record Macro (shortcut:Control-M Control -R) prompts for a macro name
and begins recording.

While recording is in progress, the string “Macro recording” is displayed in the status
bar. jEdit records the following:

+ Key strokes

« Menu item commands

« Tool bar clicks

- All search and replace operations except incremental search

Mouse clicks in the text area an@trecorded; to record the equivalent of mouse
operations, use the text selection commands or arrow keys.

Macros>Stop Recording (shortcut:Control-M Control -S) stops recording. It also

switches to the buffer containing the recorded macro, giving you a chance to check over
the recorded commands and make any necessary changes. The file name exknsion

is automatically appended to the macro name, and all spaces are converted to underscore
characters, in order to make the macro name a valid file name. These two operations are
reversed when macros are displayed inMeeros menu. Seg Section 7.3 for details.

58

Chapter 7. Using Macros

When you are happy with the macro, save the buffer and it will appear iM#oeos
menu. To discard the macro, close the buffer without saving.

If a complicated operation only needs to be repeated a few of times, using the temporary
macro feature is quicker than saving a new macro file.

Macros>Record Temporary Macro (shortcut:Control-M Control -M) begins
recording to a buffer nametkmporary_Macro.bsh . Once recording is complete, you
don’t need to save theemporary_Macro.bsh buffer before playing it back.

Macros>Run Temporary Macro (shortcut:Control-M Control -P) plays the macro
recorded to th@emporary_Macro.bsh buffer.

If you do not save the temporary macro, you must keep the buffer containing the macro
script open during your jEdit session. To have the macro available for your next jEdit
session, save the buffeemporary_Macro.bsh as an ordinary macro with a descriptive
name of your choice. The new name will then be displayed irMaeros menu.

7.2. Running Macros

Macros supplied with jEdit, as well as macros that you record or write, are displayed
under theMacros menu in a hierarchical structure. The jEdit installation includes about
50 macros divided into several major categories. Each category corresponds to a nested
submenu under thilacros menu. An index of these macros containing short

descriptions and usage notes is founfin Appendix F.

To run a macro, choose tiMacros menu, navigate through the hierarchy of submenus,
and select the name of the macro to execute. You can also assign execution of a
particular macro to a keyboard shortcut, toolbar button or context menu usiiMgitre
Shortcuts, Tool Bar or Context Menu panes of théJtilities>Global Options dialog;
see[Secfion 6.3.

Macros>Run Last Macro (shortcut:Control-M Control -L) runs the last macro run by
JEdit again.

59

Chapter 7. Using Macros

XlInsert plugin

The Xlinsert plugin has a feature that lists the title of macros, organized by
subdirectories, as part of its tree list display. Clicking on the leaf of the tree
corresponding to a macro name causes jEdit to execute the macro immediate
The plugin allows you to keep a list of macros and cut-and-paste text fragments
available while editing without opening menus. For information about installin

plugins, se¢ Chapier 8.

<

(@}

7.3. How jEdit Organizes Macros

Every macro, whether or not you originally recorded it, is stored on disk and can be
edited as a text file. The file names of macros must habsha extension. By default,
jEdit associates @sh file with the BeanShell edit mode for purposes of syntax
highlighting, indentation and other formatting. However, BeanShell syntax does not
impose any indentation or line break requirements.

TheMacros menu lists all macros stored in two places: tieros subdirectory of the
jEdit install directory, and thenacros subdirectory of the user-specific settings directory
(see[Section 6.4 for information about the settings directory). Any macros you record
will be stored in the user-specific directory.

Macros stored elsewhere can be run usingulaeros>Run Other Macro command,
which displays a file chooser dialog box, and runs the specified file.

The listing of individual macros in thielacros menu can be organized in a hierarchy

using subdirectories in the general or user-specific macro directories; each subdirectory
appears as a submenu. You will find such a hierarchy in the default macro set included
with jEdit.

When jEdit first loads, it scans the designated macro directories and assembles a listing
of individual macros in thdlacros menu. When scanning the names, jEdit will delete
underscore characters and theh extension for menu labels, so that
List_Useful_Information.bsh , for example, will be displayed in thdacros menu

asList Useful Information.

Macros>Browse System Macros displays thenacros subdirectory of the directory in

60

Chapter 7. Using Macros

which jEdit is installed in the file system browser.

Macros>Browse User Macros displays thenacros subdirectory of the user settings
directory in the file system browser.

Macros can be opened and edited much like ordinary files from the file system browser.
Editing macros from within jEdit will automatically update the macros menu; however,

if you modify macros from another program, thkacros>Rescan Macros will need to
be invoked to update the macro list.

61

Chapter 8. Installing and Using
Plugins

A pluginis an application which is loaded and runs as part of another, host application.
Plugins respond to user commands and perform tasks that supplement the host
application’s features.

This chapter covers installing, updating and removing plugins. Documentation for the
plugins themselves can be foundHielp>jEdit Help, and information about writing
plugins can be found in Part 1V ijEdit 3.2 USer’s Guide

8.1. The Plugin Manager

Plugins>Plugin Manager displays the plugin manager window. The plugin manager
lists all installed plugins; clicking on a plugin in the list will display information about it.

To remove plugins, select them (multiple plugins can be selected by holding down
Control) and clickRemove Plugins. This will display a confirmation dialog box first.

8.2. Installing Plugins

Plugins can be installed in two ways; manually, and from the plugin manager. In most
cases, plugins should be installed from the plugin manager. It is easier and more
convinient.

To install plugins manually, go to http://plugins.jedit.org in a web browser and follow the
directions on that page.

To install plugins from the plugin manager, make sure you are connected to the Internet
and click thelnstall Plugins button in the plugin manager window. The plugin manager
will then download information about available plugins from the jEdit web sitel list

those not already installed in tihestall Plugins dialog box. Only plugins compatible

with your jEdit release will be shown, and installing a plugin will also automatically
install any other plugins it depends on. As a result of this, if you use the plugin manager
to install plugins, it is very hard to end up with a non-working set of plugins.

62

Chapter 8. Installing and Using Plugins

Click on a plugin in the list to see some information about it. To select plugins to be
installed, click the check box next to their names in the list.

Thelnstall source code check box controls if source code for the plugins should be
downloaded and installed. Unless you are a developer, you probably don’t need the
source.

The two radio buttons select the location where the plugins are to be installed. Plugins
can be installed in either thas subdirectory of the jEdit installation directory, or the
jars subdirectory of the user-specific settings directory. For information about the

settings directory, Section 6.4.
Once you have specified plugins to install, cllaktall Plugins to begin the download

process. Once all plugins have been downloaded and installed, a dialog box is shown
advising that jEdit must be restarted before plugins can be used.

Firewalls

If you are connected to the Internet through a firewall or proxy, you will need tp
configure firewall settings in thelugin Options>Firewall pane of the
Utilities>Global Options dialog box, otherwise the plugin manager might not e
able to connect to the jEdit web site.

This assumes you chose to install the Firewall plugin when installing jEdit. This
plugin requires Java 2.

8.3. Updating Plugins

Clicking Update Plugins in the plugin manager will show a dialog box very similar to
the one for installing plugins. It will list plugins for which updated versions are available.
It will also offer to delete any obsolete plugins.

Notes

1. The list of plugins is downloaded from
http://plugins.jedit.org/export/new_plugin_manager.php, in XML format.

63

Appendix A. Keyboard Shortcuts

This appendix documents the default set of keyboard shortcuts. They can be customized
to suit your taste in th<ilities>Global Options dialog box; se¢ Section 6.3.

Files

For details, seE Section P[I, Section 2.2 and Chapter 3.

Control-N New file.
Control-O Open file.
Control-W Close buffer.
Control-E Control-W Close all buffers.
Control-S Save buffer.
Control-E Control-S Save all buffers.
Control-P Print buffer.
Control-Page Up Go to previous buffer.
Control-Page Down Go to next buffer.
Control-* Go to recent buffer.
Control-Q Exit jEdit.
Views

For details, seE Secition P.2.

Control-E Control-T Turn gutter (line numbering) on and off.
Control-2 Split view horizontally.

Control-3 Split view vertically.

Control-1 Unsplit.

Alt-Page Up Go to previous text area.

Alt-Page Down Go to next text area.

64

Appendix A. Keyboard Shortcuts

Control-E 1; 2; 3; 4 Collapse/expand top; bottom; left; right docking
area.

Repeating

For details, seE Section P.4.

Control-Enter number Repeat the command (it can be a keystroke, menu
command item selection or tool bar click) the specified number
of times.

Moving the Caret

For details, seE Section 4[L, Section 4.5, Sectidn 4.6, Section 4[7 and Sedtion 5.3.

Arrow Move caret one character or line.

Control- Arrow Move caret one word or paragraph.

Page Up; Page Down Move caret one screenful.

Home First non-whitespace character of line, beginning of
line, first visible line (repeated presses).

End Last non-whitespace character of line, end of line,
last visible line (repeated presses).

Control-Home Beginning of buffer.

Control-End End of buffer.

Control-] Go to matching bracket.

Control-E [;] Go to previous; next bracket.

Control-L Go to line.

Selecting Text

For details, seE Section ¥4[Z, Section 4.5, Sectidn 4.6, Section 4[7 and Segtion 5.3.

65

Appendix A. Keyboard Shortcuts

Shift-Arrow

Control-Shift- Arrow
Shift-Page Up; Shift-Page
Down

Shift-Home

Shift-End

Control-Shift-Home
Control-Shift-End
Control-[

Control-E W; L; P
Control-E Control-L
Control-\

Scrolling

For details, seg Section P.2.

Control-E Control-J
Control-E Control-I
Control-’; Control-/
Alt-"; Alt-/

Text Editing

Extend selection by one character or line.
Extend selection by one word or paragraph.
Extend selection by one screenful.

Extend selection to first non-whitespace character of
line, beginning of line, first visible line (repeated
presses).

Extend selection to last non-whitespace character of
line, end of line, last visible line (repeated presses).

Extend selection to beginning of buffer.

Extend selection to end of buffer.

Select code block.

Select word; line; paragraph.

Select line range.

Switch between single and multiple selection mode.

Center current line on screen.
Center caret on screen.
Scroll up; down one line.
Scroll up; down one page.

For details, seg Section 4[4, Section 4.3, Sectidn 4.5, Section 4[6 and Sedtion 4.7.

Control-Z
Control-E Control-Z
Backspace; Delete

Undo.
Redo.
Delete character before; after caret.

Appendix A. Keyboard Shortcuts

Control-Backspace; Delete word before; after caret.

Control-Delete

Control-D; Control-E D Delete line; paragraph.

Shift-Backspace; Shift-Delete Delete from caret to beginning; end of line.

Control-E R Remove trailing whitespace from the current line (or
all selected lines).

Control-J Join lines.

Control-B Complete word.

Control-E F Format paragraph (or selection).

Clipboard and Registers

For details, seg Section 4.9.

Control-X Cut selected text to clipboard.

Control-C Copy selected text to clipboard.

Control-E Control-U Append selected text to clipboard, removing it from
the buffer.

Control-E Control-A Append selected text to clipboard, leaving it in the
buffer.

Control-V Paste clipboard contents.

Control-R Control-X key Cut selected text to registkey.
Control-R Control-C key Copy selected text to registkey.

Control-R Control-U key Append selected text to registezy, removing
it from the buffer.

Control-R Control-A key Append selected text to registezy, leaving
it in the buffer.

Control-R Control-V key Paste contents of registieey .
Control-E Control-V Paste previous.

67

Appendix A. Keyboard Shortcuts

Markers

Search and Replace

68

For details, sege Section 4]10.

Control-E Control-M

Control-T key
Control-Y key
Control-U key
Control-K key

Alt-Up; Alt-Down

For details, see Section 4]11.

Control-F
Control-G
Control-H
Control-E Control-F
Control-E Control-B
Control-E Control-D
Control-E Control-R
Control-E Control-G
Control-,

Control-.

If current line doesn’t contain a marker, one will be
added. Otherwise, the existing marker will be
removed. Use thMarkers menu to return to
markers added in this manner.

Add marker with shortcutey.
Go to marker with shortclkey .
Select to marker with shortckey.

Go to marker with shortclkey, and move
the marker to the previous caret
position.

Move caret to previous; next marker.

Open search and replace dialog box.
Find next.

Find previous.

Find selection.

Search in open buffers.

Search in directory.

Replace in selection.

Replace in selection and find next.
Quick incremental search.

Quick HyperSearch.

Appendix A. Keyboard Shortcuts

Source Code Editing

For details, seE Section b[Z, Section 5.4 and Section 5.5.

Control-;

Alt-Left; Alt-Right
Control-I

Control-E Control-C
Control-E Control-B
Control-E Control-K

Expand abbreviation.

Shift current line (or all selected lines) left; right.
Indent current line (or all selected lines).

Wing comment selection.

Box comment selection.

Block comment selection.

Folding and Narrowing

For details, seE Section b.6 and Secfion 5.6.1.

Alt-Backspace
Alt-Enter
Alt-Shift-Enter
Control-E Enter key

Control-E X
Control-E S
Control-E N

Macros

For details, seg Chapier 7.

Control-M Control-R
Control-M Control-M
Control-M Control-S
Control-M Control-P

Collapse fold containing caret.
Expand fold containing caret one level only.
Expand fold containing caret fully.

Expand folds with level less thdwy,
collapse all others.

Expand all folds.
Select fold.
Narrow to selection.

Record macro.

Record temporary macro.
Stop recording.

Run temporary macro.

69

Appendix A. Keyboard Shortcuts

Control-M Control-L Run most recently played or recorded macro.

70

Appendix B. The Activity Log

Theactivity logis very useful for troubleshooting problems, and helps when developing
plugins.

Utilities>Activity Log displays the last 500 lines of the activity log. By default, the
activity is shown in a floating window. It can be set to dock into the view inRbeking
pane of thdJtilities>Global Options dialog box; se¢ Section 2.2.1. The complete log
can be found in thectivity.log file inside the jEdit settings directory, the path of
which is shown inside the activity log window.

jEdit writes the following information to the activity log:

- Information about your Java implementation (version, operating system,
architecture, etc)

« All error messages and runtime exceptions (most errors are shown in dialog boxes
as well; but the activity log usually contains more detailed and technical
information)

« All sorts of debugging information that can be helpful when tracking down bugs
« Information about loaded plugins

While jEdit is running, the log file on disk may not always accurately reflect what has
been logged, due to buffering being done for performance reasons. To ensure the file on
disk is up to date, invoke thdtilities>Update Activity Log on Disk command. The log

file is also automatically updated on disk when jEdit exits.

71

Appendix C. History Text Fields

The text fields in the search and replace dialog box and file system browser remember
the last 20 entered strings by default. The number of strings to remember can be changed
in the General pane of theJtilities>Global Options dialog box; se¢ Section 6.3.

PressindJp recalls previous strings. PressiBgwn after recalling previous strings
recalls later strings.

Pressingshift-Up or Shift-Down will search backwards or forwards, respectively, for
strings beginning with the text already entered in the text field.

Clicking the triangle to the right of the text field, or clicking with the right-mouse button
anywhere else will display a pop-up menu of all previously entered strings; selecting one
will input it into the text field. Holding dowrshift while clicking will display a menu of

all previously entered strings that begin with the text already entered.

72

Appendix D. Glob Patterns

jEdit uses glob patterns similar to those in the various Unix shells to implement file name
filters in the file system browser. Glob patterns resemble regular expressions somewhat,
but have a much simpler syntax. The following character sequences have special
meaning within a glob pattern:

? matches any one character

* matches any number of characters

{a, b, c} matches any one @, b orc

[abc] matches any character in the agb orc

[* abc] matches any character not in the agb orc

[a-z] matches any character in the rary® z, inclusive. A leading or trailing
dash will be interpreted literally

Within a character class expression, the following sequences have special meaning:

[:alnum:]
[:alpha:]
[:blank:]
[:entrl:]
[:digit:]
[:graph:]
[:lower:]
[:print:]
[:punct:]
[:space:]
[:upper:]
[:xdigit:]

Any alphanumeric character

Any alphabetical character

A space or horizontal tab

A control character

A decimal digit

A non-space, non-control character

A lowercase letter

Same aggraph:] , but also space and tab
A punctuation character

Any whitespace character, including newlines
An uppercase letter

A valid hexadecimal digit

Here are some example glob patterns:

73

Appendix D. Glob Patterns

- * -allfiles
- *java - all files whose names end with “.java”
- *{c,h} - allfiles whose names end with either “.c” or “.h”

« *[*~] - allfiles whose names do not end with “~”

74

Appendix E. Regular Expressions

JEdit uses regular expressions to implement inexact search and replace. A regular
expression consists of a string where some characters are given special meaning with
regard to pattern matching.

Within a regular expression, the following characters have special meaning:

Positional Operators

« ~ matches at the beginning of a line
+ $ matches at the end of a line

« \b matches at a word break

« \B matches at a non-word break

« \< matches at the start of a word

. \> matches at the end of a word

One-Character Operators

- . matches any single character

- \d matches any decimal digit

« \D matches any non-digit

« \n matches the newline character

« \s matches any whitespace character

« \S matches any non-whitespace character

- \t matches a horizontal tab character

- \w matches any word (alphanumeric) character

« \W matches any non-word (alphanumeric) character

« \\ matches the backslash (“\") character

75

Appendix E. Regular Expressions

76

Character Class Operator

« [abc] matches any character in the agb orc
« [abc] matches any character not in the agb orc

« [a-z] matches any character in the rarag® z, inclusive. A leading or trailing

dash will be interpreted literally

Within a character class expression, the following sequences have special meaning:

[[alnum:] Any alphanumeric character
[:alpha:] Any alphabetical character
[:blank:] A space or horizontal tab
[:entrl] A control character

[:digit:] A decimal digit

[.graph:] A non-space, non-control character
[:lower:] A lowercase letter
[:print:] Same aggraph:] , but also space and tab

[:punct] A punctuation character
space:] Any whitespace character, including newlines
[:upper:] An uppercase letter

[:xdigit:] A valid hexadecimal digit

Subexpressions and Backreferences

(abc) matches whatever the expressabt would match, and saves it as a
subexpression. Also used for grouping

(?: ...) pure grouping operator, does not save contents
(?# ...) embedded comment, ignored by engine

(?= ...) positive lookahead; the regular expression will match if the text in the
brackets matches, but that text will not be considered part of the match

Appendix E. Regular Expressions

« (?' ...) negative lookahead; the regular expression will match if the text in the
brackets does not match, and that text will not be considered part of the match

» \nwhere 0 <n < 10, matches the same thing thih subexpression matched. Can
only be used in the search string

« $n where 0 <n < 10, substituted with the text matched by tith subexpression.
Can only be used in the replacement string

Branching (Alternation) Operator

+ al b matches whatever the expresseowould match, or whatever the expression
would match.
Repeating Operators

These symbols operate on the previous atomic expression.

- ? matches the preceding expression or the null string
« * matches the null string or any number of repetitions of the preceding expression
- + matches one or more repetitions of the preceding expression

- {n} matches exactlynrepetitions of the one-character expression

« {m n} matches betweemandn repetitions of the preceding expression, inclusive

- {m} matchesnor more repetitions of the preceding expression

Stingy (Minimal) Matching

If a repeating operator (above) is immediately followed I3y the repeating operator
will stop at the smallest number of repetitions that can complete the rest of the match.

77

A|c():loendix F. Macros Included With
JEdit

JEdit comes with a large number of sample macros that perform a variety of tasks. The
following index provides short descriptions of each macro, in some cases accompanied
by usage notes.

F.1. File Management Macros

These macros automate the opening and closing of files.
« Browse_Directory.bsh
Opens a directory supplied by the user in the file system browser.

» Close_Except_Active.bsh
Closes all files except the current buffer.

Prompts the user to save any buffer containing unsaved changes.

+ Go_to_File_System_ Browser.bsh

Sets the input focus to the file system browser.

e Open_Path.bsh

Opens the file supplied by the user in an input dialog.

« Open_Selection.bsh

Opens the file named by the current buffer’s selected text.

F.2. Text Macros

These macros generate various forms of formatted text.

« Add_Prefix_and_Suffix.bsh

78

Appendix F. Macros Included With jEdit

Adds user-supplied “prefix” and “suffix” text to each line in a group of selected
lines.

Text is added after leading whitespace and before trailing whitespace. A dialog
window receives input and “remembers” past entries.

Color_Picker.bsh

Displays a color picker and inserts the selected color in hexadecimal format,
prefixed with a “#".

Duplicate_Line.bsh

Duplicates the line on which the caret lies immediately beneath it and moves the
caret to the new line.

Insert_Date.bsh

Inserts the current date and time in the current buffer.

The inserted text includes a representation of the time in the “Internet Time” format.

Insert_Tag.bsh

Inserts a balanced pair of markup tags as supplied in a input dialog.

Toggle_Line_Comment.bsh

Toggles line comments, alternately inserting and deleting them at the beginning of
each selected line.

If there is no selection, the macro operates on the current line.

Make Double Box_Comments.bsh

Makes a individual wing style comment of equal width for each selected line in the
current buffer.

/* This is an example of the kind *
/* of comment (for Java or C/C++) produced *
/* by this macro. It has uniform width */

/* regardless of the width of the several lines. */

<l- HTML or SGML code ->
<l- will look like this when the macro is run ->

79

Appendix F. Macros Included With jEdit

» Reverse.bsh

Reverses the selected text in the current buffer.

» Rotl13.bsh

Replaces the selected text with the text encoded by the Rot13 “encryption”
algorithm.

Rot13 is a simple encoding scheme involving fixed character substitution. A second
application of the algorithm restores the original text.

« Write_File_Header.bsh
Writes a formatted file header in the current buffer based upon user input.

This macro asks for the name of the file, the author and a brief description of its
contents. It also asks whether the file should be saved immediately after the header
is inserted. The header will be set off with block comments based upon the editing
mode of the buffer; if the user has not set an editing mode, the macro will select one
based upon the file extension.

Note: The notes accompanying the macro source code describe how the
macro can be modified to produce a file header conforming to to personal
taste or institutional requirements.

F.3. Java Code Macros

These macros handle text formatting and generation tasks that are particularly useful in
writing Java code.

+ Get_Class_Name.bsh

Inserts a Java class name based upon the buffer’s file name.

« Get_Package_Name.bsh

Inserts a plausible Java package name for the current buffer.

80

Appendix F. Macros Included With jEdit

The macro compares the buffer's path name with the elements of the classpath
being used by the jEdit session. An error message will be displayed if no suitable
package name is found. This macro will not work if JEdit is being run as a JAR file
without specifying a classpath. In that case the classpath seen by the macro consists
solely of the JAR file.

+ Make_Get_and_Set_Methods.bsh
CreategietXxX() orsetxXX() methods that can be pasted into the buffer text.

This macro presents a dialog that will “grab” the names of instance variables from
the caret line of the current buffer and paste a correspory@itxxx() or

setXXX() method to one of two text areas in the dialog. The text can be edited in
the dialog and then pasted into the current buffer usindrbert... buttons. If the
caret is set to a line containing something other than an instance variable, the text
grabbing routine is likely to generate nonsense.

As explained in the notes accompanying the source code, the macro uses a global
variable which can be set to configure the macro to work with either Java or C++
code. When set for use with C++ code, the macro will also write (in commented
text) definitions ofgetXXX() orsetxXX() suitable for inclusion in a header file.

« Tidy_Block_Comments.bsh
Formats all end-of-line “block” comments to begin at a fixed column.

This macro uses jEdit’s syntax parsing routines to identify block comments and
place them in a column specified by the user. If uncommented text extends beyond
the specified column, the block comment will be placed two columns after the end
of the uncommented text with an intervening whitespace.

An input dialog allows the user to specify the display column for block comments

or to accept a default value. The user can also select whether tabs will be substituted
for spaces and whether comments at the beginning of a line will be ignored. The
macro will complain if the current buffer’s editing mode does not support block
comments.

F.4. Search Macros

These macros provide various shortcuts to search methods. A group of macros in this

81

Appendix F. Macros Included With jEdit

82

category allow the user to search of other occurrences of the word that appear on or next
to the editing caret.

« Find_Matching_File.bsh

Switches between C++ header | and source.¢pp) files with the same name in
the same directory.

Note: This macro is easily adapted to work with any pair of file extensions.

« Next_Char.bsh
Finds next occurence of character on current line.

The macro takes the next character typed after macro execution as the character
being searched. That character is not displayed. If the character does not appear in
the balance of the current line, no action occurs.

This macro illustrates the use putHandler.readNextChar() as a means of
obtaining user input. S¢e Section 14.1.4.

« Write_HyperSearch_Results.bsh

This macro writes the contents of the “HyperSearch Results” window to a new text
buffer.

The macro employs a simple text report format. Since the HyperSearch window’s
object does not maintain the search settings that produced the displayed results, the
macro examines the current settings in $earchAndReplace object. It confirms

that the HyperSearch option is selected before writing the report. However, the only
way to be sure that the report’s contents are completely accurate is to run the macro
immediately after a HyperSearch.

F.4.1. The Find_Occurrence Macro Group

This is a group of macros that enable searches in a text buffer for another occurrence of
the word situated at or immediately to the left of the editing caret. When these macros
are linked to keyboard shortcuts, they give the user the ability to search for occurrences
of a word without leaving the text buffer or interrupting use of the keyboard.

Appendix F. Macros Included With jEdit

Because the searching routine for each procedure has common code, the set of macros
consists of four macros that set a temporary jEdit property and then call the main search
macro,Find_Occurrence.bsh . That macro reads the temporary property, executes the
corresponding search procedure, and erases the property. If the property cannot be found,
the search routine looks for the next succeeding occurrence of the search term.

The final macro retrieves the marker left by the searching macro for the file and caret
position applicable just prior to the search.

» Find_Occurrence.bsh

This macro runs the search routine corresponding to the property set by one of its
companion macros.

If the macro is called directly or if the search type property cannot be found, it will
find the next occurrence of the word on or to the left of the editing caret. If the
search succeeds, the macro sets a bookmark by creating temporary jEdit properties
for the buffer name and caret location.

« Find_First_Occurrence.bsh
CallsFind_Occurrence to find the first occurrence of the word on or to the left of
the editing caret.

e Find_Previous_Occurrence.bsh
CallsFind_Occurrence to find the immediately preceding occurrence of the word
on or to the left of the editing caret.

» Find_Next_Occurrence.bsh
CallsFind_Occurrence to find the next occurrence of the word on or to the left of
the editing caret.

+ Find_Last_Occurrence.bsh
CallsFind_Occurrence to find the last occurrence of the word on or to the left of
the editing caret.

» Return_From_Find.bsh

Returns the user to the buffer and location specified in the bookmark created by
Find_Occurrence , reopening a file if necessary.

83

Appendix F. Macros Included With jEdit

The file is reopened if necessary; an error message is displayed if the file no longer
exists. If the file exists but the caret position index exceeds the size of the file
(because of intervening deletions, for example), the file is displayed and an error
message alerts the user that the bookmarked caret position is invalid. The bookmark
is deleted immediately after it is used.

F.5. Macros for Listing Properties

These macros produce lists or tables containing properties used by the Java platform or
jEdit itself.

+ jEdit_Properties.bsh

Writes an unsorted list of jEdit properties in a new buffer.

« System_Properties.bsh

Writes an unsorted list of all Java system properties in a new buffer.

« Look and_Feel Properties.bsh

Writes an unsorted list of the names of Java Look and Feel properties in a new
buffer.

F.6. Miscellaneous Macros

While these macros do not fit easily into the other categories, they all provide interesting
and useful functions.

« Cascade_jEdit_Windows.bsh
Rearranges view and floating plugin windows.

The windows are arranged in an overlapping “cascade” pattern beginning near the
upper left corner of the display.

» Copy_Mode_ Abbrevs.bsh

84

Appendix F. Macros Included With jEdit

Copies all abbreviations from one editing mode to another, overwriting any
duplicate entries.

A number of jEdit editing modes target languages that share keywords, tags or other
features. Examples include “java” and “beanshell”, and “c” and “c++". This macro
saves the trouble of manually editing abbreviations sets to share abbreviations
between editing modes. The macro will also permit copying of a mode’s
abbreviations to the “global” abbreviation set that is available in all buffers
regardless of editing mode.

The macro will overwrite any existing abbreviations in the target editing mode
using the same abbreviation as a member of the source set. Use caution in copying
from one set to another, as any attempt to undo the copying must be done manually.

Display_Abbreviations.bsh
Displays the abbreviations registered for each of jEdit's editing modes.

The macro provides a read-only view of the abbreviations contained in the
“Abbreviations” option pane. Pressing a letter key will scroll the table to the first
entry beginning with that letter. A further option is provided to write a selected
mode’s abbreviations or all abbreviations in a text buffer for printing as a reference.
Notes in the source code listing point out some display options that are configured
by modifying global variables.

Display_Shortcuts.bsh

Displays a sorted list of the keyboard shortcuts currently in effect.

The macro provides a combined read-only view of command, macro and plugin
shortcuts. Pressing a letter key will scroll the table to the first entry beginning with
that letter. A further option is provided to write the shortcut assignments in a text
buffer for printing as a reference. Notes in the source code listing point out some
display options that are configured by modifying global variables.

Evaluate_Buffer_in_BeanShell.bsh

Evaluates contents of current buffer as a BeanShell script, and opens a new buffer to
receive any text output.

This is a quick way to test a macro script even before its text is saved to a file.
Opening a new buffer for output is a precaution to prevent the macro from
inadvertently erasing or overwriting itself. BeanShell scripts that operate on the

85

Appendix F. Macros Included With jEdit

86

contents of the current buffer will not work meaningfully when tested using this
macro.

Go_to_Text_Area.bsh

Sets the input focus to the text editing area.

Linked to a keyboard shortcut, this macro can quickly return input focus to the text
area after invoking a command that shifts focus to a docked plugin window.
Include_Guard.bsh

Intended for C/C++ header files, this macro inserts a preprocessor directive in the
current buffer to ensure that the header is included only once per compilation unit.

To use the macro, first place the caret at the beginning of the header file before any
uncommented text. The macro will return to this position upon completion. The
defined term that triggers the “include guard” is taken from the buffer's name.

List Plugin_Internal_Names.bsh

Writes a sorted list of installed plugins to the current buffer.

The form of each name is that usedjbyit.getPlugin()

Tip: The name can be used in a macro to test for the presence of a particular
plugin.

Make_Bug_Report.bsh

Creates a new buffer with installation and error information extracted from the
activity log.

The macro extracts initial messages written to the activity log describing the user’s
operating system, JDK, jEdit version and installed plugins. It then appends the last
set of error messages written to the activity log. The new text buffer can be saved
and attached to an email message or a bug report made on SourceForge.

Run_Macro_at Caret.bsh

Executes the macro whose name appears at the editing caret.

Appendix F. Macros Included With jEdit

When used with abbreviations for macro name, this macro allows the user to
execute any macro script from the keyboard by typing its name, withoutghe
extension. It will search for the requested script in both the system and user macro
directories, in each case using the caret text as a relative path.

The full utility of this macro can be acheived when it is combined with
abbreviations for commonly used macros. To try it out, follow these steps:

1. Inthe “Macro Shortcuts” option pane, Associ&tie_Macro_at_Caret with
the shortcuControl-Space

2. Inthe “global” abbreviation group, associate the abbreviation “dtt” with the
text “/Text/Insert_Date”. The leading forward slash character is necessary
and should be used regardless of one’s operating system. Make sure that the
abbreviation option pane has the checkBgace bar expands abbrevs
selected.

To activate the macro from the keyboard, tygie in a text buffer.
4. Press the space bar to expatil to /Text/Insert_Date
5. PresgControl-Spaceto run the macro. The textext/Insert_Date
will be replaced by the output of thesert_Date macro.

Repeating this procedure allows the user to execute macros from the keyboard using
shortcut names instead of keystrokes.

Show_Free_Memory.bsh

Runs the Java garbage collection routine to free unneeded memory.

After running garbage collection, the macro displays a message box with text and
graphic displays of jEdit's memory usage after garbage collection.

87

Appendix G. jEditLauncher for
Windows

G.1. Introduction

The jEditLauncher package is a set of lightweight components for running jEdit under
the Windows group of operating systems. The package is designed to run on Windows
95, Windows 98, Windows Me, Windows NT (versions 4.0 and greater) and Windows
2000.

While jEdit does not make available a component-type interface, it does contains an
“EditServer” that listens on a socket for requests to load scripts written in the BeanShell
scripting language. When the server activates, it writes the server port number and a
pseudo-random, numeric authorization key to a text file. By default, the file is named
server and is located in the settings directory (§€€ Sectign 6.4).

The jEditLauncher component locates and reads this file, opens a socket and attempts to
connect to the indicated port. If successful, it transmits the appropriate BeanShell script
to the server. If unsuccessful, it attempts to start jEdit and repeats the socket transmission
once it can obtain the port and key information. The component will abandon the effort

to connect roughly twenty seconds after it launches the application.

G.2. Starting jEdit

The main component of the jEditLauncher package is a client application entitled
jedit.exe. It may be executed either from Windows Explorer, or the command line. It

uses the jEditLauncher COM component to open files in jEdit that are listed as command
line parameters. It supports Windows and UNC file specifications as well as wild cards.

If called without parameters, it will launch jEdit. If jEdit is already running, it will

simply open a new, empty buffer.

jedit.exe supports four command-line options. If any of these options are invoked
correctly, the application will not load files or execute jEdit.

- The option/h causes a window to be displayed with a brief description of the
application and its various options.

88

Appendix G. jEditLauncher for Windows

- The option/p will activate a dialog window displaying the command-line
parameters to be used when calling jEdit. This option can also be triggered by
selectingSet jEdit Parameters from thejEdit section of the Windows Programs
menu.

Using the dialog, you can change parameters specifying the executable for the Java
interpreter, the JAR archive file or class name used as the target of the interpreter,
and command line options for both. If thar option is not used for the Java
executable, the principal JEdit class @t.gjt.sp.jedit.jEdit is set as fixed

data. The working directory for the Java interpreter’s process can also be specified.
A read-only window at the bottom of the dialog displays the full command-line that
jEditLauncher will invoke.

Before committing changes to the command line paramgeatis,exe validates the
paths for the Java and jEdit targets as well as the working directory. It will complain
if the paths are invalid. It will not validate command-line options, but it will warn
you if it finds the-noserver option used for jEdit, since this will deactivate the
edit server and make it impossible for jEditLauncher to open files.

Note that due to the design of jEditLauncher, platform-independent command line
options handled by jEdit itself (such asackground and-norestore) must be

entered in the “Set jEdit Parameters” dialog box, and cannot be specified on the
jedit.exe command line directly. For information about platform-independent

command line options, s¢e Section 1.4.

« The option/i is not mentioned in the help window f@ditexe . Itis intended
primarily to be used in conjunction with jEdit’s Java installer, but it can also be used
to install or reinstall jEditLauncher manually. When accompanied by a second
parameter specifying the directory where your preferred Java interpreter is located,
jEditLauncher will install itself and set a reasonable initial set of command line
parameters for executing jEdit. You can change these parameters later by running
jeditexe with the/lp option.

- The option/u will cause jEditLauncher to be uninstalled by removing its registry
entries. This option does not delete any jEditLauncher or jEdit files.

G.3. The Context Menu Handler

The jEditLauncher package also implements a context menu handler for the Windows

89

Appendix G. jEditLauncher for Windows

shell. It is intended to be be installed as a handler available for any file. When you
right-click on a file or shortcut icon, the context menu that appears will include an item
displaying the jEdit icon and caption€pen with jEdit. If the file has an extension,
another item will appear caption€pen *. XXX with jEdit, where XXX is the extension
of the selected file. Clicking this item will cause jEdit to load all files with the same
extension in the same directory as the selected file. Multiple file selections are also
supported; in this circumstance only tBgen with jEdit item appears.

If a single file with absh extension is selected, the menu will also contain an item
captionedRun script in jEdit. Selecting this item will cause jEditLauncher to run the
selected file as a BeanShell script.

If exactly two files are selected, the menu will contain an entnSioow diff in jEdit.
Selecting this item will load the two files in jEdit and have them displayed side-by-side
with their differences highlighted by the JDiff plugin. The file selected first will be
treated as the base for comparison purposes. If the plugin is not installed, an error
message will be displayed in jEdit. See Chapter 8 for more information and installing
plugins.

G.4. Uninstalling jJEdit and jEditLauncher

There are three ways to uninstall jEdit and jEditLauncher.

« First, you can runinlaunch.exe in the jEdit installation directory.

« Second, you can choosminstall jEdit from thejEdit section of the Programs
menu.

» Third, you can choose the uninstall option for jEdit in the Control Panel’s
Add/Remove Programs applet.

Each of these options will deactivate jEditLauncher and delete all files in jEdit’s
installation directory. As a safeguard, jEditLauncher displays a warning window and
requires the user to confirm an uninstall operation. Because the user’s settings directory
can be set and changed from one jEdit session to another, user settings files must be
deleted manually.

To deactivate jEditLauncher without deleting any files, jagit /u from any
command prompt where the jEdit installation directory is in the search path. This will

90

Appendix G. jEditLauncher for Windows

remove the entries for jEditLauncher from the Windows registry, and disable the context
menu handler, and the automatic launching and scripting capabilities. The package can
reactivated by executingdit.exeagain, and jEdit can be started in the same manner as
any other Java application on your system.

G.5. The jEditLauncher Interface

The core of the jEditLauncher package is a COM component that can communicate with
the EditServer, or open jEdit if it is not running or is otherwise refusing a connection. The
component supports both Windows and UNC file specifications, including wild cards. It
will resolve shortcut links to identify and transmit the name of the underlying file.

Because it is implemented with a “dual interface”, the functions of jEditLauncher are
available to scripting languages in the Windows environment such as VBScript, JScript,
Perl (using the Win32::0OLE package) and Python (using the win32com.client package).

The scriptable interface consists of two read-only properties and six functions:

Properties

« ServerPort - aread-only property that returns the port number found in jEdit’s
server file; the value is not tested for authenticity. It returns zero if the server
information file cannot be located.

« ServerKey - aread-only property that returns the numeric authorization key found
in jJEdit’s server file; the value is not tested for authenticity. It returns zero if the
server information file cannot be located.

Functions

« OpenFile -a method that takes a single file name (with or without wild card
characters) as a parameter.

+ OpenFiles - this method takes a array of file names (with or without wild card
characters) as a parameter. The form of the array is that which is used for arrays in
the scripting environment. In JScript, for example the data type of the VARIANT
holding the array is VT_DISPATCH,; in VBScript, itis VT_ARRAY |
VT_VARIANT, with array members having data type VT_BSTR.

91

Appendix G. jEditLauncher for Windows

92

« Launch - this method with no parameters attempts to open jEdit without loading
additional files.

« RunScript - this method takes a file name or full file path as a parameter and runs
the referenced file as a BeanShell script in jEdit. The predefined variables
editPane ,textArea andbuffer are available to the script. If more than one view
is open, the variable are initialized with reference to the earliest opened view. If no
path is given for the file it will use the working directory of the calling process.

« EvalScript - this method takes a string as a parameter containing one or more
BeanShell statements and runs the script in jEdit's BeanShell interpreter. The
predefined variables are available on the same basisras8tript

+ RunDiff -this method takes two strings representing file names as parameters. If
the JDiff plugin is installed, this method will activate the JDiff plugin and display
the two files in the plugin’s graphical “dual diff” format. The first parameter is
treated as the base for display purposes. If the JDiff plugin is not installed, a error
message box will be displayed in jEdit.

G.6. Scripting Examples

Here are some brief examples of scripts using jEditLauncher. The first two will run under
Windows Script Host, which is either installed or available for download for 32-bit
Windows operating systems. The next example is written in Perl and requires the
Win32::OLE package. The last is written in Python and requires the win32gui and
win32com.client extensions.

If Windows Script Host is installed, you can run the first two scripts by typing the name
of the file containing the script at a command prompt. In jEdit's Console plugin, you can
typecmd /c script_path orwscript script_path

" Example VBSscript using jEditLauncher interface

dim launcher

set launcher = CreateObject("JEdit.JEditLauncher")

a = Array("l:\Source Code Files\shellext\jeditshell*.h",
"I\Source Code Files\shellext\jeditshell*.cpp™)

MsgBox "The server authorization code is " + _
FormatNumber(launcher.ServerkKey, 0, 0, 0, 0) + """, _
vbOKOnly + vbinformation, "jEditLauncher”

launcher.openFiles(a)

Appendix G. jEditLauncher for Windows

myScript = "jEdit.newFile(view); textArea.setSelectedText(" _
& CHR(34) _
& "Welcome to jEditLauncher." _
& CHR(34) & ;"

launcher.evalScript(myScript)

/* Example JScript using jEditLauncher interface
* Note: in contrast to VBScript, JScript does not
* directly support message boxes outside a browser window

*/

var launcher = WScript.createObject("JEdit.JEditLauncher");
var a = new Array("l:\\weather.html", "l:\\test.txt");

b = "L\ pl";

launcher.openFiles(a);

launcher.openFile(b);

¢ = "G:\\Program Files\\|Edit\macros\\Misc"
+ "\Properties\\System_properties.bsh";

launcher.runScript(c);

Example Perl script using jEditLauncher interface
use Win32::0OLE;
$launcher = Win32::OLE->new('JEdit.JEditLauncher’) ||
die "JEditLauncher: not found \n";
@files = ();
foreach $entry (@ARGV) {
@new = glob($entry);
push(@files,@new);

}
$launcher->openFiles(\@files);
my($script) = "Macros.message(view, \"lI found "

.(scalar @files)." files.\");";
$launcher->evalScript($script);

Example Python script using jEditLauncher interface
import win32gui
import win32com.client
0 = win32com.client.Dispatch("JEdit.JEditLauncher")
port = o.ServerPort
if port ==
port = "inactive. We will now launch jEdit"
win32gui.MessageBox(0, "The server port is %s." % port,

93

Appendix G. jEditLauncher for Windows

94

"|EditLauncher"”, 0)
path = "C:\WINNT\\Profiles\NAdministrator\\Desktop\\"
o.RunDiff(path + "Search.bsh", path + "Search2.bsh")

G.7. Legal Notice

All source code and software distributed as the jEditLauncher package in which the
author holds the copyright is made available under the GNU General Public License
(“GPL"). A copy of the GPL is included in the fileOPYING.txt included with jEdit.

Notwithstanding the terms of the General Public License, the author grants permission to
compile and link object code generated by the compilation of this program with object
code and libraries that are not subject to the GNU General Public License, provided that
the executable output of such compilation shall be distributed with source code on
substantially the same basis as the jEditLauncher package of which this source code and
software is a part. By way of example, a distribution would satisfy this condition if it
included a working Makefile for any freely available make utility that runs on the

Windows family of operating systems. This condition does not require a licensee of this
software to distribute any proprietary software (including header files and libraries) that

is licensed under terms prohibiting or limiting redistribution to third parties.

The purpose of this specific permission is to allow a user to link files contained or
generated by the source code with library and other files licensed to the user by
Microsoft or other parties, whether or not that license conforms to the requirements of
the GPL. This permission should not be construed to expand the terms of any license for
any source code or other materials used in the creation of jEditLauncher.

Il. Writing Edit Modes

This part of the user’s guide covers writing edit modes for jEdit.

Edit modes specify syntax highlighting rules, auto indent behavior, and various other
customizations for editing different file types. For general information about edit modes,
see[Secfion 5.1.

This part of the user’s guide was written by Slava Pestava@jedit.org >,

95

Chapter 9. Writing Edit Modes

Edit modes are defined using XML, tlegtensible markup languagmode files have the
extensionxml . XML is a very simple language, and as a result edit modes are easy to
create and modify. This section will start with a short XML primer, followed by detailed
information about each supported tag and highlighting rule.

Reload Edit Modes command

Utilities>Reload Edit Modes reloads all edit mode XML files from disk. It is vefy
useful when writing edit modes because it lets you see changes take effect wjthout
having to restart jEdit.

9.1. An XML Primer

A very simple edit mode looks like so:
<?xml version="1.0"?>
<IDOCTYPE MODE SYSTEM "xmode.dtd">

<MODE>
<PROPS>
<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*" />
</PROPS>

<RULES>

<BEGIN>/*</BEGIN>
<END>*/</END>

</RULES>
</MODE>

Note that each opening tag must have a corresponding closing tag. If there is nothing
between the opening and closing tags, for examples></TAG>, the shorthand notation

96

Chapter 9. Writing Edit Modes

<TAG /> may be used. An example of this shorthand can be seen ¥PER@PERTYtags
above.

XML is case sensitiveSpan or span is not the same asPAN

To insert a special character such as < or > literally in XML (for example, inside an
attribute value), you must write it as antity. An entity consists of the character’s
symbolic name enclosed with “&” and “;”. A full list of entities is out of the scope of this
section, but the most important are:

« < - The less-than (<) character
« > - The greater-than (>) character
- & - The ampersand (&) character

For example, the following will cause a syntax error:

<SEQ TYPE="OPERATOR">&</SEQ>

Instead, you must write:

<SEQ TYPE="OPERATOR">&</SEQ>

Now that the basics of XML have been covered, the rest of this section will cover each
construct in detail.

9.2. The Preamble and MODE tag

Each mode definition must begin with the following:

<?xml version="1.0"?>
<IDOCTYPE MODE SYSTEM "xmode.dtd">

Each mode definition must also contain exactly si@daag. All other tagskROPS
RULESQ must be placed inside th¢ODHag.

9.3. The PROPS Tag

The PROPSag and theeROPERTYags inside it are used to define mode-specific

97

Chapter 9. Writing Edit Modes

properties. EacRROPERTYag must have 8AMEattribute set to the property’s name, and
aVALUEattribute with the property’s value.

All buffer-local properties listed i Section 6.2 may be given values in edit modes. In
addition, the following mode properties have no buffer-local equivalent:

+ indentCloseBrackets - A list of characters (usually brackets) that subtract indent
from thecurrentline. For example, in Java mode this property is set to “}".

« indentOpenBrackets - A list of characters (usually brackets) that add indent to the
nextline. For example, in Java mode this property is set to “{".

+ indentPrevLine - When indenting a line, jEdit checks if the previous line matches
the regular expression stored in this property. If it does, a level of indent is added.
For example, in Java mode this regular expression matches language constructs
such as “if”, “else”, “while”, etc.

+ doubleBracketindent - If aline matches thandentPrevLine regular expression
and the next line contains an opening bracket, a level of indent will not be added to
the next line, unless this property is set to “true”. For example, with this property set
to “false”, Java code will be indented like so:

while(objects.hasMoreElements())

{

}
On the other hand, settings this property to “true” will give the following result:

((Drawable)objects.nextElement()).draw();

while(objects.hasMoreElements())

{
}

((Drawable)objects.nextElement()).draw();

Here is the completePROPS>tag for Java mode:

<PROPS>
<PROPERTY NAME="indentOpenBrackets" VALUE="{" />
<PROPERTY NAME="indentCloseBrackets" VALUE="}" />
<PROPERTY NAME="indentPrevLine" VALUE="\s*(((iflwhile)

\s*\(|else|case|default)[";]*[for\s*\(.*)" />

<PROPERTY NAME="doubleBracketindent" VALUE="false" />
<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*" />

98

Chapter 9. Writing Edit Modes

<PROPERTY NAME="blockComment" VALUE="//" />

<PROPERTY NAME="noWordSep" VALUE="_" />

<PROPERTY NAME="wordBreakChars" VALUE=",+-=<>/?"&*" [>
</PROPS>

9.4. The RULES Tag

RULEStags must be placed inside thi®DHag. EaclRULEStag defines auleset A

ruleset consists of a number édirser rules with each parser rule specifying how to
highlight a specific syntax token. There must be at least one ruleset in each edit mode.
There can also be more than one, with different rulesets being used to highlight different
parts of a buffer (for example, in HTML mode, one rule set highlights HTML tags, and
another highlights inline JavaScript). For information about using more than one ruleset,
see[Seciion 9.4.3.

TheRULEStag supports the following attributes, all of which are optional:

- SET-the name of this ruleset. All rulesets other than the first must have a name.

+ HIGHLIGHT_DIGITS - if set toTRUE digits (0-9, as well as hexadecimal literals
prefixed with “0x”) will be highlighted with thedIGIT token type. Default iISALSE

« IGNORE_CASE if set toFALSE, matches will be case sensitive. Otherwise, case will
not matter. Default ISRUE

« DEFAULT- the token type for text which doesn’t match any specific rule. Default is
NULL Seg Section 9.4.9 for a list of token types.

Here is an examplRULEStag:

<RULES IGNORE_CASE="FALSE" HIGHLIGHT_DIGITS="TRUE">
... parser rules go here ...
</RULES>

99

Chapter 9. Writing Edit Modes

100

Rule Ordering Requirements

You might encounter this very common pitfall when writing your own modes.

Since jEdit checks buffer text against parser rules in the order they appear in the
ruleset, more specific rules must be placed before generalized ones, otherwige the

generalized rules will catch everything.

This is best demonstrated with an example. The following is incorrect rule
ordering:

<BEGIN>[</BEGIN>
<END>]</END>

<BEGIN>[!</BEGIN>
<END>]</END>

If you write the above in a rule set, any occurrence of “[” (even things like

“['DEFINE”, etc) will be highlighted using the first rule, because it will be the fiyst

to match. This is most likely not the intended behavior.

The problem can be solved by placing the more specific rule before the genegal

one:

<BEGIN>[I</BEGIN>
<END>]</END>

<BEGIN>[</BEGIN>
<END>]</END>

Now, if the buffer contains the text “['SPECIAL]", the rules will be checked in

order, and the first rule will be the first to match. However, if you write “[FOO]?, it

will be highlighted using the second rule, which is exactly what you would exp

ect.

Chapter 9. Writing Edit Modes

9.4.1. The TERMINATE Rule

The TERMINATErule specifies that parsing should stop after the specified number of
characters have been read from a line. The number of characters to terminate after should
be specified with theT_CHARattribute. Here is an example:

<TERMINATE AT_CHAR="1" />

This rule is used in Patch mode, for example, because only the first character of each line
affects highlighting.

9.4.2. The WHITESPACE Rule

The WHITESPACRUle specifies characters which are to be treated as keyword delimiters.
Most rulesets will havevHITESPACHags for spaces and tabs. Here is an example:

<WHITESPACE> </WHITESPACE>
<WHITESPACE> </WHITESPACE>

9.4.3. The SPAN Rule

The sPANrule highlights text between a start and end string. The start and end strings are
specified inside child elements of tBeANtag. The following attributes are supported:

« TYPE- The token type to highlight the span with. See Section9.4.9 for a list of
token types

« AT_LINE_START - If set toTRUE the span will only be highlighted if the start
sequence occurs at the beginning of a line

« EXCLUDE_MATCHIf set to TRUE the start and end sequences will not be
highlighted, only the text between them will

« NO_LINE_BREAK- If set toTRUE the span will be highlighted with thelvALID
token type if it spans more than one line

101

Chapter 9. Writing Edit Modes

« NO_WORD_BREAKTf set to TRUE the span will be highlighted with thelVALID
token type if it includes whitespace

« DELEGATE text inside the span will be highlighted with the specified ruleset. To
delegate to a ruleset defined in the current mode, just specify its name. To delegate
to a ruleset defined in another mode, specify a name of therfada: ruleset
Note that the first (unnamed) ruleset in a mode is called “MAIN".

Note: Do not delegate to rulesets that define a TERMINATErule (examples of such
rulesets include text:MAIN and patch:MAIN). It won't work.

Here is asPANthat highlights Java string literals, which cannot include line breaks:

<BEGIN>"</BEGIN>
<END>"</END>

Here is asPANthat highlights Java documentation comments by delegating to the
“JAVADOC ruleset defined elsewhere in the current mode:

<BEGIN>/**</BEGIN>
<END>*/</END>

Here is asPANthat highlights HTML cascading stylesheets insida YLE>tags by
delegating to the main ruleset in the CSS edit mode:

<BEGIN><style></BEGIN>
<END></style></END>

Tip: The <END>tag is optional. If it is not specified, any occurrence of the start
string will cause the remainder of the buffer to be highlighted with this rule.

This can be very useful when combined with delegation.

102

Chapter 9. Writing Edit Modes

9.4.4. The EOL_SPAN Rule

An EOL_SPANS similar to asPANexcept that highlighting stops at the end of the line, not
after the end sequence is found. The text to match is specified between the opening and
closingeOL_SPANags. The following attributes are supported:

« TYPE- The token type to highlight the span with. §ee Section9.4.9 for a list of
token types

« AT_LINE_START - If set toTRUE the span will only be highlighted if the start
sequence occurs at the beginning of a line

+ EXCLUDE_MATCHIf set toTRUE the start sequence will not be highlighted, only the
text after it will

Here is areEOL_SPANhat highlights C++ comments:

<EOL_SPAN TYPE="COMMENT1">//</EOL_SPAN>

9.4.5. The MARK_PREVIOUS Rule

The MARK_PREVIOUSule highlights from the end of the previous syntax token to the
matched text. The text to match is specified between opening and closing
MARK_PREVIOU$ags. The following attributes are supported:

« TYPE- The token type to highlight the text with. Sge Section 9.4.9 for a list of token
types

« AT_LINE_START - If set toTRUE the text will only be highlighted if it occurs at the
beginning of the line

« EXCLUDE_MATCHIf set to TRUE the match will not be highlighted, only the text
before it will

Here is a rule that highlights labels in Java mode (for example, “XXX:"):

<MARK_PREVIOUS AT_LINE_START="TRUE"
EXCLUDE_MATCH="TRUE">:</MARK_PREVIOUS>

103

Chapter 9. Writing Edit Modes

104

9.4.6. The MARK_FOLLOWING Rule

The MARK_FOLLOWINGule highlights from the start of the match to the next syntax
token. The text to match is specified between opening and clogiRg_FOLLOWING
tags. The following attributes are supported:

« TYPE- The token type to highlight the text with. Sge Section 9.4.9 for a list of token
types

« AT_LINE_START - If set to TRUE the text will only be highlighted if the start
sequence occurs at the beginning of a line

« EXCLUDE_MATCHIf set toTRUE the match will not be highlighted, only the text
after it will

Here is a rule that highlights variables in Unix shell scripts (“6CLASSPATH”, “$IFS”,
etc):

<MARK_FOLLOWING TYPE="KEYWORD2">$</MARK_FOLLOWING>

9.4.7. The SEQ Rule

The seQrule highlights fixed sequences of text. The text to highlight is specified between
opening and closingEQtags. The following attributes are supported:

« TYPE- the token type to highlight the sequence with. 9.4.9 for a list of
token types

« AT_LINE_START - If set toTRUE the sequence will only be highlighted if it occurs
at the beginning of a line

The following rules highlight a few Java operators:

<SEQ TYPE="OPERATOR">+</SEQ>
<SEQ TYPE="OPERATOR">-</SEQ>
<SEQ TYPE="OPERATOR">*</SEQ>
<SEQ TYPE="OPERATOR">/</SEQ>

Chapter 9. Writing Edit Modes

9.4.8. The KEYWORDS Rule

There can only be on€EYWORD&Q per ruleset. TheEYWORDsIle defines keywords to
highlight. Keywords are similar teEG, except thasEG match anywhere in the text,
whereas keywords only match whole words.

The KEYWORD&g supports only one attributeNORE_CASEIf set toFALSE, keywords
will be case sensitive. Otherwise, case will not matter. DefadlRisE

Each child element of theEYWORDt&g should be named after the desired token type,
with the keyword text between the start and end tags. For example, the following rule
highlights the most common Java keywords:

<KEYWORDS IGNORE_CASE="FALSE">
<KEYWORD1>if</KEYWORD1>
<KEYWORD1>else</KEYWORD1>
<KEYWORD3>int</KEYWORD3>
<KEYWORD3>void</KEYWORD3>
</KEYWORDS>

9.4.9. Token Types

Parser rules can highlight tokens using any of the following token types:

« NULL- no special highlighting is performed on tokens of tyypé L
« COMMENT1

+ COMMENT2

« FUNCTION

« INVALID - tokens of this type are automatically added @ WORD_BREAK
NO_LINE_BREAK SPApans more than one word or line, respectively.

« KEYWORD1
+ KEYWORD2
+ KEYWORD3
 LABEL

* LITERAL1

105

Chapter 9. Writing Edit Modes

» LITERAL2
+ MARKUP
+ OPERATOR

106

Chapter 10. Installing Edit Modes

jEdit looks for edit modes in two locations; thedes subdirectory of the jEdit settings
directory, and thenodes subdirectory of the jEdit install directory. The location of the
settings directory is system-specific; §ee Section 6.4.

Each mode directory containgatalog file. All edit modes contained in that directory
must be listed in the catalog, otherwise they will not be available to jEdit.

Catalogs, like modes themselves, are written in XML. They consist of a SuQeES

tag, with a number oflODHags inside. Each mode tag associates a mode name with an
XML file, and specifies the file name and first line pattern for the mode. A sample mode
catalog looks like follows:

<?xml version="1.0"?>
<IDOCTYPE CATALOG SYSTEM "catalog.dtd">

<MODES>
<MODE NAME="shellscript" FILE="shellscript.xml"
FILE_NAME_GLOB="*.sh"
FIRST_LINE_GLOB="#!/*sh*" />
</MODES>

In the above example, a mode named “shellscript” is defined, and is used for files whose
names end wittsh , or whose first line starts with “#!/” and contains “sh”.

The MODHag supports the following attributes:

« NAME the name of the edit mode, as it will appear in Bigfer Options dialog
box, the status bar, and so on

+ FILE - the name of the XML file containing the mode definition

« FILE_NAME_GLOB- files whose names match this glob pattern will be opened in this
edit mode. Seg Appendix D for information about glob patterns

+ FIRST_LINE_GLOB - files whose first line matches this glob pattern will be opened
in this edit mode. See Appendix D for information about glob patterns

If an edit mode is defined in the user-specific catalog with the same name as an edit
mode in the global catalog, the version in the user-specific catalog will be used instead of
the other version.

107

I1l. Writing Macros

This part of the user’s guide covers writing macros for jEdit.

First, we will tell you a little about BeanShell, jEdit’s macro scripting language. Next,

we will walk through a few simple macros. We then present and analyze a dialog-based
macro to illustrate additional macro writing techniques. Finally, we discuss several tips
and techniques for writing and debugging macros.

This part of the user’s guide was written by John Gellejgelksne@nyc.rr.com >,

108

Chapter 11. Introducing BeanShell

Here is how BeanShell's author, Pat Niemeyer, describes his creation:

“BeanShell is a small, free, embeddable, Java source interpreter with object scripting
language features, written in Java. BeanShell executes standard Java statements and
expressions, in addition to obvious scripting commands and syntax. BeanShell supports
scripted objects as simple method closures like those in Perl and JavaScript.”

As you might gather from this short quote, BeanShell is very similar to Java and is
designed to be easy for Java programmers to learn. If you know how to program in Java,
you already know how to write BeanShell macros. Nonetheless, the premise of this guide
is that you should not have to know anything about Java to begin writing your own
macros for jEdit.

If you are not a Java programmer, you will have to learn a little about Java classes and
syntax, but that’s not a bad thing. You will also have to learn a little (but not too much)
about some of the classes that are defined and used by the jEdit program itself. That is in
fact the major strength of using BeanShell with a program written in Java: it allows the
user to customize the program’s behavior by employing the same interfaces designed and
used by the program’s developer. Thus, BeanShell can turn a well-designed application
into a powerful toolkit.

This guide focuses on using BeanShell in macros. If you are interested in learning more
about BeanShell generally, consult the BeanShell web site (http://www.beanshell.org).
Information on how to run and organize macros, whether included with the jEdit
installation or written by you, can be found[in Chapter 7.

11.1. Single Execution Macros

There are two ways jEdit lets you use BeanShell quickly on a “one time only” basis. You
will find both of them in theUtilities menu.

Utilities>Evaluate BeanShell Expression causes jEdit to display a text input dialog
that asks you to type a single line of BeanShell commands. You can type more than one
BeanShell statement so long as each of them ends with a semicolon. If BeanShell
successfully interprets your input, a message box will appear with the return value of the
last statement. You can do the same thing using the BeanShell interpreter provided with

109

Chapter 11. Introducing BeanShell

110

the Console plugin; the return value will appear in the output window.

Utilities>Evaluate Selection evaluates the selected text as a BeanShell script and
replaces the selected text with the return value of the last BeanShell statement.

UsingEvaluate Selection is an easy way to do arithmetic calculations inline while
editing. BeanShell uses numbers and arithmetic operations in an ordinary, intuitive way.

Try typing an expression lik€8745*856)+74 in the buffer, select it, and choose

Utilities>Evaluate Selection. The selected text will be replaced by the answer,
3205794 .

Chapter 12. A Few Simple Macros

12.1. The Mandatory First Example

Macros.message(view, "Hello world!);

Running this one line script causes jEdit to display a message box (more precisely, a
JOptionPane object) with the traditional beginner’'s message an@®&nbutton. Let’s
see what is happening here.

This statement calls a static method (or function) nameskage in jEdit’s Macros

class. If you don’t know anything about classes or static methods or Java (or C++, which
employs the same concept), you will need to gain some understanding of a few terms.
Obviously this is not the place for academic precision, but if you are entirely new to
object-oriented programming, here are a few skeleton ideas to help you with BeanShell.

« An objectis a collection of data that can be initialized, accessed and manipulated in
certain defined ways.

« A classis a specification of what data an object contains and what methods can be
used to work with the data. A Java application consists of one or more classes (in
the case of jEdit over 200 classes) written by the programmer that defines the
application’s behavior. A BeanShell macro uses these classes, along with built-in
classes that are supplied with the Java platform, to define its own behavior.

« A subclasgor child class) is a class which uses (or “inherits”) the data and
methods of its parent class along with additions or modifications that alter the
subclass’s behavior. Classes are typically organized in hierarchies of parent and
child classes to organize program code, to define common behavior in shared parent
class code, and to specify the types of similar behavior that child classes will
perform in their own specific ways.

- A method(or function) is a procedure that works with data in a particular object,
other data (including other objects) suppliecpasametersor both. Methods
typically are applied to a particular object which isiagtanceof the class to which
the method belongs.

111

Chapter 12. A Few Simple Macros

112

A static methodliffers from other methods in that it does not deal with the data in
a particular object but is included within a class for the sake of convenience.

Java has arich set of classes defined as part of the Java platform. Like all Java
applications, jEdit is organized as a set of classes that are themselves derived from the
Java platform’s classes. We will referdava classeandjEdit classego make this
distinction. Some of jEdit’s classes (such as those dealing with regular expressions and
XML) are derived from or make use of classes in other open-source Java packages.
Except for BeanShell itself, we won’t be discussing them in this guide.

In our one line script, the static methothcros.message() has two parameters because
that is the way the method is defined in thacros class. You must specify both
parameters when you call the function. The first parameiew , is a a variable naming
aView object - an instance of jEditgiew class. Aview represents a “parent” or

top-level frame window that contains the various visible components of the program,
including the text area, menu bar, toolbar, and any docked windows. It is a subclass of
Java’siFrame class. With jEdit, you can create and display multiple views
simultaneously. The variabléew is predefined for purposes of BeanShell as the current,
activeview object. This is in fact the variable you want to specify as the first parameter.
Normally you would not want to associate a message box with anything other than the
currentView .

The second parameter, which appears to be quoted texstiimg literal - a sequence of
characters of fixed length and content. Behind the scenes, BeanShell and Java take this
string literal and use it to createsaing object. Normally, if you want to create an

object in Java or BeanShell, you must construct the object usingethkeyword and a
constructormethod that is part of the object’s class. We’'ll show an example of that later.
However, both Java and BeanShell let you use a string literal anytime a method’s
parameter calls for atring

If you are a Java programmer, you might wonder about a few things missing from this
one line program. There is no class definition, for example. You can think of a BeanShell
script as an implicit definition of aain() method in an anonymous class. That is in fact
how BeanShell is implemented; the class is derived from a BeanShell classxcelled

If you don't find that helpful, just think of a script as one or more blocks of procedural
statements conforming to Java syntax rules. You will also get along fine (for the most
part) with C or C++ syntax if you leave out anything to do with pointers or memory
management - Java and BeanShell do not have pointers and deal with memory
management automatically.

Chapter 12. A Few Simple Macros

Another missing item from a Java perspective paekage statement. In Java, such a
statement is used to bundle together a number of files so that their classes become visible
to one another. Packages are not part of BeanShell, and you don’t need to know anything
about them to write BeanShell macros.

Finally, there are nomport statements in this script. In Java,iaport statement

makes public classes from other packages visible within the file in which the statement
occurs without having to specify a fully qualified class name. Without an import
statement or a fully qualified name, Java cannot identify most classes using a single
name as an identifier.

jEdit automatically imports a number of commonly-used packages into the namespace of
every BeanShell script. Because of this, the script output of a recorded macro does not
containimport statements. For the same reason, most BeanShell scripts you write will
not requiremport statements.

Java requiresnport statement at the beginning of a source file. BeanShell allows you to
placeimport statements anywhere in a script, including inside of block of statements.
Theimport statement will cover all names used following the statement in the enclosing
block.

If you try to use a class that is not imported without its fully-qualified name, the
BeanShell interpreter will complain with an error message relating to the offending line
of code.

113

Chapter 12. A Few Simple Macros

114

Here is the full list of packages automatically imported by jEdit:

java.awt
java.awt.event
java.net

java.util

java.io

java.lang

javax.swing
javax.swing.event
org.gjt.sp.jedit
org.gjt.sp.jedit.browser
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.io
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util

12.2. Helpful Methods in the Macros Class

Includingmessage() , there are four static methods in tkiacros class that allow you to
converse easily with your macros. They all encapsulate calls to methods of the Java
platform’sJOptionPane class.

e public static void message (View view , String message);

e public static void error (View view , String message);

e public static String input (View view , String prompt);

e public static String input (View view , String prompt , String

defaultvalue);

The format of these fouleclarationsprovides a concise reference to the way in which
the methods may be used. The keywpudiic means that the method can be used

Chapter 12. A Few Simple Macros

outside theviacros class. The alternatives apevate andprotected . For purposes of
BeanShell, you just have to know that BeanShell can only use public methods of other
Java classes. The keywasdtic we have already discussed. It means that the method
does not operate on a particular object. You call a static function using the name of the
class (likemacros) rather than the name of a particular object (NMeav). The third

word is the type of the value returned by the method. The keywadd is Java's way of
saying the the method does not have a return value.

Theerror() method works just likenessage() but displays an error icon in the

message box. Theput() method furnishes a text field for input, &K button and a
Cancel button. If “Cancel” is pressed, the method retunng . If OK is pressed, a

String containing the contents of the text field is returned. Note that there are two forms
of theinput() method; the first form with two parameters displays an empty input field,
the other lets you specify an initial default value.

For those without Java experience, it is important to knowithiat is notthe same as an
empty, “zero-length’string . It is Java’s way of saying that there is no object associated
with this variable. Whenever you seek to use a return value fiipaa) in your macro,

you should test it to see if it isull . In most cases, you will want to exit gracefully from
the script with aeturn ~ statement, because the presence of a null value for an input
variable usually means that the user intended to cancel macro execution. BeanShell will
complain if you call any methods onnall object.

We've looked at usingylacros.message() . To use the other methods, you would write
something like the following:

Macros.error(view, "Goodbye, cruel world!");
String result = Macros.input(view, "Type something here.");

String result = Macros.input(view, "What is your name?",
"John Gellene");

In the last two examples, placing the wating before the variable namesult tells
BeanShell that the variable refers tsteing object, even before a particulatring

object is assigned to it. In BeanShell, thisclarationof thetypeof result is not
necessary; BeanShell can figure it out when the macro runs. This can be helpful if you
are not comfortable with types and classes; just use your variables and let BeanShell
worry about it.

115

Chapter 12. A Few Simple Macros

116

Without an explicittype declaratiorike String result , BeanShell variables can
change their type at runtime depending on the object or data assigned to it. This dynamic
typing allows you to write code like this (if you really wanted to):

/I note: no type declaration
result = Macros.input(view, “Type something here.”);

/I this is our predefined, current View
result = view;

/I this is an “int” (for integer);

/[l in Java and BeanShell, int is one of a small number
/I of “primitive” data types which are not classes

result = 14;

However, if you first declarecksult to be typeString and and then tried these
reassignments, BeanShell would complain.

One last thing before we bury our first macro. The double slashes in the examples just
above signify that everything following them on that line should be ignored by

BeanShell as a comment. As in Java and C/C++, you can also embed comments in your
BeanShell code by setting them off with pairs/of*/ , as in the following example:

[* This is a long comment that covers several lines
and will be totally ignored by BeanShell regardless of how
many lines it covers */

12.3. Now For Something Useful

Here is a macro that inserts the path of the current buffer in the text:

String newText = buffer.getPath();
textArea.setSelectedText(newText);

Two of the new names we see haseffer andtextArea , are predefined variables like
view . The variableouffer represents a jEdiuffer object, andextArea represents a
JEditTextArea oObject.

Chapter 12. A Few Simple Macros

- A Buffer represents the contents of an open text file. It is derived from Java’s
PlainDocument class. The variablbuffer is predefined as the current buffer.

« A JEditTextArea is the visible component that displays the file being edited. It is
derived from thelComponent class. The variablextArea represents the current
JEditTextArea object, which in turn displays the current buffer.

Unlike in our first macro example, here we are calling class methods on particular
objects. First, we calletPath() on the currenBuffer object to get the full path of the
text file currently being edited. Next, we cadltSelectedText() on the current text
display component, specifying the text to be inserted as a parameter.

In precise terms, thsetSelectedText() method substitutes the contents of gwng
parameter for a range of selected text that includes the current caret position. If no text is
selected at the caret position, the effect of this operation is simply to insert the new text
at that position.

Here’s a few alternatives to the full file path that you could use to insert various useful
things:

/I the file name (without full path)
String newText = buffer.getName();

/I today’'s date
import java.text.DateFormat;

String newText = DateFormat.getDatelnstance()
format(new Date());

/I a line count for the current buffer
String newText = "This file contains "
+ textArea.getLineCount() + " lines.";

Here are brief comments on each:

«+ Inthe first, the call twetName() invokes another method of tieaffer class.

« The syntax of the second example chains the results of several methods. You could
write it this way:

import java.text.DateFormat;
Date d = new Date();
DateFormat df = DateFormat.getDatelnstance();

117

Chapter 12. A Few Simple Macros

String result = df.format(d);

Taking the pieces in order:

A JavaDate object is created using tmew keyword. The empty parenthesis
afterDate signify a call on theconstructor methodf Date having no
parameters; here,zate is created representing the current date and time.

- DateFormat.getDatelnstance() is a static method that creates and returns
aDateFormat object. As the name implieBateFormat is a Java class that
takesDate objects and produces readable text. The method
getDatelnstance() returns aDateFormat oObject that parses and formats
dates. It will use the defaulbcale or text format specified in the user’s Java
installation.

« Finally, DateFormat.format() is called on the newateFormat object
using theDate object as a parameter. The result Sténg containing the
date in the default locale.

- Note that thedate class is contained in theva.util package, so an explicit
import statement is not required. HowevesteFormat is part of the
java.text package, which is not automatically imported, so an explicit
import Statement must be used.

« The third example shows three items of note:

« getLineCount() Is a method in JEdit'SEditTextArea class. It returns an
int representing the number of lines in the current text buffer. We call it on
textArea , the pre-defined, currenEditTextArea object.

. The use of the operator (which can be chained, as here) appends objects and
string literals to return a single, concatenasathg

118

Chapter 12. A Few Simple Macros

The other pre-defined variable

In addition toview , buffer andtextArea

available for use in macroseditPane . That variable is set to the current

EditPane instance. AreditPane object contains a text area and buffer switchey.
A view can be split to display multiple buffers, each in its own edit pane. Among
other things, th&ditPane class contains methods for selecting the buffer to edit.

Most of the time your macros will manipulate theffer — or thetextArea
Sometimes you will need to useew as a parameter in a method call. You will

probably only need to usslitPane

if your macros work with split views.

, there is one more pre-defined variable

119

Chapter 13. A Dialog-Based Macro

Now we will look at a more complicated macro which will demonstrate some useful
techniques and BeanShell features.

13.1. Use of the Macro

Our new example adds prefix and suffix text to a series of selected lines. This macro can
be used to reduce typing for a series of text items that must be preceded and following by
identical text. In Java, for example, if we are interested in making a series of calls to
StringBuffer.append() to construct a lengthy, formatted string, we could type the
parameter for each call on successive lines as follows:

profileString_1
secretThing.toString()
name

address
addressSupp

city

“state/province”
country

Our macro would ask for input for the common “prefix” and “suffix” to be applied to
each line; in this case, the prefixasirStringBuffer.append(and the suffix is

); . After selecting these lines and running the macro, the the resulting text would look
like this:

ourStringBuffer.append(profileString_1);
ourStringBuffer.append(secretThing.toString());
ourStringBuffer.append(name);
ourStringBuffer.append(address);
ourStringBuffer.append(addressSupp);
ourStringBuffer.append(city);
ourStringBuffer.append(“state/province™);
ourStringBuffer.append(country);

120

Chapter 13. A Dialog-Based Macro

13.2. Listing of the Macro

The macro script follows. You can find it in the jEdit distribution in thext
subdirectory of thenacros directory. You can also try it out by invoking
Macros>Text>Add Prefix and Suffix.

/I beginning of Add_Prefix_and_Suffix.bsh

/I import statement (see Sectiop _13-371)]
import javax.swing.border.*;

/I main routine
void prefixSuffixDialog()
{

/I create dialog object (see Section [13:3:2])]
title = “Add prefix and suffix to selected lines”;
dialog = new JDialog(view, title, false);

content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
content.setPreferredSize(new Dimension(320, 160));
dialog.setContentPane(content);

/I add the text fields (see Section [1333]]
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField(“macro.add-prefix”);
prefixLabel = new JLabel(“Prefix to add:”);
suffixField = new HistoryTextField(“macro.add-suffix");
suffixLabel = new JLabel(“Suffix to add:”);
fieldPanel.add(prefixLabel);

fieldPanel.add(prefixField);

fieldPanel.add(suffixLabel);

fieldPanel.add(suffixField);

content.add(fieldPanel, “Center”);

/I add the buttons (see Sectidn _13-34])]

buttonPanel = new JPanel();

buttonPanel.setLayout(new BoxLayout(buttonPanel,
BoxLayout.X_AXIS));

buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));

buttonPanel.add(Box.createGlue());

ok = new JButton(*OK");

cancel = new JButton(*Cancel”);

121

Chapter 13. A Dialog-Based Macro

122

ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, “South”);

/I register this method as an ActionListener for

/I the buttons and text fields (see Section 18:35]

ok.addActionListener(this);
cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

/I locate the dialog in the center of the

/I editing pane and make it visible (see Section 1336]

dialog.pack();

dialog.setLocationRelative To(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

/I this method will be called when a button is clicked
/I or when ENTER is pressed (see Section 13.3.7]]
void actionPerformed(e)

{
if(e.getSource() !'= cancel)
{
processText();
}
dialog.dispose();
}

/I this is where the work gets done to insert
/I the prefix and suffix (see Section [3738]]
void processText()

{

prefix = prefixField.getText();

suffix = suffixField.getText();

if(prefix.length() == 0 && suffix.length() == 0)
return;

if(prefix.length() !'= 0)
prefixField.addCurrentToHistory();

Chapter 13. A Dialog-Based Macro

if(suffix.length() !'= 0)
suffixField.addCurrentToHistory();

/[text manipulation begins here using calls

/I to jEdit methods (see Sectiol 13-39)]
selectedLines = textArea.getSelectedLines();

for(i = 0; i < selectedLines.length; ++i)

{

offsetBOL = textArea.getLineStartOffset(
selectedLinesi]);

textArea.setCaretPosition(offsetBOL);

textArea.goToStartOfWhiteSpace(false);

textArea.goToEndOfWhiteSpace(true);

text = textArea.getSelectedText();

if(text == null) text = ",

textArea.setSelectedText(prefix + text + suffix);

}

/I this single line of code is the script's main routine

Il (see Seclion 133107]
prefixSuffixDialog();

/I end of Add_Prefix_and_Suffix.bsh

13.3. Analysis of the Macro

13.3.1. Import Statements

/I import statement
import javax.swing.border.*;

This macro makes use of classes injtvax.swing.border package, which is not
automatically imported. As we mentioned previously 12.1), jEdit’s
implementation of BeanShell causes a number of classes to be automatically imported.
Classes that are not automatically imported must be named by a full qualified name or be
the subject of aimport statement.

123

Chapter 13. A Dialog-Based Macro

13.3.2. Create the Dialog

/I create dialog object

title = “Add prefix and suffix to selected lines”;
dialog = new JDialog(view, title, false);

content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
dialog.setContentPane(content);

To get input for the macro, we need a dialog that provides for input of the prefix and
suffix strings, arOK button to perform text insertion, andGancel button in case we
change our mind. We have decided to make the dialog window non-modal. This will
allow us to move around in the text buffer to find things we may need (including text to
cut and paste) while the macro is running and the dialog is visible.

The Java object we need iaialog object from the Swing package. To construct one,
we use theew keyword and call @onstructorfunction. The constructor we use takes
three parameters: the owner of the new dialog, the title to be displayed in the dialog
frame, and a boolean parameteud or false) that specifies whether the dialog will be
modal or non-modal. We define the variablie using a string literal, then use it
immediately in thelDialog constructor.

A JDialog oObject is a window containing a single object callecbatent paneThe

content pane in turn contains the various visible components of the dialimjaldg

creates an empty content pane for itself as during its construction. However, to control
the dialog’s appearance as much as possible, we will separately create our own content
pane and attach it to thiialog . We do this by creating &Panel object. AJPanel is a
lightweight container for other components that can be set to a given size and color. It
also contains &éayoutscheme for arranging the size and position of its components. Here
we are constructing ZPanel as a content pane withBorderLayout . We put a

EmptyBorder inside it to serve as a margin between the edge of the window and the
components inside. We then attach iranel as the dialog’s content pane, replacing the
dialog’s home-grown version.

A BorderLayout is one of the simpler layout schemes available for Java Swing objects.
A BorderLayout divides the container into five sections: “North”, “South”, “’"East,
“West” and “Center”. Components are added to the layout using the contaader’s
method, specifying the component to be added and the section to which it is assigned.
Building a component like our dialog window involves building a set of nested

124

Chapter 13. A Dialog-Based Macro

containers and specifying the location of each of their member components. We have
taken the first step by creatingilBanel as the dialog’s content pane.

13.3.3. Create the Text Fields

/I add the text fields

fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField("macro.add-prefix");
prefixLabel = new JLabel(“Prefix to add™);
suffixField = new HistoryTextField(*macro.add-suffix”);
suffixLabel = new JLabel(“Suffix to add:”);
fieldPanel.add(prefixLabel);

fieldPanel.add(prefixField);

fieldPanel.add(suffixLabel);

fieldPanel.add(suffixField);

content.add(fieldPanel, “Center”);

Next we shall create a smaller panel containing two fields for entering the prefix and
suffix text and two labels identfying the input fields.

For the text fields, we will use jEditHistoryTextField class. It is derived from the
Java Swing classTextField . This class offers the enhancement of a stored list of prior
values used as text input. The up and down keys scroll through the prior values for the
variable.

To create thelistoryTextField objects we use a constructor method that takes a single
parameter: the name of the tag under which history values will be stored. Here we
choose names that are not likely to conflict with existing jEdit history items.

The labels areLabel objects from the Java Swing package. The constructor we use
takes the label text as a singleing parameter.

We wish to arrange these four components from top to bottom, one after the other. To
achieve that, we useJ®anel object namedeldPanel that will be nested inside the
dialog’s content pane that we have already created. In the constructetd®snel

we assign a newridLayout with the indicated parameters: four rows, one column, zero
spacing between columns (a meaningless element of a grid with only one column, but
nevertheless a required parameter) and spacing of six pixels between rows. The spacing
between rows spreads out the four “grid” elements. After the components, the panel and
the layout are specified, the components are addéeldPanel top to bottom, one

125

Chapter 13. A Dialog-Based Macro

126

“grid cell” at a time. Finally, the completieidPanel is added to the dialog’s content
pane to occupy the “Center” section of the content pane.

13.3.4. Create the Buttons

/I add the buttons
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,
BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));
buttonPanel.add(Box.createGlue());
ok = new JButton(“OK");
cancel = new JButton(“Cancel”);
ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, “South”);

Creating the buttons repeats the pattern we used in creating the text fields. First, we
create a new, nested panel witB@Layout . A BoxLayout places components eitherin

a single row or column, depending on the parameter passed to its constructor. We put an
EmptyBorder in the new panel to set margins for placing the buttons. Then we create the
buttons, using aButton constructor that specifies the button text. After setting the size

of the OK button to equal the size of ti@ancel button, we designate tH@K button as

the default button in the dialog. This causes @t¢ button to be outlined as the default
button. Finally, we place the button side by side with a 6 pixel gap between them (for
aesthetic reasons), and place the complet@dnPanel in the “South” section of the
dialog’s content pane.

13.3.5. Register the Action Listeners

/I register this method as an ActionListener for
/I the buttons and text fields
ok.addActionListener(this);

Chapter 13. A Dialog-Based Macro

cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

In order to specify the action to be taken upon clicking a button or pressirtgiees

key, we must register amctionListener for each of the four active components of the
dialog - the twoHistoryTextField components and the two buttons. In Java, an
ActionListener is aninterface- an abstract specification for a derived class to
implement. The\ctionListener interface contains a single method to be implemented:

public void actionPerformed (ActionEvent e);

BeanShell does not permit a script to create derived classes. However, BeanShell offers a
useful substitute: a method can be used as a scripted object that can implement methods
of a number of Java interfaces. The metlpesdixSuffixDialog() that we are writing

can thus be treated as actionListener . To accomplish this, we call

addActionListener() on each of the four components specifyihig as the

ActionListener . We still need to implement the interface. We will do that shortly.

13.3.6. Make the Dialog Visible

/I locate the dialog in the center of the

/I editing pane and make it visible

dialog.pack();

dialog.setLocationRelative To(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

Here we do three things. First, we activate all the layout routines we have established by
calling thepack() method for the dialog as the top-level window. Next we center the
dialog’s position in the active jEditew by callingsetLocationRelativeTo() on the

dialog. We also call theetDefaultCloseOperation() function to specify that the

dialog box should be immediately disposed if the user clicks the close box. Finally, we
activate the dialog by callinggtVisible() with the state parameter setttoe .

At this point we have a decent looking dialog window that doesn’t do anything. Without
more code, it will not respond to user input and will not accomplish any text
manipulation. The remainder of the script deals with these two requirements.

127

Chapter 13. A Dialog-Based Macro

128

13.3.7. The Action Listener

/I this method will be called when a button is clicked
/I or when ENTER is pressed
void actionPerformed(e)

{
if(e.getSource() != cancel)
{
processText();
}
dialog.dispose();
}
The methodhctionPerformed() nested insiderefixSuffixDialog() implements
the implicit ActionListener interface. It looks at the source of thetionEvent

determined by a call tgetSource() . What we do with this return value is
straighforward: if the source is not ti@&ancel button, we call therocessText()
method to insert the prefix and suffix text. Then the dialog is closed by calling its
dispose() method.

The ability to implement interfaces lik&ctionListener inside a BeanShell script is

one of the more powerful features of the BeanShell package. Wiklet@nListener

interface, which has only a single method, implementation is simple. When using other
interfaces with multiple methods, however, there are some details to deal with that will
vary depending on the version of the Java platform that you are running. These
techniques are discussed in the next chapter; See Section 14.4.3.

13.3.8. Get the User’s Input

/I this is where the work gets done to insert
Il the prefix and suffix
void processText()
{
prefix = prefixField.getText();
suffix = suffixField.getText();
if(prefix.length() == 0 && suffix.length() == 0)
return;
if(prefix.length() !'= 0)
prefixField.addCurrentToHistory();

Chapter 13. A Dialog-Based Macro

if(suffix.length() '= 0)
suffixField.addCurrentToHistory();

The methodbrocessText() does the work of our macro. First we obtain the input from
the two text fields with a call to thegetText() = methods. If they are both empty, there

is nothing to do, so the method returns. If there is input, any text in the field is added to
that field’s stored history list by callingddCurrentToHistory()

13.3.9. Call jEdit Methods to Manipulate Text

/I text manipulation begins here using calls
/I to jEdit methods

selectedLines = textArea.getSelectedLines();
for(i = 0; i < selectedLines.length; ++i)

{
offsetBOL = textArea.getLineStartOffset(

selectedLines]i]);
textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = "
textArea.setSelectedText(prefix + text + suffix);

}

The text manipulation routine loops through each selected line in the text buffer. We get
the loop parameters by callingxtArea.getSelectedLines() , Which returns an array
consisting of the line numbers of every selected line. The array includes the number of
the current line, whether or not it is selected, and the line numbers are sorted in
increasing order. We iterate through each member ofdfeetedLines array, which
represents the number of a selected line, and apply the following routine:

- Get the buffer position of the start of the line (expressed as a zero-based index from
the start of the buffer) by calling
textArea.getLineStartOffset(selectedLines]i]) ;

« Move the caret to that position by callingktArea.setCaretPosition() ;

129

Chapter 13. A Dialog-Based Macro

130

- Find the first and last non-whitespace characters on the line by calling
textArea.goToStartOfWhiteSpace() and
textArea.goToEndOfWhiteSpace() ;

ThegoTo... methods inEditTextArea take a single parameter which tells jEdit
whether the text between the current caret position and the desired position should
be selected. Here, we cadktArea.goToStartOfWhiteSpace(false) so that no

text is selected, then caéxtArea.goToEndOfWhiteSpace(true) so that all of

the text between the beginning and ending whitespace is selected.

- Retrieve the selected text by storing the return value of
textArea.getSelectedText() in a new variableext .

If the line is emptygetSelectedText() will return null . In that case, we assign
an empty string teext to avoid calling methods on a null object.

« Change the selected textdmfix + text + suffix by calling
textArea.setSelectedText() . If there is no selected text (for example, if the line
is empty), the prefix and suffix will be inserted without any intervening characters.

13.3.10. The Main Routine

/I this single line of code is the script's main routine
prefixSuffixDialog();

The call toprefixSuffixDialog() is the only line in the macro that is not inside an
enclosing block. BeanShell treats such code as a top+teiel method and begins
execution with it.

Our analysis odd_Prefix_and_Suffix.bsh is now complete. In the next section, we
look at other ways in which a macro can obtain user input, as well as other macro writing
techniques.

Chapter 14. Macro Tips and
Techniques

14.1. Getting Input for a Macro

The dialog-based macro discusse’in Chapfer 13 reflects a conventional approach to
obtaining input in a Java program. Nevertheless, it can be too lengthy or tedious for
someone trying to write a macro quickly. Not every macro needs a user interface
specified in such detail; some macros require only a single keystroke or no input at all. In
this section we outline some other techniques for obtaining input that will help you write
macros quickly.

14.1.1. Getting a Single Line of Text

As mentioned earlier in'Section 1R.2, the metivadros.input() offers a convenient
way to obtain a single line of text input. Here is an example that inserts a pair of HTML

markup tags specified by the user.

/I Insert_Tag.bsh

void insertTag()

{
caret = textArea.getCaretPosition();
tag = Macros.input(view, “Enter name of tag:");
if(tag == null || tag.length() == 0) return;
text = textArea.getSelectedText();
if(text == null) text = “";
sb = new StringBuffer();
sb.append(“<”).append(tag).append(“>");
sb.append(text);
sb.append(“</”).append(tag).append(“>");
textArea.setSelectedText(sb.toString());
if(text.length() == 0)

textArea.setCaretPosition(caret + tag.length() + 2);

}

insertTag();

131

Chapter 14. Macro Tips and Techniques

132

/I end Insert_Tag.bsh

Here the call taMacros.input() seeks the name of the markup tag. This method sets
the message box title to a fixed string, “Macro input”, but the specific me$saige
name of tag provides all the information necessary. The return valyemust be tested
to see if it is null. This would occur if the user presses@ancel button or closes the
dialog window displayed bylacros.input()

14.1.2. Getting Multiple Data Iltems

If more than one item of input is needed, a succession of calladms.input() isa
possible, but awkward approach, because it would not be possible to correct early input
after the corresponding message box is dismissed. Where more is required, but a full
dialog layout is either unnecessary or too much work, the Java method

JOptionPane.showConfirmDialog() is available. The version to use has the following
prototype:
* public static int showConfirmDialog (Component parentComponent
Object message, String titte , int optionType , int messageType);

The usefulness of this method arises from the fact thattlssage parameter can be an
object of any Java class (since all classes are deriveddgeat), or any array of
objects. The following example shows how this feature can be used.

/I excerpt from Write_File_Header.bsh
title = “Write file header”;
currentName = buffer.getName();

nameField = new JTextField(currentName);
authorField = new JTextField(“Your name here”);
descField = new JTextField(*”, 25);

namePanel = new JPanel(new GridLayout(1, 2));

nameLabel = new JLabel("Name of file:”, SwingConstants.LEFT);
namelLabel.setForeground(Color.black);

saveField = new JCheckBox(“Save file when done”,

Chapter 14. Macro Tips and Techniques

Ibuffer.isNewFile());

namePanel.add(namelLabel);
namePanel.add(saveField);

message = new Object[9];

message[0] = namePanel;

message[l] = namekField,;

message[2] = Box.createVerticalStrut(10);
message[3] = “Author’'s name:”;
message[4] = authorField;

message[5] = Box.createVerticalStrut(10);
message[6] = “Enter description:”;
message[7] = descField;

message[8] = Box.createVerticalStrut(5);

if(JOptionPane.OK_OPTION !=

JOptionPane.showConfirmDialog(view, message, title,
JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE))

return null;

/I ****remainder of macro script omitted*****

/I end excerpt from Write File_Header.bsh

This macro takes several items of user input and produces a formatted file header at the
begining of the buffer. The full macro is included in the set of macros installed by jEdit.
There are a number of input features of this excerpt worth noting.

The macro uses a total of seven visible components. Two of them are created
behind the scenes ByiowConfirmDialog() , the rest are made by the macro. To
arrange them, the script creates an arra@léct objects and assigns components

to each location in the array. This translates to a fixed, top-to-bottom arrangement in
the message box created shpwConfirmDialog()

The macro usedTextField objects to obtain most of the input data. The fields
nameField andauthorField are created with constructors that take the initial,
default text to be displayed in the field as a parameter. When the message box is
displayed, the default text will appear and can be altered or deleted by the user.

133

Chapter 14. Macro Tips and Techniques

134

The text fielddescField uses an empty string for its initial value. The second
parameter in its constructor sets the width of the text field component, expressed as
the number of characters of “average” width. WhkeowConfirmDialog()

prepares the layout of the message box, it sets the width wide enough to
accomodate the designated withde&cField . This technique produces a message
box and input text fields that are wide enough for your data with one line of code.

The displayed message box includexaeckBox component that determines

whether the buffer will be saved to disk immediately after the file header is written.
To conserve space in the message box, we want to display the check box to the right
of the labelName of file:. To do that, we create #anel object and populate it

with the label and the checkbox in a left-to-righidLayout . TheJPanel

containing the two components is then added to the beginningsfage array.

The two visible components created $hpwConfirmDialog() appear at positions
3 and 6 of themessage array. Only the text is required; they are rendered as text
labels. Note that the constructor sets the foreground ealoeLabel to black. The
default text color ofiLabel objects is gray for Java’s default look-and-feel, so the
color was reset for consistency with the rest of the message box.

There are three invisible components createdHaywConfirmDialog() . Each of
them involves a call t®ox.createVerticalStrut() . TheBox class is a
sophisticated layout class that gives the user great flexibility in sizing and
positioning components. Here we usstatic method of theBox class that

produces a verticatruct This is a transparent component whose width expands to
fill its parent component (in this case, the message box). The single parameter
indicates the fixed height of the spacing “strut” in pixels. The last call to
createVerticalStrut() separates the description text field from @k and

Cancel buttons that are automatically addeddngwConfirmDialog()

Finally, the call toshowConfirmDialog() uses defined constants for the option
type and the message type. The option type signifies the US& aihdCancel
buttons. The(QUERY_MESSAGHessage type causes the message box to display a
guestion mark icon.

The return value of the method is tested against the vaku®PTION If the return
value is something else (because @ancel button was pressed or because the
message box window was closed without a button press)| avalue is returned
to a calling function, signalling that the user cancelled macro execution. If the
return value iSOK_OPTION each of the input components can yield their contents

Chapter 14. Macro Tips and Techniques

for further processing by calls ttrextField.getText() (or, in the case of the
check box,JCheckBox.isSelected()).

14.1.3. Selecting Input From a List

Another useful way to get user input for a macro is to use a combo box containing a
number of pre-set options. If this is the only input required, one of the versions of
showlnputDialog() in theJOptionPane class provides a shortcut. Here is its
prototype:

e public static Object showlnputDialog ~ (Component parentComponent
Object message, String titte , int messageType, Icon icon ,
Object[] selectionValues , Object initialSelectionValue);

This method creates a message box containing a drop-down list of the options specified
in the method’s parameters, along Wik andCancel buttons. Compared to
showConfirmDialog() , this method lacks aoptionType parameter and has three
additional parameters: ason to display in the dialog (which can be setrigl), an

array ofselectionvalues objects, and a reference to one of the options as the
initialSelectionValue to be displayed. In addition, instead of returning an int
representing the user’s actiamowlnputDialog() returns thedbject corresponding to

the user’s selection, awll if the selection is cancelled.

The following macro fragment illustrates the use of this method.

/I fragment illustrating use of showlnputDialog()
options = new Object[5];

options[0] = "JLabel";
options[1] = "JTextField";
options[2] = "JCheckBox";
options[3] = "HistoryTextField";
options[4} = "- other -";

result = JOptionPane.showlnputDialog(view,
"Choose component class",
"Select class for input component",
JOptionPane.QUESTION_MESSAGE,
null, options, options[0]);

135

Chapter 14. Macro Tips and Techniques

136

The return valueesult will contain either thestring object representing the selected
text item ornull representing no selection. Any further use of this fragment would have
to test the value ofsult and likely exit from the macro if the value equalled

A set of options can be similarly placed il@omboBox component created as part of a
larger dialog oshowMessageDialog() layout. Here are some code fragments showing
this approach:

/I fragments from Display_Abbreviations.bsh
/I import statements and other code omitted

/I from main routine, this method call returns an array
/I of Strings representing the names of abbreviation sets

abbrevSets = getActiveSets();

/I from showAbbrevs() method

combo = new JComboBox(abbrevSets);

/I set width to uniform size regardless of combobox contents
Dimension dim = combo.getPreferredSize();

dim.width = Math.max(dim.width, 120);
combo.setPreferredSize(dim);
combo.setSelectedltem(STARTING_SET); // defined as "global"

/I end fragments

14.1.4. Using a Single Keypress as Input

Some macros may choose to emulate the style of character-based text editors such as
emacs or vi. They will require only a single keypress as input that would be handled by
the macro but not displayed on the screen. If the keypress corresponds to a character
value, jEdit can pass that value as a parameter to a BeanShell script.

The jEdit classnputHandler is an abstract class that that manages associations
between keyboard input and editing actions, along with the recording of macros.
Keyboard input in jEdit is normally managed by the derived class

Chapter 14. Macro Tips and Techniques

DefaultinputHandler . One of the methods in theputHandler class handles input
from a single keypress:

« public void readNextChar (String prompt , String code);

When this method is called, the contents of phampt parameter is shown in the view’s
status bar. The method then waits for a key press, after which the contentsodéhe
parameter will be run as a BeanShell script, with one important modification. Each time
the string__char__ appears in the parameter script, it will be substituted by the
character pressed. The key press is “consumedéduNextChar() . It will not be

displayed on the screen or otherwise processed by jEdit.

UsingreadNextChar() requires a macro within the macro, formatted as a single,
potentially lengthy string literal. The following macro illustrates this technique. It selects
a line of text from the current caret position to the first occurrence of the character next
typed by the user. If the character does not appear on the line, no new selection occurs
and the display remains unchanged.

/I Next_Char.bsh

script = new StringBuffer(512);

script.append("start = textArea.getCaretPosition();");
script.append("line = textArea.getCaretLine();");
script.append("end = textArea.getLineEndOffset(line) + 1;");
script.append("text = buffer.getText(start, end - start);");
script.append("match = text.indexOf(__char__, 1);");
script.append("if(match !'= -1) {");
script.append("if(_char__ !'= "\n") ++match;");
script.append("textArea.select(start, start + match - 1);");
script.append("}");

view.getlnputHandler().readNextChar("Enter a character",
script.toString());

Il end Next_Char.bsh

Once again, here are a few comments on the macro’s design.

137

Chapter 14. Macro Tips and Techniques

138

+ A StringBuffer object is used for efficiency; it obviates multiple creation of
fixed-lengthstring objects. The parameter to the constructoseipt specifies
the initial size of the buffer that will receive the contents of the child script.

- Besides the quoting of the script code, the formatting of the macro is entirely
optional but (hopefully) makes it easier to read.

. Itis important that the child script be self-contained. It does not run in the same
namespace as the “parent” mastext_Char.bsh and therefore does not share
variables, methods, or scripted objects defined in the parent macro.

- Finally, access to theputHandler ~ object used by jEdit is available by calling
getinputHandler() on the current view.

14.2. Startup Scripts

On startup, jEdit runs any BeanShell scripts located irsth@up subdirectory of the

jEdit installation and user settings directories (See Section 6.4). As with macros, the
scripts must have ash file name extension. Startup scripts are run near the end of the
startup sequence, after plugins, properties and such have been initialized, but before the
first view is opened.

Startup scripts can perform initialization tasks that cannot be handled by command line
options or ordinary configuration options, such as customizing jEdit's user interface by
changing entries in the Java platfornyBvanager class.

Startup scripts have an additonal feature that can help you further customize jEdit.
Unlike with macros, variables and methods defined in a startup script are available in all
instances of the BeanShell interpreter created in jEdit. This allows you to create a
personal library of methods and objects that can be accessed at any time during the
editing session in another macro, the BeanShell shell of the Console plugin, or menu
items such adltilities>Evaluate BeanShell Expression.

The startup script routine will run script files in the installation directory first, followed
by scripts in the user settings directory. In each case, scripts will be executed in
alphabetical order, applied without regard to whether the file name contains upper or
lower case characters.

If a startup script throws an exception (becuase, for example, it attempts to call a method
on anull object). jEdit will show an error dialog box and move on to the next startup

Chapter 14. Macro Tips and Techniques

script. If script bugs are causing jEdit to crash or hang on startup, you can use the
-nostartupscripts command line option to disable them for that editing session.

Another important difference between startup scripts and ordinary macros is that startup
scripts cannot use the pre-defined variables , textArea , editPane andbuffer
This is because they are executed before the initial view is created.

If you are writing a method in a startup script and wish to use one of the above variables,
pass parameters of the appropriate type to the method, so that a macro calling them after
startup can supply the appropriate values. For example, a startup script could include a
method

void doSomethingWithView(View v, String s) {

}

so that during the editing session another macro can call the method using

doSomethingWithView(view, "something");

14.3. Running Scripts from the Command
Line

The-run command line switch specifies a BeanShell script to run on startup:

$ jedit -run=test.bsh
Note that just like with startup scripts, thiew , textArea , editPane andbuffer
variables are not defined.

If another instance is already running, the script will be run in that instance, and you will
be able to use thigdit.getLastView() method to obtain a view. However, if a new
instance of jEdit is being started, the script will be run at the same time as all other
startup scripts; that is, before the first view is opened.

If your script needs a view instance to operate on, you can use the following code snippet
to obtain one, no matter how the script is being run:

void doSomethingUseful()

139

Chapter 14. Macro Tips and Techniques

140

{
void run()
{
view = jEdit.getLastView();
/I put actual script body here
}
if(jEdit.getLastView() == null)
VEFSManager.runinAWT Thread(this);
else
run();
}

doSomethingUseful();

If the script is being run in a loaded instance, th) method can be invoked directly.

If the script is running on startup, a bit of magic has to be performed first. The method
that does the script’s work must be namea) so that the closure can implement the
Runnable interface; this closure is then passed tortlenAWTThread() method.

When theruninAWTThread() method is invoked during startup, it schedules the
specifiedRunnable to be run after startup is complete. If invoked when jEdit is fully
loaded, the runnable will be run after all pending input/output is complete, or
immediately if there are no pending I/O operations. Only the former behavior is useful in
macros.

14.4. Advanced BeanShell Techniques

BeanShell has a few advanced features that we haven't mentioned yet. They will be
discussed in this section.

14.4.1. BeanShell's Convenience Syntax

We noted earlier that BeanShell syntax does not require that variables be declared or
defined with their type, and that variables that are not typed when first used can have
values of differing types assigned to them. In addition to this “loose” syntax, BeanShell
allows a “convenience” syntax for dealing with the properties of JavaBeans. They may
be accessed or set as if they were data members. They may also be accessed using the

Chapter 14. Macro Tips and Techniques

name of the property enclosed in quotation marks and curly brackets. For example, the
following statement are all equivalent, assuming is aJButton instance:

b.setText("Choose");
b.text = "Choose";
b{"text"} = "Choose";

The last form can also be used to access a key-value pairafraable object. It can
even be used to obtain the values of buffer-local properties; the following two statements
are equivalent:

buffer.getProperty("tabSize")
buffer{"tabSize"}

14.4.2. Special BeanShell Keywords

BeanShell uses special keywords to refer to variables or methods defined in the current
or an enclosing block’s scope:

- The keywordhis refers to the current scope.
« The keywordsuper refers to the immediately enclosing scope.
- The keywordglobal refers to the top-level scope of the macro script.

The following script illustrates the use of these keywords:

a = "top\n";

foo() {
a = "middle\n";
bar() {

a = "bottom\n";
textArea.setSelectedText(global.a);
textArea.setSelectedText(super.a);

/I equivalent to textArea.setSelectedText(this.a):
textArea.setSelectedText(a);

bar();

141

Chapter 14. Macro Tips and Techniques

142

foo();

When the script is run, the following text is inserted in the current buffer:

top
middle
bottom

14.4.3. Implementing Interfaces

As discussed in the macro examplé in Chaptér 13, scripted objects can implement Java
interfaces such asctionListener . Which interfaces may be implemented varies
depending upon the version of the Java runtime environment being used. If running
under Java 1.1 or 1.2, BeanShell objects can only implement the AWT or Swing event
listener interfaces contained in tja@a.awt.event andjavax.swing.event

packages, and thava.lang.Runnable interface. If running under Java 1.3 or 1.4, any
interface can be implemented.

Frequently it will not be necessary to implement all of the methods of a particular
interface in order to specify the behavior of a scripted object. Under Java 1.2 and below,
BeanShell will automatically ignore calls on unimplemented members of an interface.
Under Java 1.3 and above, however, the reflection mechanism will throw an exception
for any missing interface methods, which will result in an error dialog box being shown
when your macro runs; not a pretty sight. The solution is to implemenithies()

method, which is called when an undefined method is invoked on a scripted object.
Typically, the implementation of this method will do nothing, as in the following
example:

invoke(method, args) {}

14.4.4. BeanShell Commands

BeanShell comes with a large number of built-in scripted “commands” that are useful in
many circumstances. Documentation for commands that are helpful when writing

macros can be found 19.

Chapter 14. Macro Tips and Techniques

14.5. Debugging Macros

Here are a few techniques that can prove helpful in debugging macros.

14.5.1. Identifying Exceptions

An exceptions a condition reflecting an error or other unusual result of program
execution that requires interruption of normal program flow and some kind of special
handling. Java has a rich (and extendable) collection of exception classes which
represent such conditions.

jEdit catches exceptions thrown by BeanShell scripts and displays them in a dialog box.
In addition, the full traceback is written to the activity log (§€e Appendlix B for more
information about the activity log).

There are two broad categories of errors that will result in exceptions:

- Interpreter errors which may arise from typing mistakes like mismatched brackets
or missing semicolons, or from BeanShell’s failure to find a class corresponding to
a particular variable.

Interpreter errors are usually accompanied by the line number in the script, along
with the cause of the error.

- Execution errorswhich result from runtime exceptions thrown by the Java
platform when macro code is executed.

Some exceptions thrown by the Java platform can often seem cryptic. Nevertheless,
examining the contents of the activity log may reveals clues as to the cause of the
error.

14.5.2. Using the Activity Log as a Tracing Tool

Sometimes exception tracebacks will say what kind of error occurred but not where it
arose in the script. In those cases, you can insert calls that log messages to the activity
log in your macro. If the logged messages appear when the macro is run, it means that up
to that point the macro is fine; but if an exception is logged first, it means the logging call
is located after the cause of the error.

143

Chapter 14. Macro Tips and Techniques

144

To write a message to the activity log, use the following method of dgeclass:

e public static void log (int urgency , Object source , Object
message);

The parameteurgency can take one of the following constant values:

* Log.DEBUG
» Log.MESSAGE
* Log.NOTICE
* Log.WARNING
» Log.ERROR

Note that theurgency parameter merely changes the string prefixed to the log message;
it does not change the logging behavior in any other way.

The parametesource can be either an object or a class instance. When writing log
messages from macros, set this parametBe#aShell.class to make macro errors
easier to spot in the activity log.

The following code sends a typical debugging message to the activity log:

Log.log(Log.DEBUG, BeanShell.class,
"counter = " + String.valueOf(counter));

The corresponding activity log entry might read as follows:

[debug] BeanShell: counter = 15

Chapter 14. Macro Tips and Techniques

Using message dialog boxes as a tracing tool

If you would prefer not having to deal with the activity log, you can use the
Macros.message() method as a tracing tool. Just insert calls like the following
the macro code:

n

Macros.message(view,"tracing");

Execution of the macro is halted until the message dialog box is closed.

145

IVV. Writing Plugins
This part of the user’s guide covers writing plugins for jEdit.

Like jEdit itself, plugins are written primarily in Java. While this guide assumes some
working knowledge of the language, you are not required to be a Java wizard. If you can
write a useful application of any size in Java, you can write a plugin.

This part of the user’s guide was written by John Gellejgellsne@nyc.rr.com >,

146

Chapter 15. Introducing the Plugin
API

ThejEdit Plugin API provides a framework for hosting plugin applications without
imposing any requirements on the design or function of the plugin itself. You could write
a application that performs spell checking, displays a clock or plays chess and turn it into
a jEdit plugin. There are currently over 40 released plugins for jEdit. While none of them
play chess, they perform a wide variety of editing and file management tasks. A detailed
listing of available plugins is available at the jEdit Plugin Central

(http://plugins.jedit.org) web site.

Using the plugin manager feature of jEdit, users with an Internet connnection can check
for new or updated plugins and install and remove them without leaving jEdit. See
for detalils.

In order to “plug in” to jEdit, a plugin must implement interfaces that deal with the
following matters:

« Ths plugin must supply information about itself, such as its name, version, author,
and compatibility with versions of jEdit.

- The plugin must provide for activating, displaying and deactivating itself upon
direction from jEdit, typically in response to user input.

« The plugin may, but need not, provide a user interface.

If the plugin has a visible interface, it can be shown in any object derived from one
of Java top-level container class@®@lindow, JDialog , Or JFrame . JEdit also

provides a dockable window API, which allows plugin windows to be docked into
views or shown in top-level frames, at the user’s request.

Plugins can also act directly upon jEdit’s text area. They can add graphical elements
to the text display (like error highlighting in the case of the ErrorList plugin) or
decorations surrounding the text area (like the JDiff plugin’s summary views).

+ Plugins may (and typically do) defirgetionsthat jEdit will perform on behalf of
the plugin upon user request. Actions are short snippets of BeanShell code that
provide the “glue” between user input and specifc plugin routines.

147

Chapter 15. Introducing the Plugin API

By convention, plugins display their available actions in submenus of jJEdit’s
Plugins menu; each menu item corresponds to an action. The user can also assign
actions to keyboard shortcuts, toolbar buttons or entries in the text area’s right-click
menu.

- Plugins may provide a range of options that the user can modify to alter its
configuration.

If a plugin provides configuration options in accordance with the plugin API, jEdit
will make them available in th&lobal Options dialog. Each plugin with options is
listed in the tree view in that dialog undetugin Options. Clicking on the tree

node for a plugin causes the corresponding set of options to be displayed.

As noted, many of these features are optional; it is possible to write a plugin that does
not provide actions, configuration options, or dockable windows. The majority of
plugins, however, provide most of these services.

In the following chapters, we will begin by briefly describing jEdit's host capabilities,
which includes the loading and display of plugins. Next we will describe the principal
classes and data structures that a plugin must implement. Finally, we will outline the
building of a modest plugin, “QuickNotepad”, that illustrates the requirements and some
of the techniques of jEdit plugin design.

Plugins and different jEdit versions

As jEdit continues to evolve and improve, elements of the plugin API or jEdit’s
general API may change with a new jEdit release. For example, version 3.2 of jEdit
introduced a set afelection classes that enable multiple text selections in the
text area. On occasion an API change will break code used by plugins, althoygh
efforts are made to maintain or deprecate plugin-related code where possible.
While the majority of plugins are unaffected by most changes and will continue
working, it is a good idea to monitor the jEdit change log and mailing lists for API
changes and update your plugin as necessatry.

148

Chapter 16. jEdit as a Plugin Host

A good way to start learning what a plugin requires is to look at what the host
application does with one. We start our discussion of plugins by outlining how jEdit
loads and displays them. This section only provides a broad overview of the more
important components that make up jEdit; specifics of the API will be documented in
subsequent chapters.

16.1. Loading Plugins

As part of its startup routine, jEditimain method calls various methods to load and
initialize plugins. This occurs after the application has done the following:

« parsed command line options;
. started the edit server (unless instructed not to by a command line option) and;

- loaded application properties, any user-supplied properties, and the application’s
set of actions that will be available from jEdit's menu bar (as well as the toolbar and
keyboard shortcuts);

Plugin loading occurs before jEdit creates any windows or loads any files for editing. It
also occurs before jEdit runs any startup scripts.

16.1.1. The JARClassLoader

Plugins are loaded from files with thier filename extension located in tizes
subdirectories of the jEdit installation and user settings directorie$ (See Section 6.4).

For each JAR archive file it finds, jEdit creates an instance ofAR€lassLoader
class. This is a jEdit-specific class that implements the Java platform’s abstract class
ClassLoader . The constructor for th@ARClassLoader object does the following:

« Adds any class file with a name ending withigin.class ~ to an internal

collection of plugin class names maintained by IABClassLoader . Se€ Section|
I A

149

Chapter 16. jEdit as a Plugin Host

150

- Loads any properties defined in files ending with the extengiops that are
contained in the archive. SEe_Seciion 17.4.2.

- Loads any data on the plugin’s actions from a file nar@idns.xml (if it exists)
contained at the top level of the archive file. $ee Section 17.4.1.

- Adds to a collection maintained by jEdit a new object of tyga&ePlugin.JAR
This is a data structure holding the name of the jar archive file, a reference to the
JARClassLoader and a collection, initially empty, of plugins found in the archive
file.

Once all plugin JAR files have been examined for the above resources, jEdit initializes
all class files whose names endrilngin.class , as identified in the first pass through
the JAR archive. We will call these clasg@agin core classeslugin core classes are

the principal point of contact between jEdit and the plugin, and must extend jEdit's
abstracEditPlugin class.

For each plugin core class, the loader first checks the plugin’s properties to see if it is
subject to any dependencies. For example, a plugin may require that the version of the
Java runtime environment or of jEdit itself be equal to or above some threshold version.
A plugin can also require the presence of another plugin. If any dependency is not
satisified, the loader marks the plugin as “broken” and logs an error message.

If all dependencies are satisfied, a new instance of the plugin core class is created and
added to the collection maintained by the appropraiieelugin.JAR object. By

accessing that object, jEdit can keep track of plugins it has successfully loaded, and call
methods or perform routines on them.

Class libraries

JAR files with no plugin core classes are also loaded by jEdit; no special
initialization is performed on them, and the classes they contain are made available
to other plugins.

Many plugins that rely on third-party class libraries ship them as separate JARs, for
example.

A plugin that bundles extra JARs needs to define a property that lists these JAR
files in order for the plugin manager to be able to remove the plugin completely.
SeeSeciion 17.4.2.

Chapter 16. jEdit as a Plugin Host

16.1.2. Starting the Plugin

After creating and storing the plugin core object, jEdit callsdtae() method of the
plugin core class. This method is defined as an empty “no-op” iEdhelugin

abstract class, therefore it is not required that plugins provide their own implementation.
Only trivial plugins will not need to perform some kind of initialization, however.

Thestart() method can perform initialization of the object’s data members. It can also
register its identity and other information with jEdiglitBusobject, which manages
messaging between plugins and the host application. We will discuss the EditBus in
more detail i’ Section 16.2.2 afd Chapigr 21.

At this point, we can identify the following practical requirements for a plugin:

it must be packaged as a JAR archive;

the JAR archive must contain at least one plugin core class whose name ends in
Plugin ;

each plugin core class must exnted Hu@Plugin abstract class;

the JAR archive may contain data concerning actions for display in jEdit's menu
bar and elsewhere in a file entitlactions.xml ; and

- the archive must contain at least one properties file havipges extension.
Certain properties giving information about the plugin must be defined.

We will provide more detail on these requirements later.

16.2. The User Interface of a Plugin

To display a user interface, plugins can either directly extend Ja®asie , JDialog , Or
Jwindow classes, or use jEdit's dockable window API. Plugin windows are typically
defined in classes that are part of the plugin package but separate from the plugin core
class.

16.2.1. The Role of the View Object

A View is JEdit’s top-level frame window that contains one or more (if the view is split)

151

Chapter 16. jEdit as a Plugin Host

152

text areas, a menu bar, a toolbar and other window decorations, as well as docked plugin
windows. Theview class performs two important operations that deal with plugins:
creating plugin menu items, and managing dockable windows.

When a view is being created, it iterates through the collection of loaded plugins and
calls thecreateMenuitems() ~ method of each plugin core class. Again, implementing
this method is not necessary, but very few plugins will be able to get away with not
adding anything to jEdit's menu bar. As we will explain in the next chapter, the typical
plugin, instead of creating Javalenu andJMenultem objects directly, relies on a
method in a utility class to create menu entries.

Theview also creates and initializesDackablewindowManager object. This object is
responsible for creating, closing and managing dockable windows.

TheView class contains a number of methods that can be called from plugins; see
Seciion 20712 for details.

16.2.2. The DockableWindowManager and the
EditBus

The DockablewindowManager keeps track of docked and floating windows. When the

View object initializes itDockablewindowManager , the manager iterates through the

list of registered dockable windows and causes those specified by the user to “auto open”
in the Global Options dialog box to be displayed. ThmockablewindowManager class

is also invoked at any other time the user requests a dockable window is opened or
closed.

TheDockablewindowManager creates and displays plugin windows by routing
messages through the applicatioBditBus object that we mentioned earlier. The
EditBus mantains a list of objects that have requested to receive messages. When a
message is sent using this class, all registered components receive it in turn.

EditBus subscribers must implement #&Component interface, which defines the
single methodhandleMessage() . A View, for example, can receive and handle EditBus
messages because it also implem&®Somponent.

Plugins that wish to receive messages can explicitly provide implementations of this
interface, and register them with the EditBus usingetieBus.addToBus() method.
However, it can be more convinient to have the plugin core class extermsHgin
abstract class, which is identical to theitPlugin class, except it implements the

Chapter 16. jEdit as a Plugin Host

interface mentioned above, and automatically adds itself to the EditBus.

To activate a plugin window, thBockablewindowManager ~creates a

CreateDockableWindow message object containing three data items: a reference to the
view that will contain the plugin, the name of the plugin and the relative position of the
window in which the plugin will be placed. That message is sent to the EditBus using the
send() method of theeditBus class.

16.2.3. Message Routing and Dockable Window
Creation

In the case of &reateDockableWindow message, successive subscribers to the EditBus
receive the message, through a call to each subscrieiigMessage() method, until

one subscriber signals that it has handled the message. This occurs when a subscriber
matches the messag@&ame data member with the name of a dockable window the

plugin provides. The intended recipient then handles the message by creating an
appropriate plugin window and attaching it to the message, so that when message routing
is completed, th®ockablewindowManager can retrieve and store the new plugin

window.

As a final step in plugin activation, the manager create another window object that will
contain the visible components of the plugin. This object implements the
DockableWindowContainer interface; depending on the settings for the plugin selected
by the user, it will either be a tabbed window pane in one of the docked windows
attached to th&iew object, or a separate, floating frame window. Plugins need not be
aware of the implementation details of the container.

Eventually theDockableWindowManager destroys the plugin window, whether docking
or floating, in response to user action or as part of the destruction of the corresponding
View object.

TheDockableWindowManager andEditBus classes contain a number of methods that
can be called from plugins; s€e Section 0.2 for details.

This summary shows that a plugin wishing to use the dockable window API has the
following additional requirements:

+ the plugin class must extemBPlugin instead ofEditPlugin in order to receive
the CreateDockableWindow message;

153

Chapter 16. jEdit as a Plugin Host

it must register its dockable windows in #srt() method; and

it must create and arrange any dockable windows it provides in response to the
appropriateCreateDockableWindow message;

With this broad outline of how jEdit behaves as a plugin host in the background, we will
next review the programming elements that make up a plugin.

154

Chapter 17. The jEdit Plugin API

17.1. Plugin Core Classes

As mentioned earlier, a plugin must provide a “plugin core class”, otherwise it will not
do anything useful (but recall that a class library intended for use by other plugins need
not provide a plugin core class). That class must extend efthigugin =~ or its
convinience subclasgBPlugin . We begin our review of the jEdit plugin API with these
two classes.

17.1.1. Class EditPlugin

This abstract class is the base for every plugin core class. Its methods provide for basic
interaction between the plugin and jEdit. The class has four methods which are called by
JEdit at various times. None of these methods are required to be implemented, but most
plugins will override at least one.

+ public void start ();

The jEdit startup routine calls this method for each loaded plugin. Plugins typically
use this method to register information with the EditBus and perform other
initialization.

+ public void stop ();

When jEdit is exiting, it calls this method on each plugin. If a plugin uses or creates
state information or other persistent data that should be stored in a special format,
this would be a good place to write the data to storage. Note that most plugins will
use jEdit’'s properties API to save settings, and the persistance of properties is
handled automatically by jEdit and requires no special processing b

method.

« public void createMenultems (Vector menultems);

When aview object is created, it calls this method on each plugin to obtain entries
to be displayed in the viewBlugins menu. Thanenultems parameteris a

155

Chapter 17. The jEdit Plugin API

Vector that accumilates menu items and menus as it is passed from plugin to
plugin.

JEdit does not require a plugin to supply menu items. If menu items are desired, the
easiest way to provide for them is to package the desired menu items as entries in

the plugin’s property file and implemeatateMenultems() with a call to jEdit's
GUIUtilities.loadMenu() method; for example:

public void createMenultems(Vector menultems)

{

menultems.addElement(GUIUtilities.loadMenu(
"myplugin.menu"));

}

The parameter passedidadMenu() is the name of a property containing menu
data. We will explain the format of the menu data’in Section 18]2.3.2

The GUIUtilities.loadMenultem() method is also available for plugins that
only wish to add a single menu item to tR&igins menu.

e public void createOptionPanes (OptionsDialog dialog);

This method is called for each plugin during the creation ofGiabal Options
dialog box. To show an option pane, the plugin should define an option pane class
and implementreateOptionPane() as follows:

dialog.addOptionPane(new MyPluginOptionPane());

Plugins can also define more than one option pane, grouped in an “option group”.
We will discuss the design and elements of the option pane APTin Sectign 17.3.

This class defines two other methods which may be useful to some plugins, but are
mainly of use to the jEdit core:

e public String getClassName

This shortcut method returmgtClass().getName()

e public EditPlugin.JAR getJAR

This method returns theditPlugin.JAR data object associated with the plugin.

156

Chapter 17. The jEdit Plugin API

17.1.2. Class EBPlugin

Every plugin core class class that uses the EditBus for receiving messages must extend
this class. This class implements tt@Component interface, required for any object that
wishes to receive EditBus messages.

TheEBComponent interface contains a single method that an implementing class
(including any class derived froEBPIugin) must provide:

e public void handleMessage (EBMessage message);

The parameter’s typ&BMessage, IS another abstract class which establishes the core
elements of any message that is published to the EditBus. It has two attributes: an
EBComponent that is the source of the message (the source will be null in some cases),

and a boolean data membestoed . This flag indicates whether a prior recipient of the
message has determined that the message has been handled and need not be passed on to
other subscribers. The flag is set by a call towéte() method of theEBMessage. Some

message classes, however, are configured so that they cannot be vetoed, to ensure they

are received by all subscribers.

Message classes extendiBMessage typically add other data members and methods to
provide subscribers with whatever is needed to handle the message appropriately.
Descriptions of specific message classes can be foyndin Chapter 21.

ThehandleMessage() method must specify the type of responses the plugin will have
for various subclasses of tlEMessage class. Typically this is done with one or more

if blocks that test whether the message is an instance of a derived message class in
which the plugin has an interest, for example like so:

if(msg instanceof CreateDockableWindow)
/I create dockable window, if necessary
else if(msg instanceof BufferUpdate)
/I a buffer's state has changed!
else if(msg instanceof ViewUpdate)
/I a view’'s state has changed!
/Il ... and so on

If a plugin defines dockable windows, it should respond @eateDockableWindow
message by creating the appropriate user interface objects and setting the relevant data
field in the message, for example like so:

157

Chapter 17. The jEdit Plugin API

if(lmsg instanceof CreateDockableWindow)

{
CreateDockableWindow cmsg = (CreateDockableWindow)msg;
if(cmsg.getDockableWindowName().equals("myplugin®))
cmsg.setDockableWindow(new MyPluginWindow());
}

Note that any object, whether or not derived freBComponent, can send a message to
the EditBus by calling the static methaditBus.send() . This method takes a single
parameter, aEBMessage object that is the message being sent. Most plugins, however,
will only concern themselves with receiving, not sending, messages.

17.2. Interface DockableWindow

The dockable plugin API consists of a single interfanakableWindow . It links the

visible components of a plugin with the dockable window management facility. The
interface gives developers flexibility and minimizes code refactoring, for it can be
implemented as part of the plugin’s top-level display window or in a separate lightweight
class. The dockable window API handles the display of windows as either docked or
floating without specific direction from the plugin.

This interface provides the connection between the plugin’s visible components and a
top-levelview object of the host application. As mentioned earlier, the plugin window
class implementing this interface must be created by the plugin core class in response to
aCreateDockablewindow message. After its creation, the plugin window object is
attached to the message for routing back to jEdit.

The Dockablewindow interface contains two methods that must be implemented by a
derived plugin window class:

e String getName();

This method should return the internal working name of the plugin window, used to
key various properties.

e Component getComponent ();

This method should return the top-level visible component of the plugin. Typically
this component is aPanel containing other components, but any object derived

158

Chapter 17. The jEdit Plugin API

from the Javacomponent class will suffice. If the top-level component implements
the Dockablewindow interface, so that the plugin window and the top-level visible
window are implemented in the same class, the implementation of
getComponent() would simply returnthis .

17.3. Plugin Option Pane Classes

The plugin API provides a mechanism for displaying a plugin’s configuration options in
the Global Options dialog. A plugin that allows user configuration should provide one
or more implementations of jEditptionPane interface to have configuration options
displayed in a manner consistent wth the rest of the application.

17.3.1. Class AbstractOptionPane

Most plugin option panes extend this implementatio@pdonPane , instead of
implementingOptionPane directly. It provides a convenient default framework for

laying out configuration options in a manner similar to the option panes created by jEdit
itself. It is derived from Java’sPanel class and contains@idBagLayout object for
component management. It also contains shortcut methods to simplify layout.

The constructor for a class derived fratbstractOptionPane should call the parent
constructor and pass the option pane’s “internal name” as a parameter. The internal name
is used to key a property where the option pane’s label is store@; See Section 17.4.2. It
should also implement two methods:

 protected void _init ();

This method should create and arrange the components of the option pane and
initialize the option data displayed to the user. This method is called when the
option pane is first displayed, and is not called again for the lifetime of the object.

« protected void _save ();

This method should save any settings, to the jEdit properties or other data store.

AbstractOptionPane also contains three shortcut methods, typically called from
_init) , for adding components to the option pane:

159

Chapter 17. The jEdit Plugin API

160

« protected void addComponent (String label , Component comp);
 protected void addComponent (Component comp);

These shortcut methods add components to the option pane in a single vertical
column, running top to bottom. The first displays the text ofl#tel parameter
to the left of theComponent represented bgomp.

 protected void addSeparator (String label);

This is another shortcut method that adds a text label between two horizontal
separators to the option pane. Thbel parameter represents the name of a
property (typically a property defined in the plugin’s property file) whose value will
be used as the separator text.

17.3.2. Class OptionGroup

In those cases where a single option pane is inadequate to present all of a plugin’s
configuration options, this class can be used to create a group of options panes. The
group will appear as a single node in the options dialog tree-based index. The member
option panes will appear as leaf nodes under the group’s node. Threee simple methods
create and populate an option pane:

e public OptionGroup (String name);

The constructor’s single parameter represents the internal name of the option group.
The internal name is used to key a property where the option group’s label is stored;
seeSeciion 17.4.2.

« public void addOptionPane (OptionPane pane);

* public void addOptionGroup (OptionGroup group);

This pair of methods adds members to the option group. The second method
enables option groups to be nested, for plugins with a particularly large set of
configurable options.

Chapter 17. The jEdit Plugin API

17.4. Other Plugin Resources

There are three other types of files containing resources used by a plugin:

- acatalog of the plugin’s user actions in a specified XML format, contained in a file
namedactions.xml

« one or more properties files named wittpaps extension, each containing
key-value pairs in conventional Java format; and

+ a help file written in HTML format. The name of this file must be specified in a
property; se¢ Section 17.4.2.

17.4.1. The Action Catalog

Actions define procedures that can be bound to a menu item, a toolbar button or a
keyboard shortcut. They can perform any task encompassed in a public method of any
class currently loaded in jEdit, including plugin classes and classes of the host
application. Among other things, they can cause the appearance and disappearance of
plugin windows.

To manage user actions, jEdit maintains a lookup table of actions using descriptive
strings as keys. The values in the table are sets of statements written in BeanShell, jEdit’s
macro scripting language. These scripts either direct the action themselves, delegate to a
method in one of the plugin’s classes that encapsulates the action, or do a little of both.
The scripts are usually short; elaborate action protocols are usually contained in
compiled code, rather than an interpreted macro script, to speed execution.

Actions are defined by creating an XML file entitlections.xml at the top level of the
plugin JAR file. A sample action catalog looks like so:

<IDOCTYPE ACTIONS SYSTEM "actions.dtd">

<ACTIONS>
<ACTION NAME="quicknotepad.toggle">
<CODE>
view.getDockableWindowManager()
.toggleDockableWindow(QuickNotepadPlugin.NAME);
</CODE>
<IS_SELECTED>

161

Chapter 17. The jEdit Plugin API

162

return view.getDockableWindowManager()
.isDockableWindowVisible(QuickNotepadPlugin.NAME);
</IS_SELECTED>
</ACTION>

<ACTION NAME="quicknotepad-to-front">
<CODE>
view.getDockableWindowManager()
.addDockableWindow(QuickNotepadPlugin.NAME);
</CODE>
</ACTION>

</ACTIONS>

The defined elements have the following functions:

ACTIONSIs the top-level element and refers to the set of actions used by the plugin.

An ACTION contains the data for a particular action. It has three attributes: a
requiredNAME an optionaNO_REPEATwhich is a flag indicating whether the action
should not be repeated with t@®ntrol-Enter command (seg Seciion P.4); and an
optionalNO_RECOR®hich is a a flag indicating whether the action should be
recorded if it is invoked while a user is recording a macro. The two flag attributes
can have two possible values, “TRUE” or “FALSE”. In both cases, “FALSE” is the
default if the attribute is not specified.

An ACTIONcan have two child elements within it: a requiredDEclement which
specifies the BeanShell code that will be executed when the action is invoked, and
an optionalS_SELECTEDelement, used for checkbox menu items. The
IS_SELECTED element contains BeanShell code that returns a boolean flag that will
determine the state of the checkbox.

More discussion of the action catalog can be foundin Section 18.2.3.1.

17.4.2. Plugin Properties

jEdit maintains a list of “properties”, which are name/value pairs used to store
human-readable strings, user settings, and various other forms of meta-data. During
startup, jEdit loads the default set of properties, followed by plugin properties stored in
plugin JAR files, finally followed by user properties. Plugins can access properties from
all three sources.

Chapter 17. The jEdit Plugin API

Property files contained in plugin JARs must end with the filename extensops ,
and have a very simple syntax, which the following example suffices to describe:

Lines starting with '# are ignored.
name=value
another.name=another value
long.property=Long property value, split over \
several lines
escape.property=Newlines and tabs can be inserted \
using the \t and \n escapes
backslash.property=A backslash can be inserted by writing \\.

The following types of plugin information are supplied using properties:

- Information regarding the name, author, and version of the plugin. This information

is required. Here is an example:

plugin.MyPlugin.name=My Plugin
plugin.MyPlugin.author=Joe Random Hacker
plugin.MyPlugin.version=1.0.3

Note that each property is prefixed witlugin. , followed by the fully qualified
name of the plugin core class (including a package name, if there is one).

- ldentification of any dependencies the plugin may have on a particular version of a

Java runtime environment, the jEdit application, or other plugins.

Each dependency is defined in a property prefixed plitfin. class
name.depend. , followed by a number. Dependencies must be numbered in order,
starting from zero.

The value of a dependency property is one of the wilids jedit , class or

plugin , followed by a Java version number, a jEdit build number, a class name, or

plugin class name and plugin version number, respectively.
Here are some examples:
plugin.MyPlugin.depend.O=jdk 1.2
plugin.MyPlugin.depend.1=jedit 03.02.97.00

plugin.MyPlugin.depend.2=class com.ice.tar.tar
plugin.MyPlugin.depend.3=plugin console.ConsolePlugin 3.0

163

Chapter 17. The jEdit Plugin API

164

« Alist of external class library JARs shipped with the plugin. If your plugin bundles
extra JARs, this property is required for the plugin manager to be able to remove the
plugin completely.

The property is a space-separated list of filenames. Here is an example:
plugin.AntFarmPlugin.jars=crimson.jar jaxp.jar

» The titles of dockable windows, as displayed in a tabbed or floating container.

These labels are specified in properties named by the return value of the dockable
window’s getName() method, suffixed withtittle . For example:

quick-notepad.titte=QuickNotepad

« Labels for user actions for inclusion in menus and option panes relating to toolbars
and keyboard shortcuts.

Action labels are defined in properties named by the action’s internal name as
specified in the action catalog, followed Iybel

myplugin.label=My Plugin
myplugin-grok.label=Grok Current Buffer

« The list of menu items contained in plugin menus, if any.

This is discussed in detail MSecfion T8 2.3.2.

- Labels and other information regarding the controls contained in the plugin’s
windows. These properties can be named any way you like, however take care not
to choose names which may conflict with those in other plugins.

17.4.3. Plugin Documentation

While not required by the plugin API, a help file is an essential element of any plugin
written for public release. A single web page is often all that is required. There are no
specific requirements on layout, but because of the design of jEdit’s help viewer, the use
of frames should be avoided. Topics that would be useful include the following:

Chapter 17. The jEdit Plugin API

- adescription of the purpose of the plugin;

an explanation of the type of input the user can supply through its visible interface
(such as mouse action or text entry in controls);

- alisting of available user actions that can be taken when the plugin does not have
input focus;

a summary of configuration options;

information on development of the plugin (such as a change log, a list of “to do”
items, and contact information for the plugin’s author); and

- licensing information, including acknowledgements for any library software used
by the plugin.

The location of the plugin’s help file should be stored inghgin. class name .docs
property.

165

Chapter 18. Writing a Plugin

One way to organize a plugin project is to design the software as if it were a “stand
alone” application, with three exceptions:

« The plugin can access tiew object with which it is associated, as well as static
methods of thgedit class, to obtain and manipulate various data and host
application objects;

- If the plugin has visible components, they are ultimately containedraeel
object instead of a top-level frame window; and

- The plugin implements the necessary elements of the jEdit plugin API that were
outlined in the last chapter: a plugin core class, perhaps a number of plugin window
classes, maybe a plugin option pane class, and a set of required plugin resources.

Not every plugin has configurable options; some do not have a visible window.
However, all will need a plugin core class and a minimum set of other resources.

We will now illustrate this approach by introducing an example plugin.

18.1. QuickNotepad: An Example Plugin

There are many applications for the leading operating systems that provide a
“scratch-pad” or “sticky note” facility for the desktop display. A similar type of facility
operating within the jEdit display would be a convenience. The use of docking windows
would allow the notepad to be displayed or hidden with a single mouse click or keypress
(if a keyboard shortcut were defined). The contents of the notepad could be saved at
program exit (or, if earlier, deactivation of the plugin) and retrieved at program startup or
plugin activation.

We will keep the capabilities of this plugin modest, but a few other features would be
worthwhile. The user should be able to write the contents of the notepad to storage on
demand. It should also be possible to choose the name and location of the file that will be
used to hold the notepad text. This would allow the user to load other files into the
notepad display. The path of the notepad file should be displayed in the plugin window,
but will give the user the option to hide the file name. Finally, there should be an action

166

Chapter 18. Writing a Plugin

by which a single click or keypress would cause the contents of the notepad to be written
to the new text buffer for further processing.

The full source code for QuickNotepad is contained in jEdit's source code distribution.
We will provide excerpts in this discussion where it is helpful to illustrate specific points.
You are invited to obtain the source code for further study or to use as a starting point for
your own plugin.

18.2. Writing a Plugin Core Class

The major issues encountered when writing a plugin core class arise from the
developer’s decisions on what features the plugin will make available. These issues have
implications for other plugin elements as well.

« Will the plugin provide for actions that the user can trigger using jEdit's menu
items, toolbar buttons and keyboard shortcuts?

« Will the plugin have its own visible interface?

« Will the plugin use jEdit's dockable window API?
If a plugin will use the dockable window API, it must handle a targeted
CreateDockableWindow message.

- Will the plugin respond to any other messages reflecting changes in the host
application’s state?

Will the plugin have settings that the user can configure?

18.2.1. Choosing a Base Class

If the plugin will respond to EditBus messages, it must be derived #BRiugin .
OtherwiseEditPlugin ~ will suffice as a base class.

Knowing what types of messages are made available by the plugin API is obviously
helpful is determining both the base plugin class and the contents of a

handleMessage() method. The message classes derived fE@Wessage cover the

opening and closing of the application, changes in the status of text buffers and their
container and changes in user settings, as well as changes in the state of other program
features. Specific message classes of potential interest to a plugin include the following:

167

Chapter 18. Writing a Plugin

- EditorStarted , sent during the application’s startup routine, just prior to the
creation of the initialView ;

+ EditorExitRequested , sent when a request to exit has been made, but before
saving open buffers and writing user settings to storage;

« EditorExiting , sent just before jEdit actually exits;

- EditPaneUpdate , sent when an edit pane containing a text area (including a pane
created by splitting an existing window) has been created or destroyed, or when a
buffer displayed in an edit pane has been changed;

- BufferUpdate , sent when a text buffer is created, loaded, or being saved, or when
its editing mode or markers have changed;

- ViewUpdate , sent when &iew is created or closed; and

+ PropertiesChanged , sent when the properties of the application or a plugin has
been changed through tké&eneral Options dialog;

Detailed documentation for each message class can be fo{ind in Chapter 21.

18.2.2. Implementing Base Class Methods

18.2.2.1. General Considerations

If EditPlugin is selected as the base plugin core class, the implementatietrstQf
andstop() in the plugin’s derived class are likely to be trivial, or not present at all (in
which case they will be “no-ops”). EBPIugin is selected to provide messaging
capability, however, there are a few fixed requirements.

If the plugin is to use the dockable window API, the “ internal names” of any dockable
windows must be registered with the EditBus component. The EditBus stores such
information in one of a number of “named lists”. Here is how the QuickNotepad plugin
registers its dockable window:

EditBus.addToNamedList(DockableWindow.DOCKABLE_WINDOW_LIST, NAME);

The first parameter isgtring constant identifying the dockable window list. The
second is a statistring constant which is initialized in the plugin core class as the
dockable window’s internal name.

168

Chapter 18. Writing a Plugin

The use oNAMEas the second parameter employs an idiom found in many plugins. The
plugin class can includsatic final String data members containing information

to be registered with the EditBus or key names for certain types of plugin properties.
This makes it easier to refer to the information when a method such as

handleMessage() examines the contents of a message. The kind of data that can be
handled in this fashion include the following:

- the internal working name of dockable windows that will be used in the
CreateDockableWindow —message and elsewhere;

a label for identifying the plugin’s menu;

a prefix for labelling properties required by the plugin API; and

a prefix to be used in labelling items used in the plugin’s option pane

18.2.2.2. Example Plugin Core Class

We will derive the plugin core class for QuickNotepad fr@BPlugin to allow the

plugin core object to subscribe to the EditBus and rece@aaeDockableWindow

message. There are no other messages to which the plugin core object needs to respond,
so the implementation dfandleMessage() will only deal with one class of message.

We will define a few statistring data members to enforce consistent syntax for the

name of properties we will use throughout the plugin. Finally, we will use a standalone
plugin window class to separate the functions of that class from the visible component
class we will create.

The resulting plugin core class is lightweight and straightforward to implement:

public class QuickNotepadPlugin extends EBPlugin {
public static final String NAME = "quicknotepad";
public static final String MENU = "quicknotepad.menu";
public static final String PROPERTY_PREFIX
= "plugin.QuickNotepadPlugin.";
public static final String OPTION_PREFIX
= "options.quicknotepad.";

public void start() {

EditBus.addToNamedList(DockableWindow
.DOCKABLE_WINDOW_LIST, NAME);

169

Chapter 18. Writing a Plugin

170

}

public void createMenultems(Vector menultems) {
menultems.addElement(GUIUtilities.loadMenu(MENU));
}

public void createOptionPanes(OptionsDialog od) {
od.addOptionPane(new QuickNotepadOptionPane());
}

public void handleMessage(EBMessage message) {
if(message instanceof CreateDockableWindow) {
CreateDockableWindow cmsg = (CreateDockableWindow)
message;
if (cmsg.getDockableWindowName().equals(NAME)) {
DockableWindow win = new QuickNotepadDockable(
cmsg.getView(), cmsg.getPosition());
cmsg.setDockableWindow(win);

}

The implementations afreateMenultems() andcreateOptionPane() are typically

trivial, because the real work will be done using other plugin elements. Menu creation is
performed by a utility function in jEdit’s API, using properties defined in the plugin’s
properties file. The option pane is constructed in its own class.

If the plugin only had a single menu item (for example, a checkbox item that toggled
activation of a dockable window), we would calUIUtilities.loadMenultem()
instead ofoadMenu() . We will explain the use of both methods in the next section.

The constructor foQuickNotepadDockable takes the values of théew object and the
docking position contained in th&eateDockablewindow message. This will enable

the plugin to “know” where it is located and modify its behavior accordingly. In another
plugin, it could enable the plugin to obtain and manipulate various data that are available
through aview object.

Chapter 18. Writing a Plugin

18.2.3. Resources for the Plugin Core Class

18.2.3.1. Actions

The plugin’s user action cataloggtions.xml , is the resource used by the plugin API to
get the names and definitions of user actions. The followatigns.xml file from the
QuickNotepad plugin can provide a model:

<IDOCTYPE ACTIONS SYSTEM "actions.dtd">

<ACTIONS>
<ACTION NAME="quicknotepad.toggle">
<CODE>
view.getDockableWindowManager()
.toggleDockableWindow(QuickNotepadPlugin.NAME);
</CODE>
<IS_SELECTED>
return view.getDockableWindowManager()
.isDockableWindowVisible(QuickNotepadPlugin.NAME);
</IS_SELECTED>
</ACTION>

<ACTION NAME="quicknotepad-to-front">
<CODE>
view.getDockableWindowManager()
.addDockableWindow(QuickNotepadPlugin.NAME);
</CODE>
</ACTION>

<ACTION NAME="quicknotepad.choose-file">
<CODE>
wm = view.getDockableWindowManager();
wm.addDockableWindow(QuickNotepadPlugin.NAME);
wm.getDockableWindow(QuickNotepadPlugin.NAME)
.chooseFile();
</CODE>
</ACTION>

<ACTION NAME="quicknotepad.save-file">
<CODE>
wm = view.getDockableWindowManager();
wm.addDockableWindow(QuickNotepadPlugin.NAME);

171

Chapter 18. Writing a Plugin

wm.getDockableWindow(QuickNotepadPlugin.NAME)
.saveFile();
</CODE>
</ACTION>

<ACTION NAME="quicknotepad.copy-to-buffer">
<CODE>
wm = view.getDockableWindowManager();
wm.addDockableWindow(QuickNotepadPlugin.NAME);
wm.getDockableWindow(QuickNotepadPlugin.NAME)
.copyToBuffer();
</CODE>
</ACTION>
</ACTIONS>

This file defines five actions. The first action uses the QuickNotepad’s internal plugin
window name to toggle its visible state. The second action places QuickNotepad at the
top of a stack of overlapping plugin windows. The other actionsmuséhe
DockablewindowManager object contained in the current view, to find the

QuickNotepad plugin window and call the desired method.

If you are unfamiliar with BeanShell code, you may nevertheless notice that the code
statements bear a strong resemblance to Java code, with two exceptions: the wariable
is not typed, and the variabléew is never assigned any value.

For complete answers to these and other BeanShell mysteri€s, see PgHAITBZ |

User's Guide two observations will suffice here. First, the BeanShell scripting language

is based upon Java syntax, but allows variables to be typed at run time, so explicit types
for variables such asmneed not be declared. Second, the varialele is predefined by
jEdit’s implementation of BeanShell to refer to the curreietv object.

A formal description of each element of thetions.xml file can be found ifi Section]

CI741.

172

18.2.3.2. Action Labels and Menu Items

Now that we have named and defined actions for the plugin, we have to put them to
work. To do so, we must first give them labels that can be used in menu items and in the
sections of jEdit’s options dialog that deal with toolbar buttons, keyboard shortcuts and
context menu items. We supply this information to jEdit through entries in the plugin’s
properties file. A call tasUIUtilities.loadMenu() or

Chapter 18. Writing a Plugin

GUIUtilities.loadMenultem() will read and extract the necessary labels from the
contents of a properties file.

The following excerpt fronQuickNotepad.props illustrates the format required for
action labels and menu items:

action labels

quicknotepad.toggle.label=QuickNotepad
quicknotepad-to-front.label=Bring QuickNotepad to front
quicknotepad.choose-file.label=Choose notepad file
quicknotepad.save-file.label=Save notepad file
quicknotepad.copy-to-buffer.label=Copy notepad to buffer

application menu items

guicknotepad.menu.label=QuickNotepad

guicknotepad.menu=quicknotepad.toggle - quicknotepad.choose-file \
quicknotepad.save-file quicknotepad.copy-to-buffer

GUIUtilities.loadMenultem() andGUIUtilites.loadMenu() use syntatical
conventions for the value of a menu property that simplifies menu layout. In

loadMenu() , the use of the dash, as in the second item in the example menu list,
signifies the placement of a separator. Finally, the char&éerused as a prefix on a

label causemadMenu() to call itself recursively with the prefixed label as the source of
submenu data. Most plugins will not need to define menus that contain other submenus.

Note also thatjuicknotepad-to-front is not included in the menu listing. It will
appear, however, on tt&hortcuts pane of theslobal Options dialog, so that the action
can be associated with a keyboard shortcut.

18.3. Implementing a Dockable Window
Class

The QuickNotepad plugin uses the dockable window API and provides one dockable
window. Dockable window classes must implementoekablewindow interface.

There are basically two approaches to doing this. One is to have the top-level visible
component also serve as the plugin window. The other is to derive a lightweight class that
will create and hold the top-level window component. We will ilustrate both approaches.

173

Chapter 18. Writing a Plugin

174

18.3.1. Using a Single Window Class

A single window class must implement tbeckablewindow interface as well as

provide for the creation and layout of the plugin’s visible components, and execution of

user actions. The window for QuickNotepad will also implementeRe€omponent S0 it

can receive messages from the EditBus whenever the user has changed the plugin’s
settings in th&slobal Options dialog. Here is an excerpt from a class definition showing
the implementation of both interfaces:

public class QuickNotepad extends JPanel

{

}

implements EBComponent, DockableWindow

private View view;
private String position;

public QuickNotepad(View view, String position) {
this.view = view;
this.position = position;

}

public String getName() {
return QuickNotepadPlugin.NAME;

}

public Component getComponent() {
return this;

}

public void handleMessage(EBMessage message) {
if (message instanceof PropertiesChanged) {
propertiesChanged();

}

This excerpt does not set forth the layout of the plugin’s visible components, nor does it
show how our user actions will be implemented. To provide more structure to the code,
we will implement theDockablewindow interface in a separate, lightweight class.

Chapter 18. Writing a Plugin

18.3.2. An Action Interface

When an action is invoked, program control must pass to the component responsible for
executing the action. The use of an internal table of BeanShell scripts that implement
actions avoids the need for plugins to implemasttonListener or similar objects to
respond to actions. Instead, the BeanShell scripts address the plugin through static
methods, or if instance data is needed, the cuvemt, its DockableWindowManager

and the plugin’®ockableWindow object. When the plugin window class is separated

from the class containing its visible components, there is one more link in the chain of
control. This means that the plugin window should either execute the action itself or
delgte it to the visible component.

We will use delegation between QuickNotepad’s plugin window, which we will call
QuickNotepadDockable , and the revised, slimm&uickNotepad object. To represent
that delegation we will employ QuickNotepadActions interface as an organizational
tool:

public interface QuickNotepadActions {
void chooseFile();
void saveFile();
void copyToBuffer();

18.3.3. A Lightweight Dockable Window Class

Here is the complete definition of tlgaiickNotepadDockable class:

public class QuickNotepadDockable
implements DockableWindow, QuickNotepadActions

{
private QuickNotepad notepad;

public QuickNotepadDockable(View view, String position) {
notepad = new QuickNotepad(view, position);

}

public String getName() {
return QuickNotepadPlugin.NAME;

}

175

Chapter 18. Writing a Plugin

176

public Component getComponent() {
return notepad;

}

public void chooseFile() {
notepad.chooseFile();

}

public void saveFile() {
notepad.saveFile();

}

public void copyToBuffer() {
notepad.copyToBuffer();

}
}

Once again we use a static data member of the plugin core class to provide a name for
the plugin window to itDockablewindowManager . The last three methods implement
the QuickNotepadActions interface.

18.4. The Plugin’s Visible Window

18.4.1. Class QuickNotepad

Here is where most of the features of the plugin will be implemented. To work with the
dockable window API, the top level window will beJ@anel . The visible components
reflect a simple layout. Inside the top-level panel we will place a scroll pane with a text
area. Above the scroll pane we will place a panel containing a small tool bar and a label
displaying the path of the current notepad file.

We have identified three user actions in théckNotepadActions interface that need
implementation hereshooseFile() , saveFile() , andcopyToBuffer() . As noted

earlier, we also want the text area to change its appearance in immediate response to a
change in user options settings. In order to do that, the window class must respond to a
PropertiesChanged ~ message from the EditBus.

Chapter 18. Writing a Plugin

Unlike theEBPIugin class, the&eBComponent interface does not deal with the
component’s actual subscribing and unsubscribing to the EditBus. To accomplish this,
we use a pair of methods inherited from the Java platfon@snponent that are called
when the visible window becomes is assigned and unassigned to its
DockableWindowContainer . These two methodaddNotify() andremoveNotify()

are overridden to add and remove the visible window from the list of EditBus
subscribers.

We will provide for two minor features when the notepad is displayed in the floating
window. First, when a floating plugin window is created, we will give the notepad text
area input focus. Second, when the notepad if floating and has input focus, we will have
the Escapekey dismiss the notepad window. AmcestorListener and a

KeyListener will implement these details.

Here is the listing for the data members, the constructor, and the implementation of the
EBComponent interface:

public class QuickNotepad extends JPanel
implements EBComponent, QuickNotepadActions
{

private String filename;

private String defaultFilename;

private View view;

private boolean floating;

private QuickNotepadTextArea textArea;
private QuickNotepadToolPanel toolPanel;

Il
/I Constructor
1l

public QuickNotepad(View view, String position)
{

super(new BorderLayout());
this.view = view;
this.floating = position.equals(

DockableWindowManager.FLOATING);

this.filename = jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX

177

Chapter 18. Writing a Plugin

178

}

I

+ "filepath™);
if(this.flename == null || this.filename.length() == 0)
{
this.filename = new String(jEdit.getSettingsDirectory()
+ File.separator + "gn.txt");
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "filepath”,this.filename);
}

this.defaultFilename = new String(this.filename);

this.toolPanel = new QuickNotepadToolPanel(this);
add(BorderLayout.NORTH, this.toolPanel);

if(floating)
this.setPreferredSize(new Dimension(500, 250));

textArea = new QuickNotepadTextArea();
textArea.setFont(QuickNotepadOptionPane.makeFont());
textArea.addKeyListener(new KeyHandler());
textArea.addAncestorListener(new AncestorHandler());

JScrollPane pane = new JScrollPane(textArea);
add(BorderLayout. CENTER, pane);

readFile();

/I Attribute methods

I

/I for toolBar display
public String getFilename()

{
}

I

return filename;

/I EBComponent implementation

I

public void handleMessage(EBMessage message)

{

if (message instanceof PropertiesChanged)

{
propertiesChanged();

}

private void propertiesChanged()

{

String propertyFilename = jEdit.getProperty(

Chapter 18. Writing a Plugin

QuickNotepadPlugin.OPTION_PREFIX + "filepath");

if('defaultFilename.equals(propertyFilename))

{
saveFile();
toolPanel.propertiesChanged();
defaultFilename = propertyFilename.clone();
filename = defaultFilename.clone();
readFile();

}

Font newFont = QuickNotepadOptionPane.makeFont();

if('lnewFont.equals(textArea.getFont()))

{

textArea.setFont(newFont);

textArea.invalidate();

}

/I These JComponent methods provide the appropriate points
/I to subscribe and unsubscribe this object to the EditBus

public void addNotify()

{
super.addNotify();
EditBus.addToBus(this);

public void removeNotify()

{
saveFile();
super.removeNotify();
EditBus.removeFromBus(this);

179

Chapter 18. Writing a Plugin

}

This listing refers to &uickNotebookTextArea object. It is currently implemented as a
JTextArea with word wrap and tab sizes hard-coded. Placing the object in a separate
class will simply future modifications.

18.4.2. Class QuickNotepadToolBar

There is nothing remarkable about the toolbar panel that is placed inside the
QuickNotepad object. The constructor shows the continued use of items from the
plugin’s properties file.

public class QuickNotepadToolPanel extends JPanel
{

private QuickNotepad pad;

private JLabel label,

public QuickNotepadToolPanel(QuickNotepad gnpad)
{
pad = gnpad;
JToolBar toolBar = new JToolBar();
toolBar.setFloatable(false);

toolBar.add(makeCustomButton("quicknotepad.choose-file",
new ActionListener() {
public void actionPerformed(ActionEvent ewvt) {
QuickNotepadToolPanel.this.pad.chooseFile();

}
B

toolBar.add(makeCustomButton("quicknotepad.save-file",
new ActionListener() {
public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.saveFile();

}
)

toolBar.add(makeCustomButton("quicknotepad.copy-to-buffer",
new ActionListener() {
public void actionPerformed(ActionEvent evt) {

180

Chapter 18. Writing a Plugin

QuickNotepadToolPanel.this.pad.copyToBuffer();

}
B

label = new JLabel(pad.getFilename(),
SwingConstants.RIGHT);
label.setForeground(Color.black);
label.setVisible(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath").equals("true™));
this.setLayout(new BorderLayout(10, 0));
this.add(BorderLayout. WEST, toolBar);
this.add(BorderLayout. CENTER, label);
this.setBorder(BorderFactory.createEmptyBorder(0, 0, 3, 10));

}

The methodnakeCustomButton() provides uniform attributes for the three toolbar
buttons corresponding to three of the plugin’s use actions. The menu titles for the user
actions serve double duty as tooltip text for the buttons. There is also a
propertiesChanged() method for the toolbar that sets the text and visibility of the
label containing the notepad file path.

18.5. Designing an Option Pane

Using the default implementation provided blystractOptionPane reduces the
preparation of an option pane to two principal tasks: writingna() method to layout
and initialize the pane, and writing aave() method to commit any settings changed
by user input. If a button on the option pane should trigger another dialog, such as a
JFileChooser or jEdit's own enhance®iFSFileChooserDialog , the option pane will
also have to implement threctionListener interface to display additional components.

The QuickNotepad plugin has only three options to set: the path name of the file that will
store the notepad text, the visibility of the path name on the tool bar, and the notepad’s
display font. Using the shortcut methods of the plugin API, the implementation of

_init() looks like this:

181

Chapter 18. Writing a Plugin

182

public class QuickNotepadOptionPane extends AbstractOptionPane

{

implements ActionListener

private JTextField pathName;
private JButton pickPath;
private FontSelector font;

public void _init()
{
showPath = new JCheckBox(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath.title"),
jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "show-filepath")
.equals("true™);
addComponent(showPath);

pathName = new JTextField(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "filepath™));
JButton pickPath = new JButton(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "choose-file"));
pickPath.addActionListener(this);

JPanel pathPanel = new JPanel(new BorderLayout(0, 0));
pathPanel.add(pathName, BorderLayout. CENTER);
pathPanel.add(pickPath, BorderLayout.EAST);

addComponent(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "file"),
pathPanel);

font = new FontSelector(makeFont());

addComponent(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "“choose-font"),
font);

Chapter 18. Writing a Plugin

}

Here we adopt the vertical arrangement offered by use addt®@omponent() method

with one embellishment. We want the first “row” of the option pane to contain a text field
with the current notepad file path and a button that will trigger a file chooser dialog when
pressed. To place both of them on the same line (along with an identifying label for the
file option), we create aPanel to contain both components and pass the configured
panel toaddComponent()

The_init) method uses properties from the plugin’s property file to provide the
names of label for the components placed in the option pane. It also uses a property
whose name begins WitROPERTY_PREFDAs a persistent data item - the path of the
current notepad file. The elements of the notepad’s font are also extracted from
properties using a static method of the option pane class.

The_save() method extracts data from the user input components and assigns them to
the plugin’s properties. The implementation is straighforward:

public void _save()
{
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "filepath”, pathName.getText());
Font _font = font.getFont();
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "font", _font.getFamily());
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "fontsize", String.valueOf(_font.getSize()));
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "fontstyle", String.valueOf(_font.getStyle()));
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath", String.valueOf(showPath.isSelected()));

}

The class has only two other methods, one to display a file chooser dialog in response to
user action, and the other to construcibat object from the plugin’s font properties.
They do not require discussion here.

183

Chapter 18. Writing a Plugin

184

18.6. Creating Other Plugin Resources

We have already covered in some detail one of the three types of resources that plugins
include with their class files - the user action catalog - and the need for help
documentation does not require extended discussion. The remaining resource is the
properties file.

The first type of property data is information about the plugin itself. The first few entries
from the QuickNotepad plugin’s properties file fulfills this requirement:

general plugin information
plugin.QuickNotepadPlugin.name=QuickNotepad
plugin.QuickNotepadPlugin.author=John Gellene
plugin.QuickNotepadPlugin.version=1.0
plugin.QuickNotepadPlugin.docs=QuickNotepad.html
plugin.QuickNotepadPlugin.depend.O=jdk 1.2
plugin.QuickNotepadPlugin.depend.1=jedit 03.01.99.00

These properties are described in detajl'in Section 17.4.2 and do not require further
discussion here.

Next in the file comes a property that sets the title of the plugin in docked or frame
windows. The use of the suffiktle in the property’s key name is required by the
plugin API.

dockable window name
quicknotepad.titte=QuickNotepad

The next sections, consisting of the action label and menu item properties, have been
discussed earlier iIn“Secfion T8 713.2.

action labels

guicknotepad.toggle.label=QuickNotepad
guicknotepad-to-front.label=Bring QuickNotepad to front
guicknotepad.choose-file.label=Choose notepad file
guicknotepad.save-file.label=Save notepad file
guicknotepad.copy-to-buffer.label=Copy notepad to buffer

application menu items
guicknotepad.menu=quicknotepad.toggle - quicknotepad.choose-file \
quicknotepad.save-file quicknotepad.copy-to-buffer

Chapter 18. Writing a Plugin

We have created a small toolbar as a component of QuickNotepad, so file names for the

button icons follow:

plugin toolbar buttons
guicknotepad.choose-file.icon=Open.gif
guicknotepad.save-file.icon=Save.gif
guicknotepad.copy-to-buffer.icon=Edit.qgif

The menu labels corresponding to these icons will also serve as tooltip text.

Finally, the properties file set forth the labels and settings used by the option pane:

Option pane labels

options.quicknotepad.label=QuickNotepad
options.quicknotepad.file=File:
options.quicknotepad.choose-file=Choose
options.quicknotepad.choose-file.titte=Choose a notepad file
options.quicknotepad.choose-font=Font:
options.quicknotepad.show-filepath.title=Display notepad file path

Initial default font settings
options.quicknotepad.show-filepath=true
options.quicknotepad.font=Monospaced
options.quicknotepad.fontstyle=0
options.quicknotepad.fontsize=14

Setting not defined but supplied for completeness
options.quicknotepad.filepath=

We do not define a default setting for tllepath ~ property because of differences
among operating systems. We will define a default file programatically that will reside in
the directory jEdit designates for user settings.

18.7. Compiling the Plugin

We have already outlined the contents of the user action catalog, the properties file and
the documentation file in our earlier dicusssion. The final step is to compile the source
file and build the archive file that will hold the class files and the plugin’s other resources.

185

Chapter 18. Writing a Plugin

Publicly released plugins include with their source a makefile for the jmk utility. The
format for this file requires few changes from plugin to plugin. Here is the version of
makefile.jmk used by QuickNotepad and many other plugins:

A plugin makefile

#

To recompile this plugin, start jmk
in the plugin’s source directory.

#

jar_name = "QuickNotepad";

Hit

javac executable and args

Hi

#javac_bin = "javac";

#javac_opts = "-deprecation”;
javac_bin = "jikes";

javac_opts = "-g" "-deprecation" "+E";

set up the class path
new_class _path = ".././jeditjar;.";
old_class_path = (getprop "java.class.path");

concatenate the old and new class paths
if (equal ", old_class_path) then class_path = new_class_path;
else class_path = (cat old_class_path ";" new_class_path); end

cmd_javac = javac_bin "-classpath" class_path javac_opts;

#i

jar executable and args
#it

jar_bin = "jar";

jar_opts = "cf0";

cmd_jar = jar_bin jar_opts;

srcs = (subst ".java", ".class",
(glob (join (join (dirs "."), "/"), "™Plugin.java" "*.java"))
)i

jar = (cat "../" jar_name ".jar");

186

Chapter 18. Writing a Plugin

get files = function (dummy)

{

extensions = "class" "gif" "html" "props";
file_globs = (join "/*.", extensions);
other_files = "actions.xml";

(glob (join (dirs "."), file_globs)) other_files
}
end;

"all": jar;

"%.class" : "%.java";

{

exec cmd_javac <;
}
jar: srcs;
{

exec cmd_jar @ (get_files "1");
}
"clean™:;
{

delete (glob (join (dirs "."), "/*.class"));

}
".PHONY": "all";

For a full discussion of thignk file format and command syntax, you should consult the
jmk documentation site (http://jmk.sourceforge.net/edu/neu/ccs/jmk/jmk.html).
Modifying this makefile for a different plugin will likely only require three changes:

+ the name of the plugin;

- the choice of compiler (made by inserting and deleting the comment character
'#), and

- the classpath variables figdit.jar any plugins this one depends on.

If you have reached this point in the text, you are probably serious about writing a plugin
for jEdit. Good luck with your efforts, and thank you for contributing to the jEdit project.

187

V. JEdit API Reference

This part of the user’s guide covers the jEalitplication programmer interfacd he
information in this part is only useful to macro and plugin developers; you do not need to
read it if you only want to use jEdit.

The first two chapter covers BeanShell commands, which are can only be used in
macros. The second chapter covers APIs useful to both macros and plugins. The final
chapter covers the EditBus message system, which is typically only used by plugins.

This part of the user’s guide was written by John Gellejgelksne@nyc.rr.com >,

188

Chapter 19. BeanShell Commands

BeanShell includes a set cbmmandssubroutines that can be called from any script or
macro. The following is a summary of those commands which may be useful within
JEdit.

Note: Plugins, because they are written in Java and not BeanShell, cannot make
use of BeanShell commands.

19.1. Output Commands

e void print (arg);

Writes the string value of the argument to the activity log, or if run from the
Console plugin, to the current output windowally is an arrayprint runs itself
recursively on the array’s elements.

e void cat (String filename);

Writes the contents dilename to the activity log.

- void javap (String | Object | Class target);

Writes the public fields and methods of the specified class to the output stream of
the current process. Requires Java 2 version 1.3 or greater.

19.2. File Management Commands

e void dir (String dirname);

Displays the contents of directodyrname . The format of the display is similar to
the Unixls -I command.

e File pathToFile (String filename);

189

Chapter 19. BeanShell Commands

190

Create &ile object corresponding tidlename . Relative paths are resolved with
reference to the BeanShell interpreter’s working directory.
e void cd(String dirname);

Changes the working directory of the BeanShell interpretélirttame .

e void pwd

Writes the current working directory of the BeanShell interpreter to the output
stream of the current process.

e mvString fromFile , String toFile);

Moves the file named biyomFile totoFile

e void rm(String pathname);

Deletes the file name hyathname .

19.3. Component Commands

+ Object load (String filename);

Loads and returns a serialized Java object ffiemame

« void save (Component component , String filename);

Savescomponent in serialized form tdilename

e JFrame frame (Component frame);
Displays the component in a top-leusirame , centered and packed. Returns the
JFrame oObject.

« Font setFont (Component comp, int ptsize);

Set the font size ofomponent to ptsize and returns the new font.

Chapter 19. BeanShell Commands

19.4. Resource Management Commands

+ URL getResource (String path);

Returns the resource specifiedfmth . A absolute path must be used to return any
resource available in the current classpath.

19.5. Script Execution Commands

» exec (String cmdline);
Start the external process by calliRgntime.exec() oncmdline . Any output is
directed to the output stream of the calling process.

« void source (String filename);
Evaluates the contents fitname as a BeanShell script in the interpreter’s
current namespace.

« Object eval (String expression);
Evaluates the stringxpression as a BeanShell script in the interpreter’s current
namespace. Returns the result of the evaluationilof.

e bsh.This run (String filename);

Run the BeanShell script named figname in a copy of the existing
namespace. The return value represent the object context of the script, allowing you
to access its variables and methods.

+ Thread bg(String filename);

Run the BeanShell script named figname in a copy of the existing namespace
and in a separate thread. Returnsthead object so created.

e void server (int port);

191

Chapter 19. BeanShell Commands

192

Createes a “server” version of the BeanShell interpreter that shares the same
namespace as the current interpreter. The server interpreter listens on the designated
port.

This requires theésh.uti package, which is not included with jEdit. It can be
found in the stand-alone BeanShell distribution, available from
http://www.beanshell.org.

Caution

Security of this port is not guaranteed. Use this command with
extreme caution.

19.6. BeanShell Object Management
Commands

e bsh.This object

Creates a new BeanShgHis scripted object which can hold data members. You
can use this to create an object for storing miscellaneous crufties, like so:

crufties = object();
crufties.foo = "hello world";
crufties.counter = 5;

bsh.This extend (bsh.This object);

Creates a new BeanSheHis scripted object that is a child of the parameter
object

bsh.This super (String scopename);

Returns a refernece to the BeanShelt object representing the enclosing method
scope specified bycopename . This method work similar to theuper keyword
but can refer to enclosing scope at higher levels in a hierarchy of scopes.

Chapter 19. BeanShell Commands

e bind (bsh.This ths , bsh.Namespace namespace);

Binds the scripted objeths to namespace .

« void unset (String name);

Removes the variable named bgme from the current interpreter namespace. This
has the effect of “undefining” the variable.

« setNameSpace (bsh.Namespace namespace);

Set the namespace of the current scopeatmespace .

19.7. Other Commands

« void exit

Calls System.exit(0)

Caution

While this command is available, you should always call
jEdit.exit() instead so the application will shutdown in an
orderly fashion.

« void debug

Toggles BeanShell's internal debug reporting to the output stream of the current
process.

» getSourceFilelnfo

Returns the name of the file or other source from which the BeanShell interpreter is
reading.

193

Chapter 20. General jEdit Classes

20.1. Class jEdit

This is the main class of the application. All the methods in this class are static methods,
so they are called with the following syntax, from both macros and plugins:

jEdit. method (parameters)

Here are a few key methods:

* public static Buffer openFile (View view , String path);
Opens the file nameghth in the givenview . To open a file in the current view, use
the predefined variablgew for the first parameter.

e public static Buffer newFile (View view);

This creates a new buffer captiongdtitled-<n>in the givenview .

« public static boolean closeBuffer (View view , Buffer buffer);
Closes the buffer namedffer in the view namediew . The user will be
prompted to save the buffer before closing if there are unsaved changes.

» public static void saveAllBuffers (View view , boolean confirm);
This saves all open buffers with unsaved changes in the gie@en The parameter
confirm determines whether jEdit initially asks for confirmation of the save
operation.

* public static boolean closeAllBuffers (View view);

Closes all buffers in the giveview . A dialog window will be displayed for any
buffers with unsaved changes to obtain user instructions.

* public static void exit (View view , boolean reallyExit);

This method causes jEdit to exit.riéallyExit is false and jEdit is running in
background mode, the application will simply close all buffers and views and

194

Chapter 20. General jEdit Classes

remain in background mode.

e public static String getProperty (String name);

Returns the value of the property namednaye, or null if the property is
undefined.

e public static boolean getBooleanProperty (String name);

Returns a boolean value ofie orfalse for the property named hyame by
examining the contents of the property; retukiise if the property cannot be
found.

e public static void setProperty (String name, String property);
This method sets the property namednaye with the valueproperty . An existing
property is overwritten.

e public static void setBooleanProperty (String name, boolean
value);

This method sets the property namednayne to value . The boolean value is stored
internally as the string “true” or “false”.

e public static void setTemporaryProperty (String name, String
property);
This sets a property that will not be stored during the current jEdit session only.
This method is useful for storing a value obtained by one macro for use by another
macro.

e public static String getJEditHome

Returns the path of the directory containing the jEdit executable file.

e public static String getSettingsDirectory

Returns the path of the directory in which user-specific settings are stored. This will
be null if jEdit was started with thenosettingscommand-line switch; so do not
blindly use this method without checking for a null return value first.

The jEdit object also maintains a number of collections which are useful in some
situations. They include the following:

195

Chapter 20. General jEdit Classes

196

public static EditAction[] getActions

Returns an array of “actions” or short routines maintained and used by the editor.

public static EditAction getAction (String action);

Returns the action namedtion , ornull if it does not exist.

public static Buffer]] getBuffers

Returns an array of open buffers.

public static Properties getProperties

Returns a Javaroperties object (a class derived frommashtable) holding all
properties currently used by the program. The constituent properties fall into three
categories: application properties, “site” properties, and “user” properties. Site
properties take precedence over application properties with the same “key” or name,
and user properties take precedence over both application and site properties. User
settings are written to a file namedbperties in the user settings directory upon
program exit or whenevegEdit.saveSettings() is called.

public static int getBufferCount

Returns the number of open buffers.

public static Buffer getBuffer (String path);

Returns thesuffer object containing the file name@th . ornull if the buffer
does not exist.

public static Mode[] getModes

Returns an array containing all editing modes used by jEdit.

public static Mode getMode (String name);

Returns the editing mode named d@me, or null if such a mode does not exist.

public static EditPlugin(] getPlugins

Returns an array containing all existing plugins.

plugin static EditPlugin getPlugin (String name);

Chapter 20. General jEdit Classes

Returns the plugin named bigme, ornull if such a plugin does not exist.

20.2. Class View

This class represents the “parent” or top-level frame window in which the editing occurs.
It contains the various visible components of the program, including the editing pane,
menubar, toolbar, and any docking windows containing plugins.

Some useful methods from this class include the following:

« public void splitHorizontally

Splits the view horizontally.

 public void splitVertically

Splits the view vertically.

 public void unsplit

Unsplits the view.

e public synchronized void showWaitCursor

Shows a “waiting” cursor (typically, an hourglass).

» public synchronized void hideWaitCursor

Removes the “waiting” cursor. This method ast@dwWwaitCursor() are
implemented using a reference count of requests for wait cursors, so that nested
calls work correctly; however, you should be careful to use these methods in
tandem.

* public StatusBar getStatus

Eeachview displays astatusBar at its bottom edge. It shows the current cursor
position, the editing mode of the current buffer and other information. The method
setMessage(String message) can be called on the return valuegeatStatus()

to display reminders or updates. The message remains until the method is called
again. To display a temporary message in the status bar, call

197

Chapter 20. General jEdit Classes

setMessageAndClear(String message) , Which will erase the message
automatically after ten seconds.

e public DockableWindowManager getDockableWindowManager

The object returned by this method keeps track of all dockable windows. See
Seciion 2015.

20.3. Class Regqisters

A Register is string of text indexed by a single character. Typically the text is taken
from selected buffer text and the index character is a keyboard character selected by the
user.

The application maintains a singkegisters object consisting of an dynamically sized
array ofRegister objects. Theregisters class defines a number of methods that give
each register the properties of a virtual clipboard.

The following methods provide a clipboard operations for register objects:

e public static void copy (JEditTextArea textArea , char register);
Saves the selected text in the designaéxdiArea to the register indexed at
register . This will replace the existing contents of the designated register.

* public static void cut (JEditTextArea textArea , char register);

Saves the selected text in the designaéxdiArea to the register indexed at
register , and removes the text from the text area. This will replace the existing
contents of the designated register.

e public static void append (JEditTextArea textArea , char register
String separator , boolean cut);

e public static void append (JEditTextArea textArea , char register
String separator);

e public static void append (JEditTextArea textArea , char register);

These three methods append the selected text textArea to the designated
register. If thecut parameter is not specified, the selected text remains in the text

198

Chapter 20. General jEdit Classes

area. If theseparator ~ parameter is not specified, a newline character is used to
separate the appended text from any existng register text.

The following methods provide a lower-level interface for working with registers:

* public static void setRegister (char name, Register register);
e public static void setRegister (char name, Register newRegister);
« public static void clearRegister (char name);

Sets the text of the designated registenuiv . If the register is one of the two
registers reserved by the application (as discussed in the next section), the text value
is set to an empty string.

* public static Register getRegister (char name);

e public static Register]] getRegisters

20.4. Interface Registers.Register

This interface requires implementation of two methadsvalue() , which takes a

String parameter, antString() , which return a textual representation of the
register’s contents. Two classes implement this interfacgiphoardRegister is tied

to the contents of the application’s clipboard. The application assigns a
ClipboardRegister to the register indexed under the charagtek StringRegister

is created for registers assigned by the user. In addition, the application assigns to the
StringRegister indexed undetothe last text segment selected in the text area.

A Register object does not maintain a copy of its index key. Indexing is performed by
theRegisters object.

20.5. Class DockableWindowManager

Windows conforming to jEdit's dockable window API can appear in “panes” located
above, below or to the left or right of the main editing pane. They can also be displayed
in “floating” frame windows. ADockableWindowManager keeps track of the plugins
associated with a particulatew . Eachview object contains an instance of this class.

199

Chapter 20. General jEdit Classes

« public DockableWindow getDockableWindow (String name);

This method returns thBockablewindow object named by theame parameter.
The name of @ockablewindow is a required property of the plugin. If there is no
DockableWindow bearing the requested name, the method retuuins.

 public void addDockableWindow (String name);

If the Dockablewindow named by th@ame parameter does not exist, a message is
sent to the associated plugin to create it. DhekableWindow is then made visible.

« public void showDockableWindow (String name);
« public void removeDockableWindow (String name);
* public void toggleDockableWindow (String name);

These methods, respectively show, hide and toggle the visibility of the
DockableWindow oObject named by theame parameter. If the
DockableWindowManager does not contain a reference to the window, these
methods send an error message to the activity log and have no other effect. Only
addDockablewindow() ~ can cause the creation obackableWindow .

20.6. Class JEditTextArea

This class is the visible component that displays the file being edited. It is derived from
Java’'siComponent class.

Methods in this class that deal with selecting text rely upon classes derived from jEdit’s
Selection class. The “Selection API” permits selection and concurrent manipulation of
multiple, non-contiguous regions of text. After describing the selection classes, we will

outline the selection methods afditTextArea , followed by a listing of other methods

in this class that are useful in writing macros.

20.6.1. Class Selection

This is anabstract classvhich holds data on a region of selected text. As an abstract
class, it cannot be used directly, but instead serves as a parent class for specific types of
selection structures. The definition ®flection contains two child classes used by the
Selection API:

200

Chapter 20. General jEdit Classes

« Selection.Range - representing an ordinary range of selected text
+ Selection.Rect - representing a rectangular selection region

A new instance of either type &klection can be created by specifying its starting and
ending caret positions:

selRange = new Selection.Range(start, end);
setRect = new Selection.Rect(start, end);

Both classes inherit or implement the following methods of the paeattion class:

+ public int getStart
« public int getEnd

Retrieves the buffer position representing the start or end of the selection.

+ public int getStartLine
e public int getEndLine

Retrieves the zero-based index number representing the line on which the selection
starts or ends.

« public int getStart (Buffer buffer , int line);
* public int getEnd (Buffer buffer , int line);

These two methods return the position of the beginning or end of that portion of the
selection falling on the line referenced by fivee parameter. The parameter

buffer isrequired becauseselection object is a lightweight structure that

does not contain a reference to théfer object to which it relates.

These methods do not check whetherlthe parameter is within the range of

lines actually covered by the selection. They would typically be used within a loop
defined by theetStartLine() andgetEndLine() methods to manipulate
selection text on a line-by-line basis. Using them without range checking could
cause unintended behavior.

201

Chapter 20. General jEdit Classes

202

20.6.2. Selection methods in JEditTextArea

A JEditTextArea Object maintains anector of currentSelection objects. When a
selection is added, thiEditTextArea attempts to merge the new selection with any
existing selection whose range contains or overlaps with the new item. When selections
are added or removed using by these methods, the editing display is updated to show the
change in selection status.

Here are the principal methods iHditTextArea dealing withSelection objects:
20.6.2.1. Adding and removing selections

+ public void setMultipleSelectionEnabled (boolean multi);

Set multiple selection on or off according to the valuemafiti . This only affects

the ability to make multiple selections in the user interface; macros and plugins can
manipulate them regardless of the setting of this flag. In fact, in most cases, calling
this method should not be necessary.

e public Selection]] getSelection

Returns an array containing a copy of the current selections.

e public int getSelectionCount
Returns the current number of selections. This can be used to test for the existence
of selections.
« public Selection getSelectionAtOffset (int offset);
Returns theselection containing the specific offset, aull if there is no
selection at that offset.
« public void addToSelection (Selection selection);
 public void addToSelection (Selection]] selection);

Adds a singleselection or an array ofelection objects to the existing
collection maintined by theEditTextArea . Nested or overlapping selections will
be merged where possible.

e public void extendSelection (int offset , int end);

Chapter 20. General jEdit Classes

Extends the existing selection containing the positiooffset to the position
represented bgnd . If there is no selection containirajfset the method creates
a newSelection.Range extending fronoffset toend and adds it to the
current collection.

e public void removeFromSelection (Selection sel);

« public void removeFromSelection (int offset);

These methods remove a selection from the current collection. The second version
removes any selection that contains the positiooffget , and has no effect if no
such selection exists.

20.6.2.2. Getting and setting selected text

e public String getSelectedText (Selection s);
e public String getSelectedText (String separator);
e public String getSelectedText

These three methods returis@ng containing text corresponding to the current
selections. The first version returns the text corresponding to a particular selection
named as the parameter, allowing for iteration through the collection or focus on a
specific selection (such as a selection containing the current caret position). The
second version combines all selection text in a sisyieg , separated by the

String given as theseparator . The final version operates like the second
version, separating individual selections with newline characters.

e public void setSelectedText (Selection s, String selectedText);

* public void setSelectedText (String selectedText);

The first version changes the text of the selection representeddy
selectedText . The second version sets the text of all active selections; if there
are no selections, the text will be inserted at the current caret position.

The second version agktSelectedText() is the method that will typically be
used in macro scripts to insert text.

 public int[] getSelectedLines

203

Chapter 20. General jEdit Classes

Returns a sorted array of line numbers on which a selection or selections are
present. The current line is included in the array whether or not it is part of a
selection.

This method is the most convenient way to iterate through selected lines in a buffer.
The line numbers in the array returned by this method can be passed as a parameter
to such methods agtlLineText() , as discussed below.

20.6.2.3. Other selection methods

The following methods perform selection operations without uSisiection objects
as parameters or return values. These methods should only be used in macros.

« public void selectBlock

Selects the code block surrounding the caret.

e public void selectWord

« public void selectLine

« public void selectParagraph

e public void selectFold
Selects the “fold” (a portion of text sharing a given indentation level) that contains
the line where the editing caret is positioned.

+ public void selectFoldAt (int line);

Selects the fold containing the line referencedibg

« public void selectAll
e public void selectNone

« public void indentSelectedLines

204

Chapter 20. General jEdit Classes

20.6.3. Other methods in JEditTextArea

20.6.3.1. Editing caret methods

These methods are used to get, set and move the position of the editing caret:

 public int getCaretPosition

Returns a zero-based index of the caret position in the existing buffer.

« public void setCaretPosition (int caret);

Sets the caret position eiret and deactivates any selection of text.

e public void moveCaretPosition (int caret);
This moves the caret to the position representeddrgt without affecting any
selection of text.

+ public int getCaretLine
Returns the line on which the caret is positioned.

Each of the following shortcut methods moves the caret. Isdlect parameter is set
totrue , the intervening text will be selected as well.

« public void goToStartOfLine (boolean select);

+ public void goToEndOfLine (boolean select);

 public void goToStartOfWhiteSpace (boolean select);
« public void goToEndOfWhiteSpace (boolean select);
e public void goToFirstVisibleLine (boolean select);
« public void goTolLastVisibleLine (boolean select);
« public void goToNextCharacter (boolean select);

e public void goToPrevCharacter (boolean select);

« public void goToNextWord (boolean select);

« public void goToPrevWord (boolean select);

205

Chapter 20. General jEdit Classes

206

e public void goToNextLine (boolean select);

e public void goToPrevLine (boolean select);
 public void goToNextParagraph (boolean select);
e public void goToPrevParagraph (boolean select);
 public void goToNextBracket (boolean select);

« public void goToPrevBracket (boolean select);

20.6.3.2. Methods for scrolling the text area

e public void scrollUpLine

« public void scrollUpPage

« public void scrollDownLine

e public void scrollUpPage

« public void scrollToCaret (boolean doElectricScroll);

Scrolls the text area to ensure that the caret is visible.dbfgectricScroll
parameter detemines whether “electric scrolling” will occur. This leaves a minimum
number of lines between the caret line and the top and bottom of the editing pane.

 public void centerCaret

Scrolls the text area so that the line containing the edit caret is vertically centered.

 public void setFirstLine (int firstLine);
 public int getFirstLine

This pair of methods deals with the line number of the first line displayed at the top
of the text area. Lines that are hidden by folds or narrowing are ignored when
making this “virtual” line count, so the line number will not necessarily conform to
the line numbers displayed in the text area’s gutter. In addition, the virtual line index
is zero-based, sgetFirstLine() will always return zero for the first line of text.

To convert a virtual line count to a physical count or vice versa] Ssee Section 20.7.3.4.

« public void setElectricScroll (int electricScroll);

Chapter 20. General jEdit Classes

e public int getElectricScroll

The “electric scroll” attribute is the number of lines above and below the editing
caret that always remain visible when scrolling.

20.6.3.3. Methods for calculating editing positions

e public int getLineOfOffset (int offset);

Returns the line on which the given offset is found.

« public int getLineStartOffset (int line);
+ public int getLineEndOffset (int line);

Returns the offset of the beginning or end of the given line.

20.6.3.4. Other methods for retrieving text

These methods can retrieve buffer text without regard to a selection or the position of the
editing caret.

e public String getText (int start , int len);
Returns the text located between buffer offset positions.

e public String getLineText (int linelndex);

Returns the text on the given line.

* public String getText

Returns the entire text in the text area.

« public void setText (String text);

Sets (and replaces) the entire text of the text area.

207

Chapter 20. General jEdit Classes

208

20.6.3.5. Methods for deleting text

« public void delete

Deletes the character to the left of the editing caret.

« public void deleteWord

« public void deleteLine

« public void deleteParagraph

« public void deleteToStartOfLine

 public void deleteToEndOfLine

20.6.3.6. Methods for modifying text

* public void toLowerCase
« public void toUpperCase

These two methods operate on all selected text, including multiple selections.

e public void joinLines

Joins the current line with the following line.

« public void setOverwriteEnabled (boolean overwrite);
e public boolean isOverwriteEnabled

Sets and gets whether added text will overwrite text at the editing caret or whether it
will be inserted immediately to the right of the caret.

* public void userlnput (char ch);

Inserts the character at the caret position as if it were typed at the keyboard
(keyboard input is actually passed to this method). Undik8electedText() , or
insertString() in theBuffer class, this method triggers any active text
formatting features such as auto indent, abbreviation expansion and word wrap.

Chapter 20. General jEdit Classes

20.6.3.7. Methods for creating comments

« public void lineComment

This inserts the line comment string at the beginning of each selected line.

 public void rangeComment

This surrounds each selected text chunk with the comment start and end strings.

20.6.3.8. Methods for getting buffer statistics

e public int getBufferLength

Returns the number of characters in the buffer.

« public int getLineCount

Returns the number of lines in the buffer being edited.

« public int getVirtualLineCount

Returns the number of “virtual” or visible lines in the buffer being edited, which
may be less than the total number of lines because of folding or narrowing.

To convert a virtual line count to a physical count or vice versa[See Section 20.7.3.4.

* public int getLineLength (int line);

Returns the length of the line numbiee (using a zero-based count).

20.7. Class Buffer

A Buffer represents the contents of an open text file as it is maintained in the
computer’s memory (as opposed to how it may be stored on a disk). It is derived from
Java’'sPlainDocument class.

209

Chapter 20. General jEdit Classes

20.7.1. File attribute methods

* public String getName

e public String getPath

e public File getFile
This method may returnull if the file is stored on a remote file system (for
example, if the FTP or Archive plugins are in use). This method should be avoided
if possible.

« public boolean isNewFile

Returns whether a buffer lacks a corresponding version on disk.

e public boolean isDirty

Returns whether there have been unsaved changes to the buffer.

« public boolean isReadOnly

e public boolean isUntitled

20.7.2. Editing attribute methods

e public Mode getMode
e public void setMode (Mode mode);

Gets and sets the editing mode for the buffer.

+ public int getindentSize
e public int getTabSize

These methods return the size of an initial indentation at the beginning of a line and
the distance between tab stops, each measured in character columns. If these
properties are not individually set for a specific buffer, they are inherited from the
properties of the buffer's associated editing mode.

The following two methods are inherited by theffer class.

210

Chapter 20. General jEdit Classes

e public void putProperty (Object key, Object value);
e public Object getProperty (Object key);

TheBuffer object maintains a table of properties that describe a broad range of
attributes. The value of each property is stored using a key for indexing purposes,
usually astring that names the particular property. Property values can be set and
retreived using these two methods. Tigect returned bygetProperty()

usually has to be cast to a derived type to be useful. Most of these properties are
documented in“Seciion 6.2.

These two methods provide shortcuts for getting snd setting boolean properties.

« public static boolean getBooleanProperty (String name);

Returns a boolean value vfie orfalse for the property named byame by
examining the contents of the property; retutiise if the property cannot be
found.

e public static void setBooleanProperty (String name, boolean
value);

This method sets the property namednbyne to value . The boolean value is stored
internally as the string “true” or “false”.

20.7.3. Editing action methods

20.7.3.1. General editing methods

« public void reload (View view);
Reloads the buffer from disk int@ew , asking for confirmation if the buffer has
unsaved changes.

« public boolean save (View view , String path);

« public boolean save (View view , String path , boolean rename);

Therename parameter causes a buffer’'s name to change if detiéo ; if false ,
a copy is saved tpath .

211

Chapter 20. General jEdit Classes

e public boolean saveAs (View view , boolean rename);

Prompts the user for a new name for saving the file.

« public void beginCompoundEdit

e public void endCompoundEdit
Marks the beginning and end of a series of editing operations that will be dealt with
by a singleUndo command.

e public void removeTrailingWhiteSpace (int[] lines);
Removes trailing whitespace in the lines referenced by the index numbers in

lines array.

The following methods are inherited IByffer from its parent class.

e public String getText (int offset , int length);
e public void getText (int offset , int length , Segment text);

These methods extract a portion of buffer text having lergidth beginning at
offset positioroffset . The first method returns a newly creatadng containing
the requested excerpt. The second version initializes an ex&tigngent object

with the location of the requested excerpt. Hegment object represents array
locations within theBuffer object’s data and should be used on a read-only basis.
Calling toString() on theSegment will create a new object suitable for
manipulation.

e public void insertString (int offset , String text , AttributeSet
attr);
This method inserts the stringkt at offsetoffset in the buffer. The attribute
attr is not used by jEdit and should be leftas|

« public int getLength

This method returns the number of characters in the buffer.

212

Chapter 20. General jEdit Classes

20.7.3.2. Marker methods

Buffers may have one or morearkerswhich serve as textual bookmarks Marker has

three key attributes: theuffer to which it relates, the line number to which the marker
refers, and an optional shortcut character. The shortcut identifies the the key that can be
pressed with th&larkers>Go To Marker command to move the editing caret to the
marker line location.

The position and shortcut character aflarker object can be retrieved with the methods
getPosition() andgetShortcut()

TheBuffer class includes the following methods to set and retrieve markers:

e public void addMarker (char shortcut , int pos);
Adds a marker for the line indicated Ipps usingshortcut . Setshortcut to
"0’ to indicate the absence of a shortcut.

e public Vector getMarkers

Returns avector containing the buffer’s current markers.

e public Marker getMarkerAtLine (int line);

Returns the first marker at the specified linep@r if no marker is present at the
line.

e public Marker getMarker (char shortcut);

Returns the marker with the specified shortcutywrr if no such marker exists.

« public void removeMarker (int line);

Removes all markers at the specified line.

« public void removeAllMarkers

Removes all markers in the buffer.

20.7.3.3. Folding methods

The “folding” features of jEdit allow sections of source code with a given indentation
level to be hidden, creating “folds” that can be hidden and expanded, as well as a virtual

213

Chapter 20. General jEdit Classes

214

line numbering scheme that skips hidden, folded lines. The following methods in the
Buffer class deal with the folding mechanism.

e public boolean collapseFoldAt (int line);

Collapses the fold that contains the specified line number. The method returns
false if there are no folds in the buffer for the indicated line.

« public boolean expandFoldAt (int line , boolean fully
JEditTextArea textArea);

Expands the fold that contains the specified line numbéullif is true, all folds

at the line will be expanded, otherwise only one level of folding will be expanded.
ThetextArea parameter is provided to the method to facilitiate scrolling after
folds are expanded.

The method returntalse if there are no folds in the buffer for the indicated line.

» public void expandFolds (int level);

This method expands all folds in the buffer udewel and collapses all folds
with a higher level. Théevel parameter represents the number of indentations,
not the actual number of indented spaces.

* public void expandAllFolds

Expands all folds in the buffer.

« public void narrow (int start , int end);

Narrows the visible portion of the buffer to the specified line range. To undo the
narrowing, call theBuffer.expandAllFolds() method.

20.7.3.4. Virtual and physical line indices

When jEdit’s folding or narrowing features are used to hide portions of a buffer, the
“virtual” line count visible in the text area is generally not equal to the “physical” line
count of the buffer represented by the gutter’s display. The following pair of methods
translate one enumeration to the other.

Chapter 20. General jEdit Classes

e public int virtualToPhysical (int lineNo);

« public int physicalToVirtual (int lineNo);

20.8. Class Macros

The following shortcut methods are useful in displaying output messages or obtaining
input from a macro.

e public static void message (View view , String message);
Displays the text onessage (with an information icon) in a modal message box
centered on the designateigw .

e public static void error (View view , String message);

Similar tomessage but displays an error icon.

e public static String input (View view , String prompt);

* public static String input (View view , String prompt , String
defaultValue);

Displays the text oprompt , a text input field, and a question icon in the
designatediew . In the second version, the text field will initially contain the text
of defaultvValue . Returns the contents of the text field if the dialog box is
dismissed by pressing tt@K button, ormnull if the Cancel button is pressed.

20.9. Class SearchAndReplace

Search and replace routines are undertaken by jEslitischAndReplace class.

The following static methods allow you to set or get the parameters for a search. You can
do this prior to or even without activating the search dialog.

e public static void setSearchString (String search);

e public static String getSearchsString

215

Chapter 20. General jEdit Classes

e public static void setReplaceString (String replace);
e public static String getReplaceString

e public static void setlgnoreCase (boolean ignoreCase);
« public static boolean getlgnoreCase

* public static void setRegexp (boolean regexp);

e public static boolean getRegexp

Determines whether the search term is interpreted as a regular expression.

e public static void setReverseSearch (boolean reverse);

« public static boolean getReverseSearch
Determines whether a reverse search will conducted from the current position to the
beginning of a buffer. Currently, only literal reverse searches are supported.

* public static void setBeanShellReplace (boolean beanshell);

» public static boolean getBeanShellReplace

Determines whether the replace string will be interpreted as a BeanShell expression.

» public static void setAutoWrapAround (boolean wrap);
« public static boolean getAutoWrapAround

Determines whether a search will automatically “wrap” to the beginning of a buffer
after the search reaches the buffer’s end. If this flag is datsto , a dialog will
request confirmation of a wrap-around search.

e public static void setSearchFileSet (SearchFileSet fileset);

A SearchFileSet is an abstract class representing the set of files that are the
subject of a search. There are four classes derived $@mthFileSet

DirectoryListSet

This represents a set of files taken from a directory. It can be extended recursively to
include files in subdirectories. The constructor for this class has the following
syntax:

216

Chapter 20. General jEdit Classes

« public DirectoryListSet (String directory , String glob ,
boolean recurse);

The parameteglob is the glob pattern that determines which files from the
directory will be selected (s¢e Appendik D for information about glob
patterns), andecurse determines whether the selection will recurse into
subdirectories.

class AllBufferSet

This class represents the set of all buffers currently open. The constructor for this
class takes a file mask as a single parameter:

« public AllBufferSet (String glob);

class CurrentBufferSet

This class represents a buffer set consisting of the current buffer only. The
constructor has no parameters.

* public CurrentBufferSet
class BufferListSet

This class represents a buffer set containing an arbitrary set of files specified by the
user. The constructor takes a singketor parameter containing the path names of
the files to be searched.

* public BufferListSet (Vector files);

The actual tasks of searching and replacing, based on these parameters, are performed by
the following methods. The return value of each indicates whether the operation
succeeded.

e public static boolean find (View view);

This will select the next instance of matching text if the search is successful.

e public static boolean replace (View view);

217

Chapter 20. General jEdit Classes

218

This will replace the each occurrence of the “search string” in selected text with the
“replace string”. If no text is selected, the method has no effect.

e public static boolean replace (View view , Buffer buffer , int
start , int end);

This will replace the each occurrence of the “search string” in the specified range
with the “replace string”.

« public static boolean replaceAll (View view);

This method performs a replacement in all buffers ingbarchFileSet . Text
selection is ignored.

« public static boolean hyperSearch (View view);

This collects all instances of matching text in the members of#aechFileSet
and displays them in a dedicated window. Text selection is ignored.

The “HyperSearch” and “Keep dialog” features, as reflected in checkbox options in the
search dialog, are not handled from witlsiearchAndReplace . If you wish to have

these options set before the search dialog appears, make a prior call to either or both of
the following:

jEdit.setBooleanProperty(“search.hypersearch.toggle”,true);
jEdit.setBooleanProperty(“search.keepDialog.toggle”,true);

If you are not using the dialog to undertake a search or replace, you may call any of the
search and replace methods (includiggerSearch()) without concern for the value of
these properties.

To create and display the search and replace dialog, first assign desired values to the
search settings using the methods described above. Then createsaanghialog
object using the following constructor:

e public SearchDialog (View view , String searchString , int
searchin);

The parametesearchin can take the defined constant val@sRRENT_BUFFER
ALL_BUFFERSOr DIRECTORY defined in thesearchDialog ~ class. This parameter
determines which file set radio button to preselect in the dialog box.

Chapter 20. General jEdit Classes

20.10. Class GUIUtilities

The methods dealing with creating menus and menu items are described in Sectipn
[18.2.3.2. One other static method in this class encapsulates the creation and display of
jEdit’s custom file chooser dialog box.

e public static String[] showVFSFileDialog (View view , String path ,
int type , boolean multipleSelection);

This method displays theérSFileChooserDialog provided by jEdit. Ifpath is

set tonull , the dialog will display the directory of the current buffer. Tigpe
parameter can either bEileChooser.OPEN_DIALOG of

JFileChooser.SAVE_DIALOG (you might need to import th&FileChooser class
from thejavax.swing package). The final parameter determines whether multiple
selection of files is permitted.

20.11. Class TextUtilities

This class contains a number of static methods that can be helpful in handling buffer text.

e public static int findMatchingBracket (Buffer buffer , int line ,
int offset);

Returns the offset of the bracket matching the one at ofiset of line line

of the buffer; returns -1 if the bracket is unmatched or if the specified character is
not a bracket. The method throw®adLocationException if theline or

offset parameters are out of range.

e public static int findWordStart (String line , int pos, String
noWordSep);

e public static int findWordEnd (String line , int pos, String
noWordSep);

Returns the position on which the word found on lime , positionline begins

or ends. The parametaoWordSep contains those non-alphanumeric characters
that will be treated as part of a word for purposes of finding the beginning or end of
word (such as an underscore character).

219

Chapter 20. General jEdit Classes

e public static String format (String text , int maxLineLength);
Reformats a string and inserts line separators as necessary so that no line exceeds
maxLineLength in length.

* public static String spacesToTabs (String in, int tabSize);

e public static String tabsToSpaces (String in, int tabSize);

Makes the indicated change based upon a tab sib&ize

20.12. Class MiscUTtilities

This class is another collection of static utility methods.

These methods extract various elements from a path name:

e public static String getFileName (String path);
e public static String getFileExtension (String name);
e public static String getParentOfFile (String path);

Returns the directory containing the specified local file.

The following method creates a string of whitespace characters that uses as many tabs as
possible:

e public static String createWhiteSpace (int len, int tabSize);

If tabSize is setto zero, the string will consist entirely of space characters. To get
a whitespace string tuned to the current buffer’s settings, call this method as follows:

myWhitespace = MiscUtilities.createWhiteSpace(myLength,
buffer.getTabSize());

Here are two sorting methods, one for simple arrays and one fondaxa objects:

e public static void quicksort (Object]] obj , Compare compare);

e public static void quicksort (Vector vector , Compare compare);

220

Chapter 20. General jEdit Classes

The type of the second parameter in both methods is aideardacedefined inside the
MiscUtilities class. Any Java class implementing an interface must implement each
of the methods set forth in the interface’s abstract specificationCotmare interface
consists of a single method:

e public int compare (Object objl , Object o0bj2);

To work correctly with theyuicksort algorithm, this method should return a negative
value ifobjl is ordered prior tmbj2 , a positive value ibbj2 is prior, and zero if the
two objects are equivalent for ordering purposes.

When writing macros, keep in mind that under Java versions earlier than 1.3, BeanShell
cannot implement arbitrary interfaces suclcaspare (although, as we have noted in
Section 14.4]3, a BeanShell method can implement a number of specific listener
interfaces). Fortunately, jEdit provides a number of classes implemetiingare for

sorting purposes. Among them aingCompare andStringlCaseCompare . Both

classes compaigring object; the latter class compares two strings on a case-insentive
basis.

Calling quicksort ~ on avector of String objects could therefore take the following
form:

MiscUtilities.quicksort(myVectorOfStrings,
new StringlCaseCompare());

There is no return value, but tiector provided as the first parameter will be now be
sorted on a case-insensitive basis.

20.13. Class BeanShell

This class integrates the BeanShell interpreter into jEdit. One method is worth
mentioning here because it can be used in a macro to chain together execution of several
macros:

e public static void runScript (View view , String path , boolean
ownNamespace, boolean rethrowBshErrors);

This method runs the script file identified pgth . Within that script, references to
buffer ,textArea andeditPane are determined with reference to thiew

221

Chapter 20. General jEdit Classes

222

parameter. IfethrowBshErrors is set to true, any runtime exception thrown by the
child script will be rethrown to the parent script for additional handling.

The parameteownNamespace determines whether a separate namespace will be
established for the BeanShell interpreter. If seitge , methods and variables defined
in the script will be available to all future uses of BeanShell; if setu® , they will be
lost as soon as the script finishes executing. jEdit uses a vatageof when running
startup scripts, and a valuewde when running all other macros.

Chapter 21. EditBus Classes

This section describes timitBus class itself, as well as the abstr&@Message class
and all classes that derive from it. .2.3 for an overview of how the EditBus
works.

21.1. Class EditBus

This class provides a messaging system for all components that implement the
EBComponent interface, includingview andeBPlugin objects.

» public static void addToBus (EBComponent component);
* public static void removeFromBus (EBComponent component);

Adds or removes a subscribing component.

» public static void addToNamedList (Object tag , Object entry);
e public static void removeFromNamedList (Object tag , Object entry);

Manages arbitriary lists of objects. Used by jEdit to manage dockable windows.
The ErrorList plugin also uses these methods to manage error sources.

« public EBComponent[] getComponents

Returns an array of all components connected to the EditBus.

* public void send (EBMessage message);

Send the specified message to all subscribers on the EditBus.

21.2. Interface EBComponent

This interface is required for any class that subscribes to messages published on the
EditBus. It contains a single method.

« public void handleMessage (EBMessage message);

223

Chapter 21. EditBus Classes

224

21.3. Class EBMessage

This abstract class defines a message that can be sent on the EditBus to subscribing
components. It contains two attributes that can be obtained with the following methods:

e public Component getSource
» public boolean isVetoed
« public void veto

This sets thevetoed state tarue , which terminates circulation of the message to
subscribers on the EditBus. To prevent a message from being vetoed, the message
object must be derived from the abstract claBslessage.NonVetoable . An object

of this class will throw annternalError if the veto() method is called on it.

A summary of classes derived fraeBMessage can be found in the following sections.

21.4. Class BufferUpdate

This message is sent when the status of a buffer changes. It may not be vetoed by a
subscriber, so that all subscribers are assured of receiving it regardless of an individual
subscriber’s response.

« public Buffer getBuffer
e public View getView

This may benull with some message types.

e public Object getWhat

Returns one of the following constants defined inBb#erupdate class:

- CREATED
- LOAD_STARTED
- DIRTY_CHANGED a change in the buffer’s “dirty” status

+ MARKERS_CHANGED

Chapter 21. EditBus Classes

- MODE_CHANGED
+ ENCODING_CHANGED

+ SAVING

21.5. Class CreateDockableWindow

This message is sent by thédDockablewindow() method of the
DockableWindowManager class; se€ Section 16.2.3.

e public View getView
e public String getDockableWindowName

Returns the internal name of the requested dockable window. Your plugin should
check if this is the name of one of the dockables it provides, and if so, call
setDockablewindow() with the new dockable window instance.

e public String getPosition

Returns one of the following constants defined inboekableWindowManager
class:

- FLOATING
- TOP

- BOTTOM

« LEFT

+ RIGHT

* public void setDockableWindow (DockableWindow window);

Attaches a dockable window to the message. This prevents the message from being
passed on to further subscribers.

225

Chapter 21. EditBus Classes

226

21.6. Class EditorExiting

This message signifies that the host application is about to exit. The message has no
parameters and may not be vetoed.

21.7. Class EditorExitRequested

This message signifies that a request has been made for the host application to exit. The
request is subject to cancellation in response to a request to write a modified buffer to
storage. It may not be vetoed.

e public View getView

21.8. Class EditorStarted

This message signifies that the host application has started. The message is sent before
any views are created. The message has no parameters and it may not be vetoed.

21.9. Class EditPaneUpdate

This message is sent when the status of a edit pane changes. It may not be vetoed.

» public EditPane getEditPane
e public Object getWhat

Returns one of the following constants defined inkd#PaneUpdate class:

- CREATED
- DESTROYED
- BUFFER_CHANGEDa change in the buffer displayed in the edit pane

Chapter 21. EditBus Classes

21.10. Class MacrosChanged

This message signifies that the list of available macros have changed. The message has
no parameters and may not be vetoed.

21.11. Class PropertiesChanged

This message is sent when configuration settings have been changed through any of the
option panes in the options dialog. The message has no parameters and may be vetoed.

21.12. Class SearchSettingsChanged

This message is sent when settings in the “Search and Replace” dialog have changed.
The message has no parameters and may be vetoed.

21.13. Class VFSUpdate

This message is sent when the status of a file or directory changes. This allows
subscribers that display or operate upon files an opportunity to adjust their state. This
message may not be vetoed.

e public String getPath

21.14. Class ViewUpdate

This message is sent when the status of a view changes. It may not be vetoed.

e public View getView
e public Object getWhat

Returns one of the following constants defined iniesvUpdate class:

- CREATED

227

Chapter 21. EditBus Classes

-« CLOSED

228

	Table of Contents
	Chapter 1. Starting jEdit
	1.1. Conventions
	1.2. Platform-Independent Instructions
	1.3. Starting jEdit on Windows
	1.4. Command Line Usage

	Chapter 2. jEdit Basics
	2.1. Buffers
	2.2. Views
	2.2.1. Window Docking
	2.2.2. The Status Bar

	2.3. The Text Area
	2.4. Command Repetition

	Chapter 3. Working With Files
	3.1. Creating New Files
	3.2. Opening Files
	3.3. Saving Files
	3.3.1. Autosave and Crash Recovery
	3.3.2. Backups

	3.4. Line Separators
	3.5. Character Encodings
	3.5.1. Commonly Used Encodings

	3.6. The File System Browser
	3.7. Reloading Files
	3.8. Multi-Threaded I/O
	3.9. Printing Files
	3.10. Closing Files and Exiting jEdit

	Chapter 4. Editing Text
	4.1. Moving The Caret
	4.2. Selecting Text
	4.2.1. Rectangular Selection
	4.2.2. Multiple Selection

	4.3. Inserting and Deleting Text
	4.4. Undo and Redo
	4.5. Working With Words
	4.6. Working With Lines
	4.7. Working With Paragraphs
	4.8. Scrolling
	4.9. Transferring Text
	4.9.1. Quick Copy
	4.9.2. The System Clipboard
	4.9.3. General Register Commands

	4.10. Markers
	4.11. Search and Replace
	4.11.1. Searching For Text
	4.11.2. Replacing Text
	4.11.3. HyperSearch
	4.11.4. Multiple File Search
	4.11.5. The Search Bar

	Chapter 5. Editing Source Code
	5.1. Edit Modes
	5.1.1. Mode Selection
	5.1.2. Syntax Highlighting

	5.2. Abbreviations
	5.2.1. Positional Parameters

	5.3. Bracket Matching
	5.4. Tabbing and Indentation
	5.4.1. Soft Tabs
	5.4.2. Automatic Indent

	5.5. Commenting Out Code
	5.6. Folding
	5.6.1. Narrowing

	Chapter 6. Customizing jEdit
	6.1. The Buffer Options Dialog Box
	6.2. Buffer-Local Properties
	6.3. The Global Options Dialog Box
	6.4. The jEdit Settings Directory

	Chapter 7. Using Macros
	7.1. Recording Macros
	7.2. Running Macros
	7.3. How jEdit Organizes Macros

	Chapter 8. Installing and Using Plugins
	8.1. The Plugin Manager
	8.2. Installing Plugins
	8.3. Updating Plugins

	Appendix A. Keyboard Shortcuts
	Appendix B. The Activity Log
	Appendix C. History Text Fields
	Appendix D. Glob Patterns
	Appendix E. Regular Expressions
	Appendix F. Macros Included With jEdit
	F.1. File Management Macros
	F.2. Text Macros
	F.3. Java Code Macros
	F.4. Search Macros
	F.4.1. The Find_Occurrence Macro Group

	F.5. Macros for Listing Properties
	F.6. Miscellaneous Macros

	Appendix G. jEditLauncher for Windows
	G.1. Introduction
	G.2. Starting jEdit
	G.3. The Context Menu Handler
	G.4. Uninstalling jEdit and jEditLauncher
	G.5. The jEditLauncher Interface
	G.6. Scripting Examples
	G.7. Legal Notice

	Chapter 9. Writing Edit Modes
	9.1. An XML Primer
	9.2. The Preamble and MODE tag
	9.3. The PROPS Tag
	9.4. The RULES Tag
	9.4.1. The TERMINATE Rule
	9.4.2. The WHITESPACE Rule
	9.4.3. The SPAN Rule
	9.4.4. The EOL_SPAN Rule
	9.4.5. The MARK_PREVIOUS Rule
	9.4.6. The MARK_FOLLOWING Rule
	9.4.7. The SEQ Rule
	9.4.8. The KEYWORDS Rule
	9.4.9. Token Types

	Chapter 10. Installing Edit Modes
	Chapter 11. Introducing BeanShell
	11.1. Single Execution Macros

	Chapter 12. A Few Simple Macros
	12.1. The Mandatory First Example
	12.2. Helpful Methods in the Macros Class
	12.3. Now For Something Useful

	Chapter 13. A Dialog-Based Macro
	13.1. Use of the Macro
	13.2. Listing of the Macro
	13.3. Analysis of the Macro
	13.3.1. Import Statements
	13.3.2. Create the Dialog
	13.3.3. Create the Text Fields
	13.3.4. Create the Buttons
	13.3.5. Register the Action Listeners
	13.3.6. Make the Dialog Visible
	13.3.7. The Action Listener
	13.3.8. Get the User's Input
	13.3.9. Call jEdit Methods to Manipulate Text
	13.3.10. The Main Routine

	Chapter 14. Macro Tips and Techniques
	14.1. Getting Input for a Macro
	14.1.1. Getting a Single Line of Text
	14.1.2. Getting Multiple Data Items
	14.1.3. Selecting Input From a List
	14.1.4. Using a Single Keypress as Input

	14.2. Startup Scripts
	14.3. Running Scripts from the Command Line
	14.4. Advanced BeanShell Techniques
	14.4.1. BeanShell's Convenience Syntax
	14.4.2. Special BeanShell Keywords
	14.4.3. Implementing Interfaces
	14.4.4. BeanShell Commands

	14.5. Debugging Macros
	14.5.1. Identifying Exceptions
	14.5.2. Using the Activity Log as a Tracing Tool

	Chapter 15. Introducing the Plugin API
	Chapter 16. jEdit as a Plugin Host
	16.1. Loading Plugins
	16.1.1. The JARClassLoader
	16.1.2. Starting the Plugin

	16.2. The User Interface of a Plugin
	16.2.1. The Role of the View Object
	16.2.2. The DockableWindowManager and the EditBus
	16.2.3. Message Routing and Dockable Window Creation

	Chapter 17. The jEdit Plugin API
	17.1. Plugin Core Classes
	17.1.1. Class EditPlugin
	17.1.2. Class EBPlugin

	17.2. Interface DockableWindow
	17.3. Plugin Option Pane Classes
	17.3.1. Class AbstractOptionPane
	17.3.2. Class OptionGroup

	17.4. Other Plugin Resources
	17.4.1. The Action Catalog
	17.4.2. Plugin Properties
	17.4.3. Plugin Documentation

	Chapter 18. Writing a Plugin
	18.1. QuickNotepad: An Example Plugin
	18.2. Writing a Plugin Core Class
	18.2.1. Choosing a Base Class
	18.2.2. Implementing Base Class Methods
	18.2.2.1. General Considerations
	18.2.2.2. Example Plugin Core Class

	18.2.3. Resources for the Plugin Core Class
	18.2.3.1. Actions
	18.2.3.2. Action Labels and Menu Items

	18.3. Implementing a Dockable Window Class
	18.3.1. Using a Single Window Class
	18.3.2. An Action Interface
	18.3.3. A Lightweight Dockable Window Class

	18.4. The Plugin's Visible Window
	18.4.1. Class QuickNotepad
	18.4.2. Class QuickNotepadToolBar

	18.5. Designing an Option Pane
	18.6. Creating Other Plugin Resources
	18.7. Compiling the Plugin

	Chapter 19. BeanShell Commands
	19.1. Output Commands
	19.2. File Management Commands
	19.3. Component Commands
	19.4. Resource Management Commands
	19.5. Script Execution Commands
	19.6. BeanShell Object Management Commands
	19.7. Other Commands

	Chapter 20. General jEdit Classes
	20.1. Class jEdit
	20.2. Class View
	20.3. Class Registers
	20.4. Interface Registers.Register
	20.5. Class DockableWindowManager
	20.6. Class JEditTextArea
	20.6.1. Class Selection
	20.6.2. Selection methods in JEditTextArea
	20.6.2.1. Adding and removing selections
	20.6.2.2. Getting and setting selected text
	20.6.2.3. Other selection methods

	20.6.3. Other methods in JEditTextArea
	20.6.3.1. Editing caret methods
	20.6.3.2. Methods for scrolling the text area
	20.6.3.3. Methods for calculating editing positions
	20.6.3.4. Other methods for retrieving text
	20.6.3.5. Methods for deleting text
	20.6.3.6. Methods for modifying text
	20.6.3.7. Methods for creating comments
	20.6.3.8. Methods for getting buffer statistics

	20.7. Class Buffer
	20.7.1. File attribute methods
	20.7.2. Editing attribute methods
	20.7.3. Editing action methods
	20.7.3.1. General editing methods
	20.7.3.2. Marker methods
	20.7.3.3. Folding methods
	20.7.3.4. Virtual and physical line indices

	20.8. Class Macros
	20.9. Class SearchAndReplace
	20.10. Class GUIUtilities
	20.11. Class TextUtilities
	20.12. Class MiscUtilities
	20.13. Class BeanShell

	Chapter 21. EditBus Classes
	21.1. Class EditBus
	21.2. Interface EBComponent
	21.3. Class EBMessage
	21.4. Class BufferUpdate
	21.5. Class CreateDockableWindow
	21.6. Class EditorExiting
	21.7. Class EditorExitRequested
	21.8. Class EditorStarted
	21.9. Class EditPaneUpdate
	21.10. Class MacrosChanged
	21.11. Class PropertiesChanged
	21.12. Class SearchSettingsChanged
	21.13. Class VFSUpdate
	21.14. Class ViewUpdate

