The Aglets 2.0.2 User’'s Manual

Aglets Development Group

March 12, 2009

Contents

Introduction

1 Mobile Agents: Introduction and Concepts

1.1 Mobile Agents L
1.1.1 Strong Mobility vs. Weak Mobility
1.2 Agents and Proxies L.

Installation

2.1 Installing binaries L oL
2.2 Installing from CVS o
2.3 Compile from the source

Using the Tahiti server

3.1 Tahiti GUL
3.1.1 The Aglet menu
3.1.2 The Mobility menu
3.1.3 The Viewmenu.
3.1.4 The Options menu
3.1.5 The Tools menu
3.1.6 The Helpmenu

3.2 The Tahiti command line

Developing agents with Aglets

4.1 Configuring your IDE to use the Aglets library
4.1.1 Using command line tools
4.1.2 Using IBM Eclipse
4.1.3 Using Netbeans IDE
414 Using JBuildero

4.2 Base knowledgeo oo oo
4.2.1 Main methods of an aglet
4.2.2 Simple experimentso
4.2.3 Self cloning and migrating aglets

43 Events

4.4 Creating other aglets and AgletContext

10
10
15
16

18
18
18
22
25
26
31
32
33

4.5 Message handlingo o000
4.5.1 Aglets, messages, and threads
4.5.2 Sending messages and AgletProxy

4.6 Asleepingaglet

A FAQ & Configuration Files
A1 FAQ . . o
A.2 Configuration Files

B Managing login data
B.1 Creating anew account,
B.2 Changing the password of an existing account
B.3 Deleting an accounto
B.4 Listing the content of the keystore
B.5 User’s Configuration Files

C The IBM Public License - version 1.0

61
61
78

82
82
83
84
84
85

86

Introduction

This document provides a guideline for those, either developers or users, who
want to deal with the Aglets mobile agent platform.

Originally developed at the IBM Tokyo Research Laboratory, Aglets was
appreciated for its clear and easy to use API, good modularity and design.
Since the initial effort of IBM, several versions of Aglets have been released,
until the project become officially open source and hosted at SourceForge.
This was the time when the release 2 become the official release (releases
1.x were on charge of IBM). In 2004, when the latest release was 2.0.2, the
project administrator changed, and new commits were done on the CVS
towards the 2.1 release, that is still not available as an installable package.

Since a while there was not official documentation about the Aglets Soft-
ware Development Kit, and this is the main reason why this document has
been created. Moreover, it must be took into account that due to the first
development of the IBM laboratories, there is on the Internet a bit of con-
fusion about the platform versions and documentation. This manual wants
to substitute and concentrate most of the documentation, being “the entry
point” for everyone who wants to start using Aglets. Of course, as the plat-
form itself, this manual is always under construction, thus you should check
periodically for newer versions.

Since describing Aglets is not a trivial task, due to its complexity, this
document starts looking at what really lacks in the available documentation:
how to install the server, how to write sample (and simple) aglets, how
to manage server configuration etc. We hope this manual will, one day,
substitute all other documents available. It has not yet reached that level, in
fact you will not find here information about concepts like proxies, messages,
etc. This means that, before you start developing agents, you have to consult
the Aglets Working Draft (left unfinished) at

http://www.research.ibm.com/trl/aglets/spec10.htm
just to learn basic concepts about activation/deactivation, message passing,
etc. Tt is expected that this manual will include all the relevant Aglets
information/documentation, including and uptating the concepts explained
in the Aglets Working Draft referred to above.

On-line Resources

There are not a lot of documentation and examples available on-line, and
furthermore they are often quite old. It is for this reason that comes this
manual. However, if you need further help, you should take a look at the
Aglets web site: http://aglets.sourceforge.net. There you can find informa-
tion and documentation about the Aglets project, and of course about the
Aglets mailing lists. So far, Aglets provides four mailing lists:

o aglets-users:
around usage of the ASDK (installing and running the server, devel-
oping aglets);

e aglets-developers:
around development of the ASDK (proposing new features, coordinat-
ing the launch of new releases);

e aglets-commit:
informs about the CVS commits and new available releases;

e agletsnet-users deprecated:
a mailing list related to the aglets-net project, a collection of Aglets-
based applications.

Actually, mailing lists are the fastest and easiest way to get help about
Aglets.

About this document

The first version of this document has been written by Luca Ferrari using
KTEX. Raimondas Berniunas improved the first version correcting some
mistakes. Thomas Herlea also helped with the manual and re-organized the
CVS structure of both documentation and source code. Fernando G. Tinetti
helps improving the manual since Nov 2008.

This document is under the Aglets CVS repository, and the latest version
of the document can be obtained via anonymous checkout as follows:

export CVSROOT=:pserver:aglets.cvs.sourceforge.net:/cvsroot/aglets
cvs co docs

The document will be in the docs subdirectory and is named manual . tex; in
order to build a dvi version you have to run ITEXtwice, and then optionally
to run a dvi-postscript converter as follows:

latex manual.tex
latex manual.tex
dvi2ps manual.dvi manual.ps

People who want to collaborate on this document (fixing mistakes, adding
images or code samples, etc.) can contact catfhire@users.sourceforge.net or
can post a message to the aglets-developers mailing list.

Chapter 1

Mobile Agents: Introduction
and Concepts

Agents are autonomous and social entities used to develop complex appli-
cations. The idea behind the concept of “agent” is the one of an active
and autonomous module that can work cooperating and/or competing with
other modules/agents and the sorrounding environment. In other words, an
agent is a piece of executable code that, during its life, executes one or more
task coordinating with other entities (e.g., other agents and the surrounding
environment). Therefore, at first look, agents could be thought as a set of
processes, each running alone; however, agents have some properties differ-
ent from a “simple” process. In particular agents are social, that means they
are prone to communicate with other agents (e.g., by mean of messages).
Of course, even processes can cooperate each other, but the idea is that
communication among agents is simpler and more natural.

Agents cannot live by theirselves, but must rely on a specific environ-
ment, called Agent Platform (AP) that is in charge of providing agents a
set of resources and of controlling the agents life cycle. The Agent Platform
acts therefore as a framework, where agents are the component that can be
installed and run on top of it. Thanks to this architecture, agents result
smaller and lighter if compared to normal processes. The Agent Platform
controls the agent lifecycle, deciding when an agent must be started and
stopped (these usually depends on a user request), must be destroyed, mes-
sages must be delivered to, and so on. Moreover an Agent Platform is in
charge of keeping the state of each agent, as well as providing an unique way
to identify each agent. Of course, the AP provides a set of tools to allow
users and developers to deal with all the platform capabilities. Last but not
least, the Agent Platform usually represents a “front-end” for agents that
want to gain host resources (e.g., files); this means that generally speaking
the Agent Platform controls the resources accessed by agents.

1.1 Mobile Agents

A special kind of agents are those called mobile, a type of agents that can
move spountanously between two or more different Agent Platforms. Mo-
bility is a very important feature, since enhance agents allowing them to
migrate across the hosts of a network. Thanks to mobility, the agent (i.e.,
the running process) can move towards the data instead of migrating the
data near to the process or requesting remotely the data. Since agents are
often smaller than the data they are going to work on, mobility can lead
to a bandwidth saving. There are other situations where mobility is funda-
mental: for instance agents can migrate from a corrupted or halting host to
another one in order to continue their computations, thus surviving to host
problems.

In order to support mobility, the Agent Platform must provide a set of
dedicated services in order to support the migration in both directions (in
and out the platform), as well as remote messaging between local agents
and migrated (i.e., remote) ones. A platform that supports mobile agents is
called Mobile Agent Platform (MAP).

Aglets is a Mobile Agent Platform, and an installation is usually
composed of the following indipendent parts:

o Aglet Mobile Agent Platform (Aglets MAP): is the core platform, able
to manage mobile agents.

e Tahiti: is the main server in charge of managing the mobility of agents.
It comes with a Graphical User Interface (GUI) that helps administra-
tors taking care of running agents.

e Aglets Software Development Kit (Aglets SDK - ASDK): is a library
that provides developers all the facilities required to write mobile agents
compliant to the Aglets MAP.

If you want to host agents on your machine, you need to run the MAP,
that acts as a daemon waiting for new agents to be created. Agents can be
created locally or can be received from a remote MAP; in the latter case
there is not a real “agent creation”, since the agent already exists somewhere
(in the remote MAP) and is just transferred to the local MAP.

If you are interested in the development of mobile agents, you need only
the ASDK, even if it is strongly suggested you install also the MAP in order
to test your agents.

1.1.1 Strong Mobility vs. Weak Mobility

There are two main kinds of mobility to take into account: strong and weak.
The latter is the simple one, and requires that only executable code mi-
grates, without any particular information about the execution of the code

itself. This means that it is like you send a program (e.g., an agent) to a
remote host, so that such agent is re-started from the beginning. Strong mo-
bility, instead, requires that also the information about the execution state
is migrated along with the code. Having such information, it is possible to
continue (not re-start) the process on the remote destination exactly from
the same execution point.

To better understand the above concepts, consider the following simple
meta-code example:

for(int 1 = 0; i < 10; i++){
migrate(remoteHosts[i]);

While the above code is running, the program (or the agent) executes
the for cycle, and at the very first step a migration is required. Once on the
remote destination, if the mobility adopted is strong, the code will continue
within the for loop, so executing the second step migration. In the case of
weak mobility, instead, the program will start from an entry-point defined
within the code, for instance a standard method, and will probably re-execute
the same cycle over and over.

Aglets supports only the weak mobility, and this is not a proper limitation
of the MAP implementation, rather a limitation of the Java architecture. In
fact, almost all the Java MAP support only the weak mobility. The reason
behind this is that there is no support in Java to get enough information
about the execution flow (i.e., stack trace, program counter, registers, and
so on), so there is no way to restore a computation from the same point after
a serialization. As a proof of this, the Thread class itself is not serializable,
and so cannot be transmitted over the network.

In order to partially overtake the above limitation, Aglets ensures that an
agent will keep its Java state (i.e., the values of its inner variables) among
migrations (at least if the Java state is serializable). Moreover, when the
agent is going to be executed on the remote machine, the execution will
start from a well defined entry point (a method), and no re-initialization will
happen (in order to not override the current agent state).

1.2 Agents and Proxies

In the Aglets MAP an agent is simply an object, that is the instance of a
class, on which a thread executes on. This approach is very similar to the
one of the applets or servlets: an agent is simply a component on which a
thread performs some methods in order to make it active.

The Aglets SDK provides the base class for making agents, that is the
Aglet class, that must be extendend in order to provide a specific agent

behaviour. Overriding methods of the base class and defining different be-
haviours when events and messages come, the subclass defines the behaviour
the agent will have. Please note that, as opposite to standard Java object
management, an agent creation is managed by the platform, so there is not
need explicitly call a constructor; similarly the finalize method call will be
managed by the platform itself.

An agent should not make any assumption on the thread that is as-
signed to it, since the platform, for efficienty reasons, could pool threads
and dynamically assign them to the execution of an agent’s method. This
also means that on the same agent could run, at different times, different
threads. However, the platform ensures that only one thread at a specific
moment will be active on an agent, so there is no need for synchronization.

Agents cannot directly reference other agents, so it is not possible for
an agent to handle a “pointer” to another agent. This is done for security
reasons: having a “pointer” to another agent allows a malicious agent to
perform method calls on the referencee and, therefore, to induct specific
behaviours that are not under the control of the platform. However, as stated
before, agents are social entities, and thus they must be able to communicate
each other. In order to allow agents communicating, keeping a good level of
security, the Aglets platform exploits the prozy pattern. A proxy is an object
that masquerades another object (its owner) and that forwarders method
calls to its owner. So, in the Aglets platform, agents are hidden by proxies,
and other agents can send messages or perform method calls against the
proxy, having the proxy to forward such method calls on the owner agent.
Advantages of this technique are that the agent are always protected, being
invisible, and that the system can create and manage a lot of proxies for the
same agent without breaking the agent protection. Moreover, the disposing
of a proxy does not causes the disposing of the agent it is masquerading. In
fact, the Aglets MAP is the only one component that keeps a reference to
agents, avoiding thus that the Java garbage collector collects agents if other
agents are not communicating (i.e., handling any kind of refence) to them.
Summarizing, it is important to note that agents are created and managed
by the MAP, while proxies represents “handles” to other agents, thanks to
which agents can communicate each other.

Chapter 2

Installation

This chapter describes how to install and run for the first time the Aglets
2 platform. Please consider that Aglets 2 is shipped with both the ASDK
(Aglets Software Development Kit) and the run-time environment. The for-
mer is the Aglets library, that allows developers to compile Aglets-based
applications; the latter is a set of pre-built agents and programs used to
implement a stand-alone platform, thanks to which you can execute and
dispatch agents on your machine.

To run the Aglets platform you need at least a Java 2 Run-time Envi-
ronment (JRE), even if it is recommended to install the full Java 2 Source
Development Kit (J2SDK), which allows you to compile agents. This chapter
does not cover how to get and install the JRE or the J2SDK; for informa-
tion about Java see the SUN web site: http://java.sun.com. Aglets can be
installed on a Unix/Linux system, Microsoft Windows and Mac OS X. More
generally, each architecture able to run the Java 2 platform is a possible
target on which install Aglets.

The following paragraphs show how to install Aglets from the three avail-
able forms: binaries, CVS, sources. In the following, the installation under
Unix will be shown, even if the steps are the same for all other supported
platforms. It is assumed that you have all required Java commands in your
PATH, thus they can be executed starting from their short name. Please
read the section on binaries whichever form you choose to install, since it
is the more detailed one and describes the directory structure, execution of
common commands and so on, which are also used in the other two sections.

2.1 Installing binaries

This is the recommended way, since compiled packages contain stable ver-
sions of the platform and of the library (ASDK). If you are not a developer,
you should install Aglets starting from compiled packages. Both the li-
brary and the platform are shipped within a single file, a jar archive (Java

10

ARchive), with a name that reflects the version of Aglets it contains. In the
following we will refer to the version 2.0.2 of Aglets (the latest stable at the
moment of writing), whose archive file is:

aglets-2.0.2.jar

The following steps detail how to install Aglets starting from the above
archive.

1. Decompress the archive:
Since Aglets comes as compressed archive, you need first to extract
the files from it. The files are not grouped into a single folder in the
archive, thus it is better to create a container directory for your aglet
installation (for example /java/aglets). Copy the archive file into it,
change directory to it and execute the jar command like this:

jar xvf aglets-2.0.2.jar

During the decompression you will see a few of lines scrolling on the
screen, indicating what is being extracted:

luca@linux:/java/aglets> jar xvf aglets-2.0.2.jar
created: META-INF/
extracted: META-INF/MANIFEST.MF
created: bin/
extracted: bin/agletsd.bat.in
extracted: bin/agletsd.in
extracted: bin/ant
extracted: bin/ant.bat
extracted: bin/build.xml
extracted: bin/daemoncontrol.bat.in
extracted: bin/daemoncontrol.in
extracted: bin/lcp.bat
created: cnf/
extracted: cnf/aglets.props
extracted: cnf/agletslog.xml
extracted: INSTALL.html
created: lib/
extracted: lib/jaxp.jar
extracted: lib/tahiti.properties
extracted: 1lib/log4j.jar
extracted: lib/parser.jar
extracted: lib/aglets-2.0.2.jar
extracted: lib/ant.jar
extracted: lib/crimson.jar

11

Once you have extracted the archive, you should see a set of subdirec-
tories as follows:

e hin contains executable programs for the Aglets 2 platform, such
as the daemon in charge of receiving incoming agents. Further-
more it contains files required by further installation steps;

e cnf contains configuration files for the Aglets platform;

e public contains a few examples of agents, and should be your root
directory as base of your own agents;

e [ib contains the Aglets 2 library (as a jar archive) and other li-
braries required by the Aglets technology.

2. Install the platform:

To install the platform you need to run Apache Ant, a tool expressely
made to compile and install Java applications. Aglets 2 is shipped with
a version of Ant that is suitable to install the platform, nevertheless
it is possible to use another version of Ant (a version greater than
1.5 is recommended). Check the Ant project web site at the Apache
Foundation site http://www.apache.org to get more information about
Ant.

To install Aglets with the shipped Ant, you need first to enter the bin
directory, where the Ant buildfile build.xml is present, and then run
ant like this:

luca@linux:/java/aglets> cd bin/
luca@linux:/java/aglets/bin> chmod 755 ant
luca@linux:/java/aglets/bin> ./ant
Buildfile: build.xml

BUILD SUCCESSFUL
Total time: 8 seconds

During the library build /installation you will see messages coming from
the Aglets maintainer about the current version; please read them since
they might contain information not yet reported in this manual.

3. Set up policy:
Like other Java applications, the Aglets server requires entries in the
Java policy file (usually /.java.policy) to open sockets, execute a-
gents, access local files and so on. You can copy entries directly
from the file bin/.java.policy (of the Aglets installation) in your
/.java.policy or you can ask Ant to do it for you. This is the rec-
ommended way, since it can change depending on administrators wills

12

and since is a more transparent and standard way. Furthermore, Ant
will install a base keystore for you. Aglets requires a keystore in or-
der to contain keys for secure agent migrations; usually the keystore is
contained in the /.keystore file.

To install both the policy entries and the keystore in your home direc-
tory, launch ant specifying the install-home option:

luca@linux:/java/aglets/bin> ant install-home
Buildfile: build.xml

install-home:
[echo] Copying .java.policy file...
[copy]l Copying 1 file to /home/luca
[echo] Copying .keystore file...
[copy] Copying 1 file to /home/luca

BUILD SUCCESSFUL
Total time: 1 second

Security note:

Please consider that both the policy entries and the keystore file are
meant to allow Aglet users to quickly and easily start using the plat-
form; you should strengthen the security before running the Aglets
platform in a production environment.

. Set up environment variables:

In order to get the Aglets platform running, you should set the fol-
lowing environment variables to the installation directory of Aglets:
AGLETS_HOME and AGLETS_PATH. Furthermore, to run the Aglets plat-
form in a more comfortable way, add the bin directory of the Aglets
installation to your PATH. If you are running a Unix-Linux system with
Bash, you can do the following:

export AGLETS_HOME=/java/aglets

export AGLETS_PATH=$AGLETS_HOME

export PATH=$PATH:$AGLETS_HOME/bin

while in a Microsoft Windows system you can do:
set AGLETS_HOME=c:\java\aglets

set AGLETS_PATH=}AGLETS_HOMEY,

set PATH=Y,PATHY;%AGLETS_HOME)\bin

or you can configure environment variables from the control panel.

13

5. Run the Aglets server:
Once you have installed the Aglets platform and the keystore, you
can run the default Aglets server, which is called Tahiti. Tahiti can be
executed through the command agletsd, that starts the Aglets server.
If authentication does not matter, it’s worth launching the server with
the properties file supplied with the binaries:

luca@linux:/java/aglets/bin> agletsd -f ../cnf/aglets.props

Without the properties file Tahiti will ask the user to authenticate
at every startup and server reboot (see figure 2.1). If the user has
installed the default keystore the username can be either anonymous

o Logn)wmEo®

Aglets Login

Mame: anonymous

Passworg; | #wee]

Login | | Cancel

Figure 2.1: Tahiti login window.

or aglet_key and the password is aglets. If a keystore with custom keys
is used, the user name is the alias of a key and the password is the
password of the keystore. Once the user has logged in, the Tahiti main
window is displayed (see figure 2.2). Within this window the user can

Aglet Mobility View Options Tools Help

>~:I Create| [l

STamuThetagietiewer atpainiecad s anonym

£ E
xi g

Tahiti - The &glet Yiewer is Running...

Figure 2.2: Tahiti main window.

manage the server, create, and dispose agents, get server information
and so on.

14

Do not worry too much if, at start time, the agletsd command shows
a few warnings like the following:

AgletRuntime is requested to get unknown user’s certificate
Signature of shared secret is incorrect.

secret is null.

[Warning: The hostname seems not having domain name.

Please try -resolve option to resolve the

fully qualified hostname

or use -domain option to

manually specify the domain name.]

These are warnings related to your network connection, and you will
see how to fix them in further chapters.

Please note that the Tahiti main window gives information about the
server; it suffices to look at the main window title to know which port
the server is listening on (by default 4434) and within who is running
(the username).

To stop the server, simply click on either the close button in the window
title bar (usually an ’x’) or select Ezit from the Aglet menu. In both
cases, Tahiti will ask you for a confirmation (see figure 2.3); clicking
on 'OK’ will shutdown the Aglets server (killing all running agents and

L Shutdown Server

Shutdown Sarver

QK?

[Egg] Reboot| Cancel

Figure 2.3: Confirmation required for server shutdown

freeing resources), ’Cancel” will leave Tahiti running and 'Reboot’ will
force a server restart.

2.2 Installing from CVS

You can install the Aglets platform from the CVS repository. The
following are the required steps:

(a) Create the directory for the repository:
You need to create a directory playing as a container for the
CVS repository. In this directory you will download a copy of
all sources currently in the CVS repository.

15

(b)

Log in to the CVS server:
To log in to the CVS server do the following:

luca@linux:/java/aglets/bin> cvs
-d:pserver:anonymous@cvs.sf.net:/cvsroot/aglets
login

The server will respond with

Logging in to
:pserver:anonymous@cvs.sf.net:2401/cvsroot/aglets
CVS password:

No password is required for anonymous access, so simply leave it
blank. After the login, the command prompt of your shell will be
shown again. Now you are logged in the CVS server, and you can
download the source tree.

Download the source tree:
You need to download from the aglets module, thus do:

luca@linux:/java/aglets/bin> cvs
-d:pserver:anonymous@cvs.sf.net:/cvsroot/aglets
checkout aglets

The system will download (or update if you have already a version
of the CVS repository) each source file in the on-line repository,
placing files into a subdirectory with the same name of the module
(in this case aglets). After that you can logout doing:

luca@linux:/java/aglets/bin> cvs
-d:pserver:anonymous@cvs.sf.net:/cvsroot/aglets
logout

Compile the downloaded source tree:

The source tree you have downloaded must be compiled in or-
der to build the Aglets library and platform. Enter in the sre
subdirectory and run Ant there, you will see the compilation of
all sources. At the end of the compilation, the library and the
platform will be installed in the module directory (i.e., the parent
directory of the src one).

2.3 Compile from the source

The compilation of the source tree can be done easily through
Ant, as already described in the previous sections. Once you have
downloaded the source tree (either from HTTP or CVS), compile
the whole tree entering in the tree directory (the one that contains

16

a file called build.zml) and running ant, as already described in
this chapter.

17

Chapter 3

Using the Tahiti server

This chapter describes how to use the Tahiti server, that is the default server
for the Aglets platform, in order to manage agents on your system.

3.1 Tahiti GUI

This section covers the use of the Tahiti GUI (Graphical User Interface),
that is used as default user interface to the user when you launch the agletsd
command (see figure 2.2). Tahiti presents a main window, with a menu
bar, a list of running agents, and toolbar. The main area of the window
is covered by the running agent list (“agent list” henceforth), which gives
information about agents. Most operations are aglet-dependent, that means
act on a specific agent. To specify to the server which aglet you are referring
to, you have to select the agent from the agent list clicking on its row with
the mouse; the row will become highlighted to notify that you are working
on that agent.

Following sections cover how to use Tahiti in both GUI and command
line mode.

3.1.1 The Aglet menu

Entries of the Aglet menu are displayed also in the toolbar as buttons. This
menu allows administrator to handle the agent life cycle: creating/disposing,
dispatching/retracting, etc. (see figure 3.1). Please consider that a lot of
entries of this menu act on specific agent instances, so you need to select an
agent in the Tahiti agent list before you can work on it. Each entry of the
menu is detailed in the following.

e Create
Allows administrators to create new agent instances. Once selected, a
dialog window will appear, requesting to insert the agent class name

18

Create,..

Dialog...
Disposa..
Clane...

Aglet Info..,
Kill...

Exit

Figure 3.1: The Aglet menu.

(fully qualified, with the name of the package), the URL and other
options (see figure 3.2).

In the creation dialog window you have to specify the class name of the
aglet you want to create. This can be specified either manually writing
the class name (with its package) in the Aglet name field or selecting
an existing class from the list of known agents. Once you have inserted
the aglet name, you can click on the Create button to create the new
agent (a new row will appear in the Tahiti main window, specifying
the agent name and other information about it). The Add to list and
Remowe from list buttons allow users to insert and remove new agent
names in the known agent list. The Reload class and create button
forces an instantation of the agent class without using the class loaders
cache. This can be useful if you have modified the agent class and have
already loaded it.

The Source URL field can be useful to load agent which classes are
not in the aglet root (usually public). You can specify the location
starting from which the class name should be found, thus the agent
name results fully qualified by the URL and the class name.

Dialog

Sends a message of the kind dialog to the selected agent. This can
be useful to display user windows on request. For example, the aglet
HelloAglet shows a dialog window only if the Dialog option (i.e., a
“dialog” message) is activated, as shown in the following code:

public void dialog(Message msg) {
// check and create a dialog box

19

ca

Aglet narme Iﬁexamples.simple.DispIayP.g
Source URL I
Aglets List Add to List

examples.simple.Displayaglet
examples.hallo.HalloAglet
examples.itinerary CirculateAglet
examples.mdispatcher.HelloAglet
examples.http.WehServeraglet
examples.talk. TalkMastar

ServerApp
BlackCat.helpers.aglets.agletsMiddlewars
testing. AgentCreator

Create | Cancel | Reload Class and Create |

Figure 3.2: Agent creation dialog window.

if (my_dialog == null) {
my_dialog = new MyDialog(this);
my_dialog.pack();
my_dialog.setSize (my_dialog.getPreferredSize());

// show the dialog box
my_dialog.setVisible(true);

public boolean handleMessage(Message msg) {
if (msg.sameKind("atHome")) {
atHome (msg) ;
} else if (msg.sameKind("startTrip")) {
startTrip (msg) ;
} else if (msg.sameKind("sayHello")) {

sayHello (msg) ;

} else if (msg.sameKind("dialog")) {
dialog(msg) ;

} else {
return false;

}

return true;

}
e Dispose

The Dispose entry allow administrators to kill a running agent. Once
you have selected an agent in the Tahiti agent list, and have clicked

20

the Dispose button (or have selected the entry from the menu), Tahiti
will ask you a confirmation before it proceeds (see figure 3.3). If you

v S DiEposean AgIet) x|

Dispose Aglet

‘examples.simple.DispIavAgIet

Close

Figure 3.3: Confirmation required to dispose an agent.

are sure that you want to kill that aglet, click on the Dispose button
in the dialog window, otherwise click on Close.

e Clone
The Clone entry allows administrators to create an identical copy of a
running agent. Tahiti will show you a confirmation dialog (see figure
3.4) where you can click on the Clone button in order to proceed. If

- DT T] | BT alx

Clone Aglet

‘ examples.simple.Displaysolet

Clone | Cancal

Figure 3.4: Confirmation required to clone an agent.

you do not want to clone the agent, click on Close. After cloning the
selected agent, Tahiti will show a new row in the agent list, since a
new agent has been created.

e Aglet Info

This entry opens a dialog window with different data related to the
agent, such as the key, the owner ID, the creation date, class name, etc.
All the information about security comes from the certificate stored in
the keystore database (see figure B), while the agent class information
is that specified at creation time. The dialog window (see figure 3.5)
does not allow users to modify the agent information. To close the
window click on the Close button.

o Kill
This option is present in the menu only, and is similar to the Dispose
one, except it forces an agent to shutdown without waiting its disposing
operations. In other words, disposing an agent awaits the exit of the

21

Auelzi lpife

Figure 3.5: Main information about an agent.

agent’s cleanup method, while killing an agent proceeds directly to
the elimination of the agent from the server’s data structures. The kill
option is useful for stopping unresponsive agents, such as those stuck in
infinite loops, or to quickly terminate malicious agents, but disposing
is preferred over killing for normal agent shutdown.

o Exit
The FEwxit option causes Tahiti to shutdown, disposing each running
agent. Tahiti will ask the user whether a server shutdown or a server
restart is desired and will offer the option to abandon the exit.

3.1.2 The Mob:ility menu

The Mobility menu allows control over the migration of agents and their
activation/deactivation. Similarly to the Aglet menu, since each option works
on a specific agent instance, you need first to select an agent in the Tahiti
agent list. Each entry of the menu is detailed in the following, the menu is
shown in figure 3.6.

e Dispatch
This entry orders an agent to migrate to another Aglets platform.
You need first to select the agent instance to migrate, and then select
the Dispatch option. A dialog window will pop up, asking for the
destination URL (see figure 3.7). The URL should generally use “atp”
as protocol, from ATP - Agent Transfer Protocol, thus for example a
valid URL could be atp://somehost. If you are running a couple of
Tahiti instances on ports 4434 (default) and 5000, you can move the

22

Dispatch...

Retract...

Deactivate...

Activate...

Figure 3.6: The Mobility menu.

i e e f—

examples.hello.HelloAglat

Destination URL I |

AddressBook Add to AddressBook

Dispatch | Cancel

Figure 3.7: The dispatch dialog window.

example agent DisplayAgent to the latter platform using a URL as
atp://localhost:5000. When you click on the Dispatch button, your
aglet will be sent to the destination platform. If, for some reason (the
aglet cannot migrate, is not serializable, etc.), the migration cannot be
successfully done, your agent will stay on the current platform and a
dialog window will notify to you the exception (see figure 3.8).

The dispatch dialog window offers to you the capability to store the
URL to which you are sending an agent to a list of known URLs, called
Address Book. The buttons Add to AddressBook and Remove gives to
you the capability to add and remove entries (as URLs) from the above
list. Please note that, until you add an URL to the address
book, you will not be able to retract agents sent to that URL.

23

SC e) o5

Exception

com.ibm.aglet RequestRefusedException

atp://polaris:5000, Integrity=DIGEST, Confidentiality=SHORTSECRETKEY, Timeout=0 examples simple.DisplayAglet

Close

Figure 3.8: An exception during the migration occurred.

e Retract
The Retract menu entry does the same thing as Dispatch, except from
the other end of the trip. While Dispatch triggers an agent migration
from the starting point, Retract triggers it from the destination. Once
selected, the Retract option will show to you a dialog window as that
in 3.9. Often, retracting brings “back home” a previously dispatched

RS & S —

Remote Aglets List

celect Server: atp:/flecalhost: 5000 _‘

examples.simple Displayaglet : 483f52b2024085 1c
exarmples.simple.Displayaglet © le? 4d4e5a3e3%9dan
axamples.simple Displayaglet | 758acb13901a2557

Retract | Cancel

Figure 3.9: The retract dialog window.

agent, that is why the destination of agents that will later be called
back should be saved to the address book and that is why only servers
from the Address Book are offered in the list from the dialog window.
After selecting the server, Tahiti queries it about running agents and
presents them to the user in a list. After you have selected the agent
to bring over, you can click on the Retract button. Now the server will
be asked to send the chosen agent to this server and if the migration
is successful, you should see it running again on your platform.

Not only agents previously dispatched to another server can be re-
tracted. It is possible to start the steps for dispatching an agent, but
to click on Cancel after the server has been added to the Address Book.
The Address Book is persistent across server shutdowns, so from the
moment a server has been added and until it is removed, agents can
be retracted from it. Any agent can be selected from a remote server’s

24

agent list, even agents that did not originate on the local server and
never visited it. Whether the remote server carries out the retraction
request or not depends on the protections present on the remote server.

e Deactivate
This option forces Tahiti to stop the execution of the selected agent,
serializing it locally, and deserializing when the agent is reactivated.
Tahiti will pop up a dialog window (see figure 3.10) where you can
insert a sleeping time (in seconds) for the agent. Clicking on the De-

examples.simple.Displayaglet

Tirme to sleep (seconds) | 10

Deactivate | Cancel ‘

Figure 3.10: The deactivate dialog window.

activate button causes the agent to be deactivated.

e Activate
This option makes the opposite of the Deactivate one: activate a sleep-
ing agent. The agent will be deserialized and its execution will start
again. Please note that this command runs silently, and the only thing
you will see in the Tahiti window is a message in the status bar, that
notify the activation of the agent.

3.1.3 The View menu

This menu (see figure 3.11) offers a few tools to take care of what is going on:

Memory Usage

Log

LT
IRA L R wd

Figure 3.11: The View menu.
memory usage and Tahiti logs. In the following, each menu entry is detailed.

e Memory Usage
This options opens a dialog window with a progress bar that shows the
memory usage respect the Java run-time system (see figure 3.12). The
red part of the bar represents the memory used by the Aglets platform,

25

L SWEmony Usage

Clase

Figure 3.12: The dialog window that shows the memory usage.

while the blue bar represents the memory still available from the Java
run time environment. The dialog window is managed by a separated
thread, thus the progression bar updates itself every second.

e Log
This options opens the dialog window shown in figure 3.13, that reports
a brief log of operations done by the Aglets platform (agent creation,

(] * Loy nformation [_H=Ex]

Create : examples.simple.Displayaglet from atp://linuxa434/ =
Create : examples.hello.HelloAglet from atp/flinux4434/

Close

Figure 3.13: The log dialog window.

dispatching, etc.). The Clear Log button causes the flush of the log
content and its reset, thus a new clean log is used.

e Java Console
This option is not available.

3.1.4 The Options menu

This menu, shown in figure 3.14, allows administrators to change settings

Ceneral Preference

Metwork Preference
security Preference
saerver Preference

Figure 3.14: The Options menu.

about the whole aglet server engine, to set up protections and policies, and
so on. In the following, a detailed explanation of each entry is given.

26

e General Preference
This entry opens a dialog window that allows the user to set up global
preferences, related to the start up of Tahiti and to its look and feel
(see figure 3.15). The Font section allows the user to select which font

- S General Preferences alix|
~Fon
Propartional Font Lucida Sans _| plain _| 12 _|
Fixed Font Lucida Sans _| plain ;'| 12 ;'|
rList Wi
Order Key: event order _‘
Sort Order: ascent _-‘
Display Pracision complete _.-‘
‘Startup
On Startup: _ Launch Startup Aglet
Cache Control
{ Clear Class Cache Now ‘
Close | Restore Defaults

Figure 3.15: The general options dialog window.

Tahiti should use to display information, with its style (e.g., bold) and
its size (in points). The effective use of the selected font depends on
which fonts are available to the Java system. The List view section
allows to set up how Tahiti have to show agents in the agent list. The
order can be ascent/descent, and can be done by the agent class name,
the creation time, the event order (i.e., what happened to the agent),
etc.

The Startup section allows you to select a specific agent to be loaded
at the Tahiti start time. You have to click on the On Startup check
button and then to enter the fully qualified agent class name in the
following text field.

The Clear Class Cache Now button of the Class Cache section, allows
the administrator to reset the class loader’s cache, thus new instances
of already loaded agents will be created after a reload of their class.
This can be useful if you are testing an agent during development,
when its class(es) are changing frequently.

To apply all modifications you have done through the above dialog,
you have to click on the OK button, while the Close one will abandon
the modifications. The Restore Defaults button reset any changes to
the Tahiti default.

27

e Network Preferences
This entry opens a dialog window that allows users to manage net-
work settings, like the use of proxies, HT'TP tunneling, authentication
requests, and so on. The dialog is shown in figure 3.16.

- »SNetwork Preferences 2 x|

~Http Tunneling
_|Accept HTTP Tunneling Request

_|Use HTTP Proxy

ProxyHost Fart

Do not use the proxy server far domains

rAuthentication

[Do Authentication on ATF Connection
= Use Secure Random Sead

Create a new shared secret | Rermove a shared secret |

Import a shared secret | Export a shared secret |

Gther:
’V _|Accept HTTP Reguest as a Message ‘

Close | Restore Defaults

Figure 3.16: The network preferences dialog window.

The Http Tunneling section allows you to specify if Aglets should ac-
cept HTTP requests, if it must send agents through the http protocol
(useful if you are running Tahiti behind a firewall), and which proxy
should be use. You can specify either a DNS host name or an IP ad-
dress, along with the port the proxy is accepting connections on. You
can also specify a domain to which to dispatch agents without passing
through the proxy, that means with a direct connection.

The Authentication section contains several buttons to configure secu-
rity on incoming connections. The Do Authentication on ATP Requests
checkbox forces, if checked, authentication on each incoming connec-
tion over ATP, that means on each incoming agent.

The Create a new shared secret button allows users to create new se-
crets for a specific domain. The button will open a dialog like the one
in figure 3.17. The user has to enter a domain and a couple username
(called alias) and password that must match a couple in the keystore
database.

The Remove a shared secret button allows you to remove a secret by
selecting it from the list of registered secrets, as shown in figure 3.18.
Please note that you have to provide the password that holds the alias
(i.e., the username) the secret has been created with.

28

) SCreateamew sharedfsecrel

Create a new shared secrat

Domain name

Creator's key alias

Creator's key password |}

Cancel

Figure 3.17: Adding a shared secret.
S =1

Remove a shared secrat

unimao.it

Domain narme list

Password

Cancel

Figure 3.18: Removing a shared secret.

The Ezport a shared secret button opens a dialog as the one shown in
figure 3.19, that allows users to select the domain the secret is asso-

ﬂ SExporta shared|secret

Export a shared secrat

unimo.it

Darmain narme list

Filename Tunime.itsec

ﬂ Cancel

Figure 3.19: Exporting a shared secret.

ciated to, and to store it in a file which name is written in the File
name text field. Once you have saved the secret in the file, Tahiti will
show you a dialog window with the absolute path of the secret file, for
making it easy to find (see figure 3.20).

The Import a shared secret button opens the dialog window shown in
figure 3.21, which asks the user for the file name of the secret to import.

e Security Preferences
This entry opens a dialog like the one in figure 3.22, that allows admin-
istrators to set up Java permission for agents and other Java classes.

29

Figure 3.20: Tahiti gives you information about the full path of the secret
file.

Figure 3.21: Importing a shared secret.

v SECUTiy Preferences

fread.write

Figure 3.22: The security options dialog window.

30

2 G 2%

~Root Path
Fublic Root: I?jsvilupno/java/aqletsz‘public

rAlias
home flucajtmp} —= tmp,
Jhome flucatmp, - location1,

Tl - I

M Rermove | Modify
Cancel | Restore Defaults

Figure 3.23: The server preferences dialog window.

The window is splitted in two main parts: on the left the user can
select the codebase of the Java classes (either an agent or a normal
class) for which to use the permissions and protections defined on the
right. The use of this window is very similar to the use of the Java
policytool program. Furthermore, since it works like the Java secu-
rity mechanism, all permissions will not be explained here; you can
find more details on the Java 2 documentation. Modifications will be
applied to the /.aglets/security/aglets.policy file. Please take
care when using this option, since it does not always work as
expected; thus you should check that the policy file has changed.

e Server Preferences
This entry opens a dialog window (see figure 3.23) that allows users to
set a few parameters like the server public root, that is the directory
where Tahiti searches for agents. Unfortunately, this option seems to
have a few bugs and does not work very well.

3.1.5 The Tools menu

This menu gives users access to a few tools more related to the Java virtual
machine than to the Aglets platform itself. Figure 3.24 shows the menu
appearance, while in the following you can find a detailed description of
each entry.

e Invoke GC
The selection of this entry will force a call to the Java garbage col-
lector, in order to force a memory check and to free no more used
objects/agents. You can use this menu entry if you believe your sys-
tem memory has not been freed, or after killing a large agent.

e Threads
This option causes Tahiti to dump a brief information about all ex-

31

Invoke GC
Threads
Debug
Ref Tahle

Figure 3.24: The Tools menu.

isting threads in the JVM. The dump is displayed in the Java console
(terminal), and is similar to the following one:

{java.lang.ThreadGroup[name=system,maxpri=10]}
+ Threads

Thread[Reference Handler,10,system] alive
Thread[Finalizer,8,system] alive
Thread[Signal Dispatcher,10,system] alive
Thread[CompilerThread0,10,system] alive

e Debug
The only visible thing is the showing of the string “Debug oft” in the
Java console. Probably this option was used to enable debug prints for
Tahiti components.

e Ref Table
Does not show anything. Probably it was a dump mechanism for the
Tahiti and Aglets internal reference table.

3.1.6 The Help menu

This menu does not provide a real help, rather credit information. Most of
the entries are not working in the current release of Tahiti due to the absence
of an external program, called openurl, used to point the web browser to a
web page. For this reason, do not worry too much if you see an exception in
the Java console when you select this menu entry.

This menu will probably be fixed in a future release of the Aglets plat-
form.

32

3.2 The Tahiti command line

You can run the Aglets server also from the command line. To enter in the
command line, specify the -nogui option to the agletsd command. (it does
not matter where the option is placed respect the other parameters). Tahiti
will start in command line mode, asking for the username and the password
as for the GUI mode.

Starting Tahiti with the -noconsole or -commandline parameter seems
no different that starting it with no parameter. The -daemon parameter
probably starts the aglet server listening on a port to which the control
client daemoncontrol can connect.

Once the user is logged, Tahiti presents a command prompt that al-
lows administrators to manage agents. The command line prompt is not so
powerful as the Tahiti GUI, but can be faster and can be used in extreme
situations (e.g., when the X server crashes). You can ask for help writing
“help”, and you will see a list of available commands:

> help

help Display this message.

shutdown Shutdown the server.

reboot Reboot the server.

list List all aglets in the server.
prompt Display or changes the prompt.
msg on|off Message printing on/off.

create [codeBase] name Create new aglet.
<aglet> dispatch URL Dispatch the aglet to the URL.

<aglet> clone Clone the aglet.

<aglet> dispose Dispose the aglet.

<aglet> dialog Request a dialog to interact with.
<aglet> property Display properties of the aglet.

Note: <aglet> is a left most string listed
in the result of list command.

As an example, if you want to create a new agent, you have to use the
create command:

> create examples.hello.HelloAglet

and the system will reply with a message showing the operation result, such
as:

> Create : examples.hello.HelloAglet from atp://linux:4434/

If you want to list all agents running in the platform, you have to use the
list command; the system will show a list of all agents (in the following
example only one is running):

33

> list
> agletO [examples.hello.HelloAglet]

The first word (“aglet0”) represent the agent identity, useful for other com-
mands. For example, if you want to dispose the above agent you have to
specify the identity to the dispose command:

> agletO dispose
Removed : agletO
> Dispose : examples.hello.HelloAglet

For a complete list of available commands, digit “help”. To exit from the
command line mode you have to shutdown Tahiti, that can be done with the
shutdown command (without any option).

34

Chapter 4

Developing agents with Aglets

This chapter covers basic issues about developing agents with the Aglets
library. In the following section it will be shown how to configure main
development environments to support Aglets, how to compile and run your
own agents and how to explore the library API.

An aglet (i.e., an agent able to run on the Aglets platform) is a simple
Java class that must have as base class com.ibm.aglet.Aglet. To define
the aglet behaviour you have to override methods of the base class, at least
the run() one, and that is all you need to get a complete aglet.

4.1 Configuring your IDE to use the Aglets library

The Aglets library is composed by a single jar archive, aglets-x.x.x.jar,
which is installed in $AGLETS_HOME/1ib, where x.x.x means the library ver-
sion number (e.g., 2.0.2). In order to compile your own agents, you must
have the above jar in your classpath. The following subsections describes
how to compile agents with different tools and IDEs.

4.1.1 Using command line tools

You can develop agents as you do with normal Java programs, that means
you can write your Java file(s) with your favourite editor, compiling then
them with the command line compiler (e.g., javac, jikes). Supposing you
have created and saved in a file called FirstAglet. java the following agent:

35

import com.ibm.aglet.*;

public class FirstAglet extends Aglet
{
public void run(){
System.out.println("\n\tHello\n");
¥
¥

you can compile it from the command line, after ensuring you have the
Aglets library in your classpath. For example, supposing you have the Aglets
platform installed in /java/aglets, you can do the following:

export CLASSPATH=$CLASSPATH:/java/aglets/lib/aglets-2.0.2.jar
in a Bash shell, or something like:
set classpath=/classpath’;c:\java\aglets\lib\aglets-2.0.2.jar

on a Microsoft Windows machine.
After that, just compile your agent from the command line:

javac FirstAglet.java

Even if aglets are like other Java classes, they cannot be run as stand-
alone programs, thus you have to run agents into the platform. Before that,
you must make agents reachable by the platform itself, that means you must
have the agent (compiled class) in the server public root, that is by default
the folder public of the Aglets platform installation. In other words, you
have to copy the classes of your agents under the above folders, thus you can
specify the aglet class name in the creation dialog (see figure 3.2).

Please note that adding the directory where your classes resides to the
CLASSPATH variable will not work. It seems that Tahiti has a few bugs in
the management of classes and classpath.

4.1.2 Using IBM Eclipse

You have to instrument Eclipse accepting the Aglets library in the project
you are working on. Supposing you have already defined a project, steps
required to use the Aglets library are the following:

1. select Import from the File menu

2. choose the library:
in the opened dialog window (see figure 4.1), chose Zip file and click
on Next button. After that, you have to browse the local filesystem in
order to find the Aglets library jar (see figure 4.2), then you have to
click on the Finish button.

36

Select

SC o) 55

Import resources from a Zip or Jar file on the local file system "

Select an import source:

¥ Checkout Projects from CV'S

4 Existing Ant Buildfile

1 Existing Project into Workspace

5 External Features

< External Plug-ins and Fragments
[} File system

‘& Team Project Set

[E Zip file

[J‘ Next > FL Jl Cancel J

Figure 4.1: Importing a package in Eclipse, step 1.

3. test the library:
you should now see the library packages in the project folder. Import-
ing the package should give you no errors.

4.1.3 Using Netbeans IDE

The Netbeans IDE uses an approach similar to the IBM Eclipse one: you have
to define in each project jars that must be included. To import the Aglets
library, supposing you have already created a project, do the following:

1. mount the library:
right click on the project name in the file system view (usually on your
left), and select mount from the contextual menu. In the submenu,
select Archive, as shown in figure 4.3.

2. choose the library:

browse the local filesystem to find the library (see figure 4.4, then click
on the Finish button.

3. test the library:
you should now see the library packages in the project folder. Import-
ing the package should give you no errors.

4.1.4 Using JBuilder

To quickly enables the Aglets library in the Borland JBuilder, you have to
follow the steps below:

37

Zip file zr\
I rt th tents of a Zip file fr the local fil tem. =
mpol e contents of a Zip file from the local file system. $ a
From zip file: |/java/aglets/lib/aglets-2.0.2 jar |®) | Browse...

» BEs/

tFMteeres...J L Select All)L Deselect All J

Into folder: ‘ aglets_patch

=1 Qverwrite existing resources without warning

| <Back || M Finish h Cancel |

Figure 4.2: Importing a package in Eclipse, step 2.

=) Local Directory

g Wersion Caontrol

Figure 4.3: Importing a package in Netbeans, step 1.

Steps Select Archives

1. Select Filesysiem Type

2. Select hems to Mount e |D lib '| @ @ @ E

[classes [crimsan jar [javassistz jar [y jini
[activation jar [destroy jar [jaxm-apijar [Y1og
[aglets-2.0.2 jar [dom jar [jaxm-runtime jar [y ma
[antjar [dom4jjar [jaxp-apijar [y ma
[prackcat 01 a99jar [fiddler-cs jar [jaxpaar [mai
[} commons-loggingjar [fiddier-ei jar [} Jini-core jar [y med
[create-dijar [fiddler jar [y iini-examples-dijar [y me
[createjar [javassistjar [yiini-examplesjar [nan

D

File Name: [aglets-2.0.2jar]
Files of Type: | Archive Files (*Jar, " 2ip, "war, " ear) v
<Back | ‘ Hext > | [mnish | ‘ cancel | ‘ Help

Figure 4.4: Importing a package in Netbeans, step 2.

38

=) {48 Confgure JDKs: alix]

21 Froject
£ User Home . - ’—
& TR Name: java version 1.4.2_01-b0& || Rename.. |
1 Jeuilder JDK home path: /swiluppo/java/ JBuildert/jdk. 4 || change. |
[[Ahways debug with - classic
[/ s¥iluppo/java/ JBuilderX/jdk1.4/jre/lib/charsets.jar] | | Add...
[/ sviluppo, java/ JBuilderX/jdkL4 fjre; lib/ rijar] =
[/ sviluppo, java/ JBuilderX/jdk1.4/jre/ lib/jce.jar] Edit..
[/ sviluppo, java/ JBuilderX/jdk1.4 jre/ javaws {javaws.jar]
[/ sviluppo, java/ JBuilderX/jdk1.4/lib/tools jar] Remove
[/ sviluppo, java/ JBuilderX/jdk1.4/lib; dujar]
[/ sviluppo, java/ JBuilderX/jdkL4/libf htmlconverterjar]
[/ sviluppo/java/ JBuilderX/jdk1l.4/demo/jfc/ Java2D/ Java2Dem
[/ sviluppo/java/JBuilderX/jdk1.4/demo/ plugin/jfc/ Java2D/ Jav] Move Up ‘
[/javasaglets/lib/aglets-2.0.2.jar] -
‘ :
New.. || AddFoider.. || Delete
Cancel Help

Figure 4.5: The JBuilder JDKs configuration window.

1. select Configure JDKs from the Tools menu.

2. choose the library:
push the Add button and browse your local filesystem in order to find
out the Aglets library jar, and then select it.

3. check the importation of the library:
once you have selected the library, you should see it at the bottom of
the jar list in the dialog window (see figure 4.5), then click on OK.

Please note that, doing the above, you will find the Aglets library in all
projects you will create.

4.2 Base knowledge

This section provides basic information about the development of an aglet.
In the following you will find which main methods you have to override, how
to manage incoming messages and how to catch events. The ASDK (Aglets
Software Development Kit) provides the infrastructure to develop and run
aglets, which are software agents that

e Run in a very well defined environment/server or context.
e Have a unique identifier.

e Can be moved or decide to move from one context to another, i.e. these
agents are mobile agents, with a set of well defined restrictions about

— When an aglet can be migrated.
— What state an aglet maintains in a migration.

— How the aglet resumes execution after being migrated.

39

Can be cloned, an identical aglet can be created from an existing one.

Are able to communicate to each other by sending/receiving messages.

Can handle (or react to) a set of predefined events.
e Can be made persistent, i.e. stored on disk.

And all of these characteristics will be explained in the next sections, starting
wiht the most basic ones. Other issues such as those related to security are
considered advanced and are not included in this chapter. Some of the
previous material in this manual is related to one o more of the items above.
However, most of the manual at this point has been devoted to describe the
current provider/implementation of the Aglets context: Tahiti, the Aglets
server. Tahiti and agletsd will be used as synonymous in the rest of the
manual.

4.2.1 Main methods of an aglet

Aglets are agents that follow an Applet-like development way, that means
you have to override a few methods that will be called from an external entity
(the Aglets run-time system) during the agent life. In Aglets, an agent can
be considered as a Java object with a thread running on it. There is a base
class called Aglet, which represents a simple agent for this platform, and it
is necessary to inherit from the Aglet class to create a customized agent, as
briefly shown in Section 4.1.1. The following piece of code shows the main
methods you should override: onCreation, run, and onDisposing.

import com.ibm.aglet.*;
public class SecondAglet extends Aglet{

public void onCreation(Object init){
System.out.println("Agent created " + init);

¥

public void run(){
System.out.println("Agent running");

}

public void onDisposing(){
System.out.println("Agent quitting");
}
}

A short description of each method:

40

e onCreation(Object init): Called once, when the aglet is created. It
can accept an initialization parameter.

e run(): It is the life of the agent; it is called once per platform (i.e., for
each platform the agent visits).

e onDisposing(): Called when the agent has been killed or is shutting
down.

If you start this agent in Tahiti (e.g. using the create button), you will see
two messages on the standard output (the console where you launched the
agletsd command) almost immediately after creation:

Agent created null

Agent running
And, after using the Tahiti Dispose button, you will see one more message
in the console

Agent quitting

4.2.2 Simple experiments

At this stage, you can experiment and see many of the Aglets features enu-
merated above. In particular, having created one SecondAglet in Tahiti, you
can clone the aglet by using the button Clone. In the Tahiti console, this
“new” aglet will print the message defined in the run method, i.e.
Agent running

Note that this aglet is not considered a newly created one, since it is not
created from scratch. Instead, an aglet created as a clone has exactly the
same state as the cloned one, i.e. the value of the cloned instance variables
(aglet state) are copied in the new aglet. Thus, it does not make any sense
that agletsd calls the method onCreation for the aglet which is a clone of
an existing one. Cloning an aglet implies that the agletsd at least

e Copies the aglet state, just as in the Java clone.

e (Calls the aglet run method.

And the new aglet clone of an existing aglet is running on its own thread.
If you start another Tahiti server, it will be possible to migrate aglets
from one Tahiti server to another Tahiti server. Starting a new Tahiti server
in a computer which already has a running Tahiti server is possible, just
remember to define a listening port other than 4434 (the default Tahiti com-
munication port), e.g.
agletsd -port 5000
The Tahiti server listening on port 4434 will be referred to as Tahitil, and
the Tahiti server listening on port 5000 will be referred to as Tahiti2 in order
to avoid confusion. Now, in Tahitil an aglet and use the Dispatch button.
In the dispatch dialog destination URL type

41

atp://localhost:5000
or

atp://127.0.0.1:5000
(the Tahiti2) and, also, click on the "Add to the AddressBook" button in
order to be able to retract the aglet back later. Once dispatched the aglet,
you will see

Agent running
on the Tahiti2 console, i.e. the aglet has been

e Serialized in terms of the Java object communication system.
e Transferred from the server Tahitil to the server Tahiti2.

e Started to run by the server Tahiti2, which calls the aglet run method
at the aglet arrival.

Note that atp is referred to in the URL, since the Aglets Transport Protocol
(atp) is used to transfer aglets among Tahiti servers. Once the server Tahiti2
is added to the AddressBook of another server Tahitil, it is possible in the
server Tahitil to retract aglets from the server Tahiti2. Retracting can be
seen as a migration triggered from the destination (receiving) Tahiti server.
Analogously, Dispatching can be defined as a migration triggered on the
source (sending) Tahiti server.

The next aglet has an instance variable that can be used as an example
of how the state is preserved when an aglet is migrated or cloned and, also,
how the migrated or cloned aglet begins running.

import com.ibm.aglet.*;

public class PrintingAglet extends Aglet
{

int 1 = 0;

public void run()

{

int limit = 1 + 5;

for (; 1 < limit; i++){
System.out.println("\n i is " + 1i);
}
}
}

Starting this aglet in a Tahiti server will produce the output in the Tahiti
console shown below.

42

is
is
is
is

He e e He 2.
B W N = O

is

If you now clone this aglet, the next five lines will be added to the Tahiti
console

is
is
is
is

e oHe e He 2.
© 00 N O o1

is

Thus, the value of the state variable is not initialized as in a new aglet,
but takes the value of the cloned (initial) aglet. At this point, there are
two independent aglets running in the same Tahiti server. If, for example,
the original aglet is dispatched to another Tahiti server, you will see in the
corresponding console, the next five lines

is
is
is
is

He o He e He 2.
© 00 N O O

is

And, also, the migrated aglet will no be shown in the initial Tahiti server,
since it was dispatched to another context.

These simple experiments show how an aglet can be cloned, migrated
and retracted. None of these activities has been programmed in the aglet,
i.e. in the SecondAglet and in the PrintingAglet classes above. The Aglets
platform, (Tahiti server/s and atp, more specifically), are ready to perform
these operations on aglets.

4.2.3 Self cloning and migrating aglets

For the next examples, it will be useful to start Tahiti server/s with security
“turned oftf”. This is not a good idea in general, but will allow to run code
without to be concerned on security risks. Tahiti server security can be
turned off by using the file aglets.prop which is included with the Aglets
distribution as follows:

e Make a copy of the aglets.prop file, usually found in Linux in the
directory $AGLETS_HOME/cnf.

43

e Uncomment line (in the aglets.prop file)

#aglets.secure=false

e Start agletsd with
agletsd -f aglets.prop

If you need to start another Tahiti server in the same computer, you can do
it with

agletsd -f aglets.prop -port 5000
which is useful to migrate aglets from a Tahiti servber to another Tahiti
server in the same computer, for example.

An aglet can clone and migrate itself by using the methods clone and
dispatch defined in the base class Aglet. The following code (SelfCloning
class) shows a simple aglet that clones itself and uses a state variable to avoid
the clone aglet to clone itself (and this sequence would continue endlessly).

import com.ibm.aglet.*;
public class SelfCloning extends Aglet{
boolean theFirst = true;

public void onCreation(Object init){
// Only non clone aglet runs this method
System.out.println("Agent created");

}

public void run(){
if (theFirst){
theFirst = false;
System.out.println("Cloning");
try {
clone();
} catch (Exception e){
System.out.println("Failed to clone");
}
} elsef{
System.out.println("Clone running");
}
}
}

Starting this aglet in a Tahiti server, the aglet will produce the output shown
below (in the corresponding Tahiti console).

44

Agent created
Cloning
Clone running

and there will be two aglets running in the Tahiti server. A self migrating
aglet can be programmed rather easily using the previous SelfCloning aglet.
Start another Tahiti server and, in the SelfCloning aglet, change the line

clone();
by

dispatch(new java.net.URL("atp://127.0.0.1:5000"));
in order to migrate the aglet to a Tahiti server running on localhost and
listening on port 5000. Take into account that in this case, the state variable
theFirst is used to avoid migrating the aglet from the Tahiti server listening
on port 5000 to the same Tahiti server (since the URL is hardcoded in the
aglet).

The examples given in this section are not meant to be useful other than
for learning. In fact, there are better ways to clone and migrate aglets, which
will be analyzed in the next section/s.

4.3 FEvents

Aglets supports an event/event listener model, where an agent can register
event listeners to particular kind of events, thus it can handle those events.
There are mainly three kind of events, tied to different scenarios of the agent
life cycle: cloning, mobility and persistency. Table 4.1 shows each kind of
event, with types and event listener that can be associated to.

Event kind (class | Time Event listener Method of the event

name) listener

CloneEvent before cloning CloneListener onCloning(..)

CloneEvent after cloning™ CloneListener onClone(..)

CloneEvent after cloning™® CloneListener onCloned(..)

MobilityEvent before migrating | MobilityListener onDispatching(. .)

MobilityEvent when the agent | MobilityListener onArrival(..)
arrives

MobilityEvent when the agent is | MobilityListener onReverting(..)
being retracted

PersistencyEvent | after the agent | PersistencylListener| onActivation(..)
activation

PersistencyEvent | before the agent | PersistencylListener| onDeactivating(..)
deactivation

() Delivered to the clone aglet
2 Delivered to the original (cloned) aglet

Table 4.1: Available events in Aglets.

45

Events are defined as Java classes and event listeners are defined as Java
interfaces in the package com.ibm.aglet.event. Furthermore, there is no
other event than those defined in the table above. The next example shows
a code enhancement of the previous SelfCloning (in the previous section)
example by using events and event listeners

import com.ibm.aglet.*;
import com.ibm.aglet.event.x*;

public class SelfCloningWithEvents extends Aglet{
boolean theFirst = true;

// ClonelListener implementation, "installed" later
class MyCloneListener implements CloneListener {
public void onCloning(CloneEvent ev) {
System.out.println("Cloning");
}
public void onCloned(CloneEvent ev) {}
public void onClone(CloneEvent ev) {
theFirst = false;
}

// The CloneListener is "installed" here

public void onCreation(Object init){
System.out.println("Agent created");
CloneListener clonelLstnr = new MyCloneListener();
addClonelListener (clonelLstnr) ;

}

public void run(){
if (theFirst){
try {
clone();
} catch (Exception e){
System.out.println("Failed to clone");

¥
System.out.println("Cloned running" + theFirst);
} else{
System.out.println("Clone running" + theFirst);
¥
}

46

Setting aside the implementation of CloneListener and its usage as an event
clone listener, the SelfCloningWithEvents aglet has subtle but important
differences compared to the SelfCloning aglet:

e The SelfCloningWithEvents original aglet always has its state variable
(theFirst) with value "true", which is the expected value for the original
aglet.

e The SelfCloningWithEvents aglet can be programmed in order to react
to clone events in a uniform way, independently of whether the clone
event

— is programmed (generated) in the code as in the run() method of
the aglet, or
— is generated by selecting clone in the Tahiti server, i.e, it is an

external event.

In fact, the SelfCloningWithEvents aglet is able to react to cloning events,
while the SelfCloning aglet is not. The latter is just programmed to clone
itself.

Handling mobility events is rather the same as handling cloning events:
you have to implement the MobilityListener interface

class MyMobListener implements MobilityListener {
public void onDispatching(MobilityEvent ev) {

}
public void onReverting(MobilityEvent ev) {

¥
public void onArrival(MobilityEvent ev) {

}
}

and, later, “install” the listener

MobilityListener mobilityLstnr = new MyMobListener();
addMobilityListener (mobilityLstnr);

Handling persistency events is straightforward taking into account the previ-
ous examples for cloning and mobility events. Summaryzing, handling events
implies:

e Implement <x>Listener interface.

e Create an object of the interface implementation.

47

e “Install” the object as the listener with add<x>Listener.

and <x> should be replaced by one of Clone, Mobility, or Persistency in
order to handle cloning, mobility, or persistency events.

The following code example shows how the interfaces MobilityListener,
CloneListener, and PersistencyListener can be used. First of all, have
a look to the listener class:

package examples.agletevents;

import com.ibm.aglet.*;
import com.ibm.aglet.event.x*;

public class myListener

implements MobilityListener, ClonelListener, PersistencyListener
{

[1171177771111117777

// mobility listener methods

[1177177771111117777

public void onArrival (MobilityEvent event){
System.out.println("Agent arrived "+event);

}

public void onDispatching(MobilityEvent event){
System.out.println("Before moving..."+event);

}

public void onReverting(MobilityEvent event){
System.out.println("Before coming back home..."+event);

}

[1117777771117117777

// clone listener methods

11117717717771777777

public void onClone(CloneEvent event){
System.out.println("I’m the clone "+event);

}

public void onCloned(CloneEvent event){
System.out.println("A clone of myself created "+event);

}

public void onCloning(CloneEvent event){
System.out.println("Someone is cloning myself "+event);

}

48

[1117777177171117777

// persistency listener methods

I1177777771777717777

public void onActivation(PersistencyEvent event){
System.out.println("Activating "+event);

}

public void onDeactivating(PersistencyEvent event){
System.out.println("Deactivating "+event);

}

The above listener defines methods to catch events at different time, as
explained by the code itself. The following agent registers the above listener
and use it to handle events:

package examples.agletevents;

import com.ibm.aglet.*;
import com.ibm.aglet.event.x*;

public class agletC extends Aglet{
public boolean move=true;

public void onCreation(Object init){
// create a listener object
myListener listener = new myListener();

// register a mobility listener
this.addMobilityListener((MobilityListener)listener);

// register a clone listener
this.addCloneListener ((CloneListener)listener) ;

// register a persistency listener
this.addPersistencylListener ((PersistencylListener)listener);

public void run(){
System.out.println ("HELLO!");
}
}

For example, after a dispatching, mobility events are triggered and the agent
prints, in the source console, the following statements:

Before moving...MobilityEvent [DISPATCHING]

49

while in the destination console prints:

Agent arrived MobilityEvent [ARRIVAL]
HELLO!

To better understand how event listeners work, execute the above agent
and try cloning, dispatching and deactivating it; have a look at what mes-
sages are printed out in all the consoles.

Examples and explanations given so far show that Aglets basic pro-
gramming requires using the base class Aglet, and handling events requires
class/es and interface/s given in the package com.ibm.aglet.event. How-
ever, there are other tasks that require other classes and/or interfaces. In
fact, many tasks require direct communication with the aglets environment,
such as the Tahiti server. Creation of other aglets is an example of an aglet
interacting with its context, as will be shown in the next section.

4.4 Creating other aglets and AgletContext

The Aglet clone method produces a new aglet with identical state as the
cloned one, the clone aglet is not a created aglet, but is a copy (clone) of an
existing one. An existing aglet can generate a new (created) aglet by calling
the method

AgletContext.createAglet (URL codebase, String name, Object init)
i.e. the aglet which is going to create another aglet needs to

e Get an object of and AgletContext implementation class.
o Call the createAglet(...) method of the AgletContext object.

This means that creation of aglets is a task directly related to the aglets con-
tainer, the context on which an aglet resides, the aglet sever. AgletContext
provides an interface to the runtime environment that occupies the aglet.
Any aglet can obtain a reference to its

AgletContext
class implementation object via the

Aglet.getAgletContext ()
primitive, and use it to obtain local information such as the address of the
hosting context, or to create a new aglet in the context. Once the aglet has
been dispatched, the context object currently occupied is detached and the
new context is attached. The runtime library is responsible for providing
the implementation of this interface; thus, aglet programmers do hot have
to implement this interface. The following two aglet classes are defined such
that

e CreatedAglet is an aglet class defined only for creating aglets (Cre-
atedAglet instances) from another aglet.

20

e Each CreatingAglet instance creates a CreatedAglet instance by calling
createAglet to its AgletContext.

Note that while CreatedAglet aglets do not interact with the environment
(context), CreateingAglet aglets make explicit requests to the environment
in order to create other aglets.

11117717717711777777
// CreatedAglet (in CreatedAglets.java)
11177717717711777777

import com.ibm.aglet.*;
public class CreatedAglet extends Aglet{

public void onCreation(Object init){

System.out.println("CreatedAglet agent created");
X

public void run(){

System.out.println("CreatedAglet running");
}

}

[1177777771117117777
// CreatingAglet (in CreatingAglets.java)
[1177777771117117777

import com.ibm.aglet.*;
public class CreatingAglet extends Aglet{

public void onCreation(Object init){
// Only non clone aglet runs this method
System.out.println("Agent created");

}

public void run(){
try{
// get the aglet context
AgletContext context = this.getAgletContext();

// create another CreatingAglet instance
context.createAglet (null, "CreatedAglet", null);

}catch(Exception e){
System.out.println("Exception "+e);

}

}

After compiling and copying .class files in the corresponding Tahiti server

o1

binaries directory, you will be able to create a CreatingAglet aglet. Then,
you will see in the Tahiti console

Agent created
CreatedAglet agent created
CreatedAglet running

where the first line in the console corresponds to the CreatingAglet aglet
and the other two correspond to the CreatedAglet aglet, i.e. the aglet which
is explicitly created by the instance of CreatingAglet. Note that being able
to explicitly create aglets allow

e New aglets to be running, independently of the creating aglet, which
is not possible with the method clone, for example. Cloning generates
new aglets with exactly the same behavior as the cloned aglet.

e New aglets with new state, i.e. aglets which execute the onCreation
method, and which can be initialized from scratch.

e An explicit interaction with the aglet context, since the aglet explicitly
requires the creation of a new aglet to its container/aglet server.

This section has shown that each aglet is able to require specific actions to
its environment /context, and one of those actions has been explained: aglet
creation. Also, each aglet is is able to interact almost directly with each
other, by means of messages, topic covered in the next section.

4.5 Message handling

Aglets exploit a communication system based on message passing: two
agents that want to communicate each other have to exchange a message.
Messages are instances of the Message class, and their kind is specified by a
string. An agent that wants to explicitly manage messages has to override
the handleMessage(..) method, returning true in the case the message is
managed by the agent, and false otherwise. The

handleMessage(..)
method, is also defined in the Aglet base class, just like

onCreation(..)

run()

onDisposing()
The following piece of code (HandlingMessages aglet class) shows an agent
that handle all messages; you can launch it and send dialogs messages
through the Tahiti GUI. This simple aglet shows interesting message and
message handling features:

02

e An aglet is not necessarily aware of message source/s, it just receives
and handles messages. Message source should be included in some way
in the message itself, since there is no other way to identify it.

e Message handling is as complex as the handleMessage(...) imple-
mentation.

e The method handleMessage (Message msg) has one parameter, the
message received by the aglet, which can be (and usually is) used to
define the aglet message handling behavior.

e The message type, that is its classification, is stored as a String object
in the message itself. Keeping the message type as a string attribute
makes simpler and faster the use of new messages, since you don’t have
to create classes for them. The getKind () method is used to get the
string which determines the message type.

import com.ibm.aglet.*;
public class HandlingMessages extends Aglet{

public void run(){
System.out.println("Agent running");

}

public boolean handleMessage(Message msg){
System.out.println("Received a message " + msg.getKind());
return true; // if the message is used

4.5.1 Aglets, messages, and threads

There are a few concepts that must be clear when working with message
handling. First of all, each aglet executes within a thread, but threads are
managed by the platform and can be shared among agents for efficiency.
The efficiency of this approach can be understood thinking at a buyer-seller
example: image a couple of agents, with one playing as a seller and one
playing as a buyer. In this situation, it is not needed that the buyer agent
is active before the seller has put a good on sale, thus there is no reason to
use a thread-per-agent approach. Furthermore, the seller can simply send
a message to the buyer specifying the good on sale, and then should wait
the answer of the buyer (i.e., should deactivate or suspend until an answer
comes). Following this example, it should be clear that the number of active
threads (i.e., agents) could be reduced at one per time. Aglets exploits
this condition in its whole design: if agents can share the same thread, no

23

additional threads will be created. In other words, the number of agents and
threads are not strictly related.

Due to the Aglets thread model, it is important to understand that each
message is delivered by a thread, that can be different from the one the agent
runs (or have run). Since aglets are implicitly synchronized, a message can
be delivered if the agent is active and running, that means while your agent
is in the run() method (or another method). In fact, while the agent is in
the run() method (or another one), there is a thread active in the agent
itself, and another thread (the message deliver thread) cannot deliver the
message because of the Java synchronization.

From the above considerations, it is possible to see how an agent per-
forming an (in)finite loop will be unable to receive and manage any incoming
message. Nevertheless, there is a way to force an agent to release the lock,
and this can be done with the exitMonitor () method, that causes all wait-
ing messages to be dequeued and, at the same time, all threads locked on
a waitMessage () to be resumed. Please be aware that forcing an agent to
release locks could produce race conditions.

4.5.2 Sending messages and AgletProxy

An aglet is not allowed to interact with another aglet directly, and this
includes messaging. Instead, every interaction among aglets, as sending a
message is made through AgletProxy, which is an interface acting as a handle
of an aglet and provides a common way of accessing the aglet behind it. Since
an aglet class has several public methods that should not be accessed directly
from other aglets for security reasons, any aglet that wants to communicate
with other aglets has to first obtain the proxy object, and then interact
through this interface. In other words, the aglet proxy acts as a shield
object that protects an agent from malicious agents.

When invoked, the proxy object consults the SecurityManager to de-
termine whether the current execution context is permitted to perform the
method. Another important role of the AgletProxy interface is to provide
the aglet with location transparency. If the actual aglet resides at a remote
host, it forwards the requests to the remote host and and returns the result
to the local host. This is why the createAglet(...) method seen in the
previous section does not return an aglet but an AgletProxy instead. As in
the case of AgletContext, the runtime library is responsible for providing
the implementation of the AgletProxy interface; thus, aglet programmers
do not have to implement this interface.

From the specific point of view of sending a message from an aglet,
the message is sent to an AgletProxy of an aglet, by using the method
sendMessage (Message msg) as shown schematically in figure 4.6. The con-
tinuous line for the arrow in figure 4.6 denotes that agletA has to explicitly
identify the agletB proxy, and the dashed line for the arrow denotes that

54

agletA sending a message

to agletB prox
=

Figure 4.6: Sending a message to an aglet.

message delivering is dependent on the runtime implementation, i.e. not
known to the aglet programmer. Also, sending and receiving aglets are not
required to be in the same aglet container/context.

The following code shows how an AgletSndr creates an aglet and sends a
message to an AgletRcevr. This code is not different from that in the section

devoted to agent creation, adding the send message in one aglet class and
the message handling in the other one.

1117771777711177717777
// AgletSndr (in AgletSndr.java)
11117717717711777777

package messaging;

import com.ibm.aglet.*;
import java.net.x;

public class AgletSndr extends Aglet{

public void run(){
try{
// get the aglet context
AgletContext context = this.getAgletContext();

// create an AgletRcvr instance

AgletProxy rcvr = context.createAglet(null,
"messaging.AgletRcvr",
null);

// send a message to the agent

rcvr.sendMessage (new Message ("HELLO"));
}catch(Exception e){

System.out.println("Exception " + e);

}

25

[1177777771111117777
// AgletRcvr (in AgletRcvr.java)
11177717771777777777

package messaging;
import com.ibm.aglet.*;
public class AgletRcvr extends Aglet{

public void run(){
try{
// get my ID
AgletID myID = this.getAgletID();
System.out.println("\nMy ID is "+myID);
}catch(Exception e){
System.out.println("Exception " + e);
}
}

// handle the "HELLO" message
public boolean handleMessage(Message msg){
if (msg.sameKind ("HELL0")){
System.out.println("HELLO msg received");
return true;

}

return false;

The next messaging example combines several features of Aglets: cre-
ation, migration, and remote messaging. The receiving/handling messages
aglet does not necessarilly has to change regarding the previous example, i.e.
the AgletRcvr aglet in the Java package messaging above. Specifically on
messaging and the AgletProxy needed to be used for sending a message:

e The AgletProxy returned by createAglet(...) is useful only in the
local context, i.e. it should not be used when the aglet has migrated
(is in another context).

e The agletID of the remote agent is needed in order to communicate
with it. More specifically, the agletID is used to get the remote
AgletProxy from the remote context in which the receiving aglet is
running.

e Even when the getAgletProxy(..) method called in code is depre-
cated, a call to the no-deprecated method such as:

AgletProxy remoteProxy = context.getAgletProxy(remotelD);

o6

will not work, since it can work only with the local agents. The use of
the MAF (Mobile Agent Finder) will work better, but at the moment
there is not a lot of documentation about how to use it in Aglets.

111777117717711777777
// AgletSndr2 (in AgletSndr2.java)
1117771777171177717777

package messaging;

import com.ibm.aglet.*;
import java.net.x*;

public class AgletSndr2 extends Aglet{

public void run(){
try{
// get the aglet context
AgletContext context = this.getAgletContext();

// create an AgletRcvr instance

AgletProxy rcvr = context.createAglet(null,
"messaging.AgletRcvr",
null) ;

// save the new aglet ID
AgletID remoteID = rcvr.getAgletID();
System.out.println("The new agent has ID = " + remotelD);

// migrate the new agent

String remoteContext = "atp://127.0.0.1:5000";
URL url = new URL(remoteContext);
rcvr.dispatch(url);

// get the remote proxy
AgletProxy remoteProxy = context.getAgletProxy(url,
remotelD) ;

// send a message to the remote agent
remoteProxy.sendMessage (new Message ("HELL0")) ;

}catch(Exception e){

System.out.println("Exception " + e);

}

o7

4.6 A sleeping aglet

In general, it is not possible to make an aglet sleeping, since threads should
not be managed directly from the developer. You can use something simi-
lar, but more expensive, to simulate sleeping, that is deactivation: you can
deactivate and reactivate an agent, but you must be careful since deactiva-
tion means that the agent is serialized and its execution restarts from the
beginning. This means that the following code will run indefinitely:

import com.ibm.aglet.*;

public class agletF2 extends Aglet{
public void run(){
for(int 1 = 10; 1 > 0; i--){

System.out.println(i + " seconds left!");

try{
this.deactivate(1000);

}catch(IOException e){
System.out.println("Ops!");

}

¥

Since, after a reactivation, the execution of the agent restarts from the be-
ginning of the run() method, the agent will restart the for loop from the
same point (i.e., i = 10). Instead, the following code is correct and works:

import com.ibm.aglet.*;

public class agletF extends Aglet{
int 1 = 10;

public void run(){
for(; 1 > 0; i--){

System.out.println(i+" seconds left!");

try{
this.deactivate(1000);

}catch(I0Exception e){
System.out.println("Ops!");

}

o8

Nevertheless, it should be clear how deactivation cannot substitute the
sleeping mechanism, and that making a thread to sleep will produce strange
effects on the whole platform (such as locking the message passing mecha-
nism). This is due to the fact that the Aglets platform uses a set of threads
(i.e., a pool) to work efficiently, thus the same thread can be shared by dif-
ferent agents. There is a trial feature, done with the method suspend(..)
of the class AgletProxy that can be used as a sort of sleeping command.
Unfortunately, it does not work yet, and in fact the following agent causes
the exception IllegalThreadStateException to be thrown:

import com.ibm.aglet.*;

public class agletZZ extends Aglet{
public void run(){
try{
for(int i1 = 10; 1 > 0; i--){
System.out.println(i+" seconds remaining");
this.suspend(1000);
}
Ycatch(AgletException e){
System.out.println("Ops!");
}

Warning on this code example Please note that running the agent
agletF2 will have tremendous effects on your system. Due to the Aglets
thread management, you will not be able to destroy (either by killing or
deactivating or disposing) the running agent, while the latter will run forever.
Even stopping an restarting the Tahiti server will not solve the problem, thus
the only things you can do is to perform a clear start (see the FAQ section)
or to manually remove the spool file in the file
$HOME/ .aglets/spool/hostname@runningPort / agletID
and then restart the Tahiti server.

import com.ibm.aglet.*;

public class agletZZ extends Aglet{
public void run(){
try{
for(int i1 = 10; 1 > 0; i--){
System.out.println(i+" seconds remaining");
this.suspend(1000);

29

Ycatch(AgletException e){
System.out.println("Ops!");

}

60

Appendix A

FAQ & Configuration Files

This chapter presents a list of Frequently Asked Questions (FAQ) update to
the current Aglets SDK available releases. Please note that there are other
available sources on the Internet, but they could be out of date or could
not include information about the latest releases. Please be sure to refer to
this chapter before any other information source, and in case of problems or
troubles, refer to the official site and to the mailing lists to post requests.

A1 FAQ

This section presents a list of Frequently Asked Questions about Aglets. The
list has been changed from the old FAQ), since a lot of questions were related
to earlier versions.

¢ What does AWB stands for?
AWRB means Aglets WorkBench, and it was the original name given by
IBM to the Aglets platform and library. Today’s common trend is to
use simply Aglets (with the capital ’A’) to indicate both the library
and the platform, and to explicitly specify the latter when required.

e What does JAAPI stands for?
JAAPI means Java Aglet APL.

e What is Fiji?
Fiji was a project to enable Aglets capabilities in a web browser. So
far, the project is no more maintained and available.

e What are the differences between the IBM Aglets platform
and the open source one?
IBM does not mantain Aglets anymore, thus the version you can down-
load by their server is the 1.03 (or 1.1 beta), while the version available
at SourceForge is greater than 2. Of course, the open source version is

61

more updated and functional than 1.03 version, thus you should use it.
Furthermore, the version of IBM was thought as commercial software,
that means you requires a license to run it.

Can I run Aglets on Java 2 (JDK1.2 +)?

Yes, of course, and in fact this manual is thought to run Aglets over the
Java 2 platform. The first versions of Aglets were developed over Java
1 (JDK 1.3), and often this causes confusions to newbies. Running
Aglets 2 over Java 2 is the best way to get the platform working.

Are there any archives of the Aglet Mailing list?
Yes, visit the Aglets web page at sourceforge.net to get information
about mailing lists, archives and how to subscribe.

I need some help! What should I do?

Reading this manual is a good start. Unfortunately, at time of writing
this manual there are not a lot of documentation sources available.
There are still a few pages at the IBM Tokyo Research Laboratory
web site, but they are quite old and no more maintained. See the
Aglets web site at sourceforge.net to get on-line help.

If you need to report some problems or bugs to the mailing lists, please
include as much information as possible, in order to allow other par-
ticipants to understand the problem. Information you should:

1. the version of the platform;

2. the operating system;

3. the path where you have installed the platform (for example
/home/luca/aglets);

4. the exception stack trace (if an exception is thrown);

5. in case of a SecurityException, the content of the java.policy
file;

6. the code that you believe is causing the misbehaving;

7. a dump of the following environment variables (if set up): CLASS-
PATH, JDK_HOME, JAVA HOME, AGLETS HOME. You can

obtain the variable values writing in a console:

Unix - Linux
echo $CLASSPATH
echo $JDK_HOME
echo $JAVA_HOME
echo $AGLETS_HOME

Windows
echo %CLASSPATHY

62

echo %JDK_HOMEY
echo %JAVA_HOMEY
echo %AGLETS_HOMEY

Be quite and polite when asking help, nobody wants to be bothered
with others’ problems. If you find the answer by yourself, post a mes-
sage as a reply to indicate the answer; it will be interesting for other
people and will let them to not waste their time. Finally, do not repeat
the message if you do not get an immediate answer, let people the time
to understand and to reply.

Are there any public Aglets servers I can send my aglets to?
There were a few trials about a public aglet server, but at the best of
our knowledge, there is no one server running now.

When I launch Tahiti I get: “Please set HOME environment
variable!”

This indicates an abnormal situation in your operating system: check
that the HOME variable points to your home directory. Contact your
system administrator to fix this problem, that is not related to Aglets.

When I try to access a local file with my aglet the server
throws java.jang.SecurityException although all the necessary
permissions are set.

There is a little known feature of Tahiti (OK, call it a bug ;) that
when Tahiti is installed, it creates a security domain "file:///*/" and
all permissions are given to this domain. It should mean that any aglet
having its codebase on this machine can access any file. But it’s not
true. You have to create another security domain describing exactly
the path to the codebase of the aglet, grant necessary permissions and
then it works.

When I try to get my Aglet to access the file ’test.txt’ I get
a FileNotFound exception

When attempting to open a file, any path to a file is relative to the
directory from which the Aglet was created. Therefore, the solution is
that you should specify the file absolute name like this:

FileInputStream inputStream = new FileInputStream('"c:/test.java");

You can use a single slash (/) in Unix like systems and Windows, or
you can specify a double backslash in Windows.

Can I run Tahiti with no network connection on Microsoft
Windows 95?7
Yes, even if this system is quite old and I suggest you to run Aglets

63

over a newer version (have you ever thought passing to Linux?). If
you have troubles running Aglets over Microsoft Windows 95, try the
following:

1. edit the hosts text file that is under the WINDOWS folder and add
the loopback address entry: 127.0.0.1 localhost;

2. start Tahiti with the -resolve option.

I want to send my aglet around to lots of different hosts and
to pop up a window at each host, but when I try nothing
happens, or I get an exception.

A permission to create top level window is given to any aglet in default
aglets security policy. If you want to modify security preferences, do
the following instructions on every host where your aglet will visit.

Add the following line into files "aglets.policy™":

permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

Why would not my stand-alone server take my environment
variables into account? This is a feature of the stand-alone servers,
which is they do not take the Aglets related environment variables into
account by default. You should explicitly put the AGLET PATH and
AGLET EXPORT_ PATH on the java command-line when launching
a stand-alone server (as far as we know, at least). For example under
*nix, if your server is called StandAloneServer:

java -Daglets.class.path=\$AGLET_PATH \
-Daglets.export.path=\$AGLET_EXPORT_PATH StandaloneServer

Can an aglet perform SNMP operations? Yes - an aglet can
perform SNMP operations by using a Java class that provides SNMP
operations and that can be serialized. A good package to look at is
jmgmt - it is small, straightforward, and has all source included. It is
available from

hitp:/ /i3 1www.ira.uka.de/ " sd/manager/jmgmt/.

Good overviews of various packages can be found at:
http:/ /www.mindspring.com/ jlindsay/javamgmt.html
http:/ /wwwsnmp. cs.utwente.nl/software /pubdomain.html

Some of the packages use threading- and you have to be careful when
you serialize agents that use threads. The other big restriction on some
of the packages is that they have commercial licenses, even if you are
doing not commercial research activity.

64

e How can an aglet be used as a HTTP Server?

First, take a look to the example agent WebServerAglet. java shipped
with the Aglets platform examples. Please note that using an aglet as
an HTTP server has a few drawbacks: developing an HTTP server is
not a trivial task and it is subject to security risks, thus you should be
sure of the quality of your server before making it available to third
parties. Furthermore, even if the Aglets platform has a good thread
system, it can handle threads in a way that does not fit very well your
needs. Finally, running an HTTP server embedded in an aglet, means
that your server will be available through the Aglets running port. For
example, if you are running Tahiti at the host myHost, port 4434 (the
default for Tahiti), you will be able to reach your HTTP server at the
address http://myHost:4434/.

You must also set the options in Tahiti as specified in the comments.
If you are coding/adapting the sample - make sure to include the line:

getAgletContext () .setProperty("name.test", getAgletID());

since this is how Tahiti identifies the aglet to forward the HTTP request
to.

Another option is to look at using Fiji. The disadvantage is that the
status of Fiji is uncertain right now. Another option is to look at find-
ing/coding Java classes to listen for incoming HTTP requests. There
are quite a few HTTP servers written in Java out on the web. De-
pending on the requirements for the web server (i.e., response time,
threading, etc.), there are a few different servers to use.

e Can an aglet work with other Servers (HTTP, FTP, etc)?
The general answer to this question is “yes”. Nevertheless, before start
developing your aglet-based server/client, you should take care of a
few things. First of all, you must know the protocol, or at least you
must have a Java library to interface to the protocol. The Java classes
used (in the case) by the aglet must be compatible with the JRE and
the Aglets library version you are running, and most important, if
they must travel with the aglet, they must be serializable. The latter
requirements (serialization), can be overtaken if the aglet will be sta-
tionary on a specific host, thus it will never be serialized (of course,
this is true if you will never deactivate the aglet!).

e How does Aglets determine a hostname?
Using the configuration of your system, typically using the DNS (Do-
main Name System).

e Can an aglet use SSL?
(For some good background information on the security model check

65

the aglets book in Chapter 10) It depends on the availability of SSL
Java libraries, and how they are compatible with the Aglets library
you are running.

How is memory used when a message is sent between two
aglets?

You can monitor the memory activity using the Tahiti memory tool:
open the Tools menu and then select the option Memory Usage.

How can the sleep operation be used in an aglet?

Please note that threads are hidden to aglets, thus you should not use
normal Java thread operations in your aglets. You should use a timer
or something similar to obtain the required feature. Using sleep(..)
is dangerous, since the message passing mechanism will be locked until
the sleeping thread wakes up. There is an experimental feature, called
suspend(..) that could work. Take a look at Section 4.6.

How can local and remote Aglets discover each other and
communicate?

There are a few options available to attempt to discover remote con-
texts, depending on what you need to do.

If you want to create a local agent, dispatch it to a remote context
and communicate with the now remote agent, you need to get the
remote agent proxy. The proxy discovering can be done with the MAF
architecture (at the moment there is no documentation on how to use
the MAFFinder in your programs). Another option is to manually
keep a track of where your remote agents are, and this can be useful
to build critical mission systems, where the MAF architecture can fail
down.

See the code example sections.

I got a message similar to java.util. MissingResource Exception:
Can’t find bundle for base name tahiti, locale en_ US but 1
do not know how to fix it.

As you can see the problem is caused by the ResourceBundle class,
which is used for localization. If you look in the lib directory of your
Aglets installation, you can see a text file called tahiti.properties,
which contains menu and button entries for the Tahiti window. You
have to set your CLASSPATH to the 1ib directory, thus the above file
can be read by the ResourceBundle class.

I want to add an agent to the agent list, thus when I click on
the Create button I can choose it directly. How can I do this?
The first and common way of doing it is through the creation dialog

66

window. Otherwise you can write the agent in a text file, placed in the
user’s home directory, and in particular in

$home/ .aglets/users/username/aglets.properties

and add the agent class name to the line that contains the property
aglets.agentList. Class names must be add as separated by a blank
space, without new line characters.

What is FIPA?

FIPA means Foundation for Intelligent and Physical Agents, and is
a no-profit organization that defines agents’ standards, such as com-
munication languages (called ACLs), interoperability protocols, and so
on.

Is Aglets 2.0.2 FIPA compliant?

No. Aglets is not FIPA compliant, since it has been developed when
FIPA was only a proposal. Furthermore, in those days, there was
another standard: the MASIF (Mobile Agent Systems Intercommuni-
cation Facility). Due to this Aglets is MASIF compliant, even if there
is not a lot of documentation (or better, there is no documentation)
regarding MASIF in Aglets and how well it works. It must be noticed
that Aglets is RMI compliant, thus you can use it in combination with
the Java’s RMI services. Please note that the fact that Aglets is not
FIPA compliant does not mean that developers do not want that stan-
dard, it is simply a developing lack! Maybe one day Aglets will be
FIPA compliant...

Is FIPA so important?

It is difficult to answer to this question, since it depends on a lot of
opinions and point of views. FIPA is in general good, but as most of
the standards, it could not reflect what developers really wants (usually
simplicity and performance). It depends on what you are going to
develop if Aglets can be the right choice: if you have to interoperate
with a FIPA systems, please choose a FIPA compliant platform (such as
JADE). However, please note that there are other platforms which do
not adhere to the FIPA standard, such as DIET, while other platforms
implements both FIPA and MASTIF (such as Grasshopper).

Do I need to install Aglets on every machine I want to send
an agent to?

Yes, or at least you have to write a program which can act as an agent
server (i.e., a Tahiti substitute) by your own. The fastest way to get
your aglets running is to install Aglets on every host you want to send
agents to.

67

e Is there another source of documentation? I often hear some-
thing about the Aglets book...
You can find a few web pages over the Internet that discuss several
Aglets related arguments, but please take care that these pages could
be out of date (i.e., too old regarding the Aglets version you are run-
ning). There is an Aglet book, Programming and deploying Java (TM)
Mobile Agents with Aglets, by Danny B. Lange and Mitsuru Oshima,
but it is old (it is related to the Aglets 1.0 version), and a lot of things
have changed since it has been published. I don’t believe you need the
Aglets book to develop agents using Aglets.

e Can Aglets run over a PDA or a smart device?
Smart devices usually have limited JVMs (except if you install Linux
Familiar and Kaffe), thus it is difficult to install and run Aglets as it is.
Actually, we are planning on the migration of Tahiti over PDAs, and
maybe a FAQ about the use of Aglets and PDAs will be available soon.
Here you can find a web project related to the Aglets 1.0.3 version:

http://siul02.si.ehu.es/ “jirgbdat /FACILITIES /PDAs/principal _Ingles.html

e How many agents can run over the same instance of Tahiti?
It depends on how powerful is your run-time. Aglets exploits a good
threading system, without mapping every agent in a separated thread,
but using instead a single thread for multiple agents. This means that
the number of agents you can create is not directly dependent on the
number of threads your JRE support. Furthermore, due to the message
architecture of Aglets, where a thread is assigned to each message to
be processed, the number of supported agents (and their performance)
depends on the use of messages that currently running agents are doing.

e I have agents developed with the 1.x version of Aglets, can I
run them with the 2.x version?
So far, there is no knowledge of incompatibility among agents devel-
oped with different major versions, even if it is possible that old agents
do not run. The first thing to try is to recompile the old agent (if
possible) with the new API. If you know or find some incompatibility,
please send a message or write a bug report.

The main difference between the 1.x and the 2.x series, is the use of
the Java 2 security mechanism: the old 1.x version did not use it, while
the 2.x version do, leading to a more Java 2 compliant application.

e It seems as the ant file is corrupted, what can I do? (only for
*nix operating systems)
Check if the build.xml contains any DOS carriage return charac-
ters, and clean the file with the dos2unix command. If it is still

68

not working, try downloading a newer version of Apache Ant from
http://www.apache.org.

I try to start my Tahiti server using command agletsd -f
myAglets.props, but I got error messages Out of environment
space. What do I have to do? (only for MS Windows operat-
ing systems)

You have at least two possible ways of extending the memory space: (i)
change the size of the argument of the /E: parameter for command . com
in the config.sys shell setting. For instance, set of the size of envi-
ronment variables to 512 bytes, specify:

SHELL=C:\COMMAND.COM C:\ /P /E:512
// Maximum is 4K:
SHELL=C:\COMMAND.COM /E:4096 /P

You can add this to your config.sys file. If this does not work, try
changing the environment variables of the MS-DOS prompt accessing
the memory section of the Property of the prompt icon.

I got an AccessControlException, what do I have to do?

This exception is thrown when your code is trying to execute an op-
eration for which it has not enough rights (for example, it is trying
to open a server-socket). Have a look to your policy file, and try us-
ing the sample shipped with Aglets, that can be installed running the
install-home option of Ant.

Is there a way to directly log-in to Tahiti without inserting a
username and a password?

Yes. You have to specify the username and the password to use in
a properties file, and then you have to launch Tahiti specifying the
properties file to use. First of all, place the username and the password
in the properties file:

aglets.owner.name=aglet_key
aglets.owner.password=aglets

where aglet key and aglets are the username and the password existing
in the keystore; substitute them with the couple you want to use.
Launch Tahiti as in

agletsd -f /path/to/the/properties/file

thus Tahiti will not prompt you for the username and the password.
Please note that this option is enabled with the default properties file,
cnf/aglets.props, but you have to explicitly pass the file to the Tahiti
command line.

69

Please take into account that storing a password in a plain text file is
not a good security design, thus be carefull with permission of such file
(i.e., nobody except you should have read/write access to the file).

Why the keystore contains [an aglets_key and anonymous]| key
pair?

Aglets requires that each agent has an owner. When you log in to
Tahiti, you are implicitly saying that all agents created through the
Tahiti user interface will have “you” as owner. Each aglet will have, as
attachment, the keystore data to recognize its owner, and this is the
reason why you must to log in to Tahiti, before you can create any
agent.

Now think at what happens when your platform is receiving an agent
from an external source, that could be another agent platform. In this
case, you do not have in your keystore credentials about the owner,
since these credentials have been stored in the source platform. To
solve this problem, the anonymous keypair is used, and this is the
reason why the keystore comes with pre-set keys.

Please note that, even if it is possible to assign permissions on the base
of the owner rather than the simple code base, this feature does not
seem to work very well.

Can I disable security checks in Tahiti?

First of all ask yourself if you really need to run Tahiti without secu-
rity settings; this is strongly unrecommended for production machines.
Nevertheless, if you are sure you want to do this, edit the aglets.props
file and set the property aglets.secure to false.

Can I change the logging system?

Aglets is currently using Log4J; the logger class is determined by the
value of the property aglets.logger.class, thus you can change the
logger simply changing the above property in the aglets.prop file.
The Jakarta LogdlJ class is org.aglets.log.log4j. LogjjInitializer, but you
can change it to another, such as

— org.aglets.log.console. Consolelnitializer, that prints everything to
the STDOUT (you should redirect or pipe to analyze output), or

— org.aglets.log.quiet. QuietInitializer that suppresses most of the
logging output.

Is there any debugging capability?

Actually no. I suggest you to use smart printing functions, to under-
stand what is happening to the code. You can try also using the Java
DeBugger (jdb), but it could be quite difficult.

70

e Do I need any special library to compile the source version of
Aglets?
In general no, but you could need a few libraries like log4j in your
classpath. If you have any error, please report it to the mailing lists.

e How can an aglet transport a file from one host to another?
This is an often asked question over all the aglets mailing lists, therefore
please read this point before asking it by yourself. An aglet cannot
transport anything that is not a Java serializable object, that means
you have to transform your file into a Java serializable object. The
kind of the object depends on your needs. For example, if you have
to transport a text file, you can read all the file and place its content
into a string (i.e., java.lang.String). If the file is a binary one, you
have to translate it into a portable object, even a MIME one. Please
do not try to migrate a File object, since it will not work! The most
efficient way to transform a file into an object depends on what your
application must do, and I suggest you to have a look even at the
SOAP or any other XML based document form. Finally, please take
care that if the file is available by a network filesystem (such as AFP,
SMB, NFS), you do not need to migrate the file at all, but simply to
adjust the file name on the destination.

e Can I use HTTP messaging among aglets?
Please note that you can implement any kind of network messaging
in Aglets, from standard sockets, to HTTP, SOAP, RMI, etc. But
it is on your own to implement such way of communications; you
can have a look at the code available at the aglets-net project (see
http://sourceforge.net/projects/agletsnet).

e Is there a way to exchange data among agents?
Yes, you have to send messages containing the data you want to ex-
change, but please take care of the serializability of your objects, since
the messaging system allows only serializable messages.

e Is it possible to run multiple context over the same server?
How can I do that?
The general answer to this question is yes, even if Tahiti currently does
not allow users to create multiple context. Please note that this does
not mean that it cannot handle multiple contexts, and in fact you can
develop an agent in charge of creating multiple contexts for you. To
do this, use the createContext(..) method of the AgletsRuntime
class. When working with multiple context, take care of the URL for
dispatching agents to a specific context: place the context name after
the machine address, such as atp://machineAddress/contextName.

71

e How can I move an agent among different contexts?
You can use the ATP migration protocol, specifying the same address
but changing the URL in order to reflect the destination context.

e Can an Aglet communicate with a Servlet?
Yes, take a look at the code below (written by Angsuman Dutta):

public void run(){
try{

URL server=new URL("http://localhost:8100/servlet/" +
"FirstServlet");

URLConnection con = server.openConnection();

con.setDoOutput (true) ;

con.setUseCaches (false) ;

Calendar rightNow = Calendar.getInstance();

ObjectOutputStream request = new ObjectOutputStream(new
BufferedOutputStream(con.getOutputStream()));

StringBuffer d=new StringBuffer ("<7xNameVdaml version=" +
"\"1.0\" encoding=\"UTF-8\"7>");

d.append ("<Name>") ;

d.append("dude") ;

d.append ("</Name>") ;

String data=d.toString();

String msgtype="xmlFile";

String [] msg=new String[2];

msg[0]=msgtype;

msg[1]=data;

request.writeObject (msg) ;

request.flush();

request.close();

ObjectInputStream response = null;

Object result = null;

response = new ObjectInputStream(

new BufferedInputStream(con.getInputStream()));

// read response back from the server
result = response.readObject();
}
catch(Exception e){
System.out.println(e);
}
}

e Can I develop an agent server on my own? How can I embed
the Aglets technology into my application?
You can develop an agent server by your own, and this will allow

72

you also to embed the Aglets technology in your applications. Before
posting any question about how to write an agent server, you should
carefully have a look at the ServerApp. java source code available with
the source code package.

When developing your own server, you should take into account a
few issues. There can be authentication problems, that means you
could be unable to log in to the server as you are used to do with
Tahiti. To overtake this problem, someone has suggested to hardcode
the couple username/password in the server source file. Moreover,
you can catch some exception due to the unavailability of fonts; if this
happens remove the following lines from the Tahiti.initializeGUI()
method:

try {

Class.forName("sun.awt.PlatformFont"); // for 1.1
} catch (Exception ex) {

ex.printStackTrace();

¥

When developing your own server, you have to take care about prop-
erties and permissions, thus the new server can access all properties
and can act as a real Tahiti substitute. Furthermore, remember that
each agent must belong to one context, that means you have to create
a context first, then you can create agents or other contexts. The fol-
lowing piece of code has been written as an example by Gustavo Nucci
Franco:

import com.ibm.atp.daemon.*;
import com.ibm.aglet.system.*;
import com.ibm.aglet.*;

import java.net.*;

public class xAgletContext{
public AgletContext context;
public int portNumber;

public xAgletContext(int pn){
portNumber = pn;
String [] arg = {"-port", String.valueOf (portNumber)};
Daemon daemon = Daemon.init(arg);
AgletRuntime runtime = AgletRuntime.init(arg);
context = runtime.createAgletContext("");
daemon.start ("aglets");
context.start();

73

context.addContextListener(new CL());

¥

class CL extends ContextAdapter{
//You should implement listeners’ events to monitor
//the life cycle of your aglets here

}

If you get a
java.lang.ExceptionInInitializerError: java.lang.NullPointerException

related to the LogInitializer.getCategory(Unknown Source), the
logging system cannot be loaded and initialized statically. Try this:

String initName = System.getProperty("aglets.logger.class",
"org.aglets.log.quiet.QuietInitializer");
Class.forName (initName) ;

that will load the logger, making the exception disappear.

Another example of a server can be the following:

// usage: java SimpleServer <keystore> <policy>

// <username> <password> <port>
import java.net.x*;

import java.util.x*;

import com.ibm.aglet.*;

import com.ibm.aglets.*;

import com.ibm.aglets.tahiti.*;

import com.ibm.maf.x*;

public class SimpleServer{
com.ibm.aglet.system.AgletRuntime runtime;
private String username;
private String password;
private String port;
private String keystore;
private String policy;
AgletContext context;
MAFAgentSystem maf_system;

public SimpleServer(String args[]){
try{
// get all parameters
keystore = args[0];
policy = args[1];
username =args[2];

74

password = args[3];
port = args[4];
}

catch (Exception ex){
ex.printStackTrace();

}

public void setupO{
Properties props = System.getProperties();
// Setup properties
props.put("atp.resolve", "true");
props.put("atp.useip", "true");
props.put ("maf.port", port);
props.put ("maf.protocol", "atp");
props.put("java.policy", policy);
props.put("aglets.keystore.file", keystore);
props.put ("maf.finder.port", "4435");
props.put ("maf.finder.host", "localhost");
props.put ("maf.finder.name", "MAFFinder");
props.put("aglets.logger.class",
"org.aglets.log.console.ConsoleInitializer");
props.put("aglets.logfile", "aglets.log");
String initName = System.getProperty("aglets.logger.class",
"org.aglets.log.console.ConsoleInitializer");
try{

Class.forName (initName) ;
}
catch (ClassNotFoundException ex){
ex.printStackTrace();

}

}

public void start(O{
this.setup(Q);
runtime = runtime.init(null);
runtime.authenticateOwner (username, password);
maf_system = new MAFAgentSystem_AgletsImpl(runtime);

String protocol = "atp";

try{
MAFAgentSystem.initMAFAgentSystem(maf_system, protocol);
// use Tahiti classes to initialize
Tahiti.installFactories();
Tahiti.installSecurity();
// create context
context = runtime.createAgletContext("");
MAFAgentSystem.startMAFAgentSystem(maf_system, protocol);

6]

//start context
context.start();

}
catch (MAFExtendedException ex){
ex.printStackTrace();

}
}

public static void main(String[] args){
SimpleServer simple = new SimpleServer (args);
simple.start();
}
}

e Can I use IP addresses instead of DNS names for URLs?
Yes, and in some situations it is suggested you do that. For example,
if you are working with machines not registered in a DNS; you should
use IP addresses instead of host names.

e I can send an agent to another machine but I cannot retract
it back. Dispatching the agent other the same machine raises
a RequestRefusedException. How can I solve this?
It is probably a problem of DNS. Try using IP addresses in the URLSs
or to add the machine name and address to each hosts file.

e I need to fix the security policies of my server, but I don’t
know how to know the codebase agents are running from.
You can get the codebase developing a simple agent that executes:

try {
URL codeBase =
((Aglet)this.getProxy() .getAgletInfo() .getCodeBase();
System.out.println('codeBase: " + codeBase);

} catch (InvalidAgletException e) {
System.out.println("InvalidAgletException");

}

Please be aware that, if your hostname changes (e.g., change of the
network, ISP, etc.), your permissions must be set up again, because
your codebase changes accordingly to the hostname. Furthermore,
consider that codebase are not interpreted but they are treated lit-
erally. This means that if your hostname is myHost, using myHost
or myHost.myDomain is not the same, even if the letter is the full
qualification of the former.

76

e I checked permissions, but I still got an exception related to
them.
Try placing permissions also in the security files into the $HOME/ . aglets
directory.

e When I execute agents I got No integrity Check because no
security domain is authenticated.
This is a warning message, and you can ignore it. It simply reports
that you haven’t set up a security domain.

e Sometimes, running particular agents or dispatching them, I
got exception related to the class loading, e.g.,

ClassNotFoundException,
ClassFormatException,
etc. How can I fix it?

Try adding your library jar to the classpath, even in the Tahiti prop-
erty. If this does not work, try adding the unjared classes to the public
root.

e Can I avoid a few references to be serialized?
If your agent declares a few references as transient, then they will
never be serialized during the aglet travel. This does not mean that
they will be removed by the agent, but simply that they will be “reset”
to a null value on the destination, that means you have to check (and
in case, recreate) references in the onCreation(..) method (or in your
mobility listener).

e Can an Aglets wait for a specific message before continuing
its execution?
Yes, but it is not very simple. You can deactivate the aglet, waiting
for an incoming message and then restarting its execution.

e When I try to launch my agent I got a ClassNotFoundException.
It means that the Aglets runtime cannot find your agent class. First
of all, be sure that your classes and packages are stored in the public
root, that is usually $AGLETS_HOME/public; if it is still not working,
try manually setting your classpath to include your classes, and then
restart the server. If it is still not working, try making a jar of your
classes and place it in the 1ib directory of your Aglets installation.

e If I print information about an aglet proxy, I get something
like Aglet [invalid], and the proxy is not working. How can
I fix it?
You should use the proxy’s id, instead of storing the proxy in a com-
plex data (such as an hash map, a vector or an array), since using

7

data structures to store proxies can invalidate them, since the agent
situation can change. The agent and proxy id is unique, thus you can
always get the proxy back starting from the id.

Can I use static initializers in my agents?

You should avoid static initializers, since if your agent migrates, the
initializers will not be re-executed. In particular, this can cause prob-
lems with transient variables, thus you should absolutely place your
initializers in the onCreation(..) method.

Is it possible to avoid that deactivated agents are automati-
cally reactivated when Tahiti restarts?
Yes, edit the properties file and set the cleanstart parameter to true.

A.2 Configuration Files

This chapter contains examples of configuration files, that can help you to
check the set-up of your Aglets platform.

The aglets.props file

The following is the default aglets.props configuration file shipped with
the Aglets platform

(mandatory) A path under where aglets is installed. Set on command
line by agletsd but can be overridden here.
#aglets.home=d:\\aglets\\aglets1l_2

(optional) A path to the directory under where ".aglets"

directory resides. This is also where your KEYSTORE must be.
default: $HOME (unix) or %HOME), (win32)

#user.home=

(optional) Location of aglets.policy file,
default: (user.home)/.aglets/security/aglets.policy
#java.policy=

(optional) Which protocol to use(atp or rmi)
default: atp
#maf .protocol=atp

(optional) Port number used by agents server.
default: 4434
#maf .port=4434

(optional) Host name of Finder used to register/lookup
the locations of agents.

default: Not used
#maf.finder.host=artemis.trl.ibm.com

78

(optional) Port number of Finder used to register/lookup
the locations of agents.

default: 4435

#maf .finder.port=4435

(optional) Registry name of the Finder.
default: MAFFinder
#maf .finder .name=MAFFinder

(optional) verbose output
default: false
#verbose=true

(optional) Default search path for class files.
Windows: ’;’ separated path list

Unix: ’:’ separated path list

default: (aglets.home)/public
#aglets.class.path=

(optional) Directory which are exported to other aglets servers.
default: (aglets.home)/public
#aglets.public.root=C:\\Aglets\\public

(optional) Aliases used for codebase of aglets.
#aglets.public.aliases=\

“tai=/home/tai,\

“mima=/home/mima

(optional) If false, every activities of aglets in the server
will be allowed.

default: true

aglets.secure=true

(optional) Class name of an AgletContextListner (Viewer)
To run server with no UI, set null.

i.e. "aglets.viewer="

default: com.ibm.aglets.tahiti.Tahiti

(ALT: com.ibm.aglets.tahiti.CommandLine)
#aglets.viewer=com.ibm.aglets.tahiti.Tahiti

(optional)
aglets.logfile=aglets.log

(optional)
default: false
#aglets.cleanstart=false

(optional) Comma(,) separated list of URLs(or class names) of aglets
which should be created just after the server starts.
#aglets.startup=

examples.hello.HelloAglet,\

atp://yourhost:434/examples.hello.HelloAglet

(optional) Resolve the domain name of the host by querying DNS server.

79

default: false
#atp.resolve=false

(optional) TCP/IP domain name of the host
#atp.domain=calivera.com

(optional) Set server’s hostname to "localhost". This is useful if
the host does not have any network adapter.

default: false

#atp.offline=true

(optional) Authenticate other servers when the server try to communicate
each other. Servers form security domains.

default: false

#atp.authentication=false

(optional) Use secure random seed generation which is provided by JDK.
If this is set to false, aglet server uses a proprietary one,

which is insecure but fast.

default: true

#atp.secureseed=true

(optional) User servers IP address in server URL instead of
logical name. This is useful if you don’t have a DNS entry.
default: false
#atp.userip=true

User ID for authorization. This key must exist in your keystore.
See keytool documentation for info on creating entry. (genkey)
aglets.owner.name=aglet_key

Password for above user ID. Must be same as entered as the key password
used with keytool.
aglets.owner.password=aglets

Keystore password. Same as used with keytool.
aglets.keystore.password=aglets

Logger class for ASDK.

For log4j - org.aglets.log.logé4j.Log4jInitializer

For output to standard out - org.aglets.log.console.ConsoleInitializer
For quiet - org.aglets.log.quiet.QuietInitializer

Default: org.aglets.log.quiet.QuietInitializer
aglets.logger.class=org.aglets.log.log4j.Log4jInitializer
#aglets.logger.class=org.aglets.log.quiet.QuietInitializer
#aglets.logger.class=org.aglets.log.console.ConsoleInitializer

The agletslog.xml file

The following is the default agletslog.xml configuration file shipped with
the Aglets platform

80

<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE logé4j:configuration SYSTEM "log4j.dtd">

<logédj:configuration>

<!-- Layout does not use location info and is faster. -->

<appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="}d{ABSOLUTE} J%-5p [%t] %c{2} - Vm/)n"/>
</layout>

</appender>

<appender name="FULLINF0" class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="}d{ABSOLUTE} %-5p [%t] %C{2}:%c{1} (%F:%L)
</layout>

</appender>

<category name="org" additivity="false">
<priority value="debug" />

<appender-ref ref="CONSOLE" />
</category>

<category name="com" additivity="false">
<priority value="debug" />

<appender-ref ref="CONSOLE" />
</category>

<!-- Must be last element!! -->
<root>

<priority value ="debug" />
<appender-ref ref="CONSOLE" />
</root>

</log4j:configuration>

81

- Ymin"/>

Appendix B

Managing login data

As already detailed in the installation sequence, the Aglets platform gen-
erates at installation time two identities that can be used for user authen-
tication. Their username/password information is anonymous/aglets and
aglet key/aglets. You can create a new login (i.e., a new couple user-
name/password) or modify the password of an existing username using the
keytool command shipped with the Java 2 platform. This chapter will show
a base use of the keytool command, in order to allow you to manage certifi-
cates and logins. For a better description of the keytool capabilities, refer to
the official Java documentation.

To manage information stored in the keystore you need to know the
keystore password, it will be asked for each operation. The keystore password
protects the whole certificate database, and should not be confused with the
user’s password, required to access a single certificate. Furthermore, it is not
a good idea to have the keystore password identical to a certificate password.

B.1 Creating a new account

To create a new account (i.e., a username/password) start the keytool com-
mand specifying the new username. To keep it simple, consider the creation
of an account with myAglet as username and buzzle as password. Here there
is the first step of the creation:

luca@linux:/java/aglets/bin> keytool -genkey -alias myAglet
Enter keystore password: aglets

The command asks the keystore password, that for the default Aglets key-
store (i.e., the keystore installed by Ant) is aglets. Please note that the
keystore password is echoed as plain text on the terminal, and this means
you should manage the keystore away from other people’s eyes.

Once you have entered the correct keystore password, the command will
ask for a few pieces of information, such as name, department, and so on. All

82

that information are required to generate a certificate that identifies the user;
that certificate will be stored in the keystore. The following is an example
set of values:

What is your first and last name?
[Unknown] : Luca Ferrari
What is the name of your organizational unit?
[Unknown] : AgentGroup
What is the name of your organization?
[Unknown]: University of Modena and Reggio Emilia
What is the name of your City or Locality?
[Unknown]: Modena
What is the name of your State or Province?
[Unknown]: Italy
What is the two-letter country code for this unit?
[Unknown]: it
Is CN=Luca Ferrari, 0U=AgentGroup, O=University of
Modena and Reggio Emilia, L=Modena, ST=Italy, C=it
correct?
[nol: yes

Finally, keytool will ask you the password to use for the above new username.
Be careful when typing the password, since it will be asked once (not twice as
many password programs do) and will be echoed as plain text on the terminal.

Enter key password for <myAglet>
(RETURN if same as keystore password): buzzle
luca@linux:/java/aglets/bin>

When the keytool program finishes, the command prompt is displayed. Now
you can use the new couple of username and password to login in the Aglets
platform.

B.2 Changing the password of an existing account

To change the password of an existing username, use the keypasswd option
of the keytool command. Suppose that you want to change the password of
the username myAglet, the following is what you have to do:

luca@linux:/java/aglets/bin> keytool -keypasswd -alias myAglet
Enter keystore password: aglets

First the command will ask you the password of the whole keystore, for the
default installation it is aglets. After that, the old password is required:

Enter key password for <myAglet>buzzle

83

Finally, the new password is required. Please note that, even if here the
password is asked twice to catch typing errors, the password value is also
printed on the screen, and this requires that nobody is watching “over your
shoulder”.

New key password for <myAglet>: buzzle2
Re-enter new key password for <myAglet>: buzzle2
luca@linux:/java/aglets/bin>

Now you have changed the password of the specified username, and can use
the new password to login in the Aglets platform.

B.3 Deleting an account

If you want to delete a whole account, you can use the delete option of the
keytool command. For example, if you want to delete the myAglet account,
do the following:

luca@linux:/java/aglets/bin> keytool -delete -alias myAglet
Enter keystore password: aglets
luca@linux:/java/aglets/bin>

\end{center?

Be aware of what you are doing, since the command is very silent! As you can
see, only the keystore password is required, after that the deletion happens
without asking any user confirmation.

B.4 Listing the content of the keystore

To view which certificates are handled by the current keystore, simply do:

keytool -list
Enter keystore password: aglets

that will print something like the following:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries

anonymous, Sep 6, 2004, keyEntry,

Certificate fingerprint (MD5):
78:13:74:36:92:F4:51:04:56:36:BB:41:CC:3E:96:94

aglet_key, Sep 6, 2004, keyEntry,

Certificate fingerprint (MD5):
B6:8D:E5:6E:42:19:2F:AB:20:25:12:32:99:8B:77:09

84

The output above shows that only two certificates are present in my current
keystore, and that the username to access those certificates are anonymous
and aglet key. The above certificates are created by the Ant installation.

B.5 User’s Configuration Files

Aglets stores, for each users, a few configuration files in the user’s home direc-
tory. In particular, Aglets will create a directory called .aglets, containing
a few subdirectories as shown below:

e cache it will be used by a running platform to cache information about
agents, and agents themselves (for example when they will be deacti-
vated).

e security it contains a policy file and the secrets created with Tahiti.

e spool contains a directory for each combination host/port the platform
has been bound to. In each directory, a few files used by the run-time
system (such as platform properties) are stored.

e users contains a directory for each user (keystore alias) who has started
Tahiti. Fach directory stores preferences of the user, such as the Tahiti
window size, agent lists, etc.

85

Appendix C

The IBM Public License -
version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS
OF THIS IBM PUBLIC LICENSE ("AGREEMENT"). ANY USE, RE-
PRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

DEFINITIONS

"Contribution" means:

1. in the case of International Business Machines Corporation ("IBM"),
the Original Program, and 2. in the case of each Contributor, 1. changes to
the Program, and 2. additions to the Program; where such changes and/or
additions to the Program originate from and are distributed by that partic-
ular Contributor. A Contribution ’originates’ from a Contributor if it was
added to the Program by such Contributor itself or anyone acting on such
Contributor’s behalf. Contributions do not include additions to the Program
which: (i) are separate modules of software distributed in conjunction with
the Program under their own license agreement, and (ii) are not derivative
works of the Program.

"Contributor" means IBM and any other entity that distributes the Pro-
gram.

"Licensed Patents " mean patent claims licensable by a Contributor
which are necessarily infringed by the use or sale of its Contribution alone
or when combined with the Program.

"Original Program" means the original version of the software accompa-
nying this Agreement as released by IBM, including source code, object code
and documentation, if any.

"Program" means the Original Program and Contributions.

"

86

"Recipient" means anyone who receives the Program under this Agree-
ment, including all Contributors.

GRANT OF RIGHTS

1. Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free copyright license to re-
produce, prepare derivative works of, publicly display, publicly perform, dis-
tribute and sublicense the Contribution of such Contributor, if any, and such
derivative works, in source code and object code form. 2. Subject to the
terms of this Agreement, each Contributor hereby grants Recipient a non-
exclusive, worldwide, royalty-free patent license under Licensed Patents to
make, use, sell, offer to sell, import and otherwise transfer the Contribution
of such Contributor, if any, in source code and object code form. This patent
license shall apply to the combination of the Contribution and the Program
if, at the time the Contribution is added by the Contributor, such addition
of the Contribution causes such combination to be covered by the Licensed
Patents. The patent license shall not apply to any other combinations which
include the Contribution. No hardware per se is licensed hereunder. 3. Re-
cipient understands that although each Contributor grants the licenses to
its Contributions set forth herein, no assurances are provided by any Con-
tributor that the Program does not infringe the patent or other intellectual
property rights of any other entity. Each Contributor disclaims any liability
to Recipient for claims brought by any other entity based on infringement
of intellectual property rights or otherwise. As a condition to exercising the
rights and licenses granted hereunder, each Recipient hereby assumes sole
responsibility to secure any other intellectual property rights needed, if any.
For example, if a third party patent license is required to allow Recipient to
distribute the Program, it is Recipient’s responsibility to acquire that license
before distributing the Program. 4. Each Contributor represents that to its
knowledge it has sufficient copyright rights in its Contribution, if any, to
grant the copyright license set forth in this Agreement.

REQUIREMENTS

A Contributor may choose to distribute the Program in object code form
under its own license agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and 2.
its license agreement: 1. effectively disclaims on behalf of all Contributors
all warranties and conditions, express and implied, including warranties or
conditions of title and non-infringement, and implied warranties or condi-
tions of merchantability and fitness for a particular purpose; 2. effectively
excludes on behalf of all Contributors all liability for damages, including

87

direct, indirect, special, incidental and consequential damages, such as lost
profits; 3. states that any provisions which differ from this Agreement are
offered by that Contributor alone and not by any other party; and 4. states
that source code for the Program is available from such Contributor, and
informs licensees how to obtain it in a reasonable manner on or through a
medium customarily used for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and 2. a copy of this
Agreement must be included with each copy of the Program.

Each Contributor must include the following in a conspicuous location
in the Program:

Copyright (C) 1996, 1999 International Business Machines Corporation
and others. All Rights Reserved.

In addition, each Contributor must identify itself as the originator of its
Contribution, if any, in a manner that reasonably allows subsequent Recipi-
ents to identify the originator of the Contribution.

COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with
respect to end users, business partners and the like. While this license is
intended to facilitate the commercial use of the Program, the Contributor
who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors.
Therefore, if a Contributor includes the Program in a commercial product
offering, such Contributor ("Commercial Contributor") hereby agrees to de-
fend and indemnify every other Contributor ("Indemnified Contributor")
against any losses, damages and costs (collectively "Losses") arising from
claims, lawsuits and other legal actions brought by a third party against
the Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of the
Program in a commercial product offering. The obligations in this section do
not apply to any claims or Losses relating to any actual or alleged intellec-
tual property infringement. In order to qualify, an Indemnified Contributor
must: a) promptly notify the Commercial Contributor in writing of such
claim, and b) allow the Commercial Contributor to control, and cooperate
with the Commercial Contributor in, the defense and any related settlement
negotiations. The Indemnified Contributor may participate in any such claim
at its own expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial Con-
tributor. If that Commercial Contributor then makes performance claims,
or offers warranties related to Product X, those performance claims and war-

88

ranties are such Commercial Contributor’s responsibility alone. Under this
section, the Commercial Contributor would have to defend claims against
the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE
PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IM-
PLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR
CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
solely responsible for determining the appropriateness of using and distribut-
ing the Program and assumes all risks associated with its exercise of rights
under this Agreement, including but not limited to the risks and costs of
program errors, compliance with applicable laws, damage to or loss of data,
programs or equipment, and unavailability or interruption of operations.

DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEI-
THER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY
LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITH-
OUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF
THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

GENERAL

If any provision of this Agreement is invalid or unenforceable under appli-
cable law, it shall not affect the validity or enforceability of the remainder
of the terms of this Agreement, and without further action by the parties
hereto, such provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect
to a patent applicable to software (including a cross-claim or counterclaim in

89

a lawsuit), then any patent licenses granted by that Contributor to such Re-
cipient under this Agreement shall terminate as of the date such litigation is
filed. In addition, if Recipient institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Pro-
gram itself (excluding combinations of the Program with other software or
hardware) infringes such Recipient’s patent(s), then such Recipient’s rights
granted under Section 2(b) shall terminate as of the date such litigation is
filed.

All Recipient’s rights under this Agreement shall terminate if it fails to
comply with any of the material terms or conditions of this Agreement and
does not cure such failure in a reasonable period of time after becoming
aware of such noncompliance. If all Recipient’s rights under this Agreement
terminate, Recipient agrees to cease use and distribution of the Program as
soon as reasonably practicable. However, Recipient’s obligations under this
Agreement and any licenses granted by Recipient relating to the Program
shall continue and survive.

IBM may publish new versions (including revisions) of this Agreement
from time to time. Each new version of the Agreement will be given a dis-
tinguishing version number. The Program (including Contributions) may
always be distributed subject to the version of the Agreement under which
it was received. In addition, after a new version of the Agreement is pub-
lished, Contributor may elect to distribute the Program (including its Con-
tributions) under the new version. No one other than IBM has the right to
modify this Agreement. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual property of
any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under
this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and
the intellectual property laws of the United States of America. No party to
this Agreement will bring a legal action under this Agreement more than one
year after the cause of action arose. Each party waives its rights to a jury
trial in any resulting litigation.

90

