
Infrastructure-support
for agent-based development

Ronald Ashri
�

Michael Luck
�

Mark d’Inverno
�

�
Department of Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK�
R.Ashri,mml � @ecs.soton.ac.uk�

Cavendish School of Computer Science, Westminster University, London W1W 6UW, UK
dinverm@westminster.ac.uk

Abstract. As the field of agent-based computing has continued to develop, there
have been several contributions to its theoretical underpinnings, and several oth-
ers to supporting the efforts of practical systems development. Yet the connection
between the two has been limited at best. In this paper we aim to address these
limitations through a consideration of appropriate agent infrastructure that can
support principled development of agent systems based on a strong conceptual
framework. As well as a general discussion of infrastructure requirements in this
context, we also describe the PARADIGMA implementation environment, based
on the SMART agent framework, which represents our initial efforts in this direc-
tion.

1 Introduction

Increasingly, the distinguishing quality of current computing environments is the union
of loosely-coupled, heterogeneous, networked devices to form larger structures, such
as local and wide area networks, which culminate in the Internet. Not surprisingly, this
development mirrors the trend amongst organisations to increase the amount of cooper-
ation between disparate units, irrespective of geographic locations. The move is towards
a more decentralised, team-based and distributed structure [5], with the use of informa-
tion technology tools over the Internet acting as the main enabling force. In addition,
the personal lives of individuals have also been affected by the technological advances
with the use of the Internet in the home increasing daily. Perhaps the most significant
change in the use of personal computing devices is the spread, and rise in influence
of, embedded and mobile devices with limited computational power, which have found
favour in many aspects of everyday life, from mobile phones to personal digital assis-
tants (PDAs), providing a counterpoint to the tradition of desktop computing.

In line with this profile, there is an increasing demand for integrating the various
different kinds of such devices in order to provide an environment where access to in-
formation and services is available in a seamless manner, while transcending physical
location and computing platform. The decentralised collaboration structures of organi-
sations need to be supported by appropriate new solutions, whilst remaining integrated
with pre-existing applications, often termed legacy applications. Furthermore, the sim-
ple administration and effective use of existing resources has become a significant issue.

75

Agent-based systems, by virtue of their defining characteristics of autonomy, reactivity,
proactiveness, and social ability, have been suggested as a means of providing solutions
to some of these problems [10]. The power of this paradigm stems from the fact that the
dynamics of social interaction, such as communication and cooperation, can be used
to effectively model such heterogeneous, decentralised and loosely-coupled domains
through the interaction of agents.

Nevertheless, for the agent-based systems paradigm to gain widespread use (espe-
cially in industrial settings) there are several issues that need to be resolved, a good
review of which can be found in [3]. These range from low-level networking concerns
such as robust network protocols (e.g. the IPv6 protocol), to appropriate middleware
solutions (e.g. CORBA and Jini) and higher level agent communication language stan-
dardisation efforts (eg. FIPA ACL [4], KQML [8], etc.). All these efforts are geared
towards achieving the primary aim which is, undoubtedly, application development in
order to address the needs outlined above. Underpinning the success of these attempts,
however, is perhaps a better understanding of the theoretical aspects of multi-agent sys-
tems. This will enable the development of applications in a principled manner leading
to more robust and extensible solutions.

Theoretical research is useful because it can provide, typically through formal meth-
ods, clear concepts and definitions by tackling the ontological and epistemological is-
sues in a research field. In the case of agent-based systems, a good theory could pro-
vide definitions of agents as well as explicate the relationships between them and other
entities in the world. An appropriate, common theory also makes the comparison, eval-
uation and sharing of research results easier and can expedite progress in the field.

One of the problems of adopting theoretical work is that it does not easily lend it-
self to implementation. The reasons for this are twofold. Firstly, the theory might not
take into account complications that may arise due to the limitations of the platform
on which a program is to be developed. Secondly, the theory may be too abstract for
a developer to see a direct connection to an implementation, or the theory might lend
itself to many different interpretations at the implementation level. In a development
environment where the culture of rapid application development is overpowering, the-
ories are often seen as a hindering rather than facilitating factor. The result of this lack
of reconciliation between theoretical approaches on the one hand and development and
deployment on the other is that we now have a large variety of alternative concepts of
what an agent is, and few means to practically evaluate the various claims made [12].

There are several ways to address this gap between theory and practice. For exam-
ple, more detail could be added to a theory in order to bring it closer to implementation
or, alternatively, software engineering methodologies could be developed providing a
path from theoretical specification to practical implementation. In this paper, however,
we propose to address the issue through the provision of appropriate infrastructure tools
that interpret theoretical approaches and allow for the rapid development of applica-
tions. Through the methodical translation of a theory into infrastructure, developers
can more readily access the overarching concepts, allowing for a more principled use of
the theory, without radically changing their methods of application development. Such
infrastructure tools can form the basic buildings blocks required for the development
and deployment of an application. Furthermore, they can serve to verify the theory’s

76

applicability in real world situations, possibly leading to refinements or even rejection
of a theory. We adopt this approach in order to address two concerns. On the one hand
there is the need to evaluate, refine and make theory more accessible, and on the other
we wish to answer the question of what appropriate infrastructure for agent-based sys-
tems actually is.

Applications development support through the provision of appropriate infrastruc-
ture typically needs to address two important issues. Firstly, we need to identify the
significant re-usable and domain independent components that can form part of the
infrastructure. Secondly, an appropriate framework through which to allow the appli-
cation designer to manipulate these elements must be constructed. Both of these tasks
are made easier if there is good theoretical work to underpin them. Such a theory can
provide suggestions as to the entities that should exist in an agent-based system and
their relationship (ontological issues) as well as what can be done with those entities
(epistemological issues). Conversely, through this principled application development
using the derived infrastructure, we can gain a better understanding of the theory, which
can enable its refinement and extension as necessary.

The challenge of developing a usable infrastructure for agent-based systems is to
produce a system at the right level of generality. For example, infrastructure that pro-
vides support only for network communication is inadequate for any substantial system,
while infrastructure that forces a developer to employ, for example, a certain planning
algorithm, may be overly specific and consequently constraining. While it is important
to realise that infrastructure support goes beyond support for general distributed sys-
tems it is equally important to recognise that it cannot be a direct translation of a theory
of agent-based systems to a programming language. That can only be one component
of a larger structure that attempts to relate that theory to implementation concerns such
as networking communication tools, host platform operating possibilities and limita-
tions. This suggests that an agent infrastructure should touch upon high-level issues
concerning the structure of individual agents and their interaction as well as lower-level
issues.

In this paper, we consider exactly these concerns, and offer an analysis of the re-
quirements for infrastructure to support the development and operation of agent-based
systems, informed through experience in developing an agent implementation environ-
ment based on a conceptual agent framework. We begin by grounding the discussion
through a short description of the environments that we are considering for the ap-
plication of agent-based systems and elaborate on the kind of modularity that agent
infrastructure for such environments should support. We then move on to outline our
initial efforts in attempting to realise this set of requirements in the development of the
PARADIGMA agent implementation environment by using appropriate conceptual and
technical tools. Finally, we review related work and suggest ways to proceed further.

2 Heterogeneous Environments

Increasingly, the range of devices used to access networks is diversifying. This, coupled
with the increase in the numbers of users accessing such networks, creates the need for
a different approach to distributed computing. While until recently the methodologies

77

and tools for developing distributed applications called for abstracting beyond location
issues, since assumptions could be made about the reliability and performance of net-
works, we are now forced to take into account both physical and virtual boundaries. The
former is necessary due to the latency in information transmission, and the latter due
to the partitioning of networks according to the organisational needs of network owner-
ship and administration. In addition, solutions also need to deal with constant change in
such environments, which comes about due to the fluctuating nature of organisational
hierarchies, changes in needs, replacement of components and the underlying infras-
tructure, as well as limitations of that infrastructure. More specifically, the following
salient characteristics of such environments need to be considered by any attempt to
develop practical agent systems in these emerging computing environments.

– The devices used to access information and services vary greatly in capability. At
one end of the spectrum, powerful desktop computers typically have much better
network support, while at the other end mobile devices have limited computational
power, poor display capabilities and uncertain network support. In addition, a whole
host of devices occupy the points in between.

– There is a multitude of operating environments and network access protocols.
– As mobile users change geographical locations, they very often also have to change

service providers, raising problems of interoperability and security.
– Devices and supporting infrastructure are continuously changed and also upgraded

through efforts to offer better support and increased capabilities.

Mobile devices and, more importantly, the need to support mobile users, mean that
applications should be able to provide a consistent method of accessing information and
services as a user changes both her geographical position and her operating platform for
accessing these services. This may entail a need for agents to migrate between devices,
such as from a desktop computer to a PDA, or between service providers in order to
continue offering support to users. It may also be beneficial, in terms of efficient use
of computational power and bandwidth conservation, for agents to migrate to more
powerful platforms in order to perform more demanding tasks before returning to a
user’s device with results.

The main challenge in providing support for agent applications within such ex-
tremely heterogeneous environments is finding an effective means of enabling agents
to adapt to the environment. This adaptive behaviour should allow the use of different
execution mechanisms based on the computational platform, different channels of com-
munication with the user and other entities in the environment (based on network and
display capabilities) and, finally, the reconfiguration of agents to enhance their opera-
tional capability based on changes in user needs and upgrades to devices.

Agents must thus be able to adapt and improve through the addition or removal of
the particular characteristics relating to the adoption and creation of goals to achieve
on the one hand, and the ways in which they achieve these goals on the other. For
example, an autonomous agent responsible for kitchen appliances might be modified to
deal with new devices in the kitchen by adding new goals and (values of goals), with
plans to achieve the goals, as well as new capabilities for the specific appliance control
and interaction. Alternatively, a personal assistant agent residing on a desktop computer

78

might reduce its normal set of actions (or capabilities) to a minimal set of those that are
essential in order to migrate to a mobile PDA while maximising the retained information
relating to user preferences, profile, and other relevant and important information.

3 Decoupling Agent Behaviour and Description

3.1 Decoupling for Flexibility and Evaluation

One way to achieve this kind of functionality is to ensure a complete separation of
architectural issues on the one hand, relating to the behaviour of agents, and the manner
in which agents are described on the other. Agent descriptions provide an enumeration
of the different components that make up an agent, almost in jigsaw-puzzle fashion,
including attributes, goals and capabilities, for example. By contrast, agent behaviour is
determined through the way in which these components come together inside an agent
architecture on a particular execution platform, with a range of complex concerns such
as how goals are activated, and capabilities selected. (We will say more about the details
of agent description in Section 4.) Separating the description of an agent from concerns
of control, execution environments, etc., not only makes for good software engineering
in terms of modular design, which enables reuse and wide-scale development, but also
enables agents to cope in the kinds of environments that we are considering.

In particular, this decoupling is crucial for the flexibility required of agents in het-
erogeneous and dynamically changing environments; because agent description is inde-
pendent of agent behaviour, we are free to develop different types of execution platform
on which to operate essentially the same agent, but using alternative architectural or-
ganisation.

The approach offers benefits to both those with a research-based focus and those
with a more practical perspective aimed at real systems development. From the research
side, it allows the effective comparison of different agent behaviour algorithms applied
to the same agent description, providing a sensible and calibrated means of evaluation.
From the development side, it allows the development of execution platforms that are
tailored to their specific computing environments. For example, an agent execution plat-
form on a mobile device is naturally more limited in available capacity and features, and
might therefore use simpler or less sophisticated behavioural mechanisms than an ex-
ecution platform on a powerful workstation. In both cases, the same agent description
can be applied, but the resulting behaviour leveraging that description would be tailored
to the environment within which the agent is executing. In principle, systems developers
should eventually be able to access libraries of agent components which can be pieced
together and coupled to appropriate execution platforms to achieve the desired effect.

3.2 Decoupling for Mobility

Additionally, decoupling enables agent mobility to be achieved in a more lightweight
and secure manner. Mobile agents require packaging up through serialisation to be
moved between execution platforms [2, 11]; typically this includes the state of the agent,
and the agent as is. In the case of large agents, or those with many resources or capa-
bilities, the transport costs can become significant, and since one of the key motivating

79

principles behind mobile agents is to minimise transport by focusing on code rather
than data, this can be a problem.

In a decoupled system, however, agents can be packaged as a set of descriptions cou-
pled with specific implementation of capabilities thus minimising transport overheads.
Moreover, one of the main problems of mobile execution platforms is effectively se-
curing the underlying infrastructure from malicious agents [9, 16]. Traditionally, such
platforms provide the agent with an execution thread, and have minimal control over
what happens within that thread other than imposing access rights to the sensitive parts
of the system [17]. By imposing constraints on the structure of capabilities through the
definition of generic interfaces, we can enforce tighter control over what an agent can
and cannot do within an execution platform.

3.3 Conceptual Infrastructure

We argue that a strong and clear conceptual underpinning is required at the level of
infrastructure so as to guide its development as well as the subsequent development
of agent superstructures. In a series of papers (e.g. [7, 13, 14]), Luck and d’Inverno
have provided such a conceptual foundation through the development of a framework
for agent systems that supports many of the features that we listed above. Their SMART

agent framework provides an encompassing structure that clearly differentiates between
agent and non-agent entities in the environment, and specifies agents in a composi-
tional way. In essence, the framework proposes a four-tiered hierarchy that includes the
generic and abstract notion of an entity from which objects, agents and autonomous
agents are, in turn, derived. Figure 1 shows a Venn diagram that describes the different
levels in the hierarchy, and outlines the ways in which they are related. Though we will
not offer a detailed exposition of the framework, we review the key concepts below.

The essential ingredients of the SMART framework are the following four types:

– attributes, which are features of the world that can potentially be perceived in an
omniscient sense;

– actions, which can change the state of the environment in which they are performed
by either adding or removing attributes;

– goals, which are states of affairs to be achieved in the environment; and

– motivations, which are non-derivative high-level structures that lead to the genera-
tion and adoption of goals, and affect the outcome of any task intended to satisfy
those goals.

We can then define the components of the four-tiered framework using these types.
The entity serves as an abstraction mechanism; it provides a template from which ob-
jects, agents and autonomous agents can be defined. Anything that is considered to be a
single component is represented as an entity. These entities may have complex descrip-
tions, but at the very highest level they are just collections of attributes.

80

Entity
attributes ��� Attribute
capabilities ��� Action
goals �	� Goal
motivations ��� Motivation

attributes
��	�

An entity must be situated in an environment and, conversely, an environment must
include all the entities within it. There may well also be other attributes that are not
associated with an entity and so the union of all the attributes from each entity will
only be a subset (in general) of all the attributes that comprise the environment. In the
following schema, the environment variable is the set of all environment attributes, and
the entities variable the set of all entities in that environment.

Env
environment ��� Attribute
entities �	� Entity

environment
������ � e � entities � e � attributes ��� environment

Objects are then simply entities with sets of capabilities that can be performed to
change the state of the environment.

Object
Entity

capabilities
����

In turn, agents are objects with sets of goals, where goals are defined as desirable
environmental states, and autonomous agents are those agents able to generate their
own goals through the motivations that drive them. Here, motivations can be regarded
as preferences or desires of an autonomous agent that cause it to produce goals and
execute plans in an attempt to satisfy those desires.

Agent
Object

goals
�����

AutonomousAgent
Agent

motivations
����

81

For each of the four high-level components we also provide a skeletal architecture
to describe its interaction. In order to show this let us consider the description of agent.
In general, an agent is able to perceive its environment. An agent in an environment may
have a set of percepts available, which are the possible attributes that it could perceive,
subject to its capabilities and current state. We refer to these as the possible percepts
of an agent. However, due to limited resources, an agent will not normally be able to
perceive all those attributes possible, and will base its actions on a subset, which we
call the actual percepts of an agent.

To distinguish between representations of mental models and representations of the
actual environment, we introduce two types, View and Environment. The first of these
is defined to be the perception of an environment by an agent. This has an equivalent
type to that of Environment, but now physical and mental components of the same type
can be distinguished.

View ��� ��� Attribute
Environment ��� ��� Attribute

AgentPerception
Agent
perceivingactions ��� Action
canperceive � Environment ��� Action �� View
willperceive ��� Goal � View � View

perceivingactions � capabilities�
env � Environment � as ��� Action �

as dom ! canperceive env "$# as � perceivingactions
dom willperceive �%� goals �

In addition, an agent will be able to perform actions determined by its goals, per-
ceptions and the environment. This is specified by the agentactions function in the
AgentAction schema below, which is dependent on the goals of the agent, the actual
perceptions of the agent and the current environment. The first predicate requires that
agentactions returns a set of actions within the agent’s capabilities, while the last pred-
icate constrains its application to the agent’s goals.

AgentAction
Agent
ObjectAction
agentactions ��� Goal � View � Environment ��� Action
�

gs ��� Goal � v � View � env � Environment �
! agentactions gs v env " � capabilities

dom agentactions �%� goals �

Now that these skeletal architectures have been described it is then possible to define
the state of an agent or autonomous agent within an environment. Once an agent is

82

placed in an environment, its attributes are accessible and it is possible to specify the
possible percepts and actual percepts of the agent. These are denoted by the variables,
possiblepercepts and actualpercepts, which are calculated using the canperceive and
willperceive functions respectively. The action or actions the agent actually performs
in the environment are a function of its goals, its percepts and the environment itself.
The reader will notice that the schema below also includes a schema called ObjectState
(not specified here) that defines the state of the higher-level SMART object component
in an environment. This should provide an indication of how increasingly more refined
and detailed concepts are built incrementally and systematically from higher level ones.
The structure of the very basic framework and related model can be seen in Figure 1.
An arrow here simply indicates schema inclusion.

AgentState
AgentPerception
AgentAction
ObjectState
posspercepts & actualpercepts � View

actualpercepts � posspercepts
posspercepts � canperceive environment perceivingactions
actualpercepts � willperceive goals posspercepts
perceivingactions ���� # posspercepts �%�'�
willdo � agentactions goals actualpercepts environment

Entity

Object
Action

Object

Agent

Agent

Action

Agent

Perception

Agent

State

Object

State

State

Entity

Autonomous

Agent

a
b
s
t

c
t
i
o
n

r

l
e
v
e
l

f
o

r

g
n
i
s
a
e

i

a

c
n

State

Autonomous
Agent
Action

Autonomous

Autonomous
Agent

Agent
Perception

Fig. 1. Structure of the SMART Framework

83

In addition to these basic levels, and in order to further explicate the consequences
of their framework, Luck and d’Inverno introduce two additional refinements: neutral
objects are objects that are not agents, and server agents are agents that are not au-
tonomous [14]. The relationship between neutral objects and server agents is comple-
mentary, since neutral objects give rise to server agents when they are ascribed goals
by other agents in the environment. Once these goals are achieved or they are no longer
feasible, server agents revert back to neutral objects.

In short, this conceptual framework provides a basis for us to use in reasoning about
agent and non-agent entities within a coherent whole, while at the same time providing
us with the requisite level of component differentiation to underpin the division be-
tween behaviour and description. We now move on to discuss how these concepts can
be encapsulated within the technical framework that can provide an infrastructure for
agent-based systems.

3.4 Technical Infrastructure

Paradigma

Jini / Javaspaces

Java

JVM / RMI
XML

Formal Agent Framework

Agenthood Autonomy Coordination

Network Communications (TCP/IP)

Fig. 2. Paradigma overview

In line with the aims discussed above, and based on the conceptual infrastructure
outlined, we have developed an agent system, PARADIGMA, that provides a technical
infrastructure for the development of agent applications. PARADIGMA unites theory
with practical implementation in an attempt to provide an accessible and grounded set
of tools for agent development. Key to this is ease of understanding and simplicity of
use, as well as an ability for elegant expansion and adaptation to change.

An overview of PARADIGMA is presented in Figure 2. At the top level, the agent
framework provides the conceptual tools that guide the design of the agents and define
the relationships between them. PARADIGMA can be considered as implementing the
framework through the use of the standard technologies that appear at the lower level

84

(and which we discuss later). We have opted for the use of standard technologies for the
underlying functionality as opposed to a proprietary system not only because it provides
a sensible and robust route for development, but also because it enables interaction and
cross-development with others, and makes access to the overarching conceptual and
theoretical issues easier. Indeed, one of the arguments advanced in justification of a
certain degree of reticence on behalf of developers in relation to agent systems is, in
many cases, a reliance on non-standard technologies. We seek to ensure that this is not
the case here, and that recent convergence between the fields of autonomous agents,
object-oriented systems and distributed systems contributes to our own efforts in the
agent arena.

Attributes

XML

Goals

XML

Plans

XML

Motivations

XML
Interpreter

DTD

Interpreter

DTD

Interpreter

DTD

Interpreter

DTD

Interpreter

DTD

ClassLoader

Factory

Factory

Factory

Factory

FactoryMotiveControl

Attribute

Plan

Motive

Goal

Capability

ViewCreator

InfoStore

PlanSelection

GoalSelection

AttributeCollection

CapabilityCollection

GoalBase

PlanBase

Motivations

PARADIGMA

Initialization
Operation

execution

sensing

XML

Capabilities

Fig. 3. Agent creation and agent operation

Decoupling Behaviour and Description In order to achieve the desired decoupling of
description and behaviour at the implementation level we have made clear distinctions
between the task of composing an agent by assembling the required building blocks,
such as attributes, capabilities and goals and relating these components via decision
mechanisms.

A description of an entity in PARADIGMA is, in essence, a collection of XML doc-
uments. Each document contains within it a set of components of the same type. For
example, an attribute document, which is the simplest structure, contains a series of
type-value definitions that can be declared either constant or variable. A capabilities
document, on the other hand, contains a description and type of the capability and also a

85

link to the code that implements the capability (in the same spirit as dMARS plans [6],
for example). This enables the implementations to vary in order to suit executing plat-
forms, or so as to provide newer versions of capabilities. It is envisaged that eventually
the developer will have access to libraries of capabilities that can be linked to the agent
descriptions. Goals, plans and motivations are more elaborate structures and can vary
according to the desired level of complexity required by the developer. For example, a
simple plan structure may just define a series of capabilities that an entity should per-
form, while a more complicated structure may also include invocation conditions and
postconditions, as well as elements that should remain true during the execution of the
plan.

Once such a description has been pieced together based on the requirements of the
application, the developer can insert it into an execution platform. At this stage, the
XML documents will be interpreted and the appropriate capabilities will be retrieved.
The executing environment then couples the entity to decision mechanisms in order to
effect execution.

The complete process of agent creation and execution is illustrated in Figure 3,
which is divided into two stages, initialization and operation. An agent is created by
supplying the required building blocks of attributes, capabilities, goals, plans and mo-
tivations. As mentioned earlier, capabilities require specific implementations, whose
location is made part of their description. The last element required at this stage, espe-
cially for autonomous agents, is some form of control mechanism that will dictate, for
example, how motivations change as the state of the environment changes. In the figure
this is illustrated by the MotiveControl component, to enable it to adjust its motivations
as the state of the environment changes. In the current implementation of PARADIGMA,
motivations are seen as a tuple of three variables: an identifying name, a strength or
salience rating and a boolean indicating whether the strength is variable. The control
component could be as simple as a set of rules indicating the values motivation strengths
should take as attributes of the environment change, though it could equally provide a
more sophisticated set of constraints.

All this information is interpreted and checked before the agent is constructed by the
Factory components, based on the requirements of the execution environment in ques-
tion. Following a successful initialisation stage, the execution environment becomes
responsible for executing the supplied agent description. In the figure, we show some
of the essential components for these tasks, such as ViewCreator for collecting infor-
mation about the environment, InfoStore for maintaining acquired information so that
it may be shared with others if appropriate and, finally, plan and goal selection units.

As can be seen, by taking this approach we have a complete decoupling of all the
components that comprise an agent from the agent development and execution platform.
Furthermore, it becomes trivial to change platforms in order to suit particular situations,
or in order to incorporate other desired changes and advances. For example, if we wish
to provide different descriptions of attributes, all that is required is to develop a new
DTD or XML Schema and replace the current Factory component with a new one. We
can thus allow for the evaluation of different implementations of capabilities, decision
mechanisms, etc, while still remaining within the environment that is provided by our
conceptual infrastructure.

86

The next stage in the development of PARADIGMA is to reverse this process and
capture the state of an agent back in a set of XML files. The new set of XML descrip-
tions would reflect the changes that the agent has gone through during execution, and
would allow for the easy transport of the agent to another platform. There, the agent
may make use of different decision mechanisms and, crucially, different implemen-
tations of capabilities that may be optimized for the new platform. This provides an
interesting departure from current mobile code systems, since we are not limited to any
particular programming language in order to achieve agent mobility. Furthermore, be-
cause the actual code that will need to be loaded is reduced to the capabilities of the
agent, while the integration with decision mechanisms is up to the platform, security
concerns are slightly different. For example, although the XML descriptions may move
from untrusted to trusted environments, the code that implements capabilities may al-
ways come from trusted environments since it is not inextricably attached to the agent.
These issues, of course, require further consideration since the problem of untrusted
platforms always remains open.

Executing
Environment

1. registration

Jini Lookup Service

2. discovery/lookup

Executing
Environment

Neutral
Object

NeutralObject
Interface

Description

3. retrieval

4. call capabilities

Server
Agent

Autonomous
Agent

4. instantiate

implemented in
NeutralObject

Fig. 4. Using neutral objects

Enabling Agent Communities The main challenge at the level of distribution and
support of agents involves the provision of a middleware infrastructure layer that is able
to support dynamic communities of entities where constant change is always part of the
agenda. For the purposes of PARADIGMA, we have chosen Jini because of the features
that come closest to fulfilling all the requirements discussed earlier. A more thorough
review than is possible here of the Jini infrastructure to support implementation of Luck
and d’Inverno’s framework is given in [1], but we outline and illustrate the key points
below.

Entities executing in a PARADIGMA platform can at any time make use of available
facilities in order to announce their existence on the network. Note that this is not a
requirement but an option, since it may not always be desired or even feasible to per-

87

form such announcements. This is important in terms of separating the issues related
to cooperation with, and discovery of, other agents from issues related to the operation
of a single agent. Nevertheless, if a decision to make an announcement has been taken,
then PARADIGMA will attempt to discover the available registries, represented by Jini
lookup services. Once such lookup services are discovered, the entity will guide the
platform as to the information it wants to make known about itself. This information
will be registered in the Jini lookup service along with a proxy that will allow interested
parties to make direct contact with the entity. Lookup services are managed through
a leasing mechanism that requires registered entities to renew their interest in retain-
ing their information within the lookup service or have their information discarded. In
essence, Jini provides the required network connectivity and administration infrastruc-
ture for the support of heterogeneous communities of entities, thus making it suitable
as an environment for implementation of the conceptual framework described above.

By way of example, Figure 4 illustrates how neutral objects can be discovered and
used by other agents in a Jini-supported environment, and in particular PARADIGMA. A
device or software component, represent by a neutral object (drawn using a solid circle
line), creates an appropriate description of itself and registers the required information
relating to the attributes and capabilities in a Jini lookup service along with a proxy
(drawn using a dotted circle) that can be used to access it. If an agent (represented by
the stick figure) decides that the device is useful for its needs, it downloads the proxy
and creates a server agent with the relevant goals, and which wraps around the proxy.
Once the server agent has achieved its goals it is discarded and the neutral object is
disengaged.

In the case of autonomous agents, the registered proxy can be an interface that
implements appropriate communication protocols. Other agents could then retrieve this
implementation so as to communication with the agent. An interesting dynamic here
is that the communication interfaces can act as translators from one communication
protocol to another, and can vary according to the entities the autonomous agent wishes
to communicate with. For example, in environments where bandwidth and reliability are
important, the implemented interface could direct messages to appropriate messaging
routes that would ensure the messages are not lost.

4 Discussion

4.1 Related Work

PARADIGMA attempts to address a wide range of issues starting with identifying the
appropriate concepts to support agent-based systems infrastructure, and ranging to con-
sider the appropriate technologies for implementing such concepts. In terms of the ap-
proach we have adopted, which clearly distinguishes the relationship between agent
and non-agent entities, and separates issues of description from issues of behaviour,
PARADIGMA can be thought of as a system that integrates several different strands of
agent research. Similar work has been done with the DARPA-funded Control of Agent-
Based Systems (CoABS) program [15], whose main goal is to provide the appropriate
infrastructure to enable integration of heterogeneous agent-based systems. At the mid-
dleware layer it makes use of Jini network technology and, similar to PARADIGMA, it

88

allows for the registration of agents to the Jini lookup service along with appropriate de-
scriptions. CoABS also provides mechanisms for agent communication through RMI.
In terms of the layers of required infrastructure discussed earlier, CoABS addresses the
middleware layer by facilitating management and communication of agents, but it does
not address the higher level issues of mobility and intelligent agents. As such, it takes a
different approach to PARADIGMA by transferring the burden of addressing these con-
cerns to application developers. CoABS could, therefore, act as an integrator of other
infrastructures but, does not provide the required functionality to allow mainstream de-
velopers to use agent concepts directly.

4.2 Conclusions and Further Work

Agent-based systems have a vital role to play in the immediate development of applica-
tions and services across the distributed and increasingly pervasive computing fabric of
our everyday environments. The convergence of related fields of distributed computing
and object-oriented development also provides extra support and impetus for the adop-
tion of agent technology into the mainstream. Yet this provides an opportunity that can
only be taken if two conditions hold. First, mainstream technologies must be used for
infrastructural underpinning of agent applications to enable accessibility, further devel-
opment, and, importantly, integration. Second, the kinds of applications that we build
must be constructed in ways that facilitate flexibility, evaluation, and the potential for
secondary capabilities (that are still critical for many applications and environments)
like mobility.

One of the main problems that have delayed the wide deployment of agent-based
systems has been the lack of integration between different systems. The agreement on
common infrastructure would enable that integration, especially if the infrastructure
made use of other standards and systems that have already found a wider acceptance,
such as Jini at the middleware level.

In constructing PARADIGMA, we have done just this, through our two-levels of
technical infrastructure and conceptual infrastructure, which support the decoupling of
agent behaviour from agent description to achieve exactly these aims. PARADIGMA is
a fully functional execution and development platform with which to build real appli-
cations, and all the work described in this paper is fully implemented. The next stage
in its development is, at one level to build a broad range of applications to demon-
strate its suitability, and at another to examine the mechanisms required for dynamic
self-modification of agent capabilities.

References

1. Ronald Ashri and Michael Luck. Paradigma: Agent implementation through Jini. In
A. M. Tjoa, R.R. Wagner, and A. Al-Zobaidie, editors, Eleventh International Workshop on
Databases and Expert System Application, pages 453–457. IEEE Computer Society, 2000.

2. J. Baumann, F. Hohl, K. Rothermel, and M. Straer. Mole - concepts of a mobile agent system.
World Wide Web, 1(3):123–137, 1998.

3. J. Bradshaw. Agents for the masses. IEEE Intelligent Systems, 14(2):53–63, 1999.

89

4. Bernard Burg, Jonathan Dale, and Steven Willmott. Open standards and open source for
agent-based systems. Agentlink News, (6):2–5, 2001.

5. D. DeSanctis and B. Jackson. Co-ordination of information technology management: Team
based structures and computer-based communication systems. Journal of Management In-
formation Sciences, 4(10):85–110, 1994.

6. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS. In
Intelligent Agents IV: Proceedings of the Fourth International Workshop on Agent Theories,
Architectures and Languages, pages 155–176. Springer-Verlag, 1365, 1998.

7. M. d’Inverno and M. Luck. A formal view of social dependence networks. In C. Zhang and
D. Lukose, editors, Distributed Artificial Intelligence Architecture and Modelling: Proceed-
ings of the First Australian Workshop on Distributed Artificial Intelligence, Lecture Notes in
Artificial Intelligence, volume 1087, pages 115–129. Springer Verlag, 1996.

8. T. Finin, Y. Labrou, and J. Mayfield. Kqml as an agent communication language. In J. Brad-
shaw, editor, Software Agents. MIT Press, Cambridge, 1997.

9. Robert Gray, David Kotz, George Cybenko, and Daniela Rus. D’agents: Security in a
multiple-language, mobile agent system. In Giovanni Vigna, editor, Mobile Agents and Se-
curity, volume 1419 of Lecture Notes in Computer Science, pages 154–187. Springer-Verlag,
1998.

10. Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence, 117:277–
296, 2000.

11. Danny Lange and Mitsuru Oshima. Programming and Deploying Java(tm) Mobile Agents
with Aglets(tm). Addisson-Wesley, 1998.

12. M. Luck. From definition to development: What next for agent-based systems. Knowledge
Engineering Review, 14(2):119–124, 1999.

13. M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In 95. 254–260,
1995.

14. M. Luck and M. d’Inverno. Engagement and cooperation in motivated agent modelling.
In Proceedings of the First Australian DAI Workshop, volume 1087 of Lecture Notes in
Artificial Intelligence, pages 70–84. Springer Verlag, 1996.

15. C. Thompson, T. Bannon, T. Pazandak, and V.Vasudevan. Agents for the masses. In Work-
shop on Agent-based high Performance Computing: Problem Solving Applications and Prac-
tical Deployment, 1999.

16. Christian F. Tschudin. Mobile agent security. In Matthias Klusch, editor, Intelligent Infor-
mation Agents, pages 431–446. Springer-Verlag, 1999.

17. Tom Walsh, Noemi Paciorek, and David Wong. Security and reliability in concordia. In 31st
Annual Hawai‘i International Conference on System Sciences (HICSS31), 1998.

