
Mobile agent applications
Dejan Milojicic
Hewlett Packard Laboratories
1501 Page Mill Rd.
Palo Alto, CA 94304
dejan@hpl.hp.com

80 IEEE Concurrency

Dag Johansen

In what application domains do mobile agents
have potential deployment?

I basically see three different domains. One
is data-intensive applications where the data
is remotely located, is owned by the remote

service provider, and the user has specialized needs. Here, the
user sends an agent to the server storing the data. The second

domain is where agents are launched by an appliance—for exam-
ple, shipping an agent from a cellular phone to a remote server.
The third and maybe most important is for extensible servers,
where a user can ship and install an agent representing him more
permanently on a remote server. The agent is now a personal-
ized, autonomous piece of code that runs remotely and only con-
tacts the user whenever events of interest to the user occur.

Can you describe some of your applications in any of these domains?

This installment of “Trend Wars”
addresses the area of mobile agents.
Mobile agents are software abstrac-
tions that can migrate across the net-
work (hence mobile) representing
users in various tasks (hence agents).
This is a contentious topic that attracts
some researchers and repels others.
Some dislike the “mobile” attribute;
the others the “agent” noun. Mobile
agent opponents believe that most
problems addressed by mobility can be
equally well, yet more easily and more
securely, solved by static clients that
exchange messages. Those who favor
mobility justify its advantage over sta-
tic alternatives with benefits, such as
improved locality of reference, ability
to represent disconnected users, flex-
ibility, and customization.

The ideas of mobile abstractions are
probably as old as distributed systems. I
first got interested in process migration
(a predecessor of mobile agents) 10 years
ago. It was a hard problem that attracted
numerous PhD students; including me.
It was also a time of promising distrib-
uted operating systems, such as MOSIX,
V Kernel, Sprite, and Mach—each of

which had a process-migration imple-
mentation. Unfortunately, none of them
caught on. They were widely regarded
as successful and interesting research,
but no industrial adoption resulted.
Mobile agents seem to be following a
similar path.

The term “mobile agent” was intro-
duced by Telescript, which supported
mobility at the programming language
level. In many ways, Telescript was
ahead of time, including its support for
mobile agents. Many mobile agent
systems followed, most implemented
in Java, which already supports mobile
code, but also in scripting languages,
such as Tcl/Tk or Python. Mobile
agents seem suitable for applications,
such as electronic commerce, system
administration and management (es-
pecially network management), and
information retrieval. However, few
systems actually deployed them in an
industrial setting.

In a brief summary, mobile agents
have raised considerable interest in the
research community (Agent Tcl,
Tacoma, and Mole, for example) and
in industry (Aglets, Concordia, Jump-

ing Beans, and the like), but the
promised deployment has not materi-
alized. This installment of “Trend
Wars” is an informal attempt to address
this anomaly. In this installment, we
have invited prominent proponents and
opponents of mobile agents to address
this topic. David Kotz codirects the
Agent-Tcl project (nowadays called
D’Agents) at Dartmouth; Danny Lange
led the Aglets project at IBM and now
deploys agent applications in General
Magic. Charles Petrie, at Stanford’s
Center for Design Research, still
expects a convincing story from the
mobile-agent community. Dag
Johansen (of University of Tromsø)
codeveloped the Tacoma mobile-agent
system as well as the StormCast dis-
tributed application that outlived dif-
ferent forms of mobility. Ad Astra’s
Chris Rygaard believes that a good
industrial approach is the right way to
deliver mobility, as he is trying to
demonstrate with Jumping Beans.

These well-known researchers and
developers will address the questions
about mobile agents listed in the box.

—Dejan Milojicic

Trend Wars

We’ve been building agent-based
applications over the last six years. We
started out with multihop agents as the
default design paradigm. But as we
built actual applications, we noticed
that single-hop agents dominated. One
application where agents performed
well involved satellite image data. We
had access to terabyte storage of raw
data for satellite images, and we
shipped agents—in the size of 5 to 6
Kbytes—to the repository storing this
data in order to filter through it. We
built the same application using a tra-
ditional client-server design and com-
pared their performance, but the use of
agents produced a tremendous band-
width-savings. We published this work
in the February issue of Springer-
Verlag’s Journal of Personal Technologies.
Another application implemented
weather alarms. Here we ship an agent
from a cellular phone and install it at a
remote, extensible weather server con-
tinuously updated with current weather
data; that agent warns you by phoning
whenever a prespecified weather con-
dition has occurred. This work was
published in the ACM Symposium on
Applied Computing in February.

Some opponents of mobile agents claim that
there aren’t any applications for multihop
agents, but you’re stating that even single-
hop mobile agents are mobile agents?

I consider anything that involves migrating code and asso-
ciated data to be an agent. And mobile agents are a useful struc-
turing technique whether they are used for single-hop or multi-
hops. However, I do not advocate mobile agents as a default
structuring technique and I’m not so concerned as to whether
we need any clear applications for mobile agents. We will see
the need for this structuring technique in a number of envi-
ronments—for instance, in managing a large-scale intranet,
where you must install, modify, and customize software for
many different users without bringing the servers down.

How do mobile agents relate to other environments to which they
could contribute or from which they could benefit—for instance, OS
process migration?

Mobile agents is not a new concept. It borrows from the
Xerox Worm done 20 years ago, from OS process migration
work done in the ’80s, from remote evaluations done more
than 10 years ago at MIT, and so on. The lesson from OS
process migration is to avoid forcing a process to move while
it is in the midst of execution. Migration is much simpler if

done when the process is ready. One should give the process,
in this case the agent, much more autonomy in determining
when and where to move. Also, we learned that a much richer
middleware environment is needed. For instance, brokers,
which locate and schedule resources, can be a key to the suc-
cess of agents. Nowadays, Jini is an example of what you’ll need
if you want to deploy agents in a real setting. So a more com-
plete agent computing environment with brokers and media-
tors, electronic cash, and so on, is really needed.

There seems to be a separation between multiagent systems and the
intelligent agents community on one side, and the mobile agents com-
munity on the other side. Is there a potential synergy that could be
exploited among these groups?

Mobile agent builders tend to concentrate on the subsys-
tems for shipping any piece of code around. For instance, we
built the Tacoma systems to support more or less any piece of
code moving about, whether or not it has some aspect that is
called intelligence. The intelligent agent community, how-
ever, tends to focus on application specific problems. Intelli-

July–September 1999 81

Mobile agent (MA) questions
1. What are the application domains in which MAs have potential deploy-

ment? Is the “killer application” an absolute requirement for MAs or, for
that matter, for adoption of any other mechanism?

2. How do MAs relate to other environments/infrastructures that MA could
either contribute to or benefit from: OS process migration; middleware
environments (Jini, DCOM, CORBA) networking (active networks, for
example); mobile computing (PDAs and laptops, for example)?

3. Currently, there seems to be a separation between multiagent systems and
the intelligent agents community on one side and the mobile agent com-
munity on the other side. Is there a potential synergy that could be
exploited among these groups?

4. There are theoretical and practical studies on the justification of mobile
entities with respect to performance, scalability, composability, manage-
ability, fault isolation, and so forth. In your opinion, what should be the
main motivation for deploying MAs? The same for not using them?

5. There seems to be an interesting inversion of the order of development of
MA. Typically, universities start an investigation of a promising area, after
which it gets transferred to industry. With MAs, there are a number of
leading companies that started development (Telescript, Aglets, Concor-
dia, Voyager, and Jumping Beans, for example) either before or in paral-
lel to universities. Is this just a coincidence? Where can research institu-
tions help industry?

6. Are there some hard problems that prevented wider MA deployment (secu-
rity or availability of agent platforms for example); are there problems that
are not worth pursuing further (thread state transfer, so-called weak ver-
sus strong mobility); are there some problems that have not been addressed
sufficiently (such as versioning or composing)?

7. What is your best guess for the future? Will MAs ever be widely deployed
or is it just another hard mechanism that community will abandon inter-
est in? Is mobility intrinsically a hard problem to solve, or is it just too
early to attack these problems?

gent application builders could be using some of the many
mobile agent systems available these days as an agent deploy-
ment mechanism. Mobile agent builders could then learn what
is needed to support in a mobile agent system. We already use
this iterative development process in Tacoma, where we always
build applications to evaluate a new version of our mobile agent
system. Through real application experience, we have learned
to structure a typical mobile agent application as a troop, or
group, of agents, where not all members of the troop are
mobile.

Groups and group communication are hard to achieve even for sta-
tionary agents in a client-server model. So, I would imagine that the
mobile agent community’s lack of coverage of groups and group com-
munication is because these things are even harder to achieve in the
presence of mobility.

Actually, the Tacoma project has worked in this area. Our
NAP (Norwegian Army Protocol) for implementing fault-tol-
erance is an example of an agent group. This work was just
published in IEEE ICDCS’99.

What should be the main motivation for
deploying mobile agents?

Of course system performance is
important. Perhaps a more important
motivation is the ability to customize for
the Internet. You deploy some software
representing you as a user, and it con-
tacts you when some prespecified condi-
tion holds. Instead of having a “pull”
model (where you contact the servers),
some remote representative or a set of
representatives are interacting on your
behalf, doing an up-call when something
happens in the network that’s important
to you.

However, I have a modest attitude; I don’t advocate mobile
agents as the most important structuring thing. They’re impor-
tant to have in your tool set if you want to build a large-scale
application. But trying to come up with, or trying to build a
large-scale application where mobility is the most important
thing—I’m not sure we’ll ever find such an application. We
should have a very balanced attitude, and just see that it’s ben-
eficial for the design and the design’s outcome before we
deploy mobile agents.

There seems to be an inversion of the order of development of mobile
agents. Typically, universities start an investigation of a promising
area, which then transfers to industry. In mobile agents, a number
of leading companies started development either before or in paral-
lel with universities. Is this just a coincidence?

You might say it was a coincidence that industry and uni-
versities got interested in mobile agents at the same time. Gen-
eral Magic and Jim White deserve a lot of credit for bringing
forward many of the concepts and ideas that you see in agent

systems today, even if they also borrow ideas from the Xerox
Worm, process migration, and remote evaluations.

But several academic institutions were starting mobile agent
work in ’93. The things that motivated us—we started Tacoma
in August ’93—were Mosaic’s emergence and the sudden
growth of and hype surrounding the Internet. We conjectured
that we needed a new structuring mechanism for this setting,
but it shouldn’t be at the process-migration level, where you
force a process to move to another site. An autonomous piece
of code should determine by itself when to move to, for
instance, a server. A half year later we learned about General
Magic and we started to use the word “agents.”

Will the need for mobile agents or mobile objects increase?
Yes. The dominant client will be a smart phone containing

a set of preprogrammed agents—or software to let you com-
pose agents yourself—that you can send into the network.
Agents won’t necessarily run at the client—that is, the smart
phone.

What problems have prevented wider deploy-
ment of mobile agents?

The main problem is still security,
though not necessarily host integrity.
Denial-of-service attacks are still hard
to prevent, but the hardest problem is
agent integrity. Another problem is how
to compose agents. Today it’s easy for a
system person to build an agent and
deploy it. For agents to become wide-
spread, you need a better way to create
agents for novice users.

What’s your vision?
We probably shouldn’t expect purely

mobile applications to replace other
structuring techniques in the near future. But in a large-scale
intranet with applications spanning multiple administrative
domains, different security domains, and so on, you need code
that can be dynamically relocated at run-time. Agents have
great potential here. Maybe they would account for 10% of
the solution, and you structure 90% of the code the traditional
way.

Dag Johansen is a professor in and the chair of the University of Tromsø’s
Department of Computer Science. This last year he has been a visiting
professor at Cornell University. His research interest is distributed com-
puter systems, currently focusing on mobile code architectures and imple-
mentations. Since 1993, he has been one of the architects on the Norwe-
gian-US TACOMA (Tromsø And COrnell Moving Agents) project. He
also recently cofounded Distributed Architecture Genesis Labs Inc.
Johansen received his MSc and Doctorandus degrees from the University
of Tromsø in computer science. Contact him at the Univ. of Tromsø, Dept.
of Computer Science, N-9037 Tromsø, Norway; dag@cs.uit.no; http://
www.cs.uit.no/~dag/.

82 IEEE Concurrency

Today it’s easy for a
system person to build
an agent and deploy it.
For agents to become
widespread, you need
a better way to create
agents for novice
users.

Dave Kotz

What are the application domains in which
mobile agents have potential deployment? Is the
“killer application” an absolute requirement for
MAs?

MAs will most likely be useful in three
general areas. One is disconnected computing, such as laptops
and PDAs—they frequently disconnect from the network or
use a wireless network that might become disconnected on
short notice. The second is information retrieval situations—
applications where the agent can be sent to the large data
source and filter through the data locally. The third category
is dynamic deployment of software. A large organization has
hundreds of, say, PDAs in its workforce, and they all need to
be reconfigured with a new software version or some data set.
An MA can convey that new software to all the PDAs. If it’s just
a matter of copying a new file to everybody’s PDA, then that’s
not a big deal. But, if it involves some reconfiguration, the code
represented by the MA is useful.

I don’t think a killer application is an absolute requirement.
In fact, I don’t think there is a killer application for MAs.
Almost everything you can do with MAs could be done with
some other, more traditional technology. We tend to look at
MAs as a technology that can solve a lot of problems in a uni-
form way rather than a technology that enables completely
new things that weren’t possible another way.

How do MAs relate to other environments or infrastructures?
I certainly think there’s been a lot of work in OS process

migration over the last decade or two, so we could learn a lot
from that work. But a lot of the problems involved with MAs
are very different. We tend to use interpreted languages and
try to support heterogeneous architectures, operating systems,
and even heterogeneous administrative domains, such as the
Internet, while the traditional process migration world tends
to be much more homogenous. We also tend to have different
reasons to migrate. Process migration usually supported load
balancing, and MAs are generally moving for other purposes—
to become closer to some resource rather than just to balance
CPU load.

MAs are good for higher-level things, but they’re too heavy-
weight for low-level things such as an active network, which
tends to be at the packet level. As a result, the issues tend to
differ also.

Mobile computing, on the other hand, is an area where I
think MAs have a lot to contribute. I think that PDAs, laptops,
and other mobile devices will be a field where MAs will be
launched, leaving the mobile platform and roaming through
the wired network to accomplish the user’s task or represent-
ing the users while they’re disconnected. I think there are many
ways that MA research can help that community.

Currently there seems to be a separation between the multiagent sys-

tems and intelligent agents community on one side and the MA com-
munity on the other. Is there a potential synergy that could be
exploited among these groups?

This is interesting. The association is almost an accident
because we both use the term “agent,” although for slightly
different reasons. You can say that there’s a separation between
two communities that should be the same, but that’s only
because we use the same word: agent.

So you think there is separation?
I think there are people who distinctly do multiagent sys-

tems or intelligent agents, and then there are people who
distinctly do MAs; the groups don’t necessarily talk with each
other. Part of that is because the intelligent agents and mul-
tiagent people come from the AI community, and a lot of
the MA community, including myself, come from the sys-
tems or even OS community. Thus, we have different lan-
guages, different goals, and different ways of looking at these
problems.

Do you think there are any potential synergies that can be exploited?
Is there potential for these two groups to benefit each other?

I believe that it’s possible for MAs, for example, to have a
lot of applications and be useful without them necessarily being
intelligent. But, on the other hand, I think that there are a lot
of applications for which people propose MAs—especially
when the MAs are supposed to be autonomous—where the
intelligent agent community could really help the MA com-
munity. They know how to make agents intelligent or
autonomous, and that’s something we don’t know well. There’s
some synergy there that we might find useful.

And yet the intelligent agent community generally doesn’t
think much about mobility, so they don’t even think about the
particular kinds of problems that an MA might have in being
autonomous. They don’t necessarily derive their solutions to
meet our needs, and vice versa.

One source of synergy might come from the DARPA/Con-
trol of Agent-Based Systems Project, or CoABS. It’s a very
large project with 20 to 25 groups from both industry and acad-
emia. One of the goals is to produce an agent grid, sort of a
distributed system into which agents can enter, register their
services, and look for other agents that provide the services
they need to accomplish their tasks. The idea is that the
Department of Defense could put together a team of agents
and other resources on very short notice to support some sud-
den defense operation. The intelligent agent people need to
find ways to put together these smart agents and get them to
communicate. The MA people offer the ability to support this
vision on a worldwide distributed network with mobile and
wireless devices and so forth. The CoABS Project is pushing
these two communities to work together to build a system that
benefits both types of agents.

It seems this MA community can provide services beyond mobility
and modular mobility, and even system support. If we abstract away

July–September 1999 83

this notion of agents, the environment that you mentioned sounds
much like the Jini environment.

Actually, CoABS is building it on top of Jini, using Jini to
provide a low-level registry feature. The goal is to support
much higher level sorts of services, and, in fact, most people in
CoABS don’t want to mess with the really low-level services,
so I think that’s why they chose Jini.

There exist theoretical and practical studies on the justification of mobile
entities with respect to performance, scalability, composability, man-
ageability, fault isolation, and so on. In your opinion, what should be
the main motivation for deploying MAs? The same for not using them?

It’s hard to choose the main motivation, but I would say
performance and scalability tend to be my motivation for
deploying MAs. I think the reason it’s hard to say is that in
situations like wireless PDAs, there are times when you’re
disconnected and just having your agent out there working
for you is a higher performance than not being able to do
anything at all. But I also believe that there are substantial
improvements possible in terms of the
turnaround time, even on a wired net-
work. We also expect MAs to be more
scalable, in terms of the number of sup-
ported users.

In terms of the motivation to not use
them, at least from your list, I would say
manageability is a concern. The owner of
a system that accepts MAs is going to
encounter a much wider variety of system
activity than someone who just puts up a
very dull server like an HTTP server. He
will have a much harder time managing his
system. I don’t think enough research has been done to under-
stand that challenge. Flexibility is another benefit that I would
consider a strong motivating factor.

What about security? I haven’t mentioned it, but it’s kind of obligatory.
That would certainly be one motivation. Although there are

times when security might actually be an advantage, mostly
it’s viewed as a potential disadvantage. I think for most prob-
lems it’s relatively solved. Certainly, the biggest security prob-
lem is protecting agents from malicious hosts, but for a lot of
classes of problems that’s not an issue. If you can avoid that
issue, then I don’t see security as a big limiting factor.

Typically, universities start an investigation of a promising area and
then it gets transferred to industry. In the case of MAs, there are a
number of leading companies that started development either before
or parallel to universities. Is this just a coincidence? Where can
research institutions help industry?

Curiously, many companies got involved with MAs very
early. And I think—I’m really just speculating—that the rea-
son was because they saw the potential of MAs very early,
before a lot of the hard problems had been solved. That’s why
I think several companies actually gave up on MAs fairly early.

Where can research institutions help industry? Well there
are still several very hard problems to solve, like the security of
MAs from malicious machines and a lot of performance and
scalability problems. Most MA systems are based on relatively
slow interpreters and need a lot of support from the system
that doesn’t exist yet. I also think agent programmability still
needs some work.

Do you think research institutions could help in terms of deployment
by coming up with a solution?

In fact, at Dartmouth we tried to start a cooperative net-
work of machines contributed from organizations around the
world where everybody would be granted an account on every-
body else’s machine, as long as they agreed to cooperate. Once
you get in, you can install your MA systems on everybody else’s
machine and run your MAs around the cooperative cluster.
Thus, you get access to a much broader range of machines—
in fact, a worldwide network. We have five nodes from here
to Switzerland and California, but so far only five people have

been willing to get involved.

Are there some hard problems that prevented
wider MA deployment (such as security or
availability of agent platforms); are there
problems that are not worth pursuing fur-
ther (such as thread state transfer or the so-
called weak versus strong mobility); are there
some problems that have not been addressed
sufficiently, versioning or composing?

Well, I certainly think people are very
concerned about security these days,
especially with all the hacking going on.

Certainly, a lot of people view MAs as just another bunch of
viruses, or, at the very least, allowing MAs to come into their
system would also allow malicious agents—viruses or worms—
to enter their system. While I think that most of the security
problems of that sort have been solved, at least in theory, I’m
not sure that there’s any one MA system out there that’s got all
the problems solved strongly or robustly enough so that a lot
of people will be willing to install it.

The other reason is, “Why should I bother?” You know, I put
up a Web server on my computer because I want people to see
my content. I’m willing to allow them to use my CPU cycles and
my disk access cycles, because I want them to see my content.
There isn’t a good reason for me to allow them to send their MAs
to me so they can compute digits of pi or do some computation
that’s of no interest to me. I think we must either come up with a
cooperative world where everybody runs an agent server for every-
one’s benefit, fitting the old Internet style but not today’s Inter-
net, or we come up with a kind of market-based resource-sharing
mechanism that allows me to sell my resources to people in return
for money or some monetary equivalent (allowing me to use that
accumulated wealth to buy resources from others).

The other possible motivation for me to make my machine
available to other MAs is, again, to provide access to my con-

84 IEEE Concurrency

There are substantial
improvements pos-
sible in terms of the
turnaround time, even
on a wired network.

tent. If I’m a vendor of some information, it’s possible that it
will benefit my customers—whether they be paying customers
or not—to be able to send their agents to access my informa-
tion. It might be worth the risk that somebody will send an
agent that does something else, so that I can provide the flex-
ibility of agent-based access to my information.

So I think one of the big problems with MA deployment
is finding a motivation for people to install these servers.

What is your best guess for the future? Will MAs ever be widely
developed? Is mobility an intrinsically hard problem to solve, or is it
just too early to attack these problems?

I don’t think it’s an intrinsically hard problem to solve. I
think that most of the problems are solvable in the not-too-
distant future. Whether it will ever be widely developed I think
will depend more on nontechnical issues. I think that there will
be perceptions of security or insecurity, and I think there will
be motivational issues that have little to do with the technol-
ogy and feasibility that will drive whether people actually
deploy this stuff widely or not. Isn’t that always the way it is
with technology? Sometimes it’s the nontechnical reasons that
make something succeed or fail.

David Kotz is an associate professor in the Computer Science Depart-
ment at Dartmouth. His research interests are in parallel and distributed
operating systems, mobile agents, and wireless networks. He received an
AB from Darmouth and a PhD from Duke. He is general chair of the
upcoming 17th ACM Symposium on Operating Systems Principles. Con-
tact him at the Dept. of Computer Science, Dartmouth College, 6211
Sudikoff Laboratory, Hanover, NH 03755-3510; dfk@cs.dartmouth.edu;
http://www.cs.dartmouth/~dfk.

Danny Lange

Where can we potentially deploy mobile agents?
Primarily in distributed systems because

mobile agents have a number of key features
that allow them to reduce the network load
and overcome network latency. They can

encapsulate protocols, and they can work remotely, even asyn-
chronously and disconnected from a network.

Is the “killer application” an absolute requirement for MAs?
I don’t think there really is a killer application for mobile

agents. In many cases, you can achieve the same results by using
more traditional technologies. What we see right now is that
for certain applications, mobile agents offer a superior solu-
tion, but I don’t think you should look for a killer application,
because you might not find it.

How do MAs relate to other environments or infrastructures?
The mobile agent idea originated in process migration, but

I think it has moved up to the middleware level. We don’t see
any particular operating system support for mobile agents right
now, but we are beginning to see mobile agents in middleware.

They relate well with other technologies such as CORBA and
Jini. On the other hand, I don’t see mobile agents playing a
role in mobile computing, PDAs, or laptops any time soon.

There seems to be a separation between the multiagent systems and
intelligent agents communities on one side and the MA community
on the other. Is there a potential synergy that could be exploited among
these groups?

Yes, I think there’s a huge potential for synergy. Firstly,
many mobile agent systems clearly exhibit multiagent behav-
ior. Agent-based network management is a good example. Col-
laboration between these agents is essential for successful
deployment. I think we’ll see more work in that area, when
mobile agents and multiagent systems mature because they’ll
explore each other’s fields of expertise. With respect to the
intelligent agent community, I see less synergy. But maybe the
mobile agent community will serve as role model for the intel-
ligent agent community and inspire those folks to start imple-
menting industrial-strength systems.

In your opinion, what should motivate MA deployment?
Many systems today are becoming increasingly flexible. You

can update your Windows operating system on the fly just by
connecting to Microsoft’s Web servers. You can even figure out
what updates you’ve missed. Mobile agent systems offer you this
degree of flexibility in your distributed applications. For exam-
ple, you have a much greater degree of flexibility because the
agents are not bound to reside on specific machines. They can
move around, you can update them on the fly, and so on.

But do you need MAs for that?
Admittedly, almost everything you can do with mobile

agents, you can do with the client-server architecture.

So what makes the case for using one or the other?
Mobile agents offer a more uniform approach to handling

code and data in a distributed system. The client-server archi-
tecture is much more static. Client-server based systems are
hard to reconfigure, update, and so on. The mobile agent sys-
tem is inherently much more flexible. One machine can be a
server and another machine can dynamically take over that role
by simply having the application move to that other machine.

What do you see as a limitation for MAs?
I think mobile agents are not yet ready for high performance

applications.

Typically, universities start an investigation of a promising area and
then the new technology gets transferred to industry. With MAs, a
number of leading companies started the development either before
or parallel to universities. Is this just a coincidence?

I noticed the mobile agent revolution happened with Java.
Many hackers and programmers got into it, but not re-
searchers. Even today there are many conferences that still
prefer papers about SmallTalk rather than Java. I feel it’s taken

July–September 1999 85

quite a while for research institutions and academics to accept
Java technology. Industry got a lead there, because industry
research teams were quicker to embrace Java. But I think
research institutions are catching up fast.

Are there problems that prevent wider MA deployment?
Yes, many hard problems haven’t been dealt with yet. Secu-

rity is one of them. So is strong migration and the program-
ming model for agent-based applications. It would be won-
derful to see more research on these subjects in the academic
field, instead of seeing academics competing with industrial-
strength mobile agent systems.

What is your best guess for the future?
I think what we see right now is how the concept of mobile

agents is really spreading. It might spread far outside the
mobile agent community, and you might see it in many dis-
guises. Look at what is happening to commercial software dis-
tribution. You download code, it executes, it says you need to
upgrade to the latest version of this and that, or there’s a new
patch available for this program. You see applets, servlets, and
other examples of code mobility happening right now.

How does this relate to what’s happened over the past 10 years?
I can draw a parallel to the whole research area of hypertext.

Both academic and industry research were deeply engaged in
developing so-called hypertext databases and engines. But
when the World Wide Web came out, it was really “just” an
HTTP protocol to access files on a server, which was a very
scaled down, very simplistic solution. Researchers had been
deeply engaged in building dedicated hypertext engines with
complex and proprietary solutions to data storage, versioning,
security, and sharing. The Web came from a totally different
angle, and it just ignored all the hard problems and came up
with a much more pragmatic solution. I would not be surprised
to see mobile agents in the near future that are not based on
mobile agent systems as we know them today. Maybe they’ll
come up disguised in operating systems or Web applications.

If you could start over, would you again develop Aglets today?
Working on Aglets was extremely exciting, and I think, in a

way, more successful than I ever imagined it would be. But you
are asking whether I would redo it—let’s just say I’m very
happy that I did it, I did it at the right time in the right place,
but today I would not redo it. There are so many mobile agent
systems out there. I would move on. Do something else.

Danny B. Lange is the director of agent technology at General Magic Inc.
in Sunnyvale, California, where he heads the research and development of
voice agents. He invented Java Aglets, lightweight mobile agents for the
Java programming environment. His technical interests include hypertext,
object-oriented database modeling, and program visualization. He has MS
and PhD degrees in computer science from the Technical University of
Denmark. He is a member of the ACM and the IEEE Computer Society.
Contact him at danny@acm.org.

Charles Petrie

What are the application domains in which
mobile agents have potential deployment? Is a
“killer application” an absolute requirement for
mobile agents, or for that matter, adoption of any
other mechanism?

The answer to the first question is, “I don’t know.” My
answer to the second is that a killer app usually is not only nec-
essary for a new mechanism, but it’s what people think of when
they think of whatever the mechanism is. They don’t think of
the Web as HTTP because it’s this great protocol. The Web
got started because it was an easy way to share files. Same thing
with e-mail. E-mail was a cool way to send messages fast and
easily, and the mechanism was simply the protocols. There
might have been really cool, nifty protocols that the people
working on the technology thought were really cool, but that’s
not the reason that these mechanisms exist. It’s because of the
killer app—that’s what people think of. So, for mobile agents
to be adopted, a lot of machinery must be put into place—
indeed for any one particular mechanism to win. The ques-
tion is, what will make people adopt it?

(See http://www.cs.umbc.edu/agentslist/archive/1996b/
date.htm, message subject “Practical Mobile Agents,” for dis-
cussions on this topic.)

How do MAs relate to other environments or infrastructures?
Asked another way, the question might be “What value did

these various mobile agent schemes add to the existing mech-
anisms such as Web-based search engines and crawlers?” The
key difference seems to be the idea of local access to data, pos-
sibly to private data as opposed to local processing. Local access
to data and access to private data are orthogonal dimensions of
mobile agents. Imagine that along with hosting Web pages,
Web servers also hosted a docking mechanism that let a spider
download itself and visit all the public pages, performing its
computations in some kind of safe sandbox. That visiting spi-
der would then be able to go to the next Web server down the
line, carrying its data to qualify as a multihop agent with per-
sistent state.

That might be useful if you could show that the bandwidth
requirements would be lower than for a remote spider
exchanging page requests and answers. But that has only been
done for small, carefully contrived simulations for particular
situations. With regard to private data, imagine that a visiting
spider could access your private data. Whoops, never mind.
You’d want to set spider traps in that case. So that’s not really
an issue.

There were similar comments on the use of process migration. Peo-
ple were paranoid about allowing remote programs to come to their
nodes, similar to agents here. If you have a well-defined interface
between these mobile entities and the local servers that would pre-
vent these local servers, in that case these servers are really
shared—they don’t belong to anyone. So, for example, in your com-
pany, you will have a few servers that will allow access only to cer-
tain well-defined and exported data through well-defined and

86 IEEE Concurrency

exported interfaces to some visiting entities. This might be an
answer. Again, I’m not saying that this justifies the whole area of
mobile agents.

That’s what we have now with Web servers. You define what’s
your public information, you put a server out, and people can
access it. So, what mobile agents would add would be that either
there’s some way for them to get data that you haven’t decided
should be publicly available.

David Chess made an application suggestion along such
security lines. Suppose that you have data you would like for
someone else to use, but not see. They could send you a mobile
agent who would do local processing and then send back an
answer that you would filter or censor. Notice though that this
would not be a real mobile agent. There would be no multi-
hops and no persistent state that would define an agent iden-
tity. In fact, this functionality could be accomplished by
FTPing any random program for local processing and send-
ing back a result. MAs don’t contribute anything along the pri-
vate/public data dimension and the case for bandwidth versus
local processing has not been made persuasively. David Chess
finally made the most telling statement
on the agents list: “At the moment, I find
I have a hard time turning anything into
an example of why we want multihop
mobile agents, except that it’d be a way
cool thing to play with.”

Currently, there seems to be a separation
between the multiagent systems (MAS) and
intelligent agents community on one side and
the mobile agent community on the other. Is
there a potential synergy that could be
exploited among these groups?

You talk about the gap between the
multiagent systems and the mobile agent
community. I don’t know that there is a
gap. Pattie Maes told me in an interview
published in the July/August ’97 issue of
IEEE Internet Computing that she is very critical of mobile
agents, but that if there ever was a need for mobile agents, she
would use them (see http://computer.org/internet/vln4/
maes.htm). So far, static multiagent systems seem to be suffi-
cient for the type of applications that interest multiagent sys-
tems people.

As a stereotype, we MAS folk concentrate on distributed
computations for the communication medium—just messages
across a WAN, like the Internet. The mobile-agents folks tend
to look more at single agents visiting sites, so there’s a differ-
ence in emphasis and in technology requirements. You notice
that the multiagent-systems folk are solving conceptual prob-
lems subject to simulation and analysis that had to do with the
distributed computation, whereas the mobile-agent folk tend
to be looking for the right implementation with the right secu-
rity and performance features.

The mobile agents crowd is also more systems-oriented, whereas they
are lacking on the applications side. They’re coming up with mech-
anisms, when the multiagents/intelligent agents communities want

the applications domain and—I don’t want to be insulting here—a
kind of hacking of system support.

I don’t think that’s an insult. That’s exactly consistent with
what I just said. The MA people are better at and typically
more focused on systems and implementation. So that’s where
the emphasis is. A good place to see several multiagent systems
and mobile-agent people talk is in a roundtable discussion on
agents in that same 1997 issue of Internet Computing as the Pat-
tie Maes discussion. There’s a nice quote there by John Ouster-
hout, developer of Tcl at Sun, who says “Mobile agents are a
solution in search of a problem” (see http://computer.
org/internet/v1n4/round.htm). I don’t think you’d character-
ize him as a multiagent systems person, so it’s not just those
people who might have a problem with mobile agents.

There exist theoretical and practical studies on the justification of
mobile entities with respect to performance, scalability, composabil-
ity, manageability, fault isolation, and so on. In your opinion, what
should be the main motivation for deploying MAs? The same for not
using them?

You’re asking about the motivation for
deploying mobile agents. Again, to push
on this—and maybe this isn’t what the
mobile-agent people want to push on
these days—but if you could really show
that multihop agents gave you a perfor-
mance advantage over static agents
exchanging messages, that would be a
major motivation for at least the applica-
tion in which you showed that. But you
need experiments or extensive, unbiased
analysis to compare them to.

Back when they were doing mobile
agents, General Magic published a
white paper on the Web that made the
tactical argument claiming that band-
width is too valuable to waste on ex-
changing messages. A lot of people in

mobile agents have made that particular argument: it is flawed
in three ways. First, usually these people don’t do the work to
show that exchanging messages is actually cheaper than
exchanging agents. Certainly General Magic didn’t do it in
their white paper.

Second, arguing that bandwidth is just too valuable to waste
assumes that message exchange is more costly. In 1997, Bob
Metcalf and George Gilder argued about this in the first two
issues of Internet Computing. Gilder claimed that bandwidth
was abundant and growing, and he was proved right. Metcalf
eventually had to eat his column.

Third, General Magic assumed that these mobile agents
would be especially useful in home appliances—networked via
telephone line dedicated to voice traffic. Of course, that’s
increasingly not the major Internet connection in homes. The
fact that they weren’t more prescient in this regard is really a
special case of a bad assumption about the cost of bandwidth.

Notice now that the mobile-agent proponents are shifting
their argument to say that mobile agents would be particularly
good for the lower-bandwidth systems on the edge of the net-

July–September 1999 87

Notice now that the
mobile-agent pro-
ponents are shifting
their argument to say
that mobile agents
would be particularly
good for the lower-
bandwidth systems on
the edge of the
network.

work. Even if mobile agents were shown to be more efficient in
such situations, this argument keeps moving mobile agents fur-
ther toward the edges, as the edge gets faster, rather than being
in the mainstream of, say, electronic commerce.

To push on this a little bit harder, there was a recent article
by Bill Venner in Java World that Danny Lange recently
pointed to as a source of real application examples (see
http://www.javaworld.com/javaworld/jw-05-1997/jw-05-
hood.html). But if you read that article, there are no real appli-
cations mentioned. In fact, that article’s justification for mobile
agents are surprisingly vague and weak. Lange’s pointer was
the only answer to a recent repeated requests for examples of
mobile-agent applications on the agent’s list.

Having pointed to these examples of flawed arguments that
characterize many of those posed by mobile-agents propo-
nents, let me say that there has been some good performance
evaluation work done.

Harrison, Chess, and Kershenbaum wrote “Mobile Agents:
Are They a Good Idea?” (IBM Research
Report RC 19887, 1995 http://www.
research.ibm.com/massive/mobag.ps).
They concluded—and they are propo-
nents of mobile agents—that the only case
in which mobile agents showed promise,
at least in their experiment, was in real-
time controls and remote instruments.

Let me mention a few others. I believe
Manolis Marazakis has done some work
showing some advantage in local query
processing (http://www.cs.umbc.edu/
agentslist/archive/1996b/ 0810.html).

The PhD thesis of Robert Gray
(developer of AgentTcl) also included a
good performance evaluation study
http://actcomm.dartmouth.edu/~rgray/)
that seemed inconclusive.

Theilmann and Rothermel published an IEEE paper this
month that describes a possible communication cost savings with
MAs. However, their abstract states at the beginning that “there
is hardly any scenario in which this advantage has been proven
or quantified on Internet scale.” (http://www.informatik.
uni-stuttgart.de/ipvr/vs/Publications/Publications. html#1999-
theilmannEA-01).

All of these results depend upon setting up artificial situa-
tions in which the savings can occur in simulation in a restricted
set of cases. None of them persuade me that the performance
advantage of MAs is so big that that we should not try to get
the same functionality with static agents and conventional web
technology and rather go to a great deal of trouble to over-
come the MA technical problems and pain of deployment.

Typically, universities start an investigation of a promising area and
then it gets transferred to industry. In the case of MAs, there are a
number of leading companies that started development either before
or parallel to universities. Is this just a coincidence? Where can
research institutions help industry?

Many mobile-agent problems are at least perceived as mostly
software system implementation in nature and can largely be

done by industrial software engineers. The more conceptual,
less system-oriented work of the academic PhDs in multiagent
systems is simply viewed by them as perhaps not as interesting.
The idea of mobile code is easy to understand, but it presents
all sorts of interesting technical challenges. Distributed com-
putations are somewhat more mysterious. That, by the way, is
criticism of multiagent systems work. But it is clear that there
are a number of ways for academics to contribute, I think, espe-
cially in performance evaluation.

Are there some hard problems that prevented wider MA deployment
(such as security or availability of agent platforms); are there prob-
lems that are not worth pursuing further (such as thread state trans-
fer or the so called weak versus strong mobility); are there some prob-
lems that have not been addressed sufficiently, versioning or
composing?

There are of course a lot of security issues waiting to be
solved. One of the major ones is simply the fact that mobile

agents can reproduce themselves expo-
nentially, overwhelming the entire set of
computers that have mobile-agent dock-
ing mechanisms. John Ousterhout men-
tioned this denial of service attack in that
1997 roundtable. That’s a well-known
problem.

But I think deployment is really wait-
ing for the killer app and for easy instal-
lation. Security is certainly an issue, but
it’s not quite as overwhelming as we
might all think it is. Microsoft has
demonstrated that security is less of a
concern if the application—such as
Word attachments with macros—is suf-
ficiently useful. So the question mobile-
agent proponents need to answer is,

“Why would I allow what is essentially a virus on my com-
puter? What’s in it for me?” That question hasn’t been
answered yet.

What is your best guess for the future? Will MAs ever be widely
developed? Is mobility an intrinsically hard problem to solve, or is it
just too early to attack these problems?

Mobility with satisfactory security is intrinsically difficult,
but what will really turn mobile agents into the CB radio of
the Internet is the lack of applications to motivate the work
necessary to deploy the mobile agents and overcome the secu-
rity issues.

To be fair, I criticize many—but not all—in the MAS com-
munity for also having failed to deploy commercially useful
agents and not being driven by applications. Our agent infra-
structures and languages tend to be driven more by notions of
computational elegance than need. Here I have to plug our
own JATlite (http://java.stanford.edu) agent-message router
because that feature was driven by real needs in our distrib-
uted engineering research.

But I am guilty like most of not having pushed on cool appli-
cations, because (like most geeks and academics) I’m interested
in complicated hard-to-understand topics. In particular, with

88 IEEE Concurrency

But I am guilty like
most of not having
pushed on cool ap-
plications, because
(like most geeks and
academics) I’m inter-
ested in complicated,
hard-to-understand
topics.

respect to electronic commerce, I said at ICMAS in Paris last
summer that if the agent community (MA and MAS) did not
deploy useful EC apps within a year, those technologies would
be supplanted by Web-based technologies such as Java servlets,
XML, and Jini and other infrastructures for portable Web ser-
vices. If there are directory services and message protocols all
implemented in Java classes for appliance services and the
exchange of business models, why should we not use them for
agents? The existing clunky agent infrastructures will fall by the
wayside. My timing might have been off, but only because
some of the Web technologies were optimistic in their deploy-
ment schedules.

That said, let me say that the future for agents has never
been brighter because we’ll be able to take advantage of a
widely deployed Web infrastructure that will replace much of
the conceptually uninteresting directory services and message
delivery work that we have to do now. We’ll have lots of real
data and machines to play with. So something good is bound
to happen.

Charles Petrie is a Senior Research Scientist at the Center for Design
Research at Stanford University. His current research interest is agent-
based distributed process coordination and project management, enabling
concurrent planning and design, using agents with shared models for
change propagation. He is the founder and EIC Emeritus of IEEE Inter-
net Computing. Contact him at the Center for Design Research, Stanford
Univ., Bldg. 560, Panama Mall., Stanford, CA 94305-2232; petrie@
stanford.edu; http://cdr.stanford.edu/~petrie/bio.html

Chris Rygaard

Is a “killer application” an absolute requirement
for mobile agents or, for that matter, adoption of
any other mechanism?

Rapid adoption does require a killer
application. But even though object-ori-

ented programming doesn’t have a killer application, it was
adopted anyway. Mobility will be adopted just like OO was
adopted.

What is the application domain for potential MA deployment?
They’re powerful in the embedded world because those are

memory-constrained environments. Mobility lets you dynam-
ically swap apps. The most powerful application is in system
management—extending an MA out to a remote device or
node does the work for me, and saves me the effort of walking
over there. And the device might not even have a UI.

So how does that differ from just servlets? People who criticize mobile
agents typically claim that if you have to upload or download some-
thing to a device, it isn’t a mobile agent.

We’re getting into the definition of mobility; I’m trying to
stay away from the phrase agents. My definition says it’s got to
at least include the state of the application as well as the code,
and an applet does not fit that definition. It isn’t necessarily a
mobile agent if you download it. Just because you download
something doesn’t make it a mobile app.

These people who criticize mobility: they claim that almost
anything you can think of can be handled by traditional meth-
ods. But they forget that mobility is great for all of those things
that you didn’t think of till it’s too late.

How do MAs relate to other environments or infrastructures such
as Jini and CORBA?

MAs are absolutely, totally, 100% unrelated to Jini. Every-
body gets confused between Jini and mobile agents because
they happen to have some code mobility, but other than that,
they’re completely unrelated to each other. Jini is a mecha-
nism for discovering devices on the network. It’s a mechanism
for devices to announce themselves on the network. Mobile
apps, on the other hand, are a mechanism for interaction on an
established network.

Mobility can enhance CORBA. Mobile CORBA technol-
ogy enhances CORBA to make server-side implementations
mobile.

Is there a potential synergy between intelligent agents and mobile
agents?

In the academic world, absolutely. Out in the real world
though, AI is still targeted at just a few vertical applications.
We have seen very few places where MAs and AI work
together.

So you don’t think that in the future, some programs, whether we call
them intelligent or not, will represent users?

I think MAs help programs represent users. I described how
I could send a mobile application out to a remote network node
to do work for me so that I wouldn’t have to walk over there.
That is doing work on behalf of the user.

So basically you’re saying it’s just a program that does something...
That’s correct.

Where can research institutions help industry?
So far, my experience has been that research institutions are

not helping industry. For example, a lot of research institu-
tions get big bucks out of the DoD to build systems that are
unusable, and they end up competing with me. They’re harm-
ing our marketing. Our marketing has been to address real-
world issues. Research institutions don’t, but they have bigger
budgets.

So most of the work in research and development should be short term
and very focused? But there are some areas, especially the new ones,
where you need some basic research or investigation.

In general, sure, that’s true. In many areas, some basic
research is needed. I don’t think mobility is one of them. With-
out a lot of basic research, we were able to build Jumping
Beans. The guys who invented Java did the basic research.
Mobility is just a technology that utilizes the capabilities
already built into Java.

Are there some problems that prevent wider MA deployment?
Security is a difficult problem. Availability of agent plat-

forms I don’t think has been a problem.

July–September 1999 89

But specifically related to availability, environments that could fos-
ter Jumping Beans servers are not widely available around the world.
You can’t send your Jumping Beans just anywhere. So there needs to
be some host where you can send it. Wouldn’t that be considered a
problem?

Look at it differently. I don’t think that my customers need
to be able to send Jumping Beans just anywhere, because of
security. Consider the guy receiving it. He doesn’t want to
receive a mobile application from just anywhere. And a Jump-
ing Beans deployment will be within one corporation. Because
of security perceptions, there will be, at least in the beginning,
only limited business-to-business mobile apps being used. An
MA solution—all MA solutions initially—will be a vertical
solution. There won’t be a generic utility such as business-to-
business E-commerce or something like that. It will be a sin-
gle vertical solution within a corporation.

CORBA is popular, but I can’t just
make an IIOP connection to any place
on the Internet.

What about thread-state transfer?
Thread-state transfer is not real. It

cannot be made real. If you were doing
a theoretical, mathematical calculation,
thread-state transfer would be wonder-
ful. If you were doing some simple cal-
culations, thread-state transfer would be
wonderful. But let’s look at the real
world. The real world has file access and
interaction going on with the user. The
real world has TCP/ IP connections
going on with the network. That simply
cannot be transferred. You can’t do that with a user interface.
The files don’t exist on the target machine. Thread-state
transfer is not real world.

Some people did, at least in the process migration area, transfer many
things over open channels. But that assumed that you would have
some additional system support or distributed fault system.

There are problems with this. How do you handle file
access? How do you take care of a file handle that’s open,
when you’ve moved to a machine where the file doesn’t even
exist?

Well, you would need to have some distributed file system support,
especially if you were talking about the Internet.

Mobile apps do away with this. A distributed file system is
not mobility, its just traditional distributed computing. It’s got
parts of mobility, but it’s not true mobility. It messes up auton-
omy. A real-world requirement—not a true requirement, but
a practical requirement of mobility—is an autonomous sys-

tem. You send a mobile app over to another machine. That
machine, once it has the mobile app, should be able to dis-
connect. You can’t do that with file sharing.

So if two agents, for example, communicate and one of them moves
away, and if they still want to collaborate on some task, they would
still have to have some form of reconnecting their communication
channels after migration.

Oh, sure. That’s unrelated to thread-state transfer, though.
The underlying mobility infrastructure should maintain those
communication channels. The underlying infrastructure pro-
vides a layer of abstraction on top of the underlying commu-
nication mechanism to make that work. That’s the idea behind
Mobile CORBA.

At least with Java right now, natural file access depends on
the file being on the local file system. And if you’re doing file
access and you try to transfer to thread state, you’re going to
have all kinds of problems.

Are there problems that have not been addressed sufficiently, such as
versioning or composing?

Versioning is a tough one. I know that it hasn’t been
addressed completely. I think there are some extreme cases

that will choke in Jumping Beans. But in
most cases, different versions of an MA
can easily coexist on the same Jumping
Beans client.

Composing has not been addressed
sufficiently in Jumping Beans. Our
PlaceMaker product is available as a
demo right now, not as a product. With
PlaceMaker, you can graphically build a
mobile application, graphically build an
itinerary for it, and graphically send it
off. We provide a graphical bean con-
tainer and a palette of ordinary, off-the-
shelf, third-party Java beans. You can
drag and drop these beans into the con-
tainer. The container is aware of mobil-

ity. It will mobilize its contents, even if the contents are not
aware of mobility. So we can very easily graphically compose
mobile applications with our stuff. However, it’s not a full-
blown development environment. Think of a mobile bean
box, and you’ll have an idea of PlaceMaker.

Chris Rygaard cofounded Ad Astra Engineering Inc. in 1996. He works
on research and development of mobile systems and their security at the
company, and is the chief architect of Jumping Beans. He has an MS in
electrical engineering from Santa Clara University, and is a member of the
IEEE and the Software Development Forum. Contact him at Ad Astra
Engineering Inc., 961 The Dalles, Sunnyvale, CA 94087; crygaard@
AdAstraEng.com.

90 IEEE Concurrency

The real world has
TCP/IP connections
going on with the
network. That simply
cannot be transferred.
The files don’t exist
on the target machine.
Thread-state transfer
is not real world.

AALSOLSO SEESEE THETHE AAGENTGENT SSYSTEMSYSTEMS ANDAND

AAPPLICAPPLICATIONSTIONS/M/MOBILEOBILE AAGENTSGENTS

(ASA/MA) S(ASA/MA) SYMPOSIUMYMPOSIUM ANNOUNCEMENTANNOUNCEMENT

ONON PP. 96. 96
((HTTPHTTP://://WWWWWW..GENMAGICGENMAGIC..COMCOM//ASAASA/)/)

