
Search

IBM : developerWorks : Linux | XML overview : Library - papers

Tutorial: XML and scripting languages
Manipulating XML documents with Perl and other scripting languages

Parand Tony Daruger
Co-founder, Binary Evolution, Inc.
February 2000

Contents:
 Converting XML to HTML

 Simple substitution

 Function-based substitution

 Tree-based processing

 Active XML documents

 Storing tag contents

 Retrieving the rules

 Acting on the rules

 Next steps

 Sample code
 XML file

 Simple substitution

 Function-based substitution

 Take action (buy/sell)

 Schema for rules table

 Resources

 About the author

In this first tutorial of his series on using scripting languages to manipulate and transform XML
documents, Binary Evolution's Parand Tony Daruger takes you through the first steps of using
these techniques with Perl. You'll see a method for transforming XML to HTML, followed by a
simple stock trading application that uses Perl, XML, and a database to evaluate trading rules.
You can apply the techniques using other scripting languages too, including Tcl and Python.

XML and scripting languages have had a natural relationship since the early days of XML's
inception. One of the original goals of the XML design group was to enable a Perl hacker to write
an XML parser in two weeks. Handling and manipulating XML has also been fertile ground for
using scripting with XML: XML is designed to be human legible, and thus mainly text based.
Scripting languages have historically been extremely adept at manipulating text. Scripting's
flexibility and power make it a perfect complement to XML's descriptive abilities.

XML is a medium for the expression, storage, and exchange of information. The addition of
scripting allows this information to become active: to affect actions, undergo transformations,
connect with existing systems, and take action instead of simply expressing information.

In this article we will use Perl to manipulate and transform XML. You can apply the same
techniques using other scripting languages too, including Tcl and Python. First a technique for
transformation of XML to HTML will be shown, followed by a simple stock trading application that uses Perl, XML, and
a database to evaluate trading rules.

Converting XML to HTML
For the purposes of this article, we will use a stock quote, expressed as XML, as our input file:

 <stock_quote>
 <symbol>IBM</symbol>
 <when>
 <date>12/16/1999</date>
 <time>4:40PM</time>
 </when>
 <price type="ask" value="109.1875"/>
 <price type="open" value="108"/>
 <price type="dayhigh" value="109.6875"/>
 <price type="daylow" value="105.75"/>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>

This simple encoding captures information typically found in a stock quote. The formatting demonstrates certain XML
features, such as attributes and empty tags. The actual XML file used in this article contains several stock_quote

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (1 of 9) [2/22/2000 1:05:54 PM]

http://www.ibm.com/
http://www.ibm.com/shop/
http://www.ibm.com/support/
http://www.ibm.com/download/
http://www.ibm.com/
http://www.ibm.com/news/
http://www.ibm.com/products/
http://www.ibm.com/services/
http://www.ibm.com/solutions/
http://www.ibm.com/ibm/
http://www.ibm.com/
http://www.ibm.com/developer/
http://www.ibm.com/developer/linux/
http://www.ibm.com/developer/xml/
http://www2.software.ibm.com/developer/papers.nsf/linux-papers-bytitle

elements, to form a portfolio of stocks.

This XML file was created using a script to convert the Spreadsheet Format stock quotes provided by the
finance.yahoo.com Web site into XML. The scripts used to perform the conversion, as well as a live XML stock quote
server, are available from the XML Today Web site (see Resources).

Simple substitution
A simple method for transforming the XML source into HTML is to define pieces of HTML to be substituted for each
XML tag. Using the popular XML::Parser module for Perl (see Resources), based on James Clark's Expat parser, we can
parse the XML document and define callback routines for performing the substitutions.

Here is a simple invocation of the XML::Parser:

 use XML::Parser;

 my $parser = new XML::Parser(ErrorContext => 2);
 $parser->setHandlers(Start => \&start_handler,
 End => \&end_handler,
 Char => \&char_handler);

 $parser->parsefile($file);

This parses the given file, invoking the function start_handler each time a tag is started, and end_handler each
time a tag is ended. The contents of the tag are processed by the char_handler function.

Given these callback functions, we can implement our simple substitution algorithm. First, we define a few substitutions:

 %startsub = (
 "stock_quote" => "<hr><p>",
 "symbol" => "<h2>",
 "price" => "
Price:"
);

 %endsub = (
 "stock_quote" => "",
 "symbol" => "</h2>",
 "price" => ""
);

And now we write the handlers to perform the substitutions:

 sub start_handler
 {
 my $expat = shift; my $element = shift;

 # element is the name of the tag
 print $startsub{$element};
 }

 sub char_handler
 {
 my ($p, $data) = @_;
 print $data;

 }

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (2 of 9) [2/22/2000 1:05:54 PM]

The start_handler function simply prints the value to be substituted for the given tag. char_handler outputs the
data it receives, which is the content of the tags. (The full program, with a few additions to handle attributes, is listed
separately.) Running the program on our XML file, we get the following output:

 <hr><p>
 <h2>IBM</h2>

Date:<i>12/16/1999</i>

Time:<i>4:40PM</i>

Price:type=ask value=109.1875

Price:type=open value=108

Price:type=dayhigh value=109.6875

Price:type=daylow value=105.75

Change:+2.1875

Volume:7050200

The full output is available. Using this methodology, we can make simple XML to HTML transformations by defining
substitutions.

Function-based substitution
Substitution-based transformations are easy to implement and understand, but don't give us the ability to implement logic.
We may want to take different actions based on the contents or attributes of a tag, or connect to a database to compare the
contents of the tag with the stored value. We need more than simple, one-to-one substitutions; we need the ability to
perform functions for each tag.

XML::Parser provides a method for invoking functions for each tag in the XML document. For each tag, the parsing
module calls a function with the tag's name. Thus we can define a set of functions that perform the transformations,
connect to databases, and implement our business logic.

To enable the function callbacks based on tag names, we need to invoke the parser with the "Subs" style. We also need to
specify which namespace the function callbacks reside in, via the "Pkg" option:

 my $parser = new XML::Parser(Style=>'Subs',
 Pkg=>'SubHandlers',
 ErrorContext => 2);

 $parser->setHandlers(Char => \&char_handler);

This will cause a series of function callbacks based on the tags and the contents of the XML file. The start of a tag will
invoke a function with the same name as the tag in the SubHandlers namespace. The contents of the tag will be handled
by the char_handler function, and the end of the tag will invoke a function with the same name as the tag, with an "_"
appended (for example, for the end of the tag symbol, the function SubHandlers::symbol_() will be called).

Our XML file will cause the following sequence of function calls:

 SubHandlers::stock_quotes();
 SubHandlers::stock_quote();
 SubHandlers::symbol();
 char_handler();
 SubHandlers::symbol_();
 SubHandlers::when();

Now, it is a simple matter to write the transformation functions. We can still perform simple substitutions:

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (3 of 9) [2/22/2000 1:05:54 PM]

http://www-4.ibm.com/software/developer/library/xml-perl/code/simplesub.html

 sub symbol {
 print "<img src=images/";
 }

 sub symbol_ {
 print ".gif>\n";
 }

which use the stock symbol, contained in the contents of the symbol tag, to insert an image of the same name in the
resulting HTML page. We can also implement more complicated logic:

 sub price {
 my $expat = shift; my $element = shift;

 # Read the attributes
 while (@_) {
 my $att = shift;
 my $val = shift;
 $attr{$att} = $val;
 }

 my $type = $attr{'type'};
 my $price = $attr{'value'};

 if ($type eq 'ask') {
 $label="Ask Price";
 } elsif ($type eq 'open') {
 $label="Opening Price";
 }

 print "<td align=left>\n$label</td>\n";
 print "<td align=right>$price</td>\n";

 }

The first parameter passed to the function is a handle to the parser itself, followed by the name of the tag (element),
optionally followed by the tag attributes as attribute_name, attribute_value pairs. In the above case we print
a different label based on the type attribute of the price tag.

The full program is available as a separate listing. Running the program on our XML file produces much more attractive
output. A sample looks like:

 <table width=100%>
 <tr>
 <td>

 12/16/1999 4:40PM
 </td>
 <td>
 <table width=100%>
 <tr>
 <td align=left>Ask Price</td>
 <td align=right>109.1875</td>
 <td align=left>Opening Price</td>
 <td align=right>108</td>

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (4 of 9) [2/22/2000 1:05:54 PM]

http://www-4.ibm.com/software/developer/library/xml-perl/code/procsub.html
http://www-4.ibm.com/software/developer/library/xml-perl/code/procsub.html

 </tr>
 <tr>
 <td align=left>Today's High</td>
 <td align=right>109.6875</td>
 </tr>
 </table>
 </td>
 </tr>
 </table>

Tree-based processing
The methodologies we have discussed so far are based on processing the XML document as a stream -- in the course of
parsing the file, handlers are called as each tag is encountered. This provides an efficient means of processing XML, both
in terms of memory usage and processing time. Certain tasks, however, are somewhat difficult to do. Imagine, for
example, needing to move or rearrange certain segments of the document, or sorting items within the document. Because
we receive the document as a stream, we would need to store the components before sorting or rearranging them. A
mechanism that would store the components automatically would make such tasks substantially easier.

XML documents are required to be well balanced, making it easy to store them as trees. A popular technique for working
with XML documents is to first parse them into a tree data structure, and then to operate on the tree. The Document Object
Model (DOM), as well as Grove and Twig (see Resources), use this model. This enables a great deal of flexibility in
dealing with the documents: the components of the document can be accessed in random order, rearranged, added, or
removed.

Tree-based methodologies do have some drawbacks, however. They require the parsing of the entire XML document, as
well as the creation of the tree data structure, before the processing and business logic take place. Since the tree data
structure is generally stored in memory, these methods have much larger memory footprints than stream based methods.
The problem is exacerbated by the fact that storing the document in memory as a tree takes several times as much storage
as the original XML document did. For larger documents both of these can be significant -- the parsing and tree creation
time become substantial, and the memory requirements can overrun the available resources.

Tree-based processing of XML documents will be discussed in a future article. The remainder of this article will use
stream-based processing, as described above.

Active XML documents
Converting XML documents for display is a typical first task in working with XML, and serves as a good introduction to
the machinery involved. The real power of XML, however, lies in its ability not only to transmit information, but also to
trigger actions based on the transmitted information. We will examine a sample application that uses these active
documents to implement simple stock trading rules.

The basic scenario is as follows: a stock quote service will periodically send an XML document with the latest prices and
volume for our chosen stocks (in the format of the XML file we have been using thus far). Our application will decide
whether to buy or sell based on the stock quotes and a set of rules stored in our database.

For this simple application we will only buy or sell, using the asking price and volume as the criteria. The price and
volume will be received from the XML file, and the rules will be retrieved from a MySQL database (see Resources). The
rules will be evaluated, and if buying or selling is required, the corresponding command will be issued.

Storing tag contents
In the earlier display-oriented applications, we only needed to output the tag contents. For our stock application, we need
to access and store the contents of certain tags (such as price and volume) to compare them with the buy/sell criteria.

Our strategy for storing the contents of the tags using the stream-based processing model will be: prepare a storage place
for the contents when the start of the tag is encountered, and store the contents of the tag via the char_handler
function. Since the document is processed as a stream, first the start tag will be encountered, allowing us to set the stage
for the storage of the contents. Next the contents of the tag will be encountered, and stored in their prepared location.
Finally the end of the tag will be encountered, allowing any necessary cleanup and closeup of the storage location.

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (5 of 9) [2/22/2000 1:05:54 PM]

The storage location will be set up in the tag start function, and closed in the tag end function:

 sub volume {
 $::state::store_contents = "volume";
 }

 sub volume_ {
 undef $::state::store_contents;
 }

volume defines the store_contents variable, setting the storage location for the contents of the tag. volume_
subsequently undefines store_contents, making sure contents of other tags do not get stored in the same location.

char_handler needs to be modified to allow storage of the contents:

 sub char_handler {
 my ($p, $data) = @_;
 if ($::state::store_contents) {
 $::state::storage{$::state::store_contents} .= $data;
 }
 }

This checks if the variable store_contents is defined, and, if so, stores the data in the storage hash. The ::state
namespace is used to separate the storage and state variables from the parser and handler namespaces.

Using this technique we can store the contents of the tags we are interested in. In the case of the price tag, the values of
interest are expressed as attributes of the tag. We can store these as we encounter them:

 sub price {
 my $expat = shift; my $element = shift;

 # Read the attributes
 while (@_) {
 my $att = shift;
 my $val = shift;
 $attr{$att} = $val;
 }

 if ($attr{'type'} eq "ask") {
 $::state::storage{'price'} = $attr{'value'};
 }
 }

Retrieving the rules
Our buy/sell rules are stored in the following table:

 CREATE TABLE rules (
 symbol CHAR(5),
 field CHAR(8),
 value CHAR(16),
 action CHAR(5)
);

symbol is the stock symbol. field describes which field will be used in the criterion (in this case either price or
volume). value is the value of field which would trigger an action. action describes the type of action to take (in
this case either buy or sell).

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (6 of 9) [2/22/2000 1:05:54 PM]

Thus the following row from the rules table:

 INSERT INTO rules VALUES ("IBM", "price", "120.0", "buy");

means if the price of the IBM stock is greater than 120, issue a buy order. And

 INSERT INTO rules VALUES ("MSFT", "volume", "65000000", "sell");

means if the trading volume of Microsoft stock is over 65000000, issue a sell order.

Retrieving these rules from the database is a simple matter using the Perl DBI/DBD extensions. The connection to the
database can be created at the start of processing, and kept open until the end. For each stock, the applicable rules can be
retrieved by selecting from the rules tables based on the stock symbol.

The tag stock_quotes is the outermost tag, meaning its start will trigger the first handler callback, and its end the last. This
provides the perfect place for establishing and closing the database connection.

 sub stock_quotes {
 use DBI;

 $dsn = "DBI:mysql:database=test;";
 $::state::dbh = DBI->connect($dsn);
 }

 sub stock_quotes_ {
 $::state::dbh->disconnect();
 }

The rules can be retrieved by selecting based on the stock symbol:

 my $sth = $::state::dbh->prepare("select * from rules where symbol='$symbol'");
 $sth->execute();

 while (my $ref = $sth->fetchrow_hashref()) {
 # Act on the retrieved rules
 }
 $sth->finish();

Acting on the rules
Each stock quote is contained within a stock_quote tag. By the time the end tag for stock_quote is reached, all of the
necessary information has been stored (the stock symbol, price, and volume). Thus we can act on the rules in the
stock_quote_ function:

 sub stock_quote_ {
 my $symbol = $::state::storage{'symbol'};

 # Grab the rules for the given stock from the rules table
 my $sth = $::state::dbh->prepare("select * from rules where symbol='$symbol'");
 $sth->execute();

 while (my $ref = $sth->fetchrow_hashref()) {
 my $field = $ref->{'field'};
 my $value = $ref->{'value'};

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (7 of 9) [2/22/2000 1:05:54 PM]

 if ($::state::storage{$field} > $::state::storage{$value}) {
 # This rule applies
 print "Rule \"$field > $value\" applies for $symbol\n";
 take_action($symbol, $ref->{'action'});
 }
 }
 $sth->finish();
 }

The applicable rules for the given stock symbol are retrieved, and the comparison is performed. If the rule applies, the
take_action function is called, which in this case is simply a stub.

The complete program is available as a separate listing, as well as the schema for creating the rules table. Running the
program with the original XML file produces the following output:

 Rule "price > 120.0" applies for IBM
 Taking action "buy" on stock "IBM" .
 Rule "volume > 65000000" applies for MSFT
 Taking action "sell" on stock "MSFT" .

Next steps
You can apply these techniques to larger projects, yielding fast and flexible XML-based systems. Solutions built using
scripting languages as the transformation and command language -- with high-performance C/C++-based parsers handling
the parsing of the XML document -- offer a best-of-breed approach. This approach provides the speed of lower level
languages while providing the ease of scripting.

Resources
finance.yahoo.com provides stock quotes in spreadsheet format.●

The scripts used to perform the conversion, as well as a live XML stock quote server are available from the XML
Today Web site.

●

Expat is a fully conforming, non-validating XML parser written in C.●

XML::Parser is a Perl interface to James Clark's XML parser, expat.●

XML::Twig is a tree interface to XML documents allowing chunk-by-chunk processing of huge documents.●

XML::DOM is a Perl extension to XML::Parser to build an Object Oriented datastructure with a DOM Level
1-compliant interface.

●

XML::Grove provides simple access to the information set of parsed XML, HTML, or SGML instances using a tree
of Perl hashes.

●

The Document Object Model (DOM) provides a standard set of objects for representing HTML and XML
documents, and a standard interface for accessing and manipulating them.

●

MySQL Database is a free SQL database available for most operating systems, including most flavors of UNIX, as
well as Windows and OS/2.

●

High Performance Web Applications using Perl, XML, and Databases discusses issues and techniques for building
high-performance Web applications using Perl, XML, and databases.

●

About the author
Parand Tony Darugar, president and co-founder of Binary Evolution Inc., has been involved in
Internet-based ventures since 1992. His interests include Internet commerce, database and legacy system
to Web connectivity, XML, and artificial intelligence. He can be reached at tdarugar@binev.com.

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (8 of 9) [2/22/2000 1:05:54 PM]

http://finance.yahoo.com/
http://www.xmltoday.com/examples/stockquote/
http://www.xmltoday.com/examples/stockquote/
http://www.xmltoday.com/
http://www.xmltoday.com/
http://www.jclark.com/xml/expat.html
http://wwwx.netheaven.com/~coopercc/xmlparser/intro.html
http://www.cpan.org/modules/by-module/XML/
http://theoryx5.uwinnipeg.ca/CPAN/data/XML-DOM/DOM.html
http://theoryx5.uwinnipeg.ca/CPAN/by-name/XML-Grove.html
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.mysql.com/
http://www.binevolve.com/press/pressdocs/perl-paper/html/perl.html
http://www.velocigen.com/
mailto:tdarugar@binev.com

What do you think of this article?

Killer! Good stuff So-so; not bad Needs work Lame!

Comments?

developerWorks : XML | Linux : Library - Papers

http://www-4.ibm.com/software/developer/library/xml-perl/ (9 of 9) [2/22/2000 1:05:54 PM]

http://www.ibm.com/Privacy/
http://www.ibm.com/Legal/
http://www.ibm.com/Contact/

<stock_quotes>

<stock_quote>
 <symbol>IBM</symbol>
 <when>
 <date>12/16/1999</date>
 <time>4:40PM</time>
 </when>
 <price type="ask" value="109.1875"/>
 <price type="open" value="108"/>
 <price type="dayhigh" value="109.6875"/>
 <price type="daylow" value="105.75"/>
 <change>+2.1875</change>
 <volume>7050200</volume>
</stock_quote>

<stock_quote>
 <symbol>MSFT</symbol>
 <when>
 <date>12/16/1999</date>
 <time>4:01PM</time>
 </when>
 <price type="ask" value="113.6875"/>
 <price type="open" value="109.25"/>
 <price type="dayhigh" value="115"/>
 <price type="daylow" value="108.9375"/>
 <change>+5.25</change>
 <volume>64282200</volume>
</stock_quote>

<stock_quote>
 <symbol>CSCO</symbol>
 <when>
 <date>12/16/1999</date>
 <time>4:01PM</time>
 </when>
 <price type="ask" value="97.875"/>
 <price type="open" value="98.390625"/>
 <price type="dayhigh" value="98.75"/>
 <price type="daylow" value="97.0625"/>
 <change>+2</change>
 <volume>21327400</volume>
</stock_quote>

<stock_quote>
 <symbol>INTC</symbol>
 <when>
 <date>12/16/1999</date>
 <time>4:01PM</time>
 </when>
 <price type="ask" value="80.25"/>
 <price type="open" value="79.75"/>
 <price type="dayhigh" value="81.125"/>
 <price type="daylow" value="79.375"/>
 <change>+1.3125</change>
 <volume>25059700</volume>
</stock_quote>

<stock_quote>
 <symbol>ORCL</symbol>
 <when>

http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.xml.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.xml.txt (1 of 2) [2/22/2000 1:06:10 PM]

t ford
XML File code sample

 <date>12/16/1999</date>
 <time>4:01PM</time>
 </when>
 <price type="ask" value="89.5625"/>
 <price type="open" value="89.625"/>
 <price type="dayhigh" value="90.625"/>
 <price type="daylow" value="87.375"/>
 <change>-0.8125</change>
 <volume>14881500</volume>
</stock_quote>

<stock_quote>
 <symbol>SUNW</symbol>
 <when>
 <date>12/16/1999</date>
 <time>4:01PM</time>
 </when>
 <price type="ask" value="74.9375"/>
 <price type="open" value="75.625"/>
 <price type="dayhigh" value="77.75"/>
 <price type="daylow" value="74.375"/>
 <change>+1.5</change>
 <volume>21366600</volume>
</stock_quote>

</stock_quotes>

http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.xml.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.xml.txt (2 of 2) [2/22/2000 1:06:10 PM]

use vars qw(%startsub, %endsub);

%startsub = (
"stock_quote" => "<hr><p>",
"symbol" => "<h2>",
"price" => "
Price:",
"date" => "
Date:<i>",
"time" => "
Time:<i>",
"change" => "
Change:",
"volume" => "
Volume:"
);

%endsub = (
"stock_quote" => "",
"symbol" => "</h2>",
"price" => "",
"date" => "</i>",
"time" => "</i>",
"change" => "",
"volume" => ""
);

use XML::Parser;

my $file = shift;

my $parser = new XML::Parser(ErrorContext => 2);
$parser->setHandlers(Start => \&start_handler,
 End => \&end_handler,
 Char => \&char_handler);

$parser->parsefile($file);

#
The handlers for the XML Parser.
#

sub start_handler
{
 my $expat = shift; my $element = shift;

 # element is the name of the tag

 print $startsub{$element};

 # Handle the attributes
 while (@_) {
 my $att = shift;
 my $val = shift;
 print "$att=$val ";
 }

}

sub end_handler

http://www-4.ibm.com/software/developer/library/xml-perl/code/simplesub.pl.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/simplesub.pl.txt (1 of 2) [2/22/2000 1:06:18 PM]

t ford
Simple Substitution code sample

{
 my $expat = shift; my $element = shift;
 print $endsub{$element};
}

sub char_handler
{
 my ($p, $data) = @_;
 print $data;

}

http://www-4.ibm.com/software/developer/library/xml-perl/code/simplesub.pl.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/simplesub.pl.txt (2 of 2) [2/22/2000 1:06:18 PM]

use XML::Parser;

my $file = shift;

my $parser = new XML::Parser(Style=>'Subs', Pkg=>'SubHandlers', ErrorContext => 2);
$parser->setHandlers(Char => \&char_handler);

$parser->parsefile($file);

sub char_handler
{
 my ($p, $data) = @_;
 print $data;

}

package SubHandlers;

sub stock_quotes {
 print "<title>Stock Quotes</title>\n";
 print "<BODY BGCOLOR=\"#ffffff\" LINK=\"#0000ff\" ALINK=\"#ff0000\" TEXT=\"#000000\">";
}

sub stock_quotes_ {
 print "</BODY>";
}

sub stock_quote {
 print "<table width=100%>\n";
}

sub stock_quote_ {
 print "</tr>\n</table>\n</td>\n</tr>\n</table>\n";
}

sub symbol {
 print "<tr>\n<td>\n<img src=images/";
}

sub symbol_ {
 print ".gif>\n
\n";
}

sub when {
 print "
\n";
}

sub when_ {
 print "</td>\n<td>\n<table width=100%>\n<tr>\n";
}

sub price {
 my $expat = shift; my $element = shift;

 # Read the attributes
 while (@_) {

http://www-4.ibm.com/software/developer/library/xml-perl/code/procsub.pl.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/procsub.pl.txt (1 of 2) [2/22/2000 1:06:25 PM]

t ford
Function-Based Substitution code sample

 my $att = shift;
 my $val = shift;
 $attr{$att} = $val;
 }

 my $type = $attr{'type'};
 my $price = $attr{'value'};

 my $rowbreak = 0;

 if ($type eq 'ask') {
 $label="Ask Price";
 } elsif ($type eq 'open') {
 $label="Opening Price";
 $rowbreak = 1;
 } elsif ($type eq 'dayhigh') {
 $label="Today's High";
 } elsif ($type eq 'daylow') {
 $label="Today's Low";
 $rowbreak = 1;
 }

 print "<td align=left>\n$label</td>\n";
 print "<td align=right>$price</td>\n";

 if ($rowbreak) {
 print "</tr><tr>\n";
 }
}

sub price_ {
}

sub change {
 print "<td align=left>\nChange\n</td>\n";
 print "<td align=right>";
}

sub change_ {
 print "</td>\n";
}

sub volume {
 print "<td align=left>\nVolume\n</td>\n<td align=right>";
}

sub volume_ {
 print "</td>\n";
}

http://www-4.ibm.com/software/developer/library/xml-perl/code/procsub.pl.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/procsub.pl.txt (2 of 2) [2/22/2000 1:06:25 PM]

use XML::Parser;

my $file = shift;

my $parser = new XML::Parser(Style=>'Subs', Pkg=>'SubHandlers', ErrorContext => 2);
$parser->setHandlers(Char => \&char_handler);

$parser->parsefile($file);

sub char_handler {
 my ($p, $data) = @_;
 if ($::state::store_contents) {
 $::state::storage{$::state::store_contents} .= $data;
 } else {
 # print $data;
 }
}

package SubHandlers;

This function would perform the given action (eg. buy or sell)
on the given stock. In this case it's simply a stub.

sub take_action {
 my ($symbol, $action) = @_;

 print "Taking action \"$action\" on stock \"$symbol\" .\n";
}

sub stock_quotes {
 # Open connection to database
 use DBI;

 $dsn = "DBI:mysql:database=test;";
 $::state::dbh = DBI->connect($dsn);
}

sub stock_quotes_ {
 # Close connection to database
 $::state::dbh->disconnect();
}

sub stock_quote {
 undef %::state::storage;
}

sub stock_quote_ {
 # The values have been stored in the hash %state::storage

 my $symbol = $::state::storage{'symbol'};

 # Grab the rules for the given stock from the rules table
 my $sth = $::state::dbh->prepare("select * from rules where symbol='$symbol'");

http://www-4.ibm.com/software/developer/library/xml-perl/code/active.pl.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/active.pl.txt (1 of 3) [2/22/2000 1:06:33 PM]

t ford
Take Action (buy/sell) code sample

 $sth->execute();

 while (my $ref = $sth->fetchrow_hashref()) {
 my $field = $ref->{'field'};
 my $value = $ref->{'value'};

 if ($::state::storage{$field} > $::state::storage{$value}) {
 # This rule applies
 print "Rule \"$field > $value\" applies for $symbol\n";
 take_action($symbol, $ref->{'action'});
 }
 }
 $sth->finish();

 undef %::state::storage;
}

sub symbol {
 $::state::store_contents = "symbol";
}

sub symbol_ {
 undef $::state::store_contents;
}

sub date {
 $::state::store_contents = "date";
}

sub date_ {
 undef $::state::store_contents;
}

sub time {
 $::state::store_contents = "time";
}

sub time_ {
 undef $::state::store_contents;
}

sub price {
 my $expat = shift; my $element = shift;

 # Read the attributes
 while (@_) {
 my $att = shift;
 my $val = shift;
 $attr{$att} = $val;
 }

 if ($attr{'type'} eq "ask") {
 $::state::storage{'price'} = $attr{'value'};
 }
}

sub price_ {
}

sub volume {

http://www-4.ibm.com/software/developer/library/xml-perl/code/active.pl.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/active.pl.txt (2 of 3) [2/22/2000 1:06:33 PM]

 $::state::store_contents = "volume";
}

sub volume_ {
 undef $::state::store_contents;
}

http://www-4.ibm.com/software/developer/library/xml-perl/code/active.pl.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/active.pl.txt (3 of 3) [2/22/2000 1:06:33 PM]

CREATE TABLE rules (
 symbol CHAR(5),
 field CHAR(8),
 value CHAR(16),
 action CHAR(5)
);

INSERT INTO rules VALUES ("IBM", "price", "120.0", "buy");
INSERT INTO rules VALUES ("MSFT", "volume", "65000000", "sell");
INSERT INTO rules VALUES ("CSCO", "price", "100.0", "sell");

http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.sql.txt

http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.sql.txt [2/22/2000 1:06:52 PM]

t ford
Schema for rules table code sample

	ibm.com
	developerWorks : XML | Linux : Library - Papers
	http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.xml.txt
	http://www-4.ibm.com/software/developer/library/xml-perl/code/simplesub.pl.txt
	http://www-4.ibm.com/software/developer/library/xml-perl/code/procsub.pl.txt
	http://www-4.ibm.com/software/developer/library/xml-perl/code/active.pl.txt
	http://www-4.ibm.com/software/developer/library/xml-perl/code/stocks.sql.txt

	DOACDHOLMPFFCICIFFMBBJNDPDCGEFHJ:
	form1:
	x:
	f1: 9
	f2: shop
	f3:

	f4:

	form2:
	x:
	f1: Tutorial: XML and scripting languages
	f2: Linux
	f3: http://www.ibm.com/developer/beta-feedback-thankyou.html
	f4: Off
	f5:

	f6:

