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Abstract. Multiagent systems offer a new paradigm where learning
techniques can be useful. We focus on the application of lazy learning
to multiagent systems where each agents learns individually and also
learns when to cooperate in order to improve its performance. We show
some experiments in which CBR agents use an adapted version of LID
(Lazy Induction of Descriptions), a CBR method for classification. We
discuss a collaboration policy (called Bounded Counsel) among agents
that improves the agents’ performance with respect to their isolated per-
formance. Later, we use decision tree induction and discretization tech-
niques to learn how to tune the Bounded Counsel policy to a specific
multiagent system—preserving always the individual autonomy of agents
and the privacy of their case-bases. Empirical results concerning accu-
racy, cost, and robustness with respect to number of agents and case base
size are presented. Moreover, comparisons with the Committee collabo-
ration policy (where all agents collaborate always) are also presented.

1 Introduction

Multiagent systems offer a new paradigm to organize Al applications. Our goal
is to develop techniques to integrate lazy learning into applications that are
developed as multiagent systems. Learning is a capability that together with
autonomy 1s always defined as a feature needed for full-fledged agents. Lazy
learning offers the multiagent systems paradigm the capability of autonomously
learning from experience. In this paper we present a framework for collaboration
among agents that use CBR and some experiments illustrating the framework.

A distributed approach for lazy learning in agents that use CBR (case-based
reasoning) makes sense in different scenarios. Our purpose in this paper is to
present a multiagent system approach for distributed case bases that can sup-
port these different scenarios. A first scenario is one where cases themselves are
owned by different partners or organizations. These organizations can consider
their cases as assets and they may not be willing to give them to a centralized
“case repository” where CBR can be used. In our approach each organization
keeps their private cases while providing a CBR, agent that works with them.
Moreover, the agents can collaborate with other agents if they keep the case



privacy intact and they can improve their performance by cooperating. Another
scenario involves scalability: it might be impractical to have a centralized case
base when the data is too big.

Our research focuses on the scenario of separate case bases that we want
to use in a decentralized fashion by means of a multiagent system, that is to
say a collection of CBR agents that manage individual case bases and can com-
municate (and collaborate) with other CBR agents. In this paper we focus on
a collaboration policy (Bounded Counsel policy) that improve the individual
performance of CBR agents without compromising the agent’s autonomy and
the privacy of the case bases. We also present later the Commaittee policy for
comparison purposes. These collaboration policies are a refinement of the gen-
eral multiagent scenario of Cooperative CBR proposed in [10]. The collaboration
policies presented here are strategies that CBR agents can follow to improve
their individual performance in this framework.

The structure of the paper is as follows. Section 2 presents the collaboration
policies the CBR, agents can follow to improve their performance cooperating
with other agents in a multiagent system. Then, section 3 presents the CBR
method that the agents use in our current experiments. Section 4 presents the
proactive learning process that allows the agents to generate the examples that
characterize the collaboration states in the multiagent system and then learn to
tune their individual collaboration policies. The experiments themselves are ex-
plained in section 5. The paper closes with related work and conclusion sections.

2 Policies for Cooperative CBR

A multiagent CBR (MAC) system M = {(A;,Ci)}i=1..n 18 composed on n
agents, where each agent A; has a case base (. In the experiments reported
here we assume the case bases are disjunct (VA;, A; € MAC: C; N C; = 0), ie.
there is no case shared by two agent’s case bases. This is just an experimental
option and not a restriction on our model. In this framework we restrict ourselves
to analytical tasks, i.e. tasks (like classification) where the solution is achieved
by selecting from an enumerated set of solutions K = {S7...Sk}. A case base
C; = {(Pj, Sk)}j=1..n is a collection of pairs problem/solution.

When an agent A; asks another agent A; help to solve a problem the in-
teraction protocol is as follows. First, A; sends a problem description P to A;.
Second, after A; has tried to solve P using its case base Cj, it sends back a
message that is either :sorry (if it cannot solve P) or a solution endorsement
record (SER). A SER has the form ({(Sk, E})}, P, 4;), where the collection of
endorsing pairs (Sk, Ei) mean that the agent A; has found Ei cases in case base
C; endorsing solution Si—1i.e. there are a number Ei of cases that are relevant
(similar) for endorsing Sy as a solution for P. Each agent A; is free to send one
or more endorsing pairs in a SER record.

Before presenting the two policies for cooperative CBR, Committee and
Bounded Counsel policies, we will introduce the voting mechanism.



2.1 Voting Scheme

The voting scheme defines the mechanism by which an agent reaches an aggre-
gate solution from a collection of SERs coming from other agents. The principle
behind the voting scheme is that the agents vote for solution classes depending
on the number of cases they found endorsing those classes. However, we want to
prevent an agent having an unbounded number of votes. Thus, we will define a
normalization function so that each agent has one vote that can be for a unique
solution class or fractionally assigned to a number of classes depending on the
number of endorsing cases.

Formally, let A" the set of agents that have submitted their SERs to agent
A; for problem P. We will consider that A; € A* and the result of A; trying to
solve P is also reified as a SER. The vote of an agent A; € A° for class Sy is

B
c+ Zr:l...K Ei

where ¢ is a constant that on our experiments is set to 1. It is easy to see that
an agent can cast a fractional vote that is always less than 1. Aggregating the
votes from different agents for a class S we have ballot

Vote(Sk s AJ) =

Ballot' (S, A') = > Vote(Sk, Aj)
AjeA?

and therefore the winning solution class is the class with more votes in total, i.e.

Sol* (P, A") = arg max Ballot(Sy, A")

. We will show now two collaboration policies that use this voting scheme.

2.2 Committee Policy

In this collaboration policy the agents member of a MAC system M are viewed
as a committee. An agent A; that has to solve a problem P, sends it to all the
other agents in M. Each agent A; that has received P sends a solution endorse-
ment record {({(S, Ei)}, P, A;) to A;. The initiating agent A; uses the voting
scheme above upon all SERs, i.e. its own SER and the SERs of all the other
agents in the multiagent system. The final solution is the class with maximum
number of votes.

2.3 Bounded Counsel Policy

In this policy the agents member of a MAC system M try first to solve the
problems they receive by themselves. Thus, if agent A; receives a problem P and
finds a solution that is satisfactory according to a termination check predicate,
the solution found is the final solution. However, when an agent A; assesses that



its own solution 1s not reliable, the Bounded Counsel Policy tries to minimize
the number of questions asked to other agents in M. Specifically, agent A; asks
counsel only to one agent, say agent A;. When the answer of A; arrives the
agent A; uses the termination check. If the termination check is true the result
of the voting scheme is the global result, otherwise A; asks counsel to another
agent—if there is one left to ask, if not the process terminates and the voting
scheme determines the global solution.

The termination check works, at any point in time ¢ of the Bounded Counsel
Policy process, upon the collection of solution endorsement records (SER) re-
ceived by the initiating agent A; at time ¢. Using the same voting scheme as be-
fore, agent A; has at any point in time ¢ a plausible solution given by the winner
class of the votes cast so far. Let V! . be the votes cast for the current plausible
solution, Vit = Ballot' (Sol' (P, A"), A") and V[ = (3 g, cx Ballot(Sy, A")) —
V! .o - The termination check is a boolean function TermC'heck(Vnth, V') that
determines whether there is enough difference between the majority votes and
the rest to stop and obtain a final solution. In the experiments reported here
the termination check function (applied when there are votes for more than one
solution class) is the following

¢
TermCheck(VE . V) = % >

i.e. it checks whether the majority vote V. is 1 times bigger than the rest
of the ballots. After termination the global solution is the class with maximum
number of votes at that time.

Later in §4 we will show how the TermCheck predicate can be learnt by each
individual agent. The results of using this “fixed” TermCheck predicate (with
value n = 3) will be compared with the results of the learnt predicate in §5.

The collaboration policies described here have been implemented on the Noos
Agent Platform [8]. NAP consists of Noos, a representation language with sup-
port for case management and retrieval [1], and FIPA-compliant utilities for
agent interaction. A multiagent system in NAP consists on the individual agents
capabilities (like CBR) plus a specification of the agent roles and interaction pro-
tocols in the framework of agent-mediated institutions [8]. Cases are represented
as feature terms in Noos and the next section introduces the CBR method used
in our CBR agents.

3 Case-based Reasoning Agents

In this section we present LID, the CBR method used by agents. LID (Lazy
Induction of Descriptions) builds a symbolic description Dp for a problem P to
one or more cases in the case base [3]. In this framework, cases are structured and
they are represented in the formalism of feature terms and symbolic descriptions
are also built as generalizations [2]. We can consider Dp as a similitude term
[9], i.e. a symbolic description of the similarities between a problem P and the



retrieved cases Sp,. Also notice that a new similitude term is generated for each
new problem.

An agent has a case base C; = {(P;, Sk)};j=1..n, of classified cases that is
used by LID. In order to classify a problem P in one of those classes, LID builds
a description Dp such that

— Dp is a partial description of P,i.e. Dp C P (Dp subsumes P).

— Dp contalns the most relevant features of P.

— Dp induces a subset of the case base that satisfies that description: Sp, =
{(P}, Sk) € C;|Dp C F;}; we call Sp,. the discriminatory set of Dp.

LID uses a top-down heuristic strategy to build the description Dp. LID uses
an heuristic to determine which of the features present in P are more relevant
for the purpose of classifying P correctly into a solution class in K. LID uses an
heuristic! that determines which feature f is more discriminating with respect to
the solution classes K. Then it adds f to Dp with the value P.f = v (the value
that P has in feature f). Then LID only considers the subset of the case base
defined by the discriminatory set Sp, —the other cases are discarded. Using the
new case base Sp. LID uses the heuristic to determine which of the remaining
features present in P is most discriminatory and adds it to DPp. This process
continues adding features to Dp until the termination criterion is met.

The termination criterion is met a) if all cases in Sp, are classified into a
unique solution class Si or b) adding further features of P into Dp does not
reduce the discriminatory set Sp, to a set that has a unique solution class Sj.

When the termination i1s due to the second condition it means that the re-
trieved cases belong to more than one solution class, say problem P may belong
to a subset of solution classes (Sp C K). The answer of LID is the following:

— the solution to problem P is one of the classes S € Sp,

— the explanation of solution classes Sp is that problem P satisfies the descrip-
tion Dp,

— there are a number of cases endorsing each solution class Sy € Sp —namely
the cases in Sp, with solution Si. All this cases have description Dp, in
common with P.

In the framework of a single agent the multiplicity solutions can be resolved
by adopting a majority criterion and then the CBR system gives as solution the
solution class S; € K with more number of endorsing cases. In the framework of
multiagent CBR system the multiplicity solutions is managed by the cooperation
policies explained in §2.

4 Proactive learning

We have seen that in the Bounded Counsel policy the agents need a definition
for the termination check predicate. In the section 2.3 we have defined the Term-

! See [3] for a full explanation and evaluation of LID. The heuristic used is the RLM
distance [6], also used in [2] as a heuristic to select the most discriminatory features.



Check predicate with a user defined parameter 7, but probably a better approach
is to let each agent to learn its own termination check predicates.

We are going to present an approach where each agent will take actions in
order to obtain examples from which to learn its individual TermCheck predi-
cate. A new stage is needed before the agents are ready to cooperate. In this
stage, called the proactive learning stage, the agents will actively obtain the
experience they need (a training set) through sending problems to some other
agents and evaluating their results. From this experience each agent will learn a
concrete definition of TermCheck (each agent learning it from its own training
set). Specifically, each agent will learn a decision tree that will be used to assess
when to terminate.

4.1 Defining the examples

In order to learn the TermCheck predicate the agents need experience on the
situations where TermCheck would be applicable. That is to say, each agent
wants to learn when the result of the voting scheme will lead to the correct
solution depending on the collection of SERs (solution endorsement records)
that take part in the voting process.

Let’s define the situations where TermCheck is applicable: Given an agent A;
that wants to solve a problem P, and at a time ¢ has asked counsel to a subset
of agents A". A; will have a set R% of known SERs for the problem P at time ¢,
that includes all the SERs received from the agents in A" and the SER obtained
by trying to solve the problem by A;. The agent A; can obtain a winning class
with the voting scheme of section 2.1. The termination check has to predict if
Solt (P, A") is the correct solution (and thus A; won’t need the counsel of more
agents) or not.

We will call this a voting situation, and it is defined by the set of endorsing
pairs E% = {(Sk, E])} that take part in the voting process. We will characterize
a voting situation F% by several attributes:
the votes for the most voted solution

,Vt

max)?

— V!, the votes for the rest of solutions, and

t
- p= vai‘rvt, the ratio between the most voted solution and the total number
of votes

We will use these three attributes to define our examples. Specifically, a
v-example is defined by the three attributes above v = (V! V' p). Each v-
example belongs to the positive class (+) when Sol*(P, .At), the most voted
solution, 1s equal to the correct solution —otherwise it belongs to the nega-
tive class (—). In this way we have a classification problem with two classes:
(+, (Vi e, ViE, p)) and (=, (V}} .., Vi, p)). In other words, a positive v-example
characterizes a voting situation where there is no need of asking counsel to more
agents and a negative v-example characterizes a voting situation where the agent

do need the counsel of more agents.



4.2 Obtaining the training examples

Since every A; has a case-base (collection of problems with known solution), A;
can obtain v-examples of voting situations from which to learn the termination
check. Sending those problems to the other agents an agent A; can then assess
the correctness of the voting processes derived from the SERs received from
those agents. Thus, an agent A; obtains a training set to learn TermCheck as
follows:

. Choose a subset B; of cases from its own case-base B; C Cj.

. For each problem P in B;

. A; sends P to a subset A% of the other agents.

. A; solves P by itself by a leave-one-out method, i.e. it solves P using C; — P
as case-base.

5. With the set R7 of SERs obtained in steps 3 and 4, A; builds v-examples

of voting situations.

I N

Note that from the collection RJK,SD of SERs obtained in step 5 we can build
more than one v-example. In fact we can build a v-example for any possible non
empty subset RE C R7. Thus, step 5 is decomposed in 3 substeps:

1. Choose a collection R of non empty subsets of RISD, re. R C ]P)(RISD)

2. For each voting situation R% € R let v = (V.2 V7 p) be the example
characterizing that situation.

3. If the most voted solution class is the correct class, build a positive example
(+,{V.2 .., V.7, p)) otherwise build a negative example (—, (VZ . V7 p)).

The collection R chosen in step 1 depends on the number of agents involved.
In our experiments we have chosen collections that amount to generate a number
of approximately 5,000 v-examples. The result of this process on all P € B; 1s a
collection of examples that form the training set 7; for learning TermCheck.

4.3 Learning the termination check

Once an agent A; has enough v-examples, it can learn a good TermCheck
predicate. In our experiments we have used all cases B; = (; and all agents
A% ={A;,...A,}. The agents learn TermCheck using a decision tree algorithm
with a discretization technique for the numeric attributes.

To build the decision tree T;, each agent A; does the following with its own
training set 7;:

1. For each attribute a € {V;,V,, p} find the best cut point & (in the sense of
maximizing the information gain) that divides 75 in two subsets, one with
the examples that have Value(a) < & and another with the examples that
have Value(a) > &.

2. Select the attribute a that has obtained the best information gain, and repeat
the process for each one of the two resulting subsets of examples and the
remaining attributes.
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8 Agents|4 Agents|5 Agents|6 Agents|7 Agents

Isolated Agents 1.00 1.00 1.00 1.00 1.00
Bounded 1.43 1.59 1.71 1.89 2.01
Proactive Bounded| 2.11 2.66 3.41 4.11 4.80
Committee | 3.00 4.00 5.00 6.00 7.00

Table 1. Cost comparison of Bounded Counsel, Proactive Bounded Counsel, and Com-
mittee policies.

scenario, an agent has about 36 cases (about 12 cases per class). The results
presented here are the result of the average of 5 10-fold cross validation runs.

Figure 2 plots the accuracy of the three collaboration policies compared with
respect to the accuracy of isolated agents. Clearly, any collaboration policy is
more desirable for the agents than working alone with its own data. Let us con-
sider the accuracies of Proactive Bounded Counsel and fixed Bounded Counsel.
Figure 2 shows that the agents with proactive learning always have better ac-
curacy. Moreover, Proactive Bounded Counsel is more robust when the number
of agents is greater (i.e. the size of the case-bases is smaller) because they can
learn an adecuated TermCheck predicate for each situation.

Let us cosider now the Commuttee policy. This collaboration policy has better
accuracy than the fixed Bounded Counsel policy. However, Proactive Bounded
Counsel 1s always very near to the Committee policy—and the difference is not
statistically significant (99% confidence in a signed rank test).

The difference between the Committee and the Proactive Bounded Counsel
policies is in terms of cost. The Committee policy always ask all agents while
Proactive Bounded Counsel 1s intended to minimize those questions. Table 1
shows the costs involved in different policies for a situation where each time an
agent asks counsel to another has a fixed cost, 1 euro in this example. The isolated
agents never ask counsel so cost is constant, while the Commuttee policy always
asks counsel to all agents and cost increases with the number of agents in the
system. The cost of Bounded Counsel policies are between these two extremes.
Notice that the Proactive Bounded Counsel policy is more expensive (asks more
counsels) than the fixed Bounded Counsel policy. However, the accuracy results
in Figure 2 shows that the Proactive Bounded policy asks for counsel when it’s
really needed, achieving an increased accuracy that matches that of the expensive
Committee policy. Summarizing, the Proactive Bounded Counsel policy has the
same accuracy that the Commaitiee policy at a lower cost.

6 Related Work

A general result on multiple model learning [5] demonstrated that if uncorre-
lated classifiers with error rate lower than 0.5 are combined then the resulting
error rate must be lower than the one made by the individual classifiers. The
BEM (Basic Ensemble Method) is presented in [7] as a basic way to combine
continuous estimators, and since then many other methods have been proposed:



Stacking generalization, Cascade generalization, Bagging or Boosting are some
examples. However, all these methods do not deal with the issue of “partitioned
examples” among different classifiers as we do—they rely on aggregating results
from multiple classifiers that have access to all data. Their goal 1s to use a mul-
tiplicity of classifiers to increase accuracy of existing classification methods. Our
goal is to combine the decisions of autonomous classifiers (each one correspond-
ing to one agent), and to see how can they cooperate to achieve a better behavior
than when they work alone.

The meta-learning approach in [4] is applied to partitioned data. They ex-
periment with a collection of classifiers which have only a subset of the whole
case base and they learn new meta-classifiers whose training data are based
on predictions of the collection of (base) classifiers. They compare their meta-
learning approach results with weighted voting techniques. The final result is
an arbitrator tree, a centralized and complex method whose goal is to improve
classification accuracy. We also work on “partitioned examples” but we assume
no central method that aggregates results; moreover we assume a multiagent
approach where communication and cooperation may have a cost that has to be
taken into account.

DRL [11] is a distributed technique that learns rules from partitioned data;
DRL’s goal is to achieve scalability for large data sets. Rule induction in a
workstation follows a top-down strategy in each data set, finding rules that are
satisfactory for a specific data set. These rules —termed candidate rules— are
sent to an additional workstation reviewing them over the entire data set; when
a rule is satisfactory for the entire data set it is accepted by the algorithm. We
work on a multiagent setting instead of a distributed one, but it seems DRL
could be easily adapted to a multiagent setting. The main differences are i) that
DRL is an inductive learning technique (designed to speed up class descriptions)
while we use lazy learning techniques and ii) DRL has a centralized stage where
the entire data set is available to the algorithm.

7 Conclusions and Future Work

We have presented a framework for cooperative CBR in multiagent systems.
The framework is cooperative in that the CBR agents help each other to im-
prove their individual performance. Since the agents improve with respect to
their performance as isolated individual, cooperating is also in their individual
interest—specially since the framework allows them to keep confidential their
own cases. A major theme in multiagent systems is the autonomy of the agents.
In our framework the agent autonomy is mainly insured by two facts: i) the
capability of each agent to determine whether or not itself is competent to solve
a problem, and ii) the capability of each agent to integrate into a global solution
for a problem the counsels given by other agents.

Another issue is the generality of the cooperation policies and their depen-
dence upon the CBR agents using LID. The cooperation policies depend only on



the CBR agents being able to provide SERs (Solution Endorsement Records),
so any CBR method that can provide that is compatible.

Finally, we plan to lift the restriction of the case bases of the agents in a
MAC system being disjunct. Basically, our idea is that agents could incorporate
in their case bases some cases originally owned by other agents. The interesting
question here is this: what strategy of case sharing can improve the overall MAC
system performance —without every agent having in their case base every case
known to the MAC system.
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