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1 Preliminaries

We need to consider four separate equivalence relations on 2 X 2 matrices over the
geld Zy, (p odd).

e A~ Bif B=PAP ! for some non-singular P,

e A~ Bif B= ﬁPAP_l for some non-singular P,

e A~ Bif B=APAP ! for some non-singular P, and some non-zero scalar )\,

e A~ Bif B=PAP ! for some P with det P = 1.

The grst of these is similarity, which is well understood. First, two matrices can
only be similar if they have the same characteristic polynomial (though this is not a
su(Ecient condition for similarity). If A has characteristic polynomial (z — \)(x — p)

(A # p) then Ais similar to < ())\ 2 ) (and also to < g ())\ )) If A has characteristic

polynomial (z — )\)? then A is similar to (3\ 2\) or (3 i) And if A has

0 b
irreducible characteristic polynomial 2 — az — b then A is similar to ( N
As we shall see, the answer is almost (but not quite!) the same for the other
three equivalence relations. We call the fourth of these equivalence relations special-
similarity. Note that if two matrices are special-similar, then they are also equivalent
under the grst three equivalence relations. First we need the following lemma.

Lemma 1 If kK € Z, and k # 0 then every element of Z, can be expressed in the
form a® + kb? for some a,b € Z,.

Proof. We assume that pis odd, since we are only interested in that case. (But the
result is trivial for p = 2 anyway.) Recall that the multiplicative group of non-zero
elements in Z, is cyclic of even order. This implies that half the non-zero elements



of Zp are squares, and the other half are non-squares. Furthermore every non-square
can be expressed in the form a’w for some gxed non-square W. So if k is a non-square
then there is no di(Eculty: all squares in Zp can be expressed in the form a? + k02
and all non-squares can be expressed in the form 0% + kb

So we assume that k is a square. The key step in the proof of Lemma 1 is to note
that a®> + k must be a non-square for some a. For suppose that a’ + k is always a
square. Since k is a square we have 2k = k + k is a square. But this implies that
3k is a square, and so on. But Z, = {k,2k,3k,...} so all elements of Z, are squares,
which is a contradiction.

Now suppose that a’+kis a non-square. Then every non-square can be expressed
in the form (a® + k)b? = (ab)? + kb®>. And every square can be expressed in the form
a®+ k0% O

A0
Theorem 2 If A is similar to ( 0 M) (possibly with A = ) then A is special-
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similar to . If A is similar to then A is special similar to
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And if A is similar to ( 1 a where 72 — ax — b is irreducible then A is special-

. (0 b)
similar to .
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Proof. Suppose that A is similar to B. Then B = PAP ! for some non-singular

P. Let £k = det P. Then we can write P = (/g (1) ) (@ for some matrix () with
det@ = 1. So
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Next suppose that A is similar to A Then A is special-similar to
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for some k # 0. Now ( 0 > is special-similar to

(03) (6 3)(80)=0
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So A is special-similar to ( ) or to (
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are not special-similar. So sup-
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We need to prove that < ) and

pose (for a contradiction) that

r(03)r =00 )

a b
for some P of determinant 1. Write P = ( c d ) Then

() (65)=(a3)(20)

aX\ a+b\\ [ al+wc bA\+wd
cA c+d\ ) cA dA '

It follows that ¢ = 0 and a = wd. But then det P = wd? # 1, which gives our

contradiction.

And so

Finally suppose that A has irreducible characteristic polynomial 2?2 —ax — b, so
0 b
that A is similar to < 1 a4/ Then A is special-similar to

LoN[(0ob\[(kO) (0
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(00
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) of determinant 1 such that
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for some k # 0. We show that < 2
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We need to ¢gnd a matrix P = (

(G- 8)
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This requires

Bl abtBek N[ b bs
5k W;ﬂ “\a+t+ay B+6ba )’
So we need Sk = b, 6k = a+ ay. So we can take

P:<5k—a7 %)
¥ 0

for any 7,0, provided det P = 1. Now

— b 252 _ A2
det(ék afy(sk):(Sk 61;;(17 fyb.

So we want to choose 7,4 so that 62k% — dkay — v?b = k. Now
2

a a
6%k* — 6kay — v*b = (0k — 77)2 —(b+ 2)72.
Furthermore b+a?/4 # 0 since ?—ax—bis irreducible. So, by Lemma 1, §%°k*>—dkay—
72b takes on all values in Zj as 7y, 0 range over Zj,. In particular, 6°k* —dkay—~%b =k
for some choice of 7, 0.
This completes the proof of Theorem 2. d

Lemma 3 If Ahas characteristic polynomial z?—ax—b, and if B = (1/det P)PAP_1
for some P then B has characteristic polynomial 2% —akz — bk? for some k # 0. Fur-
thermore, if A has characteristic polynomial 22 — az — b and if k # 0, then there

is a non-singular matrix P such that (1/det P)PAP~! has characteristic polynomial
x? — akx — bk>.

Proof. Let B = (1/det P)PAP™! and suppose that det P = 1/k. Then B =
kPAP~! and PAP~! has characteristic polynomial 22 —az —b. So B = kC for some
matrix C with characteristic polynomial 2?2 —azr — b and an easy calculation shows
that this implies that B has characteristic polynomial 2?2 — akx — bk?.

Conversely, let k # 0, and let P be any matrix with determinant 1/k. Let

1
B =kPAP™! = PAP .
det P

Then the same calculation as above shows that the characteristic polynomial of B is
2? —akx — bk?. O

Lemma 4 If Ais any 2 X 2 matrix, then there is a non-singular matrix P such that
(1/ det P)PAP™! has characteristic polynomial 2> —x —cor 2% or 2> — 1 or 2% — w.
Furthermore if A and B are two matrices with characteristic polynomials of this form,
but where the characteristic polynomials of A and B are diceerent, then

1
B+ —_PAP™!
7 det P

for any P.



Proof. Lemma 4 follows from Lemma 3. Lemma 3 implies that if A has character-
istic polynomial 22 — ax — b where @ # 0 then there is some non-singular matrix P
such that (1/det PYPAP ™! has characteristic polynomial 2? —x — ¢ (with ¢ = b/a?).
It also implies (1/det PYPAP~! cannot have characteristic polynomial 2 — z — d
with d 75 ¢, or characteristic polynomial 2?or 22 —1or 22 —w.

So consider a matrix A with characteristic polynomial 22 —b. Then by Lemma 3,
if Pis any non-singular matirx then (1/det P)PAP™! has characteristic polynomial
x? — bk? for some k # 0. We can choose k so that bk*> = 0 or 1 or w (depending on
whether b =0, or b is a square, or bis a non-square). O

Theorem 5 If A and B are 2 X 2 matrices then we say that A is equivalent to B
if B = (1/detP)PAP~! for some non-singular matrix P. Every 2 X 2 matrix is

equivalent to a matrix of one of the following forms:

1 0 11 1 w 00 01 0 w 0 w
0o M)’ 01/’ 01 ’ 0 0/’ 00/’ 00 ’ 1 0 ’
or to a matrix of the form
0 ¢
1 1)°

where 22 — x — c is irreducible. Furthermore none of these matrices are equivalent to

each other, except that if A # 0 then ( 10 ) is equivalent to < 1 0_1 >
0 A 0 A
Proof. Let A be a 2 X 2 matrix.

First we consider the case when the characteristic polynomial of A is irreducible.
Let the characteristic polynomial be 2?2 —ax — b with a # 0. Then, by Lemma 4, we
can gnd P so that (1/det P)PAP™! has characteristic polynomial 2 —x — ¢ (with
c= b/a2). This polynomial is also irreducible, and so (by Theorem 2) A is equivalent
to (0 ¢ )

1 1)

Next suppose that the characteristic polynomial of A is irreducible and is of the
form 22 —b. Then b is not a square, and so by Lemma 4 we can gnd P so that
(1/det PYPAP™! has characteristic polynomial 72> — w. By Theorem 2 this implies
that A is equivalent to ( g ;) >

Next suppose that the characteristic polynomial of A is (m—/\)(x—,u) with A # p.
By Theorem 2, there is a matrix P of determinant 1 with

PAP—! = ( A0 ) .
0 n
So A is equivalent to

(6 1) (o) (1) =05 4)



1 0

for any k # 0. So A is equivalent to ( 0 Ay

1 0

0 0
If the characteristic polynomial of A is 22 then either A = ), or (by

00
0 1 0 w
Theorem 2)AN<O 0>or (0 0 )

Finally suppose that the characteristic polynomial of A is (x—/\)2 for some A # 0.

). And if g # 0 then we also have

A
Then (by Theorem 2) A is special-similar to ( 0 'l)f

() )6 Y)=Gr)

We need to show that two matrices from the statement of Theorem 5 can only be

) for some p =0, 1 or w. So

equiavalent as speciged in the statement of the theorem.
As we showed above, if the characteristic polynomial of A is irreducible then A
is equivalent to a matrix with (irreducible) characteristic polynomial 22— 2 —cor

0 c 0 w
z? — w, and hence similar to ( 11 ) or ( 10 ) It is clear from the proof of

Lemma 3 that no two matrices with distinct characteristic polynomials of this form
can be equivalent.
If A has characteristic polynomial (z — A)(z — p) with A # g and A # 0 then,
0
0 X u
polynomial (x— 1)(3:—/\_1/0. It is clear from the proof of Lemma 3 that any matrix
equivalent to A has characteristic polynomial (z — k)(z — A"tuk) for some k # 0.

as we showed above, A is equivalent to ( ) This matrix has characteristic

The only matrices in the statement of Theorem 5 with characteristic polynomial of

: 10 10 ,
this form are ( 0 Al ) and ( 0 Ap-! ) in the case when p # 0.

If A has characteristic polynomial (3: — )\)2 then, as above, A is equivalent to one

(01) Lon) (o?) (o) (5o) (50),

and it is straightforward to show that none of these are equivalent to each other. Fur-
thermore it follows from Lemma 3 that any matrix equivalent to A has characteristic
polynomial (:IZ — p)2 for some p, and so A cannot be equivalent to any other of the
matrices from the statement of Theorem 5. O

Theorem 6 If A and B are 2 X 2 matrices then we say that A is equivalent to B if
B = APAP! for some non-singular matrix P and some non-zero scalar \. Every



2 X 2 matrix is equivalent ot a matrix of one of the following forms:
10 11 0 0 01 0 w
0OA)J”\ 0 1)\ 0O0/)”\0O0)" 10 )’

or to a matrix of the form

0 ¢
1 1)

where 22 — x — c is irreducible. Furthermore none of these matrices are equivalent to

. 1 0 . . 10
each other, except that if A # 0 then ( 0 A ) is equivalent to ( 0 Al )

Proof. Clearly two matrices are equivalent under this equivalence relation if they
are equivalent under the equivalence relation degned in Theorem 5. So to show that
every 2 X 2 matrix is equivalent (under this equivalence relation) to one of the above
matrices, we need only show that

(01)~( )
(00)=(0 %)

This is immediate, since these pairs of matrices are similar. None of the matrices

and that

listed in the statement of Theorem 6 are equivalent to each other by an argument

similar to the one given in the proof of Theorem 5. O
It is convenient to list the non-cyclic nilpotent Lie algebras of order less than or
equal to p4.
(a,b|class 1) (2.1)
(a,b,c|class 1) (3.1)
{(a,b|pa, pb, class 2) (3.2)
(a,b|pa — ba, pb, class 2) (3.3)
(a,b|ba, pb, class 2) (3.4)
(a,b,c,d|class 1) (4.1)



(a,b,c|ba,ca, cb, pb, pc, class 2)
{(a,b,c|ca, cb, pa, pb, pc, class 2)
(a, b, c|ca, cb, pa — ba, pb, pc, class 2)
{(a,b,c|ca, cb, pa, pb, pc — ba, class 2)
(a,b|ba, class 2)

{(a,b|pb, class 2)

(a,b|pb— ba, class 2)
(a,b]|bab, pa, pb, class 3)
(a,b|bab, pa — baa, pb, class 3)
(a,b| bab, pa, pb — baa, class 3)
{(a,b|bab, pa, pb — wbaa, class 3)
(a,b|ba, pb, class 3)

{a,b|ba — p®a, pb, class 3)

2 Five generators

There is only one gve generator Lie ring of order p°:

{(a,b,c,d,e|class 1).

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)



3 Four generators

If Lis a four generator nilpotent Lie ring of order p° then L is an immediate descen-
dant of 4.1. If L is abelian then we have

(a,b,c,d|ba,ca,da,cb,db,dc, pb, pc, pd, class 2). (5.2)

If L is not abelian then we may suppose that pL < L2, and that L? is spanned by ba.

We may also suppose that
ca=da=cb=db=0

and that dc =0 or ba. We may also assume that (a,b) is isomorphic to 3.2 or 3.3.
First suppose that dc = 0. If pc = pd = 0 then we have

(a,b,¢c,d|ca,da,cb,db,dc, pa, pb, pc, pd, class 2) (5.3)

or

(a,b,¢,d|ca,da,cb,db, dc, pa — ba, pb, pc, pd, class 2). (5.4)

On the other hand, if pc and pd are not both zero then we may assume that pc = ba
and that pd = 0. Replacing a by a — c if necessary, we may suppose that pa = 0. So
we have

{(a,b,¢,d| ca,da,cb,db, dc, pa, pb, pc — ba, pd, class 2). (5.5)

Next suppose that dc = ba. We may assume that (c,d) is also isomorphic to 3.2
or 3.3. So we obtain

(a,b,c,d| ca,da,cb,db, dc — ba, pa, pb, pc, pd, class 2), (5.6)

{(a,b,c,d|ca,da,cb,db, dc — ba, pa — ba, pb, pc, pd, class 2), (5.7)

and

{(a,b,c,d| ca,da,cb,db, dc — ba, pa — ba, pb, pc — ba, pd, class 2).

But if we let ' =a+c¢, b =b+d,d =a—-c, d =b—din this last algebra, then we
see that it is isomorphic to 5.6.

Algebra 5.2 is the only abelian algebra among 5.2 ~ 5.7. In 5.3 ~ 5.5 the centre is
spanned by c¢,d,ba, and in 5.6 and 5.7 the centre is spanned by ba. Algebras 5.3 and
5.6 have characteristic p, whereas the other algebras do not. And in 5.4 the centre
has characteristic p, whereas in 5.5 the centre does not have characteristic p. So the
algebras 5.2 7 5.7 are all distinct.

4 Three generators

If Lis a three generator nilpotent Lie ring of order p5 then L is an immediate descen-
dant of 3.1, or of one of 4.2 ~ 4.5.



4.1 Descendants of 3.1
4.1.1  L? abelian

If L? is abelian then we have

{(a,b, c|ba, ca, cb, pc, class 2). (5.8)

4.1.2  L? has order p

If L? has order p then we may assume that L? is spanned by ba and that ca = cb = 0.
If pc = 0 then <a,b> is isomorphic to 4.7 or 4.8, so that we have

{(a,b,c|ca, cb, pb, pc, class 2), (5.9)

(a,b,c|ca, cb, pb — ba, pc, class 2). (5.10)

On the other hand, if pc # 0, then there are two cases to consider. In the grst case
pc € L?, and in the second case pc ¢ L2

So consider the case when pc is non-zero, but pc € L?. We may assume that
pc = ba. At least one of pa, pb must lie outside L2, and we may suppose that
pa ¢ L?. So pL is spanned by pa and pc, and replacing b by b — Aa — pc for suitable
A, 4 we may suppose that pb = 0. This gives

{(a,b, c|ca, cb, pb, pc — ba, class 2). (5.11)

Finally consider the case when pc € L% Replacing a and b by a — A¢, b — pc for
suitable A, 1 we may suppose that pa,pb € L? so that (a,b) is isomorphic to 3.2 or
3.3. This gives

(a,b,c|ca, cb, pa, pb, class 2), (5.12)

{(a,b,c|ca, cb, pa — ba, pb, class 2). (5.13)

In 5.9 and 5.10 the centre of L has order p?, and in 5.11 ~ 5.13 it has order p.
In 5.9 and 5.12 pL has order p, but in 5.10, 5.11 and 5.13 it has order p?. If C is
the centre of L, then pC < L? in 5.11 but pC £ L? in 5.13. So these 5 algebras are

distinct.

4.1.3  L? has order p?

If L? has order p2 then we may assume that L?is spanned by ba, ca, and that c¢b = 0.
Note that
B = (b,c)+ L* +pL

is a characteristic subalgebra of L of order p4.
If pB = {0} then we have pb = pc = 0 and we may assume that pa = 0 or ba.
This gives
(a,b, c|cb, pa, pb, pc, class 2), (5.14)

10



(a,b, c|cb, pa — ba, pb, pc, class 2). (5.15)

Note that 5.14 has characteristic p, whereas 5.15 does not.

If pB has order p then we may suppose that pb # 0 and that pc = 0. Let
pb = Bba + yca. If f = 0 then we can scale @ so that v = 1. And if 8 # 0 we can
scale @ so that 0 = 1, and then replacing b by b+ yc we have pb = ba. So we may
assume that pb = ba or ca, and that pc = 0. Let pa = Aba + uca. If pb = ba then
replacing a by a — Ab we have pa = uca, and scaling ¢ we can take gt = (0 or 1. And
if pb = ca then replacing a by a — ub we have pa = Aba, and by scaling b and ¢ we
can take A = 0 or 1. This gives

{(a,b,c|cb, pa, pb — ba, pe, class 2), (5.16)
{(a,b,c|cb, pa — ca, pb — ba, pc, class 2), (5.17)
{(a,b, c|cb, pa, pb — ca, pe, class 2), (5.18)
(a, b, c|cb, pa — ba, pb — ca, pc, class 2). (5.19)

In 5.16 and 5.18 pL has order p, whereas in 5.17 and 5.19 pL has order p2. If we let
C = {c)+ L* +pL

then C is the unique subalgebra of B of order p3 and characteristic p. So C is a
characteristic subalgebra of L. In 5.18 and 5.19 pB < CL, but in 5.16 and 5.17
pB & CL. So these four algebras are distinct.

Finally suppose that pB has order p?. Then pband pcspan L? = pL, and replacing
a by a — Ab — pc for suitable A\, 4 we may suppose that pa = 0. We can write

(he)=4(c)

for some 2 X 2 matrix A, and then L is determined by the entries in A, which we may
view as elements in the geld Z,. If we let

b b
C C
for some non-singular 2 X 2 matrix P with entries in Zp then
b’ ba
( by ) — PAP~! ( .
pc cda
So A and PAP~! give isomorphic algebras. Also, scaling a transforms A to AA

for some non-zero A\. So A and APAP™! give isomorphic algebras. Conversely the
argument above shows that if A and B give isomorphic algebras then B = A\PAP !

11



for some non-singular P and some non-zero A. Also, we are assuming that A is
non-singular, so by Theorem 6 we can take A to be one of the folowing matrices:

(os)ero (o) (75) (0 1)

where 2% — & — v is irreducible. Thus we obtain (p+ 1)/2 algebras
{(a,b,c|cb, pa, pb — ba, pc — Aca, class 2), (5.20)
with A # 0, where X and A\~! give isomorphic algegbras;
(a,b,c|cb, pa, pb — ba — ca, pc — ca, class 2); (5.21)

{(a,b, c|cb, pa, pb — wca, pc — ba, class 2); (5.22)
and (p—1)/2 algebras

(a,b,c|cb, pa, pb — aca, pc — ba — ca, class 2), (5.23)

where 1 + 4 is not a square.

4.2 Descendants of 4.2

If Lis an immediate descendant of 4.2 of order p°® then L is generated by a,b,c. The
subalgebra Lo is spanned by pa modulo L3, and Ls is spanned by p?a. The elements
ba, ca, cb, pb, pc are all linear multiples of p?a. Replacing b by b — Apa for suitable A
we may suppose that pb = 0. Similarly we may suppose that pc = 0.

If L is abelian then we have

{(a,b, c|ba, ca, cb, pb, pc, class 3). (5.24)

So suppose that L is not abelian. The subalgebra (pa, b, c) is characteristic, and
its derived algebra is spanned by cb. If cb # 0 then we may suppose that cb = p’a,
and replacing a by a + Ab + pc for suitable A, 4 we may suppose that ba = ca = 0.
This gives
{a,b,c|ba, ca, cb — p*a, pb, pc, class 3). (5.25)
On the other hand, if ¢b = 0 and one of ba,ca is non-zero, then we may suppose
that ba =p2a, and replacing ¢ by ¢ — vb foru suitable ¥ we may suppose that ca = 0.
This gives
{a,b,c|ba — p*a, ca, cb, pb, pc, class 3). (5.26)

12



4.3 Descendants of 4.3

If L is an immediate descendant of 4.3 of order p5 then L is generated by a,b,c.
The subalgebra Ls is spanned by ba modulo L3, and L3 is spanned by baa, bab. The
elements ca,cb, pa,pb,pc all lie in L3. We may suppose that L3 is spanned by baa
and that bab = 0. Replacing ¢ by ¢ — Aba for suitable A\ we may suppose that ca = 0.
Scaling ¢ we may suppose that ¢cb = 0 or baa.

First suppose that ¢cb = 0. The subalgebra (a,b) is isomorphic to one of 4.9 ~ 4.12,
so if pc = 0 we have

{a,b, c|ca, cb, bab, pa, pb, pc, class 3), (5.27)
(a,b, c|ca, cb, bab, pa — baa, pb, pc, class 3), (5.28)
{(a,b, c|ca, cb, bab, pa, pb — baa, pc, class 3), (5.29)
(a,b,c|ca, cb, bab, pa, pb — wbaa, pe, class 3). (5.30)

But if pc # 0 then replacing a by a — uc for suitable g we may suppose that pa = 0.
Similarly we may suppose that pb = (0. Scaling ¢ we may suppose that pc = baa. This
gives

(a,b, c|ca, cb, bab, pa, pb, pc — baa, class 3). (5.31)

Next suppose that ¢b = baa. Once again, {a,b) is isomorphic to one of 4.9 ~ 4.12,
so if pc = 0 we have

(a,b, c|ca, cb — baa, bab, pa, pb, pc, class 3), (5.32)
(a,b,c|ca, cb — baa, bab, pa — baa, pb, pc, class 3), (5.33)
(a,b, c|ca, cb — baa, bab, pa, pb — baa, pc, class 3), (5.34)
{(a,b,c|ca, cb — baa, bab, pa, pb — wbaa, pc, class 3). (5.35)

And if pc # 0 then scaling b we may take pc = baa and (as above) we obtain
(a,b, c|ca, cb — baa, bab, pa, pb, pc — baa, class 3). (5.36)

Note that in all the algebras 5.27 * 5.36 the subalgebra C = (c, ba, baa) is char-
acteristic. Note that pC = {0} in all these algebras except for 5.30 and 5.36. The
centralizer of L? is

B = (b, ¢, ba, baa),

so B is also characteristic. In 5.27 © 5.31 CB = {0}, and in 5.32 ~ 5.36 CB # {0}. So
it remains to distinguish the algebras 5.27 ~ 5.30 from each other, and to distinguish
the algebras 5.32 ¥ 5.35 from each other. However if a’, b are any elements of L which
span L modulo Cin 5.27 ¥ 5.30, or in 5.32 ¥ 5.35, then (a,0') is isomorphic to {(a,b),
so these algebras are all distinct.

13



4.4 Descendants of 4.4

Algebra 4.4 is terminal.

4.5 Descendants of 4.5

Algebra 4.5 is also terminal.

5 Two generators

If Lis a two generator nilpotent Lie ring of order p5, then L is an immediate desendant
of one of 2.1, 3.2 ¥ 3.4, or 4.6 ~ 4.14.

5.1 Descendants of 2.1

The only immediate descendant of 2.1 of order p° is

{(a,b|class 2). (5.37)

5.2 Descendants of 3.2

If Lis an immediate descdant of 3.2 of order p° then L is generated by a,b, L? is
spanned by ba modulo L3, and L3 has order p? and is spanned by baa,bab. We also
have pa,pb € L3.

If pa = pb =0 then we have

{(a,b|pa, pb, class 3). (5.38)

If pa and pb span a subalgebra of order p then we may suppose that pa = abaa +
Bbab, pb = 0. If & = 0 then scaling b we may suppose that =1 or w. And if a # 0
then scaling b we may suppose that a = 1, and replacing a by a+ 3b we may suppose
that pa = baa. So we have

(a,b|pa — bab, pb, class 3), (5.39)
{(a,b|pa — wbab, pb, class 3), (5.40)
(a,b|pa — baa, pb, class 3). (5.41)

Clearly these three algebras are distinct.
Finally suppose that pa and pb span a subalgebra of order p2. We can write

(5 ) =i )

14



where A is a non-singular 2 X 2 matrix with entries in Z,. If we let

(v)=r(})

for some non-singular 2 X 2 matrix with entries in Zj, then

pa’ B 1 [ Vad
( pb' ) N detPPAP ( ba'b )

So two matrices A; and A, give isomorphic algebras if and only if

B 1
~detP

for some non-singular matrix P. So, by Theorem 5, we have one of the following

Ag PA P!

algebras

(a,b|pa — baa, pb — Abab, class 3), (5.42)
with A # 0 and A\, A\™! giving isomorphic algebras ((p + 1)/2 algebras);

(a,b|pa — baa — bab, pb — bab, class 3), (5.43)
{(a,b|pa — baa — wbab, pb — bab, class 3), (5.44)

(a,b|pa — wbab, pb — baa, class 3); (5.45)
(a,b|pa — abab, pb — baa — bab, class 3), (5.46)

where 14 4« is not a square ((p — 1)/2 algebras).

5.3 Descendants of 3.3

Algebra 3.3 is terminal.

5.4 Descendants of 3.4

Algebra 3.4 has no immediate descendants of order p5.

5.5 Descendants of 4.6

Let L be an immediate descendant of 4.6 of order p5. Then L is generated by a,b,
L is generated modulo Ls by pa,pb, and Ls has order p and is generated by p’a, p*b.
Also ba € Ls. Clearly we may assume that L3 is generated by p2a, and that pr =0.
Scaling, we may assume that ba = 0 or p2a. So we have

{a,b|ba, p*b, class 3), (5.47)

{a,b|ba — p*a, p?b, class 3). (5.48)
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5.6 Descendants of 4.7

Let L be an immediate descendant of 4.7 of order p°. Then L is generated by a,b, Lo
is generated by ba, pa modulo L3, and L3 has order p and is generated by baa, bab, p*a.
Furthermore pb € Ls.

First suppose that baa = bab = 0, so that Lj is generated by p’a and pb = ap?a
for some a. Then replacing b by b — apa we have pb =0, which gives

(a,b|baa, bab, pb, class 3). (5.49)

Next, assume that baa # 0, bab = 0. Then p?a and pb are scalar multiples of baa.
Scaling, we may assume that p?a = 0 or baa. If p’a = 0 then, scaling, we may assume
that pb = 0, baa, or wbaa. And if p’a = baa then (as above) we may assume that
pb = 0. So we have

{a,b]bab, p*a, pb, class 3), (5.50)
{a,b|bab, p*a, pb — baa, class 3), (5.51)
{a,b|bab, p*a, pb — wbaa, class 3), (5.52)
{a,b|bab, p*a — baa, pb, class 3). (5.53)

Finally, assume that bab # 0. Then, replacing a by a — Ab for suitable A we may
assume that baa = 0. We also may assume that p2a and pb are scalar multiples of
bab. Scaling, we may assume that p?a = 0, bab, or wbab. If p’a # 0 then we may
assume that pb = 0, and if p?a = 0 then we may assume that pb = 0 or bab. So we

have
{a,b|baa, p*a, pb, class 3), (5.54)
{a,b|baa, p*a, pb — bab, class 3), (5.55)
{a,b|baa, p*a — bab, pb, class 3), (5.56)
{a,b|baa, p*a — wbab, pb, class 3). (5.57)

5.7 Descendants of 4.8

Let L be an immediate descendant of 4.8 of order p°. Then L is generated by a,b, Lo
is generated by ba,pa modulo L3, and L3 has order p and is generated by baa,an.
Furthermore bab =0 and pb = ba modulo Ls.

First suppose that baa = 0. Then L3 is generated by p2a, and replacing b by
b — Apa for suitable A\ we may assume that pb = ba. So we have

{(a,b| baa, pb — ba, class 3). (5.58)
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On the other hand, if baa # 0, then p?a = abaa for some . If we let @’ = a — ab,
b’ = b then

ba' = ba,
pa’ = pa— apb= pa — aba modulo Ls,
pb' = ba modulo Ls,
ba'a = baa,
p’d = p*a— abaa =0.

So we may assume that p?a = 0. Now let

pb = ba + Bbaa,
and let @' = a + fpa. Then
ba' = ba+ Bpba = ba + Bbaa,
pa’ = pa,
ba'a’ = baa,
p?d = 0.
So we have
{a,b|p*a, pb — ba, class 3). (5.59)

5.8 Descendants of 4.9

Let L be an immediate descendant of 4.9 of order p°. Then L is generated by a,b, Lo
is generated by ba modulo L3, L3 is generated by baa modulo L4, and Ly is generated
by baaa. Furthermore bab, pa,pb € Ly.

Scaling, we may assume that bab = 0 or baaa. If pb # 0 then, then replacing a
by a — Ab for suitable A we may assume that pa = 0. So we either have pa = abaaa,
pb =0 for some «, or we have pa = 0, pb = Sbaaa for some [3.

If bab = 0, pa = abaaa, pb = 0 then scaling b we may assume that a = 0 or 1.
This gives

(a,b|bab, pa, pb, class 4), (5.60)

{(a,b | bab, pa — baaa, pb, class 4). (5.61)

If bab =0, pa = 0, pb = Bbaaa. If p = 2mod 3 then scaling @ we may assume that
B=0o0r 1, and if p=1mod3 then we may assume that 3 =0,1,w or w?. However
the case 3 =0 gives 5.60 again, so when p = 2mod 3 we have

(a,b|bab, pa, pb — baaa, class 4), (5.62)
and when p = 1mod3 then in addition to 5.62 we have

(a,b|bab, pa, pb — wbaaa, class 4), (5.63)
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{a,b|bab, pa, pb — w?baaa, class 4). (5.64)
Next, if bab = baaa, pa = abaaa, pb = 0 then letting a’ = Aa, ' = A\?b we have
blalbl — bla,ala,,
1!

pa = Mlabaaa = X"*ab'd'd'd.

If p = 3mod4 then we can choose A so that A™*a = 0,1, or w, and if p = 1 mod4
then we can choose A so that A *a=0,1,w,w? or w?. So if p=3mod4 we have

(a,b|bab — baaa, pa, pb, class 4), (5.65)
{(a,b|bab — baaa, pa — baaa, pb, class 4), (5.66)
{(a,b|bab — baaa, pa — wbaaa, pb, class 4). (5.67)

And if p=1mod4 then, in addition to 5.65 ° 5.67 we have
{(a,b|bab — baaa, pa — w’baaa, pb, class 4), (5.68)

{(a,b|bab — baaa, pa — w*baaa, pb, class 4). (5.69)

Finally, if bab = baaa, pa = 0, pb = Bbaaa then letting a’ = Aa, b’ = A\%b we have

ba't = bddd,

pb = MBbaaa = \3pbd'd'd.

So if p = 2mod3 then we may assume that 3 = 0 or 1, and if p = 1mod3 then
we may assume that 8 = 0,1,w or w?. The case B = 0 gives us 5.64 again, so if
p = 2mod 3 we have

{(a,b|bab — baaa, pa, pb — baaa, class 4), (5.70)
and if p = 1mod3 then in addition to 5.70 we have
{(a,b|bab — baaa, pa, pb — wbaaa, class 4), (5.71)

{(a,b|bab — baaa, pa, pb — w?baaa, class 4). (5.72)

5.9 Descendants of 4.10

Algebra 4.10 is terminal.

5.10 Descendants of 4.11 and 4.12

Algebras 4.11 and 4.12 are also terminal.
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5.11 Descendants of 4.13

If L is an immediate descendant of 4.13 of order p5 then L is generated by a,b.
Furthermore, L has p-class 4, and L4 has order p and is generated by p3a. We have
ba, pb € L. Replacing b by b— \p®a for suitable \ we may suppose that pb = 0. And
scaling b we may suppose that ba = 0 or pa. So we have

(a,b|ba, pb, class 4), (5.73)

{a,b|ba — p°a, pb, class 4). (5.74)

5.12 Descendants of 4.14

Algebra 4.14 is terminal.
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