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Multiagent Systems
Distributed Artificial Intelligence

Distributed
Problem
Solving

Multiagent
Systems
(MAS)

Agents: (Wooldridge and Jennings, ‘95)
- weak agents
    - autonomy
    - social ability
    - reactivity
    - pro-activeness
- strong agents
    - beliefs, desires, intentions
    - knowledge, commitments, trust

Multiagent Systems: (Jennings et al, ‘98)
- agents with incomplete information
- decentralized control
- decentralized data
- asynchronous computation
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Multiagent Learning
• Learning = improving performance with
accumulated experience, as indicated by a metric
measure (Mitchell, ‘97)

• Multiagent Learning = improving the
performance of individual agents or of teams of
agents in a MAS setting

• We assume learning affects more than one agent
• Throughout the lecture, EC is THE learning
technique
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MAS Evolutionary Learning
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Team Learning
• EC particularly suited for team learning

• An individual codes for the behavior of an entire team

• Relatively similar to standard EC

• Team composition
– domain specific (soccer)
– scalable to larger teams (MAV)
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Team Learning Approaches
• Homogeneous Team Learning

– an individual contains a single behavior used for all agents
– fast, scalable, possible suboptimal results

• Heterogeneous Team Learning
– an individual contains one behavior for each of the agents
– can potentially code for any homogeneous team
– slower, potentially non-scalable, allows agent specialization
– restricted inter-breeding may be better (Luke and Spector, ‘96)

• Hybrid Team Learning
– an individual codes for team behaviors composed of heterogeneous groups

of homogeneous behaviors
– usually requires additional parameters for coding and manipulating the

hybrid teams
– breeding for hybrid teams?
– learning team decomposition (Hara and Nagao, ‘99)
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Heterogeneity and Performance

• Adding heterogeneity increases performance IF
ENOUGH TIME IS AVAILABLE and
– in domains that require task specialization (Balch, ‘98)
– in inherently decomposable domains (Bongard, ‘00)
– in domains that require increased number of different
skills (Potter et al, ‘01)
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Empirical Investigations in Team Learning
• Empirical investigations in team learning are very similar to

those in standard EC
– analysis of performance is straightforward
– best-so-far curves
– standard statistics/visualization tools

• How to measure scalability?
– plot learning curves for different numbers of agents
– plot performance versus number of agents

• How to measure heterogeneity?
– problematic in GP

• How to measure and quantify the relation between heterogeneity
and domain features?
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Teammate Learning
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Teammate Learning

• Introduction
• Research Directions
• Issues
• Conduction Empirical Investigations
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Teammate Learning
• Agents performing own learning processes

– decentralized learning
– closer to the concept of MAS

• Teammate learning better than team learning
(Iba, ‘96, ‘98)

• Teammate learning worse than team learning
(Miconi, ‘03)

• Theoretical comparisons
(Jansen and Wiegand, ‘03)
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Coevolution for MAS learning

EC learning for agent 1

EC learning for agent 3

EC learning for agent 2

EC learning for agent 4
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Teammate Learning

• Introduction
• Research Directions
• Issues
• Conduction Empirical Investigations
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Teammate Learning
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Optimality
• Search influenced by performance and balance

(Panait et al, ‘03)
• Cooperative tasks with joint reward functions

– standard algorithms not guaranteed to find optima, even with
‘relaxed’ settings

– robustness of solutions?
• better when teamed with optimal collaborator
• better when teamed with many other collaborators

• Competitive tasks
– what is optimal?

• duel methodology
• renaissance-man methodology

• Good news: fertile area for future research
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Locality of Reward
• Influences performance
• Influences heterogeneity

locality of reward
team heterogeneity

learning speed

domain particularities
performance

• Future research opportunities: automatic adjustment of locality
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Cooperation or Competition

• No clear relation among agents, relations might change over time
• Learning opportunities

– manipulation
– exploitation of other agents’ faults
– mutual trust
– reciprocity
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Teammate Modeling

• Recursive modeling
• Flavors

– single focus of learning
– modeling combined with learning

• Initial beliefs are VERY important
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Teammate Learning

• Introduction
• Research Directions
• Issues
• Conduction Empirical Investigations
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Issues in Team Learning

• Search Space
• Red Queen Effect
• Exploration
• Credit Assignment
• Learning Cycles
• Loss of Gradient
• Mediocre Stability



ECLab - Summer Lecture Series, 2003

Search Space for Team Learning
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Search Space for Teammate Learning

Agent 1 Agent 2

Rb3Rb2Rb1

b3b2b1
Ra3Ra2Ra1

a3a2a1
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Search Space for Teammate Learning

Agent 1 Agent 2
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Search Space for Teammate Learning
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Red Queen Effect

• “Change in a moving landscape may go unnoticed”
• Individuals are evaluated in the context of other individuals
• Subjective performance metrics may hide progress, stagnation, or

learning cycles
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Exploration
• An agent’s exploration process affects the learning processes of

other agents, with later repercussions on the agent’s learning
process

• Similar to an agent learning in a dynamic environment, where the
dynamicity is directly related to the agent’s behavior

Agent 1 Agent 2
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Credit Assignment

• Inter- and intra- agent credit assignment

• Individual reinforcement information may
influence agents to learn greedy strategies
focused on individual, rather than team,
performance
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Learning Cycles
Agent 1 using strategy 1 Agent 2 using strategy 1wins against

Agent 1 using strategy 1 Agent 2 using strategy 2looses against

Agent 1 using strategy 2 Agent 2 using strategy 2wins against

Agent 1 using strategy 2 Agent 2 using strategy 1looses against
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Loss of Gradient
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Mediocre Stability
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Teammate Learning

• Introduction
• Research Directions
• Issues
• Conduction Empirical Investigations
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Empirical Investigations in Teammate Learning
• What is being measured?
• Performance is subjective (Red Queen Effect)

– possible solutions
• choose domains where objective performance measure is available
(Panait and Luke, ‘02), (Bucci and Pollack, ‘03)

• use benchmarks
• dominance tournament (Stanley and Miikkulainen, ‘02)
• hall of fame? (Rosin and Belew, ‘97)

– measure for team heterogeneity?
– measure for sizes of basins of attractions?

• What is meant by ‘better’ or ‘best’?
– (Panait and Luke, ‘02)

• duel methodology
• renaissance-man methodology
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Empirical Investigations in Teammate Learning

• What are the assumptions of the experiments?
– global information does not guarantee optimality
– recommendations to restrict assumptions about other agents when their

behaviors are unknown
– coevolution may be improved when assuming other agents are competing

or cooperating
• How to select problem domains?

– “my method is better than your method” stage of investigation
– for theoretical analysis, use very simple domains (game matrixes)
– pay attention to assumptions
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Empirical Investigations in Teammate Learning
• Visualization

– visualization needs to capture the relation among different coevolutionary
algorithms

– plot the trajectories of the search process
– search driven by balance and performance

• visualization of search space: basins of attraction?
• assess difficulty of domain based on sizes of basins of attraction for
suboptimal peaks

• Statistical methods
– because performance assessment is subjective, the results of statistical

tests will depend on the other ‘components’
– co-adaptation and learning cycles

• time may be an especially important characteristic
– assess performance based on final results for all agents
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Problem Decomposition
• Flavors

– task decomposition
– behavior decomposition
– layered learning
– shaping

• Questions:
– automatic problem decomposition
– decentralized problem decomposition
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Communication
• MAS + unrestricted communication = centralized
system (Stone and Veloso, ‘00)

• Via rapidly decaying information
– may increase the search space
– may improve performance
– emergent vocabularies

• Via slowly decaying information (example: pheromones)
– long-lasting shared information

• Via embodiment
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Empirical Investigations and Communication
• What are the assumptions?
• Additional parameters to tune

– range, bandwidth
– evaporation and diffusion rates
– communication topologies

• How to measure relation between learning algorithm
and communication?

• Emergent vocabularies?
• Test communication via embodiment?
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Conclusions
• Empirical investigations in team learning

– pretty much straightforward
– analysis of heterogeneity and scalability

• Empirical investigations in teammate learning
– subjective evaluation → no clear performance criteria
– visualize and measure balance and its relation to performance as the

components driving the search process
– assumptions about other agents are very important

• Empirical investigations and problem decomposition
– representations

• Empirical investigations and communication
– assumptions
– test of emergent vocabularies
– test of communication via embodiment
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Conclusions
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