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Groupsof order p*for k=1,2,....,6
B -

p=2|p=3|p=9d
p |1 1 1
P’ | 2 2 2
p> |5 5 5
pt | 14 15 15
p° | 51 67 U
p° | 267 | 504

u=2p+61+2gcd(p—1,3)+ged(p —1,4)

u — 3p°+39p+344+24 ged(p—1, 3)+11 ged(p—1, 4)+2 ged (p—1, 5)J
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For p > 5 the number of groups of order p” is

3p° 4+ 12p* + 44p3 4+ 170p + 707p + 2455
+(4p? + 44p + 291) ged(p — 1, 3)

+(p? +19p + 135) ged(p — 1, 4)

+(3p +31) ged(p — 1, 5)

+4ged(p—1,7) + 5ged(p — 1, 8)

L +ged(p — 1,9) J
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Baker-Campbell-Hausdor ff Formula
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Baker-Campbell-Hausdor ff Formula
B -

e?.e¥ = e% where
1 1 1 1

720 Yy, r,r,r,x 180 Yy, r,r,xr,Yy —|—180 y,r,r,y,y

b |- ] 7)) = 5,29, [y, ) +
— |y r — — Y. T. X r|| — —\y, T X .
720 ya 7y7y7y 120 y7 R y7 360 y? 7y7 y’

e¥ e’ = e¥ where

1 1
w o= |y,x]+ 5[%«’13,56] + 5[?/,:13,?;]
1 1 1
L +6[y,x,x,:13]+Z[y,:1:,:1;,y]+6[y,:13,y,y]+... J
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If L Is a Lie algebra define a group operation o on L by
setting

-

1
12

1

b
b.a,a] = 35

1
aob:a+b—§[b,a]+ b,a, b+ ...
This works if L Is a nilpotent Lie algebra over Q, orif L is a

Lie ring of order p* and L is nilpotent of class at most p — 1.

o |
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If G Is a group under o and if a,b € G define

1

o[b,a,a]," wab]

Ql\)lr—l

a+b=aobolb a

MML—wabowaa] [baﬂ

o |
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If G Is a group under o and if a,b € G define T

1

a+b=aobolbal}olba,al," [bab]

Ql\)lr—l

1 1

b,al, = [b,alg o [b,a,a],? o[b,a,bl,’

We need G to be nilpotent, and we need unigue extraction
of roots. So this works if G Is a nilpotent torsion free
divisible group, or If G Is a finite p-group of class at most
p— 1.
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If G Is a group under o and if a,b € G define T

1

o[b,a,a]," wab]

Ql\)lr—l

a+b=aobolb a

1 1

b,al, = [b,alg o [b,a,a],? o[b,a,bl,’

This gives the Mal'cev correspondence between nilpotent
Lie algebras over Q and nilpotent torsion free divisible
groups. It also gives the Lazard correspondence between

nilpotent Lie rings of order p* and class at most p — 1 and
finite groups of order p* and class at most p — 1.

o |
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Classify groups of order p’ for p > 5 by classifying nilpotent
Lie rings of order p’.

Use the Lie ring generation algorithm to classify the Lie
rings. (Analogous to the p-group generation algorithm.)

Then use the Baker-Campbell-Hausdorff formula to
translate Lie ring presentations into group presentations.

o |
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L ower exponent-p-central series

-

1 = L
Ls = pLo+|La, L]

Ln—l—l — an + [Lna L]

a,b
ba, pa, pb

baa, bab, pba, p*a, pb
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has p-class cif L..; = {0}, L. # {0}.

Classify the nilpotent Lie rings of order p* according to
p-class.

If L has p-class ¢ > 1 then we say that L is an immediate
descendant of L/L..

To classify nilpotent Lie rings of order p*, first classify all
nilpotent Lie rings of order p™ for m < k.

If L has order p™ (m < k) find all iImmediate descendants of
L of order p*.

o |
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Thep-coveringring

-

Let M be a nilpotent d-generator Lie ring of order p™

The p-covering ring M is the largest d-generator Lie ring
with an ideal Z satisfying

-

N

® 7 < ((M)
9 pZ ={0}
® M/Z~M

o |
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If M has p-class ¢ then every immediate descendant of M Is
of the form M /T for some T < Z such that

T+ My =2

If o IS an automorphism of M then « lifts to an
automorphism o* of M.

M/S = M/T

If and only if 7' = Sa* for some «.

o |
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An example

-

(a,b|pa — baa — xbabb, pb — babb, class = 4)

(0 <z <p)



An example

o N

(a,b|pa — baa — xbabb, pb — babb, class = 4)

(0 <z <p)
My Macma program computes this as a Lie algebra over
Z\x,y, 2,21, T2, ...,T12].

o |
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An example
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(a,b|pa — baa — xbabb, pb — babb, class = 4)

(0 <z <p)

My Macma program computes this as a Lie algebra over
Z\x,y, 2,21, T2, ...,T12].

The power map u — pu IS handled as a linear map from L to
L satisfying the relations (pu)v = p(uv) for all u,v € L.

o |
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An example

o N

(a,b|pa — baa — xbabb, pb — babb, class = 4)

(0 <z <p)

My Macma program computes this as a Lie algebra over
Z\x,y, 2,21, T2, ...,T12].

The power map u — pu IS handled as a linear map from L to
L satisfying the relations (pu)v = p(uv) for all u,v € L.

a1 =a,ay =>0

a3z = ba

a4 = baa, as = bab
ag = babb

o |
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Computing the automor phism group

-

Consider an automorphism given by

-

a1 F 101 + T202 + 303 + T404 + T505 + TeaAe
as +— IT7a1 + xr8a9 + x9asz + r1p0a4 + Tr1105 + T1206

o |
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Computing the automor phism group

-

Consider an automorphism given by

-

a1 F 101 + T202 + 303 + T404 + T505 + TeaAe
as +— IT7a1 + xr8a9 + x9asz + r1p0a4 + Tr1105 + T1206

The program gives the following conditions on x1, xo, ..., 12
class by class.

o |
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Computing the automor phism group

-

Consider an automorphism given by

-

a1 F 101 + T202 + 303 + T404 + T505 + TeaAe
as +— IT7a1 + xr8a9 + x9asz + r1p0a4 + Tr1105 + T1206

At class 2, nothing.

o |

The groups of order p7 -p.13



Computing the automor phism group

-

Consider an automorphism given by

-

a1 F 101 + T202 + 303 + T404 + T505 + TeaAe
as +— IT7a1 + xr8a9 + x9asz + r1p0a4 + Tr1105 + T1206

At class 3:
—:C%:Eg + x1x0007 +1 = 0
—T1r9x8 + x%:w = 0
zr = 0

This gives 25 = 27 = 0, 13 = 27 .

o |
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Computing the automor phism group

-

Consider an automorphism given by

-

a1 F 101 + T202 + 303 + T404 + T505 + TeaAe
as +— IT7a1 + xr8a9 + x9asz + r1p0a4 + Tr1105 + T1206

Set 2o = 7 = 0, and then at class 4 we have

—$%CE8 +x1 = 0
—x:z:lxg +xx1 = 0
—xlaﬁg +x8 = 0

These relations give x1 = zg = 1.

o |
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The p-covering ring, Z, has order p? with

a7 = babba
ag = pa — baa — xbabb
ag = pb— babb

Ls is generated by a7 = babba, and so the immediate
descendants of L are

(a,b|pa — baa — xbabb — ybabba, pb — babb — zbabba)

with class 5and 0 < y, 2z < p.

o |
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If we apply the automorphism

ap +— ai+ x3a3 + xr4a4 + r505 + Teae
as +— a9 + Tr9az + 1004 + 1105 + 1206

to L, then

babba +— babba
pa — baa — xbabb — pa — baa — xbabb + (x5 + 2x5)babba
pb — babb +— pb — babb

So we can take y = 0, and we have p non-isomorphic
descendants for each value of z.

L___ (a,b|pa — baa — xbabb, pb — babb — zbabba, class = 5) ___J
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Apply the Baker-Campbell-Hausdorff formula, and obtain
the group relations

-

@ = [b,a,a]-[b,a,b,b" - [b,a,b,b,a] ")
v = 1[b,a,b,b]-|b,a,bb, al’

o |
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MaGmA functions for checking results

o N



MAacma functions for checking results

- n

» Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| - p°



MAacma functions for checking results
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» Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| - p°

#® ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s

o |
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MAacma functions for checking results
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» Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| - p°

#® ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s

® Islsomorphic(P,Q)
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MAacma functions for checking results

o N

» Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| - p°

#® ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s

® Islsomorphic(P,Q)

# StandardPresentation(P)

o |
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MAacma functions for checking results

o N

» Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| - p°

#® ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s

® Islsomorphic(P,Q)
# StandardPresentation(P)

# IsldenticalPresentation(P,Q)

o |
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while p It 20 do

for x in [0..p-1] do
G:=Group<a,bla”p=(b,a,a)*(b,a,b,b)"x,b"p=(b,a,b,b)>;
P:=pQuotient(G,p,4);
D:=Descendants(P:StepSizes:=[1));
print "p =",p," x ="x," ", Order(P) eq p"6, #D eq p;

end for;

If p eq 5 then readi I; end If;

p:=NextPrime(p);

end while;

o |
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