
Using Java for Artificial Intelligence and
Intelligent Agent Systems1

October 1999

Technical Report 99-04

By:

Paolo Busetta, Ralph Rönnquist, Andrew Hodgson & Andrew Lucas
Agent Oriented Software Pty. Ltd., Melbourne, Australia
{ paolo,ralph,ash,cal} @agent-software.com
http://www.agent-software.com

1 This article has been edited for clarity and updated to reflect the current JACK Intelligent
Agents distribution

Abstract

Intelligent Agents are being used to model simple rational behaviours in a
wide range of distributed applications. In particular, agents based on the
Belief-Desire-Intention (BDI) architecture have been used successfully in
situations where some modelling of human reasoning and team cooperation
has been needed, such as simulation of tactical decision making in air
operations and command and control structures. Other applications include
business process reengineering, telephone call centres, and air traffic
management.

However, Intelligent Agent frameworks have so far been large, monolithic
software systems. With their origins in research on Distributed Artificial
Intelligence, these frameworks have generally been developed as research
environments in the research laboratory. Consequently they have been unduly
large, complex to use and based on non-mainstream AI languages.

The JACK Intelligent Agents framework presented in this paper brings
the concept of intelligent agents into the mainstream of software engineering
and Java. JACK is a third generation agent framework, designed to be a set of
lightweight components with high performance and strong typing.

We discuss the advantages and issues of using Java to implement such an
Intelligent Agent framework. We present JACK’s extensions to the Java
language for defining the extra concepts needed in for Intelligent Agents. We
discuss the benefits of our component based approach, both for experts in
artificial intelligence (such as the availability of an ever increasing amount of
commercial, industrial-strength software) and the software engineer
developing sophisticated distributed applications (such as n-tier business
systems).

1

1 Introduction and Overview

Artificial Intelligence is at the forefront of innovation in computing. Recent
examples of common technologies derived from, or heavily influenced by, AI
research include object oriented programming (Smalltalk being a major case
in point), graphical user interfaces, and neural networks.

A relatively recent area of research centred on intelligent agents and
multi-agent systems is exploring the modelling of simple rational behaviours
in distributed applications. This research is expanding the boundaries and the
technologies of what is currently considered distributed programming by
mainstream engineering practice, and shows the potential for practical
application in the near future.

Agent Oriented Software Pty. Ltd. (AOS), based in Melbourne, Australia
has built JACK Intelligent Agents (“JACK”), a framework in Java for
multi-agent system development. The company's aim is to provide a platform
for both industrial and research applications; consequently, JACK has been
built having in mind efficiency, extensibility and ease of access to the Java
community.

In Section 2, we contrast agent-oriented programming with traditional
distributed programming. In Section 3, we present the approach taken to
develop JACK. Section 4 summarises the major technical characteristics of
JACK, while Section 5 discusses how to build an application; this is also
illustrated with a simple programming example. In Section 6, we present the
Belief-Desire-Intention (BDI) architecture, which is the agent model natively
supported by JACK. Finally, in Section 7 we summarise the benefits of using
JACK while developing distributed applications.

An evaluation copy of JACK can be downloaded from http://www.agent-
software.com.au.

2 Agent Oriented Programming vs. Object
Oriented Programming

Intelligent Agents are currently the subject of research by a wide and varied
community worldwide. Intelligent agents have received various, if not
contradictory, definitions; this is not surprising, given the wide variety of
goals set by different researchers. Good starting points for a review of the
literature, even though not particularly recent, are papers by Wooldridge &
Jennings (1995) and Franklin & Graesser (1996). In general, researchers
agree that an agent is a complex object that shows some degree of autonomy
and social ability, and combines pro-active and reactive behaviours. We
discuss, in Section 6, a specific and successful model, the Belief-Desire-
Intention architecture, and how it incorporates the features mentioned above.
To help put agents and JACK into a correct engineering perspective, we have
included some general considerations regarding what has been called ’agent
oriented programming’ (Shoham 1993).

Broadly speaking, an agent can be seen as a process that pursues a
number of goals over a long period of time (relative to the application
domain), and somehow reacts and adapts to the evolution of its environment.
A multi-agent system attempts to pursue some kind of common goals by a
combination of cooperation, negotiation and competition among agents.

From an engineering perspective, agent-based systems differ from
traditional distributed systems because of their emphasis on distributed
problem solving; programming is at a higher level of abstraction than is
currently allowed by mainstream languages and methodologies.

Distributed object oriented applications are commonly developed by
creating or customising classes at different levels of abstraction and stacking
them, starting from some communications infrastructure at the lowest layer.
Typically, a traditional system does not incorporate any representation of

2

global or per-process goals, which remain in the minds of its designers and
are somehow lost in the process of top-down decomposition and distribution
over the network.

In contrast, building an agent-based system commonly follows a process
that is the reverse of what is described above. An agent is described in terms
of its high-level objectives, which usually consist of handling certain
messages and events and achieving given goals; multi-agent frameworks may
allow the declaration of objectives for the whole system. It is only during a
later refinement phase that scripts or rules are associated with high-level
objectives; in some instances, agents can even plan while executing or
’ learn’ , for instance, by querying other agents in the same network. At run-
time, it is possible to trace the reasons (that is, the high-level objectives) that
triggered the observed behaviour of an agent. Furthermore, agents can often
choose between different courses of actions (that is, scripts, rules, plans, and
so on) in order to pursue their objectives, and can try many of them
sequentially or concurrently, depending on their state and that of the
environment.

In many instances, agent development frameworks are based on, or allow
access to, other AI technologies (for example, logic or functional
programming, knowledge bases, fuzzy logic, and so on).

An agent-based system could be seen as little more than an application of
patterns such as the Active Object. However, its development process and
tools are different from conventional distributed programming. These tools
enable the declaration of the objectives and behaviour of agents at a higher
level of abstraction and support a corresponding view of the activity of the
system at run-time. Among other advantages, this allows a richer set of
distributed architectures than client-server (including cooperation in teams,
market-style negotiation for the distribution of tasks among participants, and
so on) and rapid application development. The implementation of distributed
procedures (business rules are a typical example) tends to be direct and
straightforward.

Thus a framework for intelligent agents is more than just a scripting
language or a set of components for distributed applications. Such a
framework must facilitate correspondence of the observed behaviour of an
agent to some high-level objectives. The framework must also take care of
tasks being pursued concurrently and prioritise them when required.
Importantly, it must help in coordinating potentially conflicting tasks, in
choosing the best course of action when alternatives are possible and reacting
appropriately on failure. Managing these aspects is sometimes referred to as
‘meta-programming’ , they are first-order elements of agent programming and
represent another important distinction compared with traditional procedural
or object-oriented programming.

Most frameworks currently available in the research environment have
shortcomings. For example, some of them are based on languages or
technologies considered (quite rightly) esoteric by mainstream engineering.
Also, a very high level language or framework is usually not appropriate to
solve problems for which proven, efficient algorithmic solutions are
available. Moreover, agent-based applications require access to existing
computing infrastructures and software in order to re-use components or
information already in place and to add new functionality to legacy systems
(by either ‘wrapping’ them into an agent infrastructure or adding high-level
procedures, such as business rules, as an external component). These
considerations are some of the motivations for JACK, described in the next
section.

3 The approach of AOS

When Agent Oriented Software set out to design JACK Intelligent Agents it
had a few major goals deriving from the previous experience of its partners
and engineers with both distributed object oriented systems and intelligent

3

agents. These goals were: to provide developers with a robust, stable, light-
weight product; to satisfy a variety of practical application needs; to ease
technology transfer from research to industry; and to facilitate further applied
research.

JACK has been designed primarily for use as a component of larger
environments, since most organisations possess and depend upon large
legacy software systems or have built a base of valuable re-usable software
over time. Thus, a JACK agent coexists and is visible as simply another
object by non-agent software. Conversely, a JACK programmer is allowed to
easily access any other component of a system. Type safeness when
accessing data, reliability, and support for a proper engineering process are
key requirements in this kind of environment.

For similar reasons, JACK agents are not bound to any of the agent
communications languages already existing or being developed. JACK has
been geared towards industrial object oriented middleware (such as CORBA)
and message-passing infrastructures (such as PVM). In addition, JACK
provides a native lightweight communications infrastructure for situations
where high performance is paramount.

JACK itself has been designed for extension by properly trained
engineers, familiar with agent concepts and with a sound understanding of
concurrent object-oriented programming. The choice of Java as development
platform was made after considering: its availability on all modern and
foreseeable future platforms; the high quality of its implementation; the
rapidly growing body of off-the-shelf software components and interfaces to
external systems; and its increasing acceptance by both the marketplace and
computer practitioners.

4 Overview of JACK Intelligent Agents

From an engineering perspective, JACK consists of architecture-independent
facilities, plus a set of plug-in components that address the requirements of
specific agent architectures. The plug-ins supplied with JACK, include
support for the BDI architecture described in Section 6.

To an application programmer, JACK currently consists of three main
extensions to Java. The first is a set of syntactical additions to its host
language. These additions, in turn, can be broken down as follows:

• a small number of keywords for the identification of the main
components of an agent (such as agent, plan and event);

• a set of statements for the declaration of attributes and other
characteristics of the components (for instance, the information
contained in beliefs or carried by events). All attributes are strongly
typed;

• a set of statements for the definition of static relationships (for
instance, which plans can be adopted to react to a certain event);

• a set of statements for the manipulation of an agent’s state (for
instance, additions of new goals or sub-goals to be achieved,
changes of beliefs, or interaction with other agents).

Importantly, the programmer can also include Java statements within the
components of an agent.

For the convenience of programmers, in particular those with a
background in AI, JACK also supports logical variables and cursors. These
are particularly helpful when querying the state of an agent’s beliefs. Their
semantics are mid-way between logic programming languages (with the
addition of type checking Java-style) and embedded SQL.

The second extension to Java is a compiler that converts the syntactic
additions described above into pure Java classes and statements that can be
loaded with, and be called by, other Java code. The compiler also partially

4

transforms the code of plans in order to obtain the correct semantics of the
BDI architecture (Section 6).

Finally, a set of classes (called the kernel) provides the required run-time
support to the generated code. This includes:

• the automatic management of concurrency among tasks being
pursued simultaneously (intentions in the BDI terminology);

• the default behaviour of the agent in reaction to events, failure of
actions and tasks, and so on;

• a native light-weight, high performance communications
infrastructure for multi-agent applications.

Importantly, the JACK kernel supports multiple agents within a single
process. This is particularly convenient for saving system resources. For
instance, agents which perform only short computations or share most of
their code or data can be grouped together.

A JACK programmer can extend or change the architecture of an agent
by providing new plug-ins. In most cases, this simply means overriding the
default Java methods provided by the kernel or supplying new classes for
run-time support. However, it is possible to add further syntactic extensions
to be handled by the JACK compiler.

Similarly, a different communications infrastructure can be supplied by
overriding the appropriate run-time methods.

Future versions of JACK will extend the base BDI architecture with new
plug-ins. Moreover, a number of graphic development and monitoring tools
are being developed in order to improve usability both to software
practitioners and to domain experts (for instance, business analysts writing
business rules but not interested in programming in Java).

5 Application development with JACK

In an ideal setting a developer building an application with JACK should start
by identifying the distributed functional components of the system. The
design of a multi-agent application requires a sound understanding of
distributed system development and distributed AI principles that we do not
discuss here. However, observe that in practical situations the decision as to
how to distribute functionality may be dictated by a number of external
constraints, such as the existence of legacy systems or a specific
communications infrastructure.

Let us assume, for the sake of this discussion, that the functionality to be
provided by an agent has been identified and that the BDI architecture
(Section 6) has been chosen as appropriate to the task. At this stage, two main
activities have to be performed (not necessarily in the order given below):

• Identification of the elementary classes (that is, abstract data types
and the operation allowed on them) required to manipulate the
resources used by the agent. These could be external (relational
databases, the Internet, the arms of a robot, a GUI and so on) as well
as internal (for instance, specific mathematic data structures to
represent financial or spatial information).

• Identification of those elements that constitute the so-called mental
states of the agent, that is, its high level objectives and the logic
driving its behaviour. In the case of BDI, this boils down to finding:

• which external events drive the agent (including messages from
other agents);

• which goals the agent can set for itself;

• which beliefs influence the adoption of plans; and,

5

• procedures (that is, the plans in BDI terms) required to accomplish
tasks, achieve goals and react to events in the various possible
contexts.

The implementation of an agent is then: a mix of normal Java code for the
elementary classes; and, extended Java, as described in Section 3.2, for the
agent-specific components. The plans of a JACK agent are, in general,
sequences of operations on elementary objects, manipulations of the mental
states (e.g., submitting sub-goals or changing beliefs) and interactions with
other agents.

A JACK plan can be considered as procedural logic, and represented as a
flow diagram, state diagram, coordination diagram or other similar notations
in an object oriented methodology such as UML. Consequently, JACK could
be used as an extended object oriented framework supporting event-driven
and procedural logic in a concurrent execution environment. To this, JACK
adds the benefits of sensitivity to the context, explicit goal representation and
sophisticated management of failure provided by the BDI architecture.

To give a sample of the code of a JACK agent, we have extracted an
example from one of the tutorials that are part of the JACK documentation
set. The purpose is not to show agent programming but to illustrate that
JACK code is a straightforward Java extension. Further examples can be
found in the user documentation provided with JACK, which can be
downloaded as part of the evaluation package.

This example has agents that “ping” each other; that is, exchange empty
messages. The message being exchanged is represented as an event that
originates with one agent is received by another:

event PingEvent extends MessageEvent {
int value;

#posted as ping(int value)
{

 this.value = value;
}
}

Note the agent-related “event” keyword, in place of the object-oriented
term “class” of Java. The event is also declared “MessageEvent” ,
which means that it can be notified to another agent; this causes JACK to
bring in all the required communications support. The “#posted as”
statement declares how the event is generated (in this case, by invoking a
Java method “ping()” with one integer parameter).

The following plan handles the notification of the event above and replies
to its sender by “bouncing” the event back. This simple example is not
sensitive to the event context, ie, there is no restriction on the state of the
beliefs of the agent for its applicability; context checking can be introduced
as an additional method of the plan.

 plan BouncingPlan extends Plan {

 #handles event PingEvent ev;
 #sends event PingEvent pev;

 body()
 {
 @send (ev.from, pev.ping(ev.value + 1));
 /// Reply to the sender of the event

6

 }
 }

Fig. 2 - The BouncingPlan

A trivial “ping agent” is defined below. It has a single plan and handles a
single event. When its method “ping (String other)” is called, it
notifies the PingEvent with value 1 to the agent called “other” . If the
latter is another PingAgent, then BouncingPlan above is invoked, a
PingEvent with value 2 is sent back, and so on to infinity.

 agent PingAgent extends Agent {

 #handles event PingEvent;
 #uses plan BouncingPlan;

 #posts event PingEvent pev;

 void ping (String other)
 {
 send(other, pev.ping(1));
 }
 }

Fig. 3 - The PingAgent definition

The application can instantiate as many PingAgent agents as it desires.
The name of the agents and their network addresses are determined by the
communications mechanism in use; as said before, JACK provides a high
performance messaging system with a simple naming scheme.

6 Belief-Desire-Intention Agents

The BDI agent model supported by JACK v1.2 has its roots in both
philosophy and cognitive science, and in particular in the work of Bratman
(1987) on rational agents. A rational agent has bounded resources, limited
understanding and incomplete knowledge of what happens in the
environment it lives. Such an agent has beliefs about the world and desires to
satisfy, driving it to form intentions to act. An intention is a commitment to
perform a plan. In general, a plan is only partially specified at the time of its
formulation since the exact steps to be performed may depend on the state of
the environment when they are eventually executed. The activity of a rational
agent consists of performing the actions that it intended to execute without
any further reasoning, until it is forced to revise its own intentions by changes
to its beliefs or desires. Beliefs, desires and intentions are called the mental
attitudes (or mental states) of an agent.

BDI agents depart from purely deductive systems and other traditional AI
models because of the concept of intentionality, which significantly reduces
the extent of deliberation required. The BDI model has demonstrated its
suitability to modelling certain types of behaviour, such as the application of
standard operational procedures by trained staff. It has been successfully
adopted in fields as diverse as simulation of military tactics, application of
business rules in telephone call centres, and diagnostics in
telecommunications networks.

Based on previous research and practical application, Rao and Georgeff
(1992) have described a computational model for a generic software system
implementing a BDI agent. Such a system is an example of an event-driven
program. In reaction to an event, for instance, a change in the environment or

7

its own beliefs, a BDI agent adopts a plan as one of its intentions. Plans are
pre-compiled procedures that depend on a set of conditions for being
applicable. The process of adopting a plan as one of the agent’s intentions
may require a selection among multiple candidates.

The agent executes the steps of the plans that it has adopted as intentions
until further deliberation is required; this may happen because of new events
or the failure or successful conclusion of existing intentions.

A step in a plan must consist of adding a goal (that is, a desire to achieve
a certain objective) to the agent itself, changing its beliefs, interacting with
other agents or any other atomic action on the agent’s own state or the
external world.

This abstract BDI architecture has been implemented in a number of
systems. Of these, two are of particular relevance to JACK as they represent
its immediate predecessors. The first generation is typified by the Procedural
Reasoning System (PRS) (Georgeff & Ingrand 1989), developed by SRI
International in the mid ’80s in LISP. dMARS (d’ Inverno et al. 1998), built in
C++ in the mid '90s by the Australian Artificial Intelligence Institute in
Melbourne, Australia, is a second generation system. dMARS has been used
as development platform for a number of technology demonstrator
applications, including simulations of tactical decision-making in air
operations and air traffic management.

Research on BDI is very active worldwide. In Australia, it is currently
addressing cooperative, distributed computation by teams of agents [8],
reliable computation by means of transactions [9], and other areas.

7 Benefits of JACK

Agent Oriented Software’s approach with JACK has a number of advantages
in comparison with other agent frameworks coming from the artificial
intelligence world and with standard object oriented architectures.

The adoption of Java guarantees a widely available, well-supported
execution environment. In addition to the promise of the language
(summarised by the well known slogan “compile once, run everywhere” by
Sun Microsystems), we expect that an increasing number of software
components, tools and trained engineers will be available in the next few
years.

To the AI researcher, the adoption of an imperative, relatively low-level
language such as Java means losing some of the expressive power offered by
frameworks based on logic or functional languages. However, this is
compensated, not only by the universal availability mentioned above, but also
by the modular approach of JACK. As said in the previous sections, most
components of the framework can be both tuned and tailored to particular
requirements. This makes JACK particularly suited to experimentation with
new agent architectures for evaluating novel functionality (new mental
attitudes, different semantics, additional types of knowledge bases, and so
on), or to study performance characteristics in specific contexts.

Moreover, when compared with frameworks based on traditional AI
languages, JACK has several distinctive advantages due to a proper
utilisation of the intrinsic characteristics of Java. The most important is
strong typing, which reduces the chances of programming errors introduced
by simple mis-typing. It also provides a very basic version control by making
sure that interfaces are compatible at run-time. Next is performance, which
makes the execution speed of agent code written in JACK comparable to a
direct implementation in C or C++.

To the engineer developing a sophisticated distributed application, JACK
offers several interesting aspects. For instance:

• An efficient way to express high-level procedural logic within an
object oriented environment.

8

• This also helps in rapid application development by allowing a clear
distinction between abstract data types and their operations on the
one side and, on the other side, application-specific behaviour
requiring fine-tuning or evolution when the system is already
operational. While the former should be based on high performance,
well-tested, highly-reusable and ultimately expensive code, the latter
is better expressed as plans which can be easily modified.

• The context sensitivity and sophisticated semantics of mental
attitudes of the BDI architecture.

• These characteristics enable some levels of adaptability to changing
conditions.

• Ease of integration with legacy systems.

• This enables, among other things, an incremental approach to
distributed system development.

• When compared with frameworks originating from research
environments, JACK has the clear advantages of being lightweight,
of industrial strength and accessible to a large community of
engineers trained in object oriented programming.

8 Conclusions

JACK Intelligent Agents is a multi-agent framework that extends the Java
language. The current version supports the BDI model, and its modularity
enables extensions and different models to be easily supported.

JACK is an industry-strength product, providing a framework that takes a
solution founded in artificial intelligence research into practical use.
Compared with its first and second generation ’predecessors’ , (such as the
PRS and dMARS systems mentioned above and other similar agent
frameworks available in the academic world) JACK is not a ‘pure’ AI
system. Instead, it constitutes a successful marriage between the vision of
agent research and the needs of software engineering, bringing with it the
power of agent technology and enriching the host language, Java.

We are confident that JACK will provide benefits to both the software
engineer developing distributed systems and to the academic researcher.

9

References

Bratman M.E., Intention, Plans, and Practical Reasoning, Harvard
University Press, Cambridge, MA (USA), 1987.

Busetta P. & Kotagiri, R., (1998), "An Architecture for Mobile BDI Agents",
Proceeding of the 1998 ACM Symposium on Applied Computing (SAC’98), J.
Carroll, G. B. Lamont, D. Oppenheim, K. M. George and B. Bryant (editors),
Atlanta, Georgia (US).

d’Inverno, M., Kinny, D., Luck, M., & Wooldrige, M. (1998), "A Formal
Specification of dMARS", INTELLIGENT AGENTS IV: Agent
Theories,Architectures, and Languages, M. Singh, M. Wooldrige, and A.
Rao (editors), LNAI 1365, Springer-Verlag.

Franklin, S. & Graesser, A. (1996) ’ Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents’ , Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages, Springer-
Verlag.

Georgeff, M.P., & Ingrand, F.F., (1989) ’Decision - Making in an embedded
reasoning system’, Proceedings of the International Joint Conference on
Artificial Intelligence, Detroit, MI (USA).

Rao, A.S., & Georgeff, M.P., (1992) ‘An Abstract Architecture for Rational
Agents’ , Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning (KR’92), eds C. Rich, W. Swartout
and B. Nebel , Morgan Kaufmann Publishers.

Shoham, Y., (1993) ‘Agent-Oriented Programming’ , in Artificial
Intelligence, vol. 60, no 1, pp 51-92.

Tidhar, G., Sonenberg, E.A. & Rao, A. (1998) ‘On Team Knowledge and
Common Knowledge’ , Proceedings of the Third International Conference on
Multi-Agent Systems, ed. E. Demazeau, IEEE Press.

Wooldridge M. & Jennings, N.R. (1995) ‘ Intelligent Agents: Theory and
Practice’ The Knowledge Engineering Review, vol. 10, no 12, pp 115-152,
1995.

