
Ž .Autonomous Agents and Multi-Agent Systems, 1, 113]129 1998
Q 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Applying an Agent-Oriented Methodology to the
Design of Artificial Organizations: A Case Study in
Robotic Soccer

� 4A. DROGOUL AND A. COLLINOT anne.collinot, alexis.drogoul @lip6.fr

LIP6-OASIS-MIRIAD, Unï ersite Paris VI, 4 place Jussieu, Case 169, F-75252 Paris Cedex 05, France´

Abstract. The multi-agent paradigm is widely used to provide solutions to a number of organizational
problems related to the collective achievement of one or more tasks. All these problems share a
common difficulty of design: how to proceed from the global specification of a collective task to the
specification of the local behaviors to be provided to the agents? We have defined the Cassiopeia
method whose specificity is to articulate the design of a multi-agent system around the notion of
organization. This paper reports the use of this method for designing and implementing the organiza-
tion of a soccer-playing robotic team. We show why we chose this application and how we designed it,
and we discuss its interest and inherent difficulties in order to clearly express the needs for a design
methodology dedicated to DAI.

Keywords: collective robotics, multi-agent organization, agent-oriented design

1. Introduction

The multi-agent paradigm is widely used to provide solutions to a variety of
organizational problems related to the collective achievement of one or more tasks:
computer supported cooperative work, flexible workshop or network management,

w xdistributed process control, or coordination of patrols of drones 3, 10, 24 . All
these problems share a common difficulty of design: how to proceed from a global
specification of the collective task to the specification of the individual behaviors,
which is to be provided to the agents that achieve the task. A problem of
organization has to be solved, most of the time in a dynamic fashion, so as to
obtain the collective achievement of the considered task. In previous works, we

w xhave defined the Cassiopeia method 8 whose purpose is to provide a methodologi-
Ž .cal framework to design multi-agent systems MAS . The underlying principle of

Cassiopeia is to articulate the design activity around the notion of organization. In
this paper, we report the use of the Cassiopeia method in the context of a research

Ž .project MICROB on collective phenomena of organization in robot societies.
The paper is organized as follows: In Section 2, we present the MICROB project

and the application we are concerned with, that is, the design of a soccer robot
team. We discuss the interests and difficulties that characterize this application,
which directly sets the requirements for a methodology dedicated to DAI. In
Section 3, we give an overview of the methodological approach of Cassiopeia. In
Section 4, we report the use of the Cassiopeia method for the design and



DROGOUL AND COLLINOT114

implementation of the soccer robot team. Finally, in Section 5, we discuss our
current results.

2. The MICROB project: Soccer-playing robots

w xThe aim of the MICROB 11 project is to investigate collective phenomena of
organization in societies of robots. The project relies on the use of a simple
test-bed, which enables us to conduct experiments that focus on the organizational
features of agents. So far, the first instantiation of this project has taken place

w xwithin the RoboCup 2 and MiroSot competitions of soccer-playing robots, both
on simulated and real playing fields. The simulation experiments make use of the

w xRoboCup official simulator, SoccerServer 14 , while the real experiments rely on
two different types of robots.

2.1. The MICROB experimental testbed

Ž .The MICROB medium- and small-size robots see Figure 1 are made of remote-
controlled cars, which thus have no sensor and no on-board decision module. Each
car receives its commands through a remote-control pilot, which transmits the
instructions that have been worked out either by a software agent or a human
agent. A camera is filming the scene while an image processing system keeps
analyzing the position and the speed of all the robots and objects that are on the

Ž .Figure 1. The MICROB project medium-size robots .



A CASE STUDY IN ROBOTIC SOCCER 115

playing field. The data are then placed into a simulated environment within which
the software agents are operating to make appropriate decisions that will be sent to
the remote-control pilots. Given this test-bed, the main issue is to design the
software agents so that the robots they command can exhibit capabilities to
organize themselves and collectively achieve a task.

2.2. The application to a soccer-playing robotic team

The first application of the MICROB project has been the construction of a team
of soccer-playing robots. The playing field in which the robots are moving is
rectangular and comprises a goal at each end. Each team is composed of four
robots. In our first experiments, the cars of the first team were remote-controlled
by software agents, while the cars of the opposing team were remote-controlled by
human agents. In the RoboCup and MiroSot competitions, both teams are either
autonomous or controlled by software agents.

2.3. Designing a soccer-playing robotic team: Interests and difficulties

Obviously, in such a typical team game, the aim of the designer is that the team of
software agents scores goals while defending its side. Thus, the problem is to design
the software agents so that they can play with what we might call team spirit, that
is, a set of explicit or implicit social rules and constraints that enables them to play
collectively and prevents them from disturbing their teammates while they are
playing. Consequently, besides their individual soccer-playing skills, the agents
should have capabilities to organize themselves in order to win. From the stand-

Žpoint of multi-agent systems, the main difficulty is then to express locally i.e., at
.the agent level the behaviors which allow the collectï e achievement by the team

of the task to be obtained. Two other difficulties make this game a very interesting,
though very challenging, standard problem for multi-agent systems:

v The dynamics of the game makes it impossible both to define the organization of
the robots in advance and to control the game in a centralized way.

v The operations of the opposing team are, by definition, unpredictable and,
consequently, require a high level of real-time adaptability.

From the standpoint of software engineering, this problem is interesting as well
since it covers most of the issues of analysis, design, implementation, experimenta-
tion, and validation of artificial organizations in a strictly controlled while moder-

w xately abstracted world 14 . This is the reason why this application has been chosen
as the first test-bed for Cassiopeia, enabling us to undertake the design of a large
MAS project and to evaluate its contribution in a more comprehensive manner
than in the case of a toy application.



DROGOUL AND COLLINOT116

3. The methodological approach of Cassiopeia1

3.1. Requirements for a methodology dedicated to DAI

Most software engineering projects, especially multidisciplinary projects like MI-
CROB, require the use of a methodology, whose main role is to identify the
necessary steps that permit us to proceed from the definition of the project

Ž .requirements to their fulfilment i.e., the project life cycle . More concretely, a
methodology supplies the tools for transforming an always intuitive and subjective

Ž .vision of a system to be built the client’s requirements, for instance into a
Ž .formalized and objective i.e., which can be shared and reused definition of the

same system once it has been implemented. It thus provides a project with
‘‘something’’ that will stand and remain somewhere between the original blueprint
and the final code. And we claim that this ‘‘something,’’ despite many valuable
studies, does not yet exist in the MAS community, thus preventing software
engineers from using the MAS technology in routine operation. First of all, let us
examine what this ‘‘something’’ usually contains:

Ž .a A structured set of guidelines, which includes the aforementioned steps, advice
for each of these steps, and how to proceed from one step to another.

Ž .b A unified way to document the design process. This is used for sharing the
experience gained during this process among designers andror across time,
whenever, for instance, the design has to be undertaken by others.

Ž .c The use of a homogeneous terminology, which has a meaning at each step of
Žthe cycle and supports the transitions from step to step it usually includes as

.well a graphical terminology based on diagrams and flowcharts .
Ž .d The use of operational conceptual abstractions; that is, conceptual structures

abstract enough to allow a sufficient choice of techniques when it comes to
implementing the system, but are operational enough to prevent the designer
from using unrelated or outdated techniques.

Ž .e A comprehensive and incremental history of the project, which gives the
possibility to backtrack from any step to previous ones without losing what has
been done.

In the case of DAI, the basic project requirements consist of having a number of
agents achieve a collective task. To fulfil these requirements, one must design the
agents with specific attention to their capabilities for organizing themselves. The

w xexisting methodologies, especially the object-oriented methodologies 13 that can
be considered because of some similarities such as distribution or locality,2 provide

w xan interesting basis of analysis 1, 6 , since they enable the distribution of the initial
requirements along the structural and behavioral axes. However, they do not offer
any methodological framework for taking the various organizational issues into
account, because the organization is not considered as an object of analysis by

w xitself 4 . A number of very interesting studies on building agent-oriented method-



A CASE STUDY IN ROBOTIC SOCCER 117

ologies as extensions of object-oriented ones have nevertheless been undertaken
Ž w x.see for example 18 , but what they can really provide so far is still unclear:
Agents and objects differ in a number of important respects, the most noticeable
being the capability of agents to dynamically and autonomously change their
organization, something that objects are not supposed to be allowed to do. We
believe that although object-oriented languages are the target of choice for
implementing MAS, it would be an error to consider agents as only ‘‘superobjects’’
Žsee, for instance, Wooldridge’s arguments about the importance of the intentional

w x.stance for building MAS 26 .
Ž w x.On the other hand, the few DAI works e.g., 17, 25 that deal with methodologi-

cal aspects are not very satisfying, since they either indirectly address the organiza-
tional issues through the use of specific negotiation or coordination techniques, or
impose certain agents’ architectures, which in fact are only particular methods of
implementation. We tend to think that the peculiarities of multi-agent systems
Ž .with respect to both objects and single-agent AI systems require any methodolog-
ical framework to integrate:

1. The descriptive and operational aspects of the organization as early as the
analysis step, both for implementation and documentation reasons.

Ž2. The possibility to combine a bottom-up designing the agents before the
. Žorganization as well as a top-down designing the organization prior to the

.agents approach.

3.2. O¨er̈ iew of Cassiopeia

The Cassiopeia method is primarily a way to address a type of problem-solving
where collective behaviors are put into operation through a set of agents. It is not
targeted at a specific type of application nor does it require a given architecture of
agents. However, it is assumed that, although the agents can have different aims,
the goal of the designer is to make them behave cooperatively. The main idea is
that a MAS should be designed in terms of agents provided with three levels of
behavior:

1. Elementary behaviors, in other words, the different functions or actions that the
agents are individually able to perform, regardless of the policy they will choose
to perform them with.

Ž2. Relational behaviors, that is, how they interact with one another by enablingr
.disabling some elementary behaviors with respect to both the elementary

behavior they are engaged in and its influence on the other agents, and the
influence exerted by other agents.

3. Organizational behaviors, or how the agents can manage their interactions to
Ž .become or stay organized by enablingrdisabling some relational behaviors .



DROGOUL AND COLLINOT118

These three levels of behaviors are quite common in the MAS literature and, to
put things more simply, we can describe them as answers to the following three

Ž .questions which are, at varied degrees, the core questions of DAI :

1. How to behave or what to do
2. How to interact or what to do in the presence of other agents
3. How to cooperate or what to do with these agents

The underlying principle of Cassiopeia is that the problem of organizing individ-
uals to undertake collective problem-solving must be addressed as such by the
designer andror the agents. Such organizational issues arise when functional
dependencies are inherent to the collective achievement of the considered task: The
activation of an individual problem-solving behavior affects and is affected by
problem-solving behaviors activated by other agents. The whole set of these
dependencies determines the coupling of the organizational problem that underlies

3 Ž .the task achievement. We distinguish two types of coupling: 1 When the
individual behaviors are not competing with one another, the coupling is said to be
static, which means that the organization of the agents remains unchanged at run

Žtime and can be defined in advance at design time e.g., the multi-expert systems in
. Ž .which there is exactly one expert per domain of expertise ; 2 when some sort of

Žcompetition is to be managed individual behaviors exist that are equivalent for a
.given situation, or a same behavior can be operated by different agents , the

coupling is said to be dynamic, which means that the organization cannot be
defined in advance since it depends on the run-time context. Therefore, the
designer can only consider the organizational structures that can be built between

4 Ž .specific types of agents. These structures will in turn be instanced or not during
the run-time context. This is the case in the MICROB project, where the soccer-
playing robots should be able to organize themselves dynamically, because of the

Ž .unpredictability of the game see Section 2.3 .
Although Cassiopeia does not yet offer all the aforementioned components that

one could expect to find in a complete methodology, it provides a methodological
framework to better understand and plan the design of a computational organiza-
tion. It then proceeds from the definition of the collective task to the design of the
MAS along three steps that reconcile both local and global views of the MAS
Ž .Figure 2 :

1. The definition of the required elementary behaviors in order to define the types
of agent.

2. The structural description of the organizations that can be built upon these
different types of agents.

3. The description of the dynamics of these organizations, that is, the organiza-
tional behaviors the agents have to perform to make them appear, evolve, or
disappear.



A CASE STUDY IN ROBOTIC SOCCER 119

Figure 2. The Cassiopeia steps and how they allow one to alternatively proceed from the local
Ž . Ž .viewpoint that of the agents to the global viewpoint that of their organization .

3.3. Step 1. Elementary beha¨iors

The first step of Cassiopeia consists of listing the elementary behaviors that are
required for the achievement of the collective task. The identification of these

Žbehaviors does not come under Cassiopeia: it can result from a functional e.g.,
w x. Ž w x.27 or object-oriented e.g., 1, 6, 20 analysis step. The designer is free to define
different types of agents based on these behaviors: he can choose to design agents

Žthat are either homogeneous all the agents are provided with the same set of
. Želementary behaviors or heterogeneous some agents are supplied with only a

.subset of these behaviors .

3.4. Step 2. Relational beha¨iors

The second step consists of analyzing the organizational structure based on the
dependencies between the elementary behaviors. These dependencies define the
coupling graph underlying the considered collective task. The dependencies be-
tween the types of agents5 are elaborated based on this coupling graph by
projecting it onto these different types and removing the inconsistent or unneces-
sary dependencies.6 This refined projected graph contains the sole dependencies



DROGOUL AND COLLINOT120

that are supposed relevant to the achievement of the task. Such dependencies
Žbetween the different types of agents are called influences somewhat close to the

w x.notion of social dependencies introduced in 5 , and the refined projected graph is
called the influence graph. The paths and the elementary circuits of this influence
graph define a number of potential groups of agent types and, therefore, provide a
global representation of the organizational structure.

Based on this analysis, the designer specifies the relational beha¨iors that enable
the agents to identify and handle the influences. In this task, the designer
determines the influence signs, which are produced by each type of influencing
agent, and specifies how an influenced agent takes into account an influence sign;
that is, which elementary behaviors it activates and in which way. These signs can
be anything, from a complex message to an action on the environment}it depends
on the techniques that will be used when implementing the MAS. A reactive
agent-based architecture would typically use some sort of indirect communication
Ž .i.e., an agent is influenced whenever it perceives a change in its environment ,
while a cognitive approach could consider signs as being KQML-like messages.

3.5. Step 3. Organizational beha¨iors

The third step addresses the dynamics of the organization. It consists of specifying
the behaviors that will enable the agents to manage the formation, durability, and
dissolution of groups. The relational behaviors may allow the formation of several
groups that are redundant with respect to their end. When such a redundancy is
useless or costly, it is necessary to determine the criteria that affect the choices to
form one group rather than another. As described in the previous step, when an
agent needs to form a group, it produces the relevant influence signs. The
occurrence of redundant groups thus indicates a redundancy of means to meet the
need of this particular agent, called the trigger agent. Such a trigger agent belongs
to all potential groups meeting its need and should evaluate them to decide which

Ž .one is the most appropriate in the current context. The designer should thus 1
Židentify the trigger agents according to the potential groups that have been

. Ž .identified in the influence graph and 2 determine for each of them, the selection
methods allowing control of the formation of these groups. There exist a number of

w xtechniques for making such choices 9 , based on task announcement such as all
w xthe techniques deriving from the Contract Net 21 , the notion of consensus and

w xnegotiation among agents belonging to concurrent groups 19, 23 , priorities to
w xallow ordering the potential groups 12 , or the use of a supervisor or a hierarchy

w x16 . These techniques define a first type of organizational behavior: the group
formation beha¨iors.

The designer next specifies the commitment signs, which are produced by the
trigger agents to indicate to other agents that a group is formed to meet their need.
These signs allow the agents that are not members of the formed groups to control
Ž .e.g., to inhibit their relational behaviors. The designer thus defines for each type



A CASE STUDY IN ROBOTIC SOCCER 121

of agent a second type of organizational behavior, which takes the commitment
Žsigns into account to organize the relational behaviors i.e., inhibit or activate a

.given set of interactions with others : the joining beha¨iors.
Finally, the choices resulting from the group formation behaviors may need to be

revised. A group ceases to exist when it has carried out its commitments or a group
can be replaced by a more efficient one. The designer thus defines for each type of
agent a third type of organizational behavior for dissolving a group: the group
dissolution beha¨iors.

4. Using Cassiopeia to design a soccer robot team

In this section, we report how we followed the steps of the methodology in order
to design the multi-agent system that pilots the MICROB soccer robot team.
The point of this section is more to follow the method step by step rather than to
give the details of implementation of the application. Its interest does not then

Žreside in the algorithmic solutions although the application is performing quite
. Ž .well , but in the way these solutions are introduced by and integrated in the

design process.

4.1. Step 1. The elementary beha¨iors of the soccer robots

The elementary behaviors we are describing in this section result from a functional
analysis stage of the soccer game. These behaviors may appear fairly abstracted
with respect to the lower-level actions one might expect to find in this game, but, as
we wanted to be able to express dependencies between them, we needed them to
be at least context-dependent andror goal-oriented behaviors. Of course, the
difficulty is always to find the adequate level of abstraction, but, as far as we know,

Žthis difficulty is shared by all the existing techniques of analysis see, for instance,
w x.27 .

Four elementary behaviors have then been defined to enable our robots to play
soccer individually and collectively:

Ž .1. Shoot the ball in a given direction usually that of the opponents’ goal .
2. Place oneself on the playground, waiting for a pass.
3. Block an opponent’s way.
4. Defend one’s goal against the opponents’ attacks.

The details of the algorithms that implement these behaviors need not be given
in this paper. Again, note that the behaviors are elementary with respect to the
MAS design level, but not with that of the robots’. Indeed, they are at a more
abstract level than the standard behaviors of a robot since they represent a

Ž .combination of them e.g., the shooting behavior . This is true in the context of the



DROGOUL AND COLLINOT122

simulated robots as well, because the clientrserver architecture of the Soc-
Ž .cerServer simulator only accepts low-level orders such as kick, turn, dash, etc. .

For the time being, the MICROB software agents are all provided with the four
behaviors. However, they activate only one of them at a given time, which is
referred to as their actï e elementary beha¨ior. The agents that shoot, block, defend,
or place themselves are then, respectively, called a shooter, blocker, defender, or
placer. This led us to design four different types of agent. Thus, at a given time, an
agent has a particular role in its team, which may be dynamically determined by
the role of the others. This kind of collective control will be held by the relational
and organizational behaviors.

4.2. Step 2. The relational beha¨iors of the soccer robots

The four elementary behaviors can be viewed in many cases as depending on one
another. For instance, the shot of a robot depends on the position of the other
robots on the playground: one should not make a pass to a misplaced robot. It is
true, however, that there are a number of possible types of dependencies between
these behaviors:

1. Functional dependencies. Performing a behavior depends on the previous or
Ž .simultaneous activation of another behavior by the same or another agent .

2. Resource-based dependencies. A behavior can be inhibited because of a conflict
of resources with another behavior, or its activation depends on a resource
created by another behavior.

3. Organizational dependencies. Contrary to the two categories above, these are
linked to the type of organization the designer wants to build. He can, for
example, decide to make behaviors depend on one another in order to imple-
ment tactics or strategies that cannot simply emerge from the ‘‘objective’’
dependencies described previously.

Cassiopeia does not yet offer the possibility to distinguish between these different
types of dependencies,7 so the ones inherent to the game as well as those designed

Ž .to fulfil the goal of the designer appear on the same coupling graph Figure 3 .
ŽSeven different dependencies have then been identified an arrow from A to B

.means that B potentially depends on A :

Ž .1. Blocking an opponent can help another robot including oneself to better place
itself.

2. Defending can help oneself or another robot to better place itself.
3. It may be necessary to place oneself if another robot wants to shoot.
4. Defending may allow catching the ball of the opponent.
5. Blocking can help oneself or another robot to shoot the ball.



A CASE STUDY IN ROBOTIC SOCCER 123

Ž .6. Shooting can help oneself or another robot to shoot this is the pass .
7. Defending depends on the other robots’ defense strategy.

In order to define the influences between the soccer behaviors, the coupling
graph of Figure 3 is projected on the four types of soccer agents. Although we
considered only the dependencies whose target is an active behavior, the resulting
graph is intricate and, following Cassiopeia, we explicitly made assumptions about
the relevance of some dependencies. For example, we decided to ignore the

Ždependencies whose origin is a passive blocking, shoot, or defense except when
.their target is an active defense behavior . This choice is clearly discretionary, but

it is explicit and we know where it has been done in the design cycle.8
Ž .The resulting influence graph Figure 4 is used to determine which influence

signs should be produced. Once again, some choices are to be made, in particular
regarding the agent communication protocol, which is how the influence signs are
communicated. In the current implementation, we chose a simple object-oriented
synchronous message passing: an influence sign is a message sent to an agent; its
interpretation is the execution of the corresponding method, which returns a value
to the sender. Here are the influences considered, along with their associated

Figure 3. The coupling graph of the robotic soccer game.



DROGOUL AND COLLINOT124

Figure 4. The influence graph for the soccer robotic team.

influence signs:

v A blocker can provide help to a shooter. A shooter is able to send a help
message, which can be interpreted by any type of agent to return a value
representing its capacity to block, based on its perception of the game.

v A shooter may make a pass to itself or another shooter. The shooter sends a
shoot sign and the receiver of the message returns its capacity to shoot. The
shooter then adjusts the direction of its shot.

v A shooter must take the other robots’ positions into account before shooting.
The place sign is sent by the shooter, and the receiver of the message returns its
capacity to shoot and place itself.

v Any agent can influence a defender because of its position on the playground.
The position sign is produced by the defender, and the receiver of the message
returns its position, which is then used by the defender to adjust the direction of
its move.

In this current implementation, the relational behaviors are simply handling the
transmission of the messages and the activation of the associated methods.



A CASE STUDY IN ROBOTIC SOCCER 125

4.3. Step 3. The organizational beha¨iors of the soccer-playing robots

The behaviors allowing the agents to dynamically organize themselves, according to
their mutual influences, are based on the contract net mechanism. In this imple-
mentation, the trigger agent is then the manager that proposes the contracts.

Ž .The analysis of the influence graph Figure 4 provides all the information
required for deciding which agents should be considered as potential candidates for
becoming trigger agents. This is done by following a very simple rule: Each agent
whose active behavior is influenced by more than one other behavior may become
a trigger agent. In other words, and quite obviously, an agent whose active behavior
depends on others’ behaviors is a good candidate for forming a group around itself.

This led us to decide, not surprisingly, that the two types of agents likely to
become managers would be the defender and the shooter. However, we chose to
restrict this possibility solely to the shooter in the real robots games, since the
teams are made up of only four robots, which makes it difficult to split them into
two groups. In the simulation games, where up to 11 agents can play simultane-
ously in the same team, things are much easier}and realistic: The goalie is a

Ž .permanent defender agent it is not provided with any other behavior , while the
Žshooting behavior is triggered dynamically with respect to the relative positions of

.the ball and the other players .

v The group formation beha¨iors are thus defined for the shooter and defender
agents:
1. When an agent becomes a shooter, it first evaluates the capabilities of its

teammates to take up their position and block opponents, and then estab-
lishes a placing contract and a shooting contract with those which return the
best values. In the implementation of the real robots, the shooter also
evaluates the capabilities to shoot of the other robots, and, when one of them
is better placed than itself, establishes a shooting contract with it.

2. In the simulation implementation, a defender always tries to establish placing
and blocking contracts with its nearest teammates by evaluating their ability
to place themselves between itself and the ball, or between itself and a given
opponent.

v The associated commitment signs are simply the roles of the robots, which are
determined by the contracts they are engaged in. These signs are messages that

Ž .are sent by the current trigger agent to the other robots including itself . In the
real robot games, by default, any nonshooter robot with no contract becomes a
defender.

v The joining beha¨iors of a robot simply consist of behaving according to the role
associated with the commitment sign it has received.

v The dissolution beha¨iors are defined for the shooter and defender robots. They
cover two main situations:
1. The shooter and defender can cancel any previous contract they have passed

with a blocker or a placer if it happens that other robots have a better
capability to place themselves or to block an opponent.



DROGOUL AND COLLINOT126

2. When a shooter passes a shooting contract with another robot, it cancels all
the contracts it has passed previously.

Figure 5 shows an example of the dynamics of group formation taken from a
ŽSoccerServer game. The robots are labelled after their active behavior S for

.shooter, P for placer, D for defender, B for blocker . The initial groups built
around the defenders and the shooter evolve substantially during the game with
respect to the position of the opponents and the ball. One can see, for example,
that the attacking group is being dynamically reorganized around the shooter
robot, whatever its identity. The defending groups also changes, although the one

Žon the left side appears to be quite static}for a good reason: The defender the
.goalie remains the same throughout the game.

Figure 5. An example of the dynamics of group formation.



A CASE STUDY IN ROBOTIC SOCCER 127

Ž .The competition between groups for recruiting agents is only ruled by the
clock: The first offer is accepted, whatever its value and, until the commitment to
its current group has been released, an agent will not accept other offers.

4.4. Preliminary results and work in progress

The real robots as well as the simulated ones have been demonstrated and tested
w x w xduring the MiroSot’96 11 and RoboCup’97 22 competitions. Although we did not

win any of these competitions, the results appeared to be very satisfying: We won
several games, and the ones we lost were performed against teams that paid a great

Ždeal of attention to the implementation of low-level behaviors such as, for
example, anticipating the movement of the ball, computing efficient trajectories,

. Žetc. , which we did not do in this current implementation our elementary behav-
. Žiors are very simple . However, Cassiopeia as a method for designing a MAS that

.is, before the implementation step has definitely proved useful since it has allowed
Ž .us to evaluate various types of agent architectures see next paragraph , without

having to revise our analysis choices. We will use this important property for
designing the second generation of Microb robots and agents that should enter the
RoboCup’98 competition.

In a more theoretical way, we are currently using Cassiopeia to design two other
types of soccer robot teams: a ‘‘reactive’’ and a ‘‘learning’’ one. When designing a
reactive robot team, it is obviously not relevant to consider the third step of our
method. Indeed, in reactive MAS, organizational behaviors are expected to implic-
itly emerge from the interactions between agents. The use of Cassiopeia is an
attempt to clarify this kind of hypothesis. Regarding the design of the learning

Žrobot team, we want the agents to learn to play with ‘‘team spirit’’ how to
.coordinate themselves, how to cooperate given their elementary behaviors. The

relational and organizational behaviors are then replaced by methods for learning
them. By doing this, our aim is to prove that the three levels of behavior of
Cassiopeia help in determining a simple, but powerful, ontology of the types of

Ž w x .learning that can occur in a multi-agent system see 7 for more details .

5. Conclusion

Ž .The major contributions of Cassiopeia are the abilities 1 to manipulate concep-
Ž .tual abstractions e.g., influence, group in a homogeneous way from the analysis

Ž .step to the implementation step; 2 to interface the languages of the expert in
robotics and the computer scientist by providing a conceptual level that is neither
too sketchy nor too technical}this is mainly due to the use of an operational

9 Ž .multi-agent oriented terminology ; 3 to clearly distinguish, at design time, between
domain-dependent and organization-dependent behaviors.

Use of the method has also shown the limits of a simple methodological
guideline. We need to refine the current terminology, especially when the terms



DROGOUL AND COLLINOT128

are used by different DAI researchers with different meanings.10 It is also neces-
Žsary to integrate Cassiopeia, as a design method, with existing analysis methods in

.particular object-oriented methods , which could allow a first step toward a
domain-dependent structural and behavioral distribution. These improvements
should enable Cassiopeia, currently used as a methodological guideline, to become
a complete agent-oriented design method, qualified to provide the DAI community

Ž .with methodological tools allowing 1 the development of ambitious multi-agent
11 Ž .projects, 2 more fruitful interactions between research, engineering, and indus-
Ž .try, and 3 a more efficient re-use of their work.

Acknowledgments

Ž .The MICROB project is conducted by D. Duhaut Robotics Laboratory of Paris
and A. Drogoul. This work was partially supported by special grants from the
University of Paris 6, the CNRS, and the University of Versailles Saint-Quentin.

Notes

w x1. More details on the Cassiopeia method can be found in 1 .
2. Also because most agent-based systems are programmed using object-oriented languages.
3. Although the existence of functional dependencies influences the type of organization that can be

chosen, the notion of organization does not simply boil down to solving these dependencies. It can
Žbe a way of improving the quality of the collective behavior or a set of structural and not

.functional constraints thrust upon the agents. This is why the ability to use Cassiopeia in a
top-down manner is important.

4. The expression ‘‘type of agent’’ is to be understood as an agent performing an elementary behavior
Ž .at a given time, and not as a class in the object-oriented way of agent.

5. Which can then include the dependencies between elementary behaviors within an agent.
6. Inconsistent dependencies are dependencies that structurally cannot exist given constraints already

Ždefined at the level of the organization for instance, dependencies between types of agents that are
.expected to operate in distant places and are unable to communicate or interact with one another ;

unnecessary dependencies are determined according to domain-dependent heuristics and with
respect to the kind of organization the designer wants to obtain. He is explicitly responsible for their

Ž .definition which appears in the documentation of the design process .
w x7. Although we currently work on this issue. See 7 for a preliminary report.

8. Such a choice has to be written down in the documentation of the design process, since ignoring
some dependencies may lead to a poor organization. However, considering all the dependencies
would prevent seeing any potential groups.

9. The justification of each term is grounded in the role the terms have within the method.
10. For example, dependency and organization, for which a number of definitions may be found in the

literature.
Ž11. Cassiopeia has already been chosen by two major French companies Peugeot SA and Dassault

.Aviation to be incorporated into their software engineering processes. These projects are partially
supported by the French Departments of Industry and Research and the two companies themselves.

References

Ž .1. R. J. Abbott, ‘‘Program design by informal English sentences,’’ Comm. ACM, vol. 26 11 ,
pp. 882]894, 1983.



A CASE STUDY IN ROBOTIC SOCCER 129

2. M. Asada, M. Kuniyoshi, A. Drogoul, H. Asama, M. Mataric, D. Duhaut, P. Stone, and H. Kitano,
‘‘The RoboCup physical agent challenge: Phase-I,’’ Appl. Artif. Intell. J., to appear.

Ž .3. N. Avouris and L. Gasser Eds. , Distributed AI: Theory and Praxis, Kluwer Academic, Boston, 1992.
4. G. Booch, Object-Oriented Analysis and Design, Benjamin Cummings, Redwood City, CA, 1994.
5. C. Castelfranchi, M. Miceli, and A. Cesta, ‘‘Dependence relations among autonomous agents,’’ in

Ž .Decentralized A. I. 3, E. Werner and Y. Demazeau Eds. , North-Holland, Amsterdam, 1992.
6. P. Coad and E. Yourdon, Object-Oriented Analysis, Yourdon Press, Englewood Cliffs, NJ, 1991.
7. A. Collinot and A. Drogoul, ‘‘Using the Cassiopeia method to design a soccer robot team,’’ Special

Issue on RoboCup, Appl. AI J. to appear.
8. A. Collinot, P. Carle, and K. Zeghal, ‘‘Cassiopeia: A method for designing computational organiza-

tions,’’ Proc. First Int. Workshop on Decentralized Intell. Multi-Agent Systems, Poland, 1995.
9. K. S. Decker, ‘‘Distributed problem-solving techniques: A survey,’’ IEEE Trans. Syst., Man,

Cybernetics vol. 17, 1987.
Ž .10. Y. Demazeau and J.-P. Muller Eds. , Decentralized A. I. 2, North-Holland, Amsterdam, 1991.

11. A. Drogoul and D. Duhaut, ‘‘MICROB: Making intelligent collective ROBotics,’’ in Proc.
MiroSot’96, Taejon, Korea, 1996.

12. M. Erdmann and T. Lozano-Perez, ‘‘On multiple moving objects,’’ in Proc. IEEE Int. Conf. on´
Robotics and Automation, 1986.

13. I. Graham, Object-Oriented Methods, Addison-Wesley, Reading, MA, 1994.
14. H. Kitano, A. Minoru, Y. Kuniyoshi, I. Noda, and E. Osawa, ‘‘RoboCup: The robot world cup

initiative,’’ in Proc. Workshop on Entertainment and AIrAlife, IJCAI, 1995.
15. H. Kitano, M. Asada, E. Osawa, I. Noda, Y. Kuniyoshi, and H. Matsubara, ‘‘RoboGup: A challenge

Ž .problem for AI,’’ AI Mag. vol. 18 1 , 1997.
16. C. Le Pape, ‘‘A combination of centralized and distributed methods for multi-agent planning and

scheduling,’’ in Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, 1990.
17. B. Moulin and L. Cloutier, ‘‘Collaborative work based on multi-agent architectures: A methodologi-

cal perspective,’’ in Soft Computing: Fuzzy Logic, Neural Networks and Distributed Artificial Intelli-
Ž .gence, F. Aminzadeh and M. Jamshidi Eds. , Prentice-Hall, Englewood Cliffs, NJ, 1994.

18. M-J. Pont and E. Moreale, ‘‘Towards a practical methodology for agent-oriented software engineer-
ing with Cqq and Java,’’ Leicester University, Dept. of Engineering, Leicester University, Techni-
cal Report 96-33.

19. J. Rosenschein and M. Genesereth, ‘‘Deals among rational agents,’’ Proc. 9th Int. Joint Conf. on
Artif. Intell., 1985.

20. J. Rumbaugh, M. Blaha, F. Eddy, W. Premerlani, and W. Lorensen, Object Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

21. R. G. Smith and R. Davis, ‘‘The contract net protocol: High-level communication and control in a
Ž .distributed problem-solver,’’ IEEE Trans. Comput., vol. C29 12 , 1980.

22. P. Stone and M. Veloso, ‘‘A layered approach to learning client behaviours in the robocup soccer
server,’’ Appl. Artif. Intell. J., to appear.

23. K. Sycara, ‘‘Multiagent compromise via negotiation,’’ in Distributed Artificial Intelligence II, Gasser
Ž .and Huhns Eds. , Morgan Kaufmann, San Mateo, CA, 1989.

Ž .24. E. Werner and Y. Demazeau Eds. , Decentralized A. I. 3, North-Holland, Amsterdam, 1992.
25. M. Wooldridge, ‘‘The logical modelling of computational multi-agent systems,’’ UMIST, Man-

chester, England, Ph.D. Thesis, 1992.
Ž .26. M. J. Wooldridge, ‘‘Agent-based software engineering,’’ IEEE Proc. Software Eng. vol. 144 1 ,

pp. 26]37, 1997.
27. E. Yourdon, Modern Structured Analysis, Yourdon Press, Englewood Cliffs, NJ, 1989.


