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Abstract

We determine product presentations for the nilpotent Lie rings with or-
der p” where p > 7 is prime, and then use the Baker-Campbell-Hausdorff
formula to construct power-commutator presentations for the correspond-
ing groups. The number of such groups is a polynomial depending on p
whose leading term is 3p®. We complete the determination of groups with
order p’ for p = 3,5 using the p-group generation algorithm. We pro-
vide access to the resulting presentations for the groups via a database
distributed with computer algebra systems.

1 Introduction

In collaboration with Newman [13], we recently determined the groups with order
p% for p an odd prime,this using, amongst others, techniques for the construction
of nilpotent Lie rings.

Recall that the Baker-Campbell-Hausdorff formula [9] and the Lazard cor-
respondence [4] establish an isomorphism between the category of nilpotent Lie
rings with order p™ and nilpotency class at most p — 1 and the category of finite
p-groups with order p™ and class at most p — 1; in particular, since a group of
order p™ has class at most n — 1, this isomorphism applies if p > n. Briefly, if we
have a nilpotent Lie ring L with order p™ (for p > n), then we can define a group
product on L in terms of the Lie addition and Lie multiplication, turning L into
a group with order p”. Similarly, if we have a group G with order p™ then we can
define Lie addition and Lie multiplication on G in terms of the group product,
turning G into a nilpotent Lie ring.

In [13] we developed the Lie ring generation algorithm to determine the nilpo-
tent Lie rings with order p"; this is an analogue of the p-group generation algo-
rithm described in [14]. We applied this algorithm to determine the nilpotent Lie
rings with order p® and then exploited the Lazard correspondence to obtain the
p-groups with order p® for p > 7.
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We now further develop and extend those ideas to determine the p-groups
with order p” for p > 7; we also construct directly the groups with orders 37
and 5. The 2328 groups with order 27 were determined in [10]. For a detailed
history of the determination of the groups with a given order, see Besche, Eick
and O’Brien [1].

Our principal result is the following.

Theorem 1 For p > 5 the number of groups with order p” is

3p° + 12p* + 44p® + 170p* + 707p + 2455
+(4p? + 44p + 291) ged(p — 1,3) + (p* + 19p + 135) ged(p — 1, 4)
+(3p+31)ged(p—1,5) +4ged(p—1,7) + 5ged(p — 1,8) + ged(p — 1, 9).

There are 9310 groups with order 37 and 34297 groups with order 5.

Earlier Wilkinson [18] determined the groups with order p” and exponent
p > 5. His published list has three errors:

1. Group 117 is redundant, and is isomorphic to 115 or 116 according to the
value of the residue p mod 4.

2. There are two missing groups from the family 177, 178, 179 if p = 3 mod 4.
3. There are two missing groups from the family 183, 184, 185 if p = 1 mod 4.

These errors are not newly discovered; they were already identified by Newman in
Zbl. 0651.20025. Hence the correct number of groups with order p” and exponent
pis Tp+ 174 + 2 ged(p — 1, 3). We observe that the number of groups with order
p™ and exponent p is first dependent on p for n = 7.

Our results agree with those of Blackburn [2, §4] for certain metabelian groups
of maximal class. Our results for the prime 3 agree with independent computa-
tions performed by Newman (private communication) and confirm that there are
99 5-groups of maximal class and order 57 (see [11]).

We recall from [13] some notation and definitions. Let P be a p-group. The
p-group generation algorithm uses the lower p-central series, defined recursively
by Pi(P) = P and Piy1(P) = [Pi(P), P]P;(P)? for i > 1. The p-class of P is the
length of this series. Each p-group P, apart from the elementary abelian ones,
is an immediate descendant of the quotient P/R where R is the last non-trivial
term of the lower p-central series of P. Thus all the groups with order p’, except
the elementary abelian one, are immediate descendants of groups with order p*
for £ < 7. All of the immediate descendants of P are quotients of a certain
extension of P; the isomorphism problem for these descendants is equivalent to
the problem of determining orbits of certain subgroups of this extension under
an action of the automorphism group of P. Not all p-groups have immediate
descendants, those that do are capable. If () is an immediate descendant of P,
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then P is a parent of Q. If @ is a group of p-class ¢ and Q/P. o(Q) = P, then Q
is a grandchild of P.

Following the ideas of [13], we used the Lie ring generation algorithm to
determine all of the nilpotent Lie rings with order p” for all p > 5, and to obtain
product presentations (see [7]) for them. We then applied the Baker-Campbell-
Hausdorff formula to “translate” these presentations into group presentations.

In this way we obtained a list of presentations for the groups with order p’
for p > 5. The algorithm also provided the 3-groups of p-class at most 2 and
the 5-groups of p-class at most 4. To complete the classification of all groups
with order p”, we then constructed the remaining 3-groups and 5-groups using
our implementation of the p-group generation algorithm.

A significant new feature arises in constructing nilpotent Lie rings with order
p’. While the nilpotent Lie rings with order p® all arise as immediate descendants
of one of the 42 capable nilpotent Lie rings with order dividing p°®, some with
order p” arise as descendants of parameterized families of nilpotent Lie rings with
order pb. In particular, the number of capable rings with order p® depends on
p in eight of the 42 cases (see Table 2). In these cases, we process the family
of capable Lie rings with order p® as uniformly as possible. We illustrate the
resulting computations by presenting two examples in Section 3.

Recall Higman’s long-standing PORC conjecture [8]: if, for a fixed fixed n,
f(p) is the number of isomorphism classes of groups with order p™, then f is a
polynomial on each residue class modulo some fixed number. Theorem 1 estab-
lishes this conjecture for the groups with order p”. In light of Higman’s work, we
observe that the majority of groups with order p*, for k¥ = 6,7 and all primes p,
have p-class 3. This is no longer true for groups with order 28: of the 56092, a
total of 30078 have p-class 2 (see, for example, [6]).

We have created a database of parametrised presentations for the groups with
order p” for p > 3. The database is currently designed for use with MAGMA [3];
the data can readily be incorporated into other computer algebra systems.

We describe the database in Section 4, and in Section 5 discuss steps taken
to verify the results.

2 The main result

In seeking to organise and present our work, we rely heavily on the organisation
used in [13].

For p > 5, there are 42 groups with order p* for k < 6 which have immediate
descendants with order pS.

In Theorem 2 we record a finite presentation for each such capable group (or
parent). While these presentations have appeared in [13], we list them here since
they are central to our claims.



The finite presentation and the listed p-class can be used to construct a power-
commutator presentation. (For example it can be supplied with a specific prime
p to the p-quotient algorithm [12].)

Theorem 2 [13, Theorem 2| For p > 5, the groups with order dividing p® which
have immediate descendants with order p® are the following where w is a primitive
root of unity mod p:

~

a | class 5)

a,b| [b,al,class 2)

a,b| b, class 2)

a,b | bP[b,a]™t, class 2)

a,b | class 2)

a,b| a?, b?, class 3)

a,b| aP[b,a,a]™t, b", class 3)
a,b| aP[b,a,b] !, bP, class 3)

© NS> A e

a,b| a?[b,a, b, bP, class 3)

~
S

a,b | a”b,a,a]™t, bP[b, a, b], class 3)
12. {a,b| [b,a], b**, class 3)
13. {a,b | [b,ala™®’,b"", class 3)
14.
15.

a,b|[b,a,al,b,a,b], b’ class 3)
a,b | [b,a,b],a?”, b?, class 3)

16. {(a,b| [b,a,b],a?”, b?[b, a,a]", class 3)
17. {a,b | [b,a,b],a?”, b7[b, a,a] ¥, class 3)
18. {a,b | [b,a,a],a?”, b?, class 3)
19. {a,b | [b,a,a],bP[b,a]™*, class 3)

20.

{
{
{
{
{
{
{
{
{
{
11. {a,b| a?[b, a,b],b?[b, a,a], class 3)
{
{
{
{
{
{
{
{
(a,b | [b, a], 07, class 4)
{

21. {a,b]| [b,a,b],a?, bP, class 4)



22. {(a,b| [b,a,b][b,a,a,a]™", aP, bP, class 4)

23.
2J.
25.

a,b, c| class 1)

a,b,c| [c,al,[c,b],a?, bP, P, class 2)
a,b,c| [b,al,|c,al,l[c, b], P, class 2)
26. (a,b,c]| [c,a],][c,b],bP, P, class 2)
27. {a,b,c | [c,al,[c, b],b°[b, a] ™, cP, class 2)
28. {(a,b,c | [c,al,[c,b],b7,cP[b,a] !, class 2)
29. {a,b,c| [c,a],][c,b],aP,bP, class 2)
30. {(a,b,c | [c,al,[c, b],aP[b,a]™", bP, class 2)
31. {a,b,c| [c,b],aP, bP, P, class 2)
33. {a,b,c | [c,b],aP, bP[b, a]™, cP, class 2)
34. {a,b,c|[c,b],a?, bP[c,a] !, P, class 2)
35. {(a,b,c|[c,b],aP[b,a]™t, bP[c,a] L, P, class 2)
36. {(a,b,c| [b,a],|c,al,][c,b],bP, cP,class 3)
37. {a,b,c| [b,a,b],|c, al,lc,b],aP,bP, P, class 3)
38. {(a,b,c| [b,a,b|,[c,al,[c,b][b,a,a]™t,aP, b", cP, class 3)
39. {a,b,c,d | class 1)
40.
/1.

42.

{
{
{
{
{
{
{
{
{
{
32. (a,b,c | [e,b],a?[b,a] ", b7, ¢, class 2)
{
{
{
{
{
{
{
(a,b,c,d | [b,a],c,al, |d,al, ¢, b],[d, ], [d, ], b7, ¢, dP, class 2)
(a,b,c,d | [c,a], [c,0],[d, ], [d,b], [d, c], a?, b7, P, dP, class 2)
{

a,b,c,d, e | class 1)

Theorem 3 Let p > 5 be an odd prime. For each of the 42 groups with order
dividing p® which have immediate descendants with order p’, Table 1 lists the
number of these descendants.



# | Number of immediate descendants

34

5| p>+8p+25

6| p+6+ (P> +3p+10)ged(p —1,3)
21 [ 2p2 +p+3+2(p+1)ged(p —1,3) + (2p + 4) ged(p — 1,4) + ged(p — 1,8)
22 [ pP+p>+p—2+2gcd(p—1,3) +ged(p—1,4) + (p+ 1) ged(p — 1, 5)
23 | p+ 14
25 | p+8
26 | 4p? + 26p + 107 + 5ged(p — 1,3) + (p + 4) ged(p — 1, 4)
27 | 2p+ 7
29 | 3p® + 17p + 53 + ged(p — 1,3) + ged(p — 1,4)
31 | 2p° + Tp* + 19p° + 49p? + 128p + 256 + (p? + Tp + 29) ged(p — 1, 3)

+(p* 4+ Tp +24) ged(p — 1,4) + (p + 3) ged(p — 1,5)

32 [ 3p2+12p+ 14+ (p+2) ged(p — 1,4)
33 | p* +2p3 + 5p% + 14p
34 | 3p> +6p> +6p+ 11+ (p+7)ged(p—1,3) + (p+ 1) ged(p — 1,4) + ged(p — 1,5)
39 | p° +2p* + Tp3 + 25p% +88p + 270 + (p +4) ged(p — 1, 3) + ged(p — 1,4)
41 | p* +5p> + 19p? + 64p + 140 + (p + 6) ged(p — 1,3) + (p + 7) ged(p — 1,4) + ged(p — 1,5)
42 | p? +15p + 125

Table 1: The immediate descendants with order p’

Theorem 4 Let p > 5 be an odd prime. For each of the 42 groups with order at
most p°, Table 2 records its number of immediate descendants with order p®, and
the number of these which are capable. For each group in turn, Table 3 lists the
number of its grandchildren with order p”.

To obtain the complete list of groups with order p” we include the nine 6-

generator groups of p-class 2 and the elementary abelian group with this order.

The statements of these theorems can be modified to provide partial results for

the primes 3 and 5. In particular, the Baker-Campbell-Hausdorff formula applies
when the corresponding p-groups are regular. Hence, with just two exceptions,
the numbers of descendants given in Tables 1, 2 and 3 are valid when the prime p is
greater than the p-class of these groups; for the prime 3, the number of immediate
descendants of #39 with order 37 is 1361 and the corresponding number for #42
is 178. As we remarked in the introduction, we completed the classification of the
remaining 7744 groups with order 37 and p-class at least 3, and the 1302 groups
with order 57 and p-class at least 5, using the p-group generation algorithm.

Theorem 1 is now an immediate consequence. A detailed account of many of

the calculations which underpin this theorem is available in [17]. We illustrate
the approach in the next section.




# Number of immediate descendants with order p° Number capable

1 1 1

2 2 2

3 p+15 16

4 1 1

5 p+8 2

6 5+3gced(p—1,3) 3

7 p+gedip—1,3)+1 p+gedip—1,3)+1

8 1+ged(p—1,3)+ged(p—1,4)/2 | 1 +ged(p— 1,3) +ged(p — 1,4)/2

9 1+ged(p—1,3)+ged(p—1,4)/2 | 1 +ged(p— 1,3) + ged(p — 1,4)/2
10 p+1 p+1
11 p p
12 2 2
13 1 0
14 4 1
15 2ged(p—1,3) +ged(p—1,4) + 3 2ged(p—1,3) + 2
16 3(p+1)/2 (p+1)/2
17 3(p+1)/2 (p+1)/2
18 2ged(p—1,3) +ged(p—1,4)+3 ged(p—1,4)+ 3
19 2 1
20 2 1
21 3ged(p—1,4) +2ged(p—1,3) + 7 2
22 | 2p+2ged(p—1,3) + ged(p —1,4) + 2ged(p — 1, 5) 1
23 3p + 27 3p + 27
24 3p? +13p+ 37 + ged(p — 1,3) + ged(p — 1,4) 5p + 37+ ged(p — 1,4)
25 4 2
26 23 9
27 ) 1
28 4 2
29 12 3
30 p+1 1
31 35 3
32 % + 13 2p + 9
33 dp + 8 4
34 2p+3ged(p— 1,3) + ged(p — 1, 4) + 13 11
35 3 0
36 3 1
37 dged(p—1,3) +2ged(p—1,4) + 11 4
38 2gcd(p—1,3)+4 1
39 dp + 48 24
40 4 1
41 18 2
42 7 2

Table 2: Number of immediate descendants with order p® of the 42 parents




# | Number of grandchildren with order p” and parent with order p°
1 1
2 |4
3 | 15p+41+16ged(p —1,3) +4ged(p — 1,4)
4 |2
5 | 5p+10+2ged(p — 1,3) + ged(p — 1,4)
6 | p>+3p°+8p+18+5ged(p—1,3) + (p+5)ged(p — 1,4)
+3ged(p — 1,5) + 2ged(p — 1,8) + ged(p — 1,9)
7 | 3p°+4p+ (p+1)ged(p—1,3) +ged(p — 1,4)
8 | (@ +2p+1+(p+5)ged(p—1,3) + (p+3)ged(p —1,4))/2
9 [@*+2p+1+(p+5)gcd(p—1,3) + (p+3)ged(p — 1,4))/2
10 | p+3
11| p+1
1213
1310
14 | 4
15 |4p+5+(p+7) ged(p—1,3) + 3ged(p — 1,4) + 2ged(p — 1,5)
16 | (p+1)/2
17| (p+1)/2
18 | Tp+9+4ged(p—1,3) + 6ged(p — 1,4) + 2ged(p — 1, 5)
19 | 2
20 | 2
21 |4p+3+2ged(p—1,3) +4ged(p—1,5) + ged(p — 1,7) + ged(p — 1,8)
22 | 2p? +p+2pged(p — 1,3) + pged(p — 1,5)
23 | 2p% +63p 4+ 362 + (p + 19) ged(p — 1,3) + 5ged(p — 1,4) + ged(p — 1, 5)
24 [ p* +4p3 + 17p% +39p + 72+ (p® + 9p + 47) ged(p — 1, 3)
+(2p + 8) ged(p — 1,4) +2ged(p — 1,5) + ged(p — 1,7)
25 | 6
26 | 5p+ 49+ 11ged(p —1,3) + 4ged(p — 1,4)
27 | 5
28| 7
29 | 2p+ 20+ 7ged(p —1,3) + 3ged(p — 1,4)
30 | p+1
31 | p> +9p+36+ (p> +5p +29) ged(p — 1,3) + (p + 7) ged(p — 1,4)
+ged(p—1,7) + ged(p — 1,8)
32| 10p+ 16+ (2p+ 7) ged(p — 1,3) + 2ged(p — 1,4) + 2ged(p — 1,5)
33 | p3+5p? +13p + 6+ 3ged(p — 1,3)
34 | 2p + 14p + 10+ (2p + 8) ged(p — 1,3) + Tged(p — 1,4) + ged(p — 1, 5)
3510
36 | 3
37 | p> +10p +34 + (p+ 14) ged(p — 1,3) + 13ged(p — 1,4) + 6ged(p — 1,5) + ged(p — 1,7)
38| p?+Tp+3+2ged(p—1,3) +3ged(p — 1,4) +ged(p — 1,5)
39 | p3 +13p% + 96p + 595 + (3p + 21) ged(p — 1,3) + (p + 11) ged(p — 1,4) + ged(p — 1, 5)
40 | 4
41 | 35+ (p+15)ged(p — 1,3) + 4ged(p — 1,4)
42 | 30

Table 3: The number of grandchildren with order p” and parent with order p°




3 Two illustrative examples

As we indicated in the introduction, some of the nilpotent Lie rings with order p’
arise as descendants of parameterized families of nilpotent Lie rings with order
p’. We present two examples, which illustrate the resulting complexity. We refer
the reader to [13] for a description of our method, and other sample calculations.

We recall that the lower p-central series of a Lie ring L is defined recursively by
L, =L, and for ¢ > 1weset L.y = L.L+pL,.. (Here L.Lis (ab|a € L., b€ L).)
The ideal L. consists of all linear combinations of terms of the form

2 c—1
a10a9 ...0c Pa1ay...0c_1, P a109...0¢c—2,..., P ai.

We say that L has p-class c if L..; = {0}, L. # {0}. If L is a d-generator Lie
ring, then its p-covering ring M is also d-generator and has a central elementary
abelian ideal Z such that M/Z = L and every immediate descendant of L is
isomorphic to M/T for some T < Z.

3.1 Some grandchildren of #7

Consider the following 1-parameter family of nilpotent Lie rings with order p®:
{a,b| pa — baa — \babb, pb — babb, class 4) (0 < A\ < p).

These arise as immediate descendants of the Lie ring corresponding to group #7.
The first step in computing the immediate descendants of these Lie rings is to
compute their p-covering rings. Let

L = {a,b| pa — baa — Ababb, pb — babb, class 4)

for 0 < A < p. Then L has order pb. It is straightforward to see that L/L,
has order p? and is generated by a + Lo, b+ Ly, that Ly/L3 has order p and is
generated by ba + L, that L3/L, has order p* and is generated by baa + Ly,
bab + L4, and that L, has order p and is generated by babb. The p-covering ring
of L is the largest 2-generator Lie ring M having an ideal Z with M/Z = L,
such that Z is contained in the centre of M, and such that pZ = {0}. It is easy
to see that M has order p. If we let a,b denote the generators of M, then Z
has order p® and is generated by babba, pa — baa — Ababb, pb — babb and Mj is
generated by babba. The immediate descendants of L are of the form M /T for
some allowable subring T' < Z. This is a proper subring T" of Z with the property
that T'+ M5 = Z. There is a natural action of the automorphism group of L
on the set of allowable subrings of Z, and two immediate descendants, M/S and
M/T, of L are isomorphic if and only if S and 7 lie in the same orbit under this
action.



If T is an allowable subring of Z then T has order p? and is generated by
pa — baa — Ababb — pbabba, pb — babb — vbabba for some u, v. The corresponding
immediate descendant of L has order p’ and presentation

{a,b]| pa — baa — \babb — pubabba, pb — babb — vbabba, class 5}.

We now need to determine when two of these presentations give isomorphic
Lie rings, and so we compute the automorphism group of L. This group has
order p8. If @ is an automorphism of L then af = a + ¢, b0 = b + d for some
¢,d € Lo, and if ¢, d are arbitrary elements in L, then there is an automorphism
of L mapping a to a + ¢ and mapping b to b+ d. We let

K = {a,b| pa — baa — \babb — ubabba, pb — babb — vbabba, class 5),

and we consider elements a',0 € K where «' = a+ ¢, b = b+ d with ¢,d € K.
It is straightforward to check that

ba't't'a = babba,
pb' —b'd'b'b = pb— babb,

and so different values of the parameter v give different algebras. But if we let
b =b, ' = a+ kbab then we have

pa' —b'd'ad — \'a'b'b = pa — baa — \babb + 2kbabba,

and taking k = —p/2 we have pa’ — b'a’'a’ — A\b'a’b'b’ = 0. It follows that for each
value of A we have p descendants with order p:

(a,b| pa — baa — Ababb, pb — babb — vbabba, class 5) (0 < v < p).

As X ranges over 0,1,...,p — 1, we obtain a 2-parameter family of Lie rings.

3.2 Some grandchildren of #23

Consider the 1-parameter family
{(a,b,c|pa— ca, pb — pch, pc, class 2)

where 0 # p € Z, and p, ! define isomorphic Lie rings. For each value of p we
obtain a Lie ring of class 2 and order pS.

These Lie rings are immediate descendants of the Lie ring corresponding to
group #23. For such a ring L, the Frattini quotient L/L, has order p® and is
generated by a + Lo, b+ Lo, ¢+ Lo, and Ly has order p? and is generated by ba,
ca, cb.
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Then M, the p-covering ring of L, has order p'2, and the p-multiplicator Z
has order p® and is generated by

baa, bab, cab, pa — ca, pb — uch, pc.

The subring Mj3 is generated by baa, bab and cab and we have

1 1
caa = 0, bac = s cab, cac =0, cba = ——cab, cbb = cbc = 0.

Every immediate descendant of L with order p’ is isomorphic to M/T for some
subring T of Z with order p® with T + (baa,bab,bac) = Z. To compute the
isomorphism classes of immediate descendants with order p”, we have to compute
the action of the automorphism group of L on the allowable subrings 7" of this
form. Here the situation is more complicated than in the first example, since there
are three different possibilities for the automorphism group of L, depending on
the value of . Let 6 be an automorphism of L, and suppose that af = o', b =V,
cd = ¢, where

ad = aa+ b+ e,
b = da+eb+ e,
d = pa+ob+rTc

modulo Ly. We have pc’ = 0 and this implies that p = 0 = 0. To ensure that
pa’ = d'a’ we need

O((].—T) :ﬂ(/'l’_T) :07
and to ensure that pb’ = uc'b’ we need

(1—pr)=e(l—7)=0.

Hence, if ;4 = 1 then we have

ad = oaa+ pb+ e,
b = da+eb+ e,
d = ¢

modulo L,. But if 4 = —1 then we have

a = oa-+c,

b = eb+nc,

d = ¢
modulo Ly or

ad = pb+ e,

¥ = da—+nc,

d = —c
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modulo Ly. If 4 # £1 then we have

!

a = oa-+c,
b = eb+nc,
d = ¢

modulo L.

Setting 1 = 1 and pu = —1, we obtain two Lie rings with order p%; the number
of immediate descendants with order p is 5 and 6+ ged(p—1,3) +ged(p—1,4)/2
respectively. The calculations are similar to those in [13].

We focus on the case u # +1, and seek to construct uniformly the immediate
descendants of the (p — 3)/2 capable rings L with order p®.

Let K be an immediate descendant with order p” of such an L. Then Kj is
generated by baa, bab and bac, with cab = ﬁbac. If ', 0/, ¢ generate K and if

!

pa' —cd', pb — udb', pd € K3 then

a = oa+ e,
b = eb+nc,
d = ¢
modulo K5 and
2
Vad'd = o’cbaa + iozfyebac,
g+ 1
2 1
Vo'l = agbab+ 2 i aenbac,
g+ 1
ba'd = achac.

First consider the situation when bac # 0. If u # —2,—1/2 then replacing
a, b, c by suitable a',b', ¢, we can take baa = bab = 0. If u = —2 then we can take
bab = 0 and baa = 0 or bac, and if 4 = —1/2 we can take baa = 0 and bab = 0 or
bac.

If bac = 0 then we can take baa = 0 or bab = 0 or bab = baa.

3.2.1 Casel

Let baa = bab = 0 and let K3 be generated bybac. Adding suitable scalar
multiples of ba to a, b, c we can take pa — ca = pb — ucb = pc = 0, so we have one
Lie ring

(a, b, c| baa,bab, pa — ca, pb — pcb, pc, class 3).

12



3.2.2 Case 2

Let 4 = —2 and let bab = 0, bac = baa and let K3 be generated by baa. Adding
suitable scalar multiples of ba to a, b, c we can take pa — ca = pb+ 2¢b = pc = 0,
so we have one Lie ring

{(a, b, c| bab, bac — baa, pa — ca, pb+ 2¢b, pc, class 3).

3.2.3 Case 3

The Lie ring with 1 = —1/2 is isomorphic to the Lie ring L with p = —2.

3.2.4 Case 4

Let baa = bac = 0 and let K3 be generated by bab. Adding a suitable scalar
multiple of ba to ¢ we can take pb — uchb = 0. If a’, V', ¢ generate K and b'a’a’ =
b'a'¢’ = 0 then

a = oa+ e,
V¥ = eb+nc,
d = ¢

modulo K, and
Va't = asbab,
pa —cdd = a(pa— ca)+ ypc,
pd = pc
so we have four Lie rings
(a, b, c| baa, bac, pa — ca, pb — ucb, pe, class 3),

{a, b, c| baa, bac, pa — ca — bab, pb — uch, pc, class 3),

{(a,b, c| baa, bac, pa — ca — wbab, pb — uch, pc, class 3),

{(a, b, c| baa, bac, pa — ca, pb — pcb, pc — bab, class 3),

where w is a primitive element in Z,,.

3.2.5 Case 5

Let bab = bac = 0 and let K3 be generated by baa. Adding a suitable scalar
multiple of ba to ¢ we can take pa — ca = 0. If o', ¥/, ¢ generate K and b'a’t) =
b'a'¢’ = 0 then

a = oa+ e,
bV = eb+nc,
d = ¢
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modulo Ky and

Va'd = o’cbaa,
pb' — pct’ = e(pb— pcb) + npe,
pc = pc

so we have four Lie rings
{a,b, c| bab, bac, pa — ca, pb — uch, pec, class 3),
{a, b, c| bab, bac, pa — ca, pb — pchb — baa, pc, class 3),
{(a, b, c| bab, bac, pa — ca, pb — uch — wbaa, pc, class 3),
{a, b, c| bab, bac, pa — ca, pb — uch, pc — baa, class 3),

where w is a primitive element in Z,.

3.2.6 Case 6

Finally, let bac = 0, bab = baa, and let K3 be generated by baa. Adding a suitable
scalar multiple of ba to ¢ we can take pa — ca = 0. If o', V', generate K and
ba'c =0, bad't =bda then

a = oa+ e,
V¥ = ab+ne,
d = ¢
modulo K, and
Va'd = o’baa,

pb — ucdb = a(pb — uch) + npc,
pc = pc
so we have 3 + ged(p — 1, 3) Lie rings
{a,b, c| bab — baa, bac, pa — ca, pb — uch, pc, class 3),

{(a, b, c| bab — baa, bac, pa — ca, pb — pch — baa, pe, class 3),

(a, b, c| bab — baa, bac, pa — ca, pb — pcb — wbaa, pe, class 3),

{(a, b, c| bab — baa, bac, pa — ca, pb — pch, pc — baa, class 3),
(a, b, c| bab — baa, bac, pa — ca, pb — pch, pc — wbaa, class 3) (p = 1 mod 3),
{a,b,c]| bab — baa, bac, pa — ca, pb — pch, pc — w?baa, class 3) (p = 1 mod 3)

where w is a primitive element in Z,.
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4 Providing access to the presentations

The groups with order 27 are already available in electronic form in the SMALL-
GROUPS library described in Besche et al. [1]. They can be accessed through the
computer algebra systems GAP [5] and MAGMA [3].

We have prepared a database for the groups with order p” for p odd based
on our determination. The primary subdivision of the database is based on the
capable Lie rings with order dividing p°. If one of the 42 has a fixed number of
capable descendants with order p%, then, for each, there is a function which, given
a prime p > 5, produces a list of explicit finite presentations for its immediate
descendants with order p”. For a parameterized family with order p®, we usually
provide a single function which constructs such a list for all of the groups in this
family.

The presentations are usually obtained by running over a list of parameters:
these include the prime, the set {1,w} where w is a (fixed) primitive root, and
transversals of various powers in the multiplicative group of Z,. (Of course this
implies that the explicit descriptions depend on “easy” computations in Z,.)
Using the p-quotient algorithm, we construct a power-commutator presentation
[16] for the group with order p” defined by such a finite presentation.

A user can construct each group in sequence, storing and investigating only
one group at a time. Since the number of groups with order p is already 113147
for p = 7, this is clearly both a desirable and necessary feature. It takes approx-
imately 10 minutes to construct the list for p = 7 using MAGMA V2.11-8 on a
Pentium IV 1.1 GHz processor.

On four occasions, we have not been able to write down a “concrete” solution
for the set of immediate descendants with order p” of a given Lie ring. We consider
one example in detail. In constructing the 4-generator Lie rings of p-class 2, we
considered Lie rings L generated by a, b, ¢, d, subject to the relations da = ¢b = 0,
db = ca. This is one of 13 subcases, partitioned according to the structure of
L? = (ab|a,b € L). Here L? is generated by ba, ca and dc, and pL < L%, Tt
is fairly easy to see that if a/,V',c,d generate L and satisfy d'a’ = ¢'b' = 0,
d'b' = cd’, then (modulo L?)

!

a = ala+ BAb+ Buc— aud,
b = ~yla+ 0\b+ duc— yud,

¢ = ~va+dvb+ déc— v&d,
d = —ava— Bvb— Béc+ akd

with ad — By # 0 and A{ — pv # 0. (We treat these scalars as elements of Z,.)
It is straightforward to show that

va A2 2 P ba
da | =@ —=0v)| 2w X+u pé ca
d'cd v: wE €2 de
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Since pL < L? we need to give relations expressing pa, pb, pc, pd as linear combi-
nations of ba, ca, dc. We can express these relations in the form

pZ ba
gc =A| ca
d dc

where A is a 4 x 3 matrix with entries in Z,. The isomorphism classes of
4-generator Lie rings of p-class 2 and order p’ satisfying the relations da = cb = 0,
db = ca, correspond to the orbits of 4 x 3 matrices A under transformations of
the form

a ﬂ)‘ /BM QU )\2 2A,U, ,U’Q -1
A (@b—py)t | A 2 0m T LAl N Nt ue

24 67/ 56 _’Yf 1/2 21/6 62

—av —fv —B€ af

We can prove that the number of orbits is 550 when p = 3 and

P>+ pt+4p* +6p° +18p+19 if p=1mod3,
PP +pt+4p*+6p +16p+17 if p=2mod3,

but we were unable to write down an explicit parameterised description valid for
all primes for the set of orbit representatives. Hence, when writing down the finite
presentations for these immediate descendants with order p”, we compute directly
a set of representatives for the given p. While this computation is extremely fast
for small primes, taking less than one second for the prime 3, the time taken to
compute such a set of representatives grows rapidly with p.

5 Accuracy of results

We have taken various steps to ensure that the enumeration and the resulting
database are accurate.

We used our implementations of the p-group generation algorithm and the
enumeration algorithm of Eick & O’Brien [6] to confirm for various primes the
numbers of descendants quoted in Tables 1 and 3. We confirmed the figures in
Table 1 for #31 for p < 19 and for #41 for p < 11; and the figures in Table 3 for
#23, #24,#34 and #39 for p < 23. In all other cases, we confirmed the claims
for p < 31. Observe that the primes can be partitioned according to the values of
the residues which occur in the formulae for the various number of descendants.
Where possible, we considered additional larger representative primes.

We used invariant calculations and the isomorphism algorithm of O’Brien [15]
to demonstrate that the database descriptions of the immediate descendants with
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order p” of 39 of the 42 capable groups with order dividing p® is complete and
irredundant for p < 13; this calculation was completed only for p < 7 for each
of #31, #39 and #41. In all cases, we demonstrated that this property holds
for the database descriptions of grandchildren; in many cases, we established its
veracity for p < 59.
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