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Groups of order pk for k = 1, 2, . . . , 6

p = 2 p = 3 p ≥ 5

p 1 1 1

p2 2 2 2

p3 5 5 5

p4 14 15 15

p5 51 67 u

p6 267 504 v

u = 2p + 61 + 2 gcd(p − 1, 3) + gcd(p − 1, 4)

v = 3p2+39p+344+24 gcd(p−1, 3)+11 gcd(p−1, 4)+2 gcd(p−1, 5)
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Order p7

p = 2 p = 3 p = 5

2328 9310 34297

For p > 5 the number of groups of order p7 is

3p5 + 12p4 + 44p3 + 170p2 + 707p + 2455

+(4p2 + 44p + 291) gcd(p − 1, 3)

+(p2 + 19p + 135) gcd(p − 1, 4)

+(3p + 31) gcd(p − 1, 5)

+4 gcd(p − 1, 7) + 5 gcd(p − 1, 8)

+ gcd(p − 1, 9)
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Baker-Campbell-Hausdorff Formula

ex.ey = eu where

u = x + y −
1

2
[y, x] +

1

12
[y, x, x] −

1

12
[y, x, y] +

1

24
[y, x, x, y]

−
1

720
[y, x, x, x, x] −

1

180
[y, x, x, x, y] +

1

180
[y, x, x, y, y]

+
1

720
[y, x, y, y, y] −

1

120
[y, x, x, [y, x]] −

1

360
[y, x, y, [y, x]] + . . .
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Baker-Campbell-Hausdorff Formula

ex.ey = eu where

u = x + y −
1

2
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1

180
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+
1

720
[y, x, y, y, y] −

1

120
[y, x, x, [y, x]] −

1

360
[y, x, y, [y, x]] + . . .

[ey, ex] = ew where

w = [y, x] +
1

2
[y, x, x] +

1

2
[y, x, y]

+
1

6
[y, x, x, x] +

1

4
[y, x, x, y] +

1

6
[y, x, y, y] + . . .
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If L is a Lie algebra define a group operation ◦ on L by
setting

a ◦ b = a + b −
1

2
[b, a] +

1

12
[b, a, a] −

1

12
[b, a, b] + . . .

This works if L is a nilpotent Lie algebra over Q, or if L is a
Lie ring of order pk and L is nilpotent of class at most p − 1.
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If G is a group under ◦ and if a, b ∈ G define

a + b = a ◦ b ◦ [b, a]
1

2

G ◦ [b, a, a]
−

1

12

G ◦ [b, a, b]
1

12

G ◦ . . .

[b, a]L = [b, a]G ◦ [b, a, a]
−

1

2

G ◦ [b, a, b]
−

1

2

G ◦ . . .
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If G is a group under ◦ and if a, b ∈ G define

a + b = a ◦ b ◦ [b, a]
1

2

G ◦ [b, a, a]
−

1

12

G ◦ [b, a, b]
1

12

G ◦ . . .

[b, a]L = [b, a]G ◦ [b, a, a]
−

1

2

G ◦ [b, a, b]
−

1

2

G ◦ . . .

We need G to be nilpotent, and we need unique extraction
of roots. So this works if G is a nilpotent torsion free
divisible group, or if G is a finite p-group of class at most
p − 1.
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If G is a group under ◦ and if a, b ∈ G define

a + b = a ◦ b ◦ [b, a]
1

2

G ◦ [b, a, a]
−

1

12

G ◦ [b, a, b]
1

12

G ◦ . . .

[b, a]L = [b, a]G ◦ [b, a, a]
−

1

2

G ◦ [b, a, b]
−

1

2

G ◦ . . .

This gives the Mal’cev correspondence between nilpotent
Lie algebras over Q and nilpotent torsion free divisible
groups. It also gives the Lazard correspondence between
nilpotent Lie rings of order pk and class at most p − 1 and
finite groups of order pk and class at most p − 1.
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Classify groups of order p7 for p > 5 by classifying nilpotent
Lie rings of order p7.

Use the Lie ring generation algorithm to classify the Lie
rings. (Analogous to the p-group generation algorithm.)

Then use the Baker-Campbell-Hausdorff formula to
translate Lie ring presentations into group presentations.
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Lower exponent-p-central series

L1 = L

L2 = pL + [L,L]

L3 = pL2 + [L2, L]

. . .

Ln+1 = pLn + [Ln, L]

a, b

ba, pa, pb

baa, bab, pba, p2a, p2b

. . .
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L has p-class c if Lc+1 = {0}, Lc 6= {0}.

Classify the nilpotent Lie rings of order pk according to
p-class.

If L has p-class c > 1 then we say that L is an immediate
descendant of L/Lc.

To classify nilpotent Lie rings of order pk, first classify all
nilpotent Lie rings of order pm for m < k.

If L has order pm (m < k) find all immediate descendants of
L of order pk.

The groups of order p
7 – p. 9



The p-covering ring

Let M be a nilpotent d-generator Lie ring of order pm

The p-covering ring M̂ is the largest d-generator Lie ring
with an ideal Z satisfying

Z ≤ ζ(M̂)

pZ = {0}

M̂/Z ∼= M

The groups of order p
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Immediate descendants

If M has p-class c then every immediate descendant of M is
of the form M̂/T for some T < Z such that

T + M̂c+1 = Z

If α is an automorphism of M then α lifts to an
automorphism α∗ of M̂ .

M̂/S ∼= M̂/T

if and only if T = Sα∗ for some α.
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An example

〈a, b | pa − baa − xbabb, pb − babb, class = 4〉

(0 ≤ x < p)
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An example

〈a, b | pa − baa − xbabb, pb − babb, class = 4〉

(0 ≤ x < p)
My MAGMA program computes this as a Lie algebra over
Z[x, y, z, x1, x2, . . . , x12].
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An example

〈a, b | pa − baa − xbabb, pb − babb, class = 4〉

(0 ≤ x < p)
My MAGMA program computes this as a Lie algebra over
Z[x, y, z, x1, x2, . . . , x12].
The power map u 7→ pu is handled as a linear map from L to
L satisfying the relations (pu)v = p(uv) for all u, v ∈ L.
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An example

〈a, b | pa − baa − xbabb, pb − babb, class = 4〉

(0 ≤ x < p)
My MAGMA program computes this as a Lie algebra over
Z[x, y, z, x1, x2, . . . , x12].
The power map u 7→ pu is handled as a linear map from L to
L satisfying the relations (pu)v = p(uv) for all u, v ∈ L.

a1 = a, a2 = b

a3 = ba

a4 = baa, a5 = bab

a6 = babb
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Computing the automorphism group

Consider an automorphism given by

a1 7→ x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

a2 7→ x7a1 + x8a2 + x9a3 + x10a4 + x11a5 + x12a6
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Computing the automorphism group

Consider an automorphism given by

a1 7→ x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

a2 7→ x7a1 + x8a2 + x9a3 + x10a4 + x11a5 + x12a6

The program gives the following conditions on x1, x2, . . . , x12

class by class.
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Computing the automorphism group

Consider an automorphism given by

a1 7→ x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

a2 7→ x7a1 + x8a2 + x9a3 + x10a4 + x11a5 + x12a6

At class 2, nothing.
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Computing the automorphism group

Consider an automorphism given by

a1 7→ x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

a2 7→ x7a1 + x8a2 + x9a3 + x10a4 + x11a5 + x12a6

At class 3:

−x2
1x8 + x1x2x7 + x1 = 0

−x1x2x8 + x2
2x7 = 0

x7 = 0

This gives x2 = x7 = 0, x8 = x−1
1 .
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Computing the automorphism group

Consider an automorphism given by

a1 7→ x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

a2 7→ x7a1 + x8a2 + x9a3 + x10a4 + x11a5 + x12a6

Set x2 = x7 = 0, and then at class 4 we have

−x2
1x8 + x1 = 0

−xx1x
3
8 + xx1 = 0

−x1x
3
8 + x8 = 0

These relations give x1 = x8 = 1.
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The p-covering ring, L̂, has order p9 with

a7 = babba

a8 = pa − baa − xbabb

a9 = pb − babb

L̂5 is generated by a7 = babba, and so the immediate
descendants of L are

〈a, b | pa − baa − xbabb − ybabba, pb − babb − zbabba〉

with class 5 and 0 ≤ y, z < p.
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If we apply the automorphism

a1 7→ a1 + x3a3 + x4a4 + x5a5 + x6a6

a2 7→ a2 + x9a3 + x10a4 + x11a5 + x12a6

to L̂, then

babba 7→ babba

pa − baa − xbabb 7→ pa − baa − xbabb + (x2
3 + 2x5)babba

pb − babb 7→ pb − babb

So we can take y = 0, and we have p non-isomorphic
descendants for each value of x.

〈a, b | pa − baa − xbabb, pb − babb − zbabba, class = 5〉
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Apply the Baker-Campbell-Hausdorff formula, and obtain
the group relations

ap = [b, a, a] · [b, a, b, b]x · [b, a, b, b, a](x+1/3)

bp = [b, a, b, b] · [b, a, b, b, a]z
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MAGMA functions for checking results
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MAGMA functions for checking results

Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| · ps
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MAGMA functions for checking results

Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| · ps

ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s
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MAGMA functions for checking results

Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| · ps

ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s

IsIsomorphic(P,Q)

The groups of order p
7 – p. 17



MAGMA functions for checking results

Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| · ps

ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s

IsIsomorphic(P,Q)

StandardPresentation(P)
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MAGMA functions for checking results

Descendants(G:StepSizes:=[s]) — compute immediate
descendant of G of order |G| · ps

ClassTwo(p,d,s) — count number of d-generator
p-class 2 groups of order pd+s

IsIsomorphic(P,Q)

StandardPresentation(P)

IsIdenticalPresentation(P,Q)
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p:=2;
while p lt 20 do

for x in [0..p-1] do
G:=Group<a,b|aˆp=(b,a,a)*(b,a,b,b)ˆx,bˆp=(b,a,b,b)>;
P:=pQuotient(G,p,4);
D:=Descendants(P:StepSizes:=[1]);
print "p =",p," x =",x," ", Order(P) eq pˆ6, #D eq p;

end for;
if p eq 5 then readi i; end if;
p:=NextPrime(p);

end while;
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