
A K Peters, Ltd.

ISBN 1-56881-159-4

ì<(sl&q)=ibbfji< +^-Ä-U-Ä-U

Computer Algebra and
Symbolic Computation
M a t h e m a t i c a l M e t h o d s

J O E L S . C O H E N
Computer Algebra and
Symbolic Computation
M a t h e m a t i c a l M e t h o d s

J O E L S . C O H E N

Mathematica™, Maple™, and similar software packages provide
programs that carry out sophisticated mathematical operations. In
this book the author explores the mathematical methods that form
the basis for such programs, in particular the application of algorithms
to methods such as automatic simplification, polynomial decomposition,
and polynomial factorization. Computer Algebra and Symbolic
Computation: Mathematical Methods goes beyond the basics of
computer algebra—presented in Computer Algebra and Symbolic
Computation: Elementary Algorithms—to explore complexity analysis
of algorithms and recent developments in the field.

This text:

• is well-suited for self-study and can be used as the basis for a
graduate course.

• maintains the style set by Elementary Algorithms and explains
mathematical methods as needed.

• introduces advanced methods to treat complex operations.
• presents implementations in such programs as Mathematica™

and Maple™.
• includes a CD with the complete text, hyperlinks, and algorithms

as well as additional reference files.

For the student, Mathematical Methods is an essential companion to
Elementary Algorithms, illustrating applications of basic ideas. For
the professional, Mathematical Methods is a look at new applications
of familiar concepts.

A K
PETERS

Computer Algebra and Symbolic Computation

Cohen

M
ath

e
m

atical M
e

th
o

d
s

��������	
�����	���	�������	�����������

��������	
�����	���	�������	�����������
������������	�������

����	��	�����
����������	
� 	�
�����	�������

����������	
� 	������

����������
	
������
��
��������

�����������	
�
�

��

���������	�
�������
�����������������������������
	�������������
�����	��������
��� �
�
���!"� ���#�#�����
�����$��
����
��#
��������!
%���������	����
��������������#��
�����&�#����!� � �����
���#
����'����#�!�
�������(�
�����&�)*��+����+���+�
��������,��� �
-.
�
����#�!!�����&��/�����

0,������1���	�������
���-�#��

1������
����
��!��
���	�!���������2�#��3''�#�
,�4������!��5���
��������,2����
*
��#6��7,������
888�
6�����!�#��

	��"�������9������� "�,�4������!��5���

,��������!���!��2����*���
����'������
����
�������#���� "����!�#��"����������#�
�
"� ���������#�����������:������
�"�'��������#�����#������#�
��#
�����#������
�����#��"�������#����������� "�
�"���'���
�����!���
���
���������2
��!"!����
8�������8������������!!����'��������#��"�������8����

���������	
�������

vii

Contents

1 Preface ix

1 Background Concepts 1
1.1 Computer Algebra Systems . 1
1.2 Mathematical Pseudo-Language (MPL) 2
1.3 Automatic Simplification and Expression Structure 5
1.4 General Polynomial Expressions 11
1.5 Miscellaneous Operators . 12

2 Integers, Rational Numbers, and Fields 17
2.1 The Integers . 17
2.2 Rational Number Arithmetic 37
2.3 Fields . 44

3 Automatic Simplification 63
3.1 The Goal of Automatic Simplification 63
3.2 An Automatic Simplification Algorithm 91

4 Single Variable Polynomials 111
4.1 Elementary Concepts and Polynomial Division 111
4.2 Greatest Common Divisors in F[x] 126
4.3 Computations in Elementary Algebraic Number Fields 146
4.4 Partial Fraction Expansion in F(x) 166

viii

5 Polynomial Decomposition 179
5.1 Theoretical Background . 180
5.2 A Decomposition Algorithm 188

6 Multivariate Polynomials 201
6.1 Multivariate Polynomials and Integral Domains 201
6.2 Polynomial Division and Expansion 207
6.3 Greatest Common Divisors 229

7 The Resultant 265
7.1 The Resultant Concept . 265
7.2 Polynomial Relations for Explicit Algebraic Numbers 289

8 Polynomial Simplification with Side Relations 297
8.1 Multiple Division and Reduction 297
8.2 Equivalence, Simplification, and Ideals 318
8.3 A Simplification Algorithm 334

9 Polynomial Factorization 349
9.1 Square-Free Polynomials and Factorization 350
9.2 Irreducible Factorization: The Classical Approach 360
9.3 Factorization in Zp[x] . 370
9.4 Irreducible Factorization: A Modern Approach 399

Bibliography 431

Index 441

���	
��

������	
 ��	�
� �� ��	 	�� �- ����	������ ��� ������	
 ���	��	 ���� ��
����	
�	� <��� ��	 �	1	����	��9 ����	�	�������9 ��� ����������� �- ����

����� ���� ���������	 ��� �����:	 ����	������� 	"�
	������� '��� ���5
��� ��	 ��������� �	"�9 �������� 	
���� �� �����
�� �����������
�
������� 	
��������9 �
	 �� ���
�������� �� ��	 ���=	�� ���� ���
	��	�
���� ��� �
������� ��� ��	�
	����� ���	���� �
������� 	
�������� ���
	��	�
��	 �
������� ���	> �� �� ����	
�	� <��� ��	 -�
�������� �- ���
����� ����
���1	 �������� ����	������� �
���	�� ��� <��� ��	 ����	�	������� �-
��	�	 ���
����� �� �	
�� �- ��	 ��	
������ ��� ����
�� ��
����
	� �1������	
�� ������	
 ��	�
� �
�
����� �����	�� '��� ���59 <���� ���
	��	�
��
	 ��	�
	����� ����	�9 �� ����	
�	� <��� ��	 ����� ����	������� ��� ����

������ ����	��� ���� �
	 ��	 -��������� �- ��	 ���=	��� 4��� ���5� �	
1	
�� � �
��	 �	�<		� �	"�� ��� ������� ���� ���< ��< �� ��	 ������	

��	�
� ��-�<�
	 ���
�����	 �	1	� �	"�� ���� �	��
��	 ���
����� �� ��	
-�
	-
��� �- ��	 	���

'�	�	 ���5� ��1	 �		� �� 1�
���� ���	� �- �	1	����	�� -�
 �1	
 �#
�	�
�� '�	� �
	 ���	� �� ��	 ����� ���	� -�
 � �<��8��
�	
 ���
�	 �	8�	��	
�� ������	
 ��	�
� ���� ��� �		� �?	
	� �� ��	 @��1	
���� �- 0	�1	
 	1	
�
���	
 �	�
 -�
 ��	 ���� �. �	�
�� '�	
�� ���
�	9 <���� �� ��	 ����� -�
 �
�
������� 	
��������9 ���
���� �
���
��� ���	

�����	 ����	��� ��� � -	<

�����	 ����	��� -
�� ����	������9 ������	
 ���	��	9 ��� 	���		
���
'�	 �	���� ���
�	9 <���� �� ��	 ����� -�
 ��������
 �������9 ���
����
�
���
���
�����	 ����	��� �� ���� ����	������ ��� ������	
 ���	��	�
'�	 ���
�	 �� �
��������	� ���	
 ���� ����	������ ��� ������	
 ���	��	�

�	

	
�����

�����1�������

'�	 ��
	� ����	��	 -�
 ��	�	 ���5� ������	� ����	��� ��� �
�-	��������
-
�� ����	������9 ������	
 ���	��	9 ��� ���	
 �	������� 	��� <�� <����
��5	 �� 5��< ����� ������	
 ��	�
� ��� ��� �������������

(� ��	 ���
�� �- �� ���
������
� �	"�9 <	 ��1	 �
�	� �� ������:	 ��	
�
	
	8�����	�� '�	 ����	������� �
	
	8�����	� ������	 ��	 ����� �<� �	�

-
	�����A�������
	 �	8�	��	 �- ���
�	� ��������� ��
��� �����1�
����	
��������9 	�	�	���
� ���	�
 ��	�
�9 ��� �����	� �
����
� ��?	
	����� 	8���
������� (� ��������9 �� ���
������
� ���
�	 �� ����
	�	 ����	������ ��
	��
���	��	� �	����	 ����	������� ��������� �� ��	� �� � �
��- �	����8�	
��
������� '����� -
�� 	�	�	���
� ����	
 ��	�
� ��� ����
��� ��	�
�
�
	 ���
����	� �� �		�	��

&� ��	 ������	
 ���	��	 ���	9 <	 �����	 ���� ��	
	��	
 ��� ��� ���	
	"�	
�	��	 <��� � ������	
 �
�
����� �����	 ���� �� ,�
�
��9 ������9
�9 �BB9 �
 C�1�� ������� ��	�	 �����	� �
	 ��� ��	� �� ��	�	 ���5�9
��	 �5���� �� �
���	� ���1�� ��� ���
���� �	1	����	�� ������	� �� � �	�
����� �
�
����� ���
�	 �
	 	��	������ &�	 �
�
����� �	����8�	
���� �� 	��	������ ����
���� �� ������	
 ��	�
� ��
	��
����� �������
���� ����	��� <��� ��1	 �		�
	��
���� �� � ���1	������� �
�
�����
���
�	9 ��	 ����� �� �	��
��	� �� �����	
 # �- �
������� 	
�������� -
��
� ������	
 ��	�
� �	
��	���1	�

*	����������� ��	�5��9 <���	 ��	�	 �
	
	8�����	� ��D�	 �� � -�
��� �	��	
-�
 ���� ���5�9 �� � �
������� �	��	 ��	
	 �
	 ���	 �	������ �� ��	 �	"��
�
�
	�� <�	
	
	��	
 ����	������� ��� ������������� �������������� ��

	8��
	�� ������� ��	 ����	������� �	1	����	�� �� ��	�	 �	������ ��� �	
�����	��� -�
 ����	��� <��� ��	 ������� �
	
	8�����	�9 ��	 ���
�����
�
	 ���	�����	9 ��� ��	�	 �	������ �
�1��	 � �
�������� �� ��
	 ��1���	�
�
	���	��� �- ��	 ���=	���

2��
��0
����
�� �������
4
����� ��	�5��9 ��	�	 ���5� �
	 ���	��	� �� �	
1	 �<� ������	�	���
��
��
���	�;

� �� ������� ��������� ������ �� ���
��������� �����
���� ��
���
��������� �� ��������
 ��������� �� ��������
����
����������
������

���
������ �	����� �� �
��������� ����	������ �
	 ������� ��� �
	�
�	��	� <��� ��	 �
	������ -���� �� ���	
���� ����	������ �
 ���1	�������
������	
 �
�
������ ,�
 	"����	9 ��	 ���
���� -�
 ��	 	"������� �-
�
������ ��� ��<	
� �- ����������� �� ������� �1	� ��-�
����� ����	�� �-
<��� �
	��
��1	� �
��	��
	� ���� ��� �	 	"�
	��	� �� � ������	
 �
�
���

����� 	�

'�	 ���	
��� �� �
������� 	
�������� �� ����	
�	� <��� ��	 ���
����
��� -�
�������� �- ��������� �� 	�	�	���
� �������� ����	������� �
���
�	��� '�	 1�	<����� �� ���� ����	������� 	"�
	������9
	�
	�	��	� �� 	"�
�
	����� �
		�9 �
	 ��	 ���� ��=	��� �- ������	
 ��	�
� �
�
���9 ���9
���� � -	< �
�����1	 ��	
������ ���� �����:	 ��� �����
��� 	"�
	������9
<	 ��� ����	�	�� ���� 	�	�	���
� ��	
������ -
�� ��	�
�9 �
�����	�
�9
��������9 ��� ��?	
	����� 	8�������� ,�
 	"����	9 ���
����� �
	 �1	� -�

��	 �������� ��� ������������ �- ����������� ���
������� 	"�
	������9 ��	
������������ �- 	"���	����� ��� �
�����	�
�� -��������9 ��?	
	��������9
	�	�	���
� ���	
�����9 ��� ��	 �������� �-
�� �
�	
 ��?	
	����� 	8���
������ ���� �- ��	 ���	
��� �� ���� ���5 �� ��� -���� �� 	���	
 ����	������
�	"����5� �
 �� ���	
9 ��
	 ��1���	� ������	
 ��	�
� �	"����5��

� �� �������� ���� �� ��� ��������
 �������� ��
��������� �����
������ ���
���� �� ������ ��������
���� ���� ���

,�
 ��	 ���� �# �	�
�9 ��	
	�	�
�� �� ������	
 ��	�
� ��� �		� ����
�	
�	� <��� ��	 �	1	����	�� �- 	?	���1	 ��� 	D��	�� ���
����� -�
 ����
����	������� ��	
������ �������� ����������
	��	�� ������ ��1���

���� �����������9 ���������� -����
�:�����9 ���������� �	�����������9
��	 �������� �- ����	�� �- ���	�
 	8������� ��� �����1�
���	 ����������
	8�������9 ���	 ���	 ���	
�����9 ��� ��	 �������� �- ��?	
	����� 	8��������
������� ���
����� -�
 ���	 �- ��	�	 �
���	�� ��1	 �		� 5��<� ����	 ��	
���	�		��� �	���
�9 -�
 	D��	���
	����� ��	� �
	 ��� �������	 �� 	�	
��
��
���	 ���
����� -�
 ������	
 ��	�
� ��-�<�
	� '�	 ��������� ���
�����
�
	 ����
����9 ��<	1	
9 �	����	 ��	� �
	 ���� �����	
 ��� �
�1��	 � ����
�	"� �� ����1��	 ��	 ����� ��	�
��� ��	�� ��� ��	 �		� -�
 ��
	 	D��	��
���
����	��

'�	 ���	
��� �� ��������
 ������� �� �� ���
�������� �� ��	 �����
	������� �	����8�	� ��� ���
������ �	����� �- ������	
 ��	�
�� ���
����� ��	 ���	
��� �� ���� ���5 �� ��
	 ��D���� ���
	8��
	�
	��	
 �����
	������� ��������������9 ��	 ���
���� ��� �	�	����� �- ������ �� �	���	� ��
���� �� �� ���	�����	 ��� ���	
	���� �� ��	 ���	��	� ����	��	� ���
�����
�
	 �1	� -�
 ����� ���		
 ���
������� ����	
 ��	
������9 ��������� ��

�	-����� ������ ������ �- ��	�
��� 	"�
	������9
	��	�� ������ ��1���

����������� -�
 ����	 ��� �����1�
���	 �����������9
	������� �����������9
���������� �	�����������9 ���������� ������ ������ <��� %
E���	
 ���	�9
��� ���������� -����
�:������

,���� !��������
'�	 �����
 �- �� ���
������
� �	"� ����� �
������ ������ 	�� �� -��	�
<��� � ��D���� �	������ ����� <���� ������ ��� ���
����� �� ������	 �� �

	��
�����

�	"�� '��� �	������ �� �����
���	� �� ��	 ���5
���� �- ��	 ����	��	9 ��	
����	������� ��D����� �- ��	 ���	
��� ���9 �- ���
�	9 �� ����	 ������������
(� ��������9 <	 �	��	1	 ���� �� ���
������
� �	"� ������
	���� �	 �� ���
��
������� �� ��	 ���=	�� ���� �	��
��	� ���	 �- ��	 ����
���� ����	� �� ��	
 	�� ��� ������ ��� �
� �� �	 ����
	�	���1	 �
 ������	 ���
	 �	�	��� �-
� ��
������
 ����� �
 ���
����� '��� 1�	<����� ��� ���	� ��	 �	�	����� �-
������9 �����	 �- ���
�����9 ��� �	1	� �- ����	�������
��
�

,�
 	"����	9 ���������� �� ����������� �� �� ����
���� ����� ��
��������
 ������� ���� ����� �� 	��	�����
��	 �� ���	
� ������	

��	�
� ��-�<�
	� F	 �	��
��	 ��������� !�����	�� ���
����� -�
 ���� ����
�	 ��� �����1�
���	 ����������� <���
������� ����	
 ��	D��	��� ��� �
!�����	�� ���
���� -�
 ����	 1�
����	 ����������� <��� �����	 ��	�
���
����	
 ��	D��	���� (� �� <	�� 5��<�9 ��<	1	
9 ����9 -�
 	D��	���
	��
����9 ��	�	 ���
����� �
	 ��� �������	 �� 	�	
�� ��
���	 ���
����� ��
� ������	
 ��	�
� ����	�� ,�
 ����
	����9 <	 �	��
��	 ��	 ��
	 ���
1���	� ���
	������� �� ���
���� -�
 �����1�
���	 ����������� ��� ����
��	 ����	������� =���� ������9 <���� �� 8���	 ��1��1	� ��� -�
 ������	 ��	
����	 ��� ���
�� �- ��	�	 ���5��

&�	 ����� ���� �� ��� �������	� �� ��	 ���������� �����	"��� �- ��	
���	 ��� ����	
	8��
	�	��� �- ���
������ �����	"��� �������� -�
 ����
���	
 ��	�
�9 <���� �� �-�	� 8���	 ��1��1	�9 ��	� �	����8�	� -
�� ���
����
��������9 �
��������� ��	�
�9 ����
	�	 ����	������9 ��	 ��	�
� �- ��������
����9 ��� ���	
 �
	�� ���� �
	 <	�� �	���� ��	 ���5
���� �- ��	 ���	��	�
����	��	� &- ���
�	9 �� �� ���������	 �� ���
	 	D��	��� ������	
������ 	��
��
	�� ���9 <�	� ���
��
���	9 <	 �������	 �������� �� 	"����	� ���	 �- ��	
����	� ���� �
��	� � ���
�	 ���	� �� ��������
 ������� �� �� ��	�� �
	�

	8�����	 -�
 �
�����	 �	1	� ���
�	 ���� ������	� ��	 �����	"��� ��������
�- ���
����� ���� <���
	�	�� �	1	����	��� �� ��	 	����

�-
���� !���
����
� ��
	 �	����	� �	��
������ �- ��	 ���	
��� ��1	
	� �� ��	�	 ���5� �� �1	�
�� ��	 -����<�� �����	
 �����
�	��

3������
�% ������-��
������� �	
���������� �� �������� �������� '��� �����	

�� �� ���
�������� �� ��	 	�� �- ������	
 ��	�
�� (� ������
��	� ���� ��	
�����������	� ��� ����������� -�
 ������	
 �������� ����������� ��
���
������	� <��� � ����	
 �- ����	
���� ������	
 ��	�
� ����	���

�� �������� ��	��
�����
���� � ���� �� ��� �� ��� ����� ������� ���� �������
������� ��� ����� ����� �������� � �� �������� ��� !"���#����
� � $�� ������ � %�� 	��
��� ������ ��� ������� �� �� &������ �'('��)�� �'(*�� �� +����� �'(%�,

����� 	���

������� �	 ���������� �������� �� �������� �������� '���
�����	
 ���
����	� �� ���
������ �����	 ����	� ��������
 �������

����� ��
 ������ ���� ���� �� ��	� ��
������ ��	 ���5� �� �	��
��	 ��	
����	���9 	"����	�9 ��� ���
����� �- ������	
 ��	�
�� ��� �� � �����	
�����	 ���� ��� �	 	����� �
������	� ���� ��	 ��
����
	� ��� ��	
������
�1������	 �� ���	
� ������	
 ��	�
� �����	�� '��� �����	
 ���� ������	�
� 	�	
�� �	��
������ �- ��	 	1�������� �
��	�� �� ������	
 ��	�
� ��-�<�
	
��������� ��������� ������ ������� ��� � ���	 ����� <���� ������	� ��
��� �
�
�� ���� ������� ��	 ����	 �- -�
� �- 8���
���� 	"�
	������
���	

������� �- ���
�����	��

������� �	 ��������� ��������� �� ����������� �!����������
'��� �����	
 �� ����	
�	� <��� ��	 ���	
��� �
		 ��
����
	 �- ����	�����
��� 	"�
	������� 4��� ��	 ���1	������� ��
����
	 ��	-�
	 	1��������� ���
��	 ������ 	� ��
����
	 ��-�	
 	1�������� ��� ��������� ������ ������� �
	
�	��
��	�� '�	 ��
����
	 �- ������������� ������ 	� 	"�
	������ �� ����
�
���� �	����	 ��� ���
����� �����	 ���� ��	 ����� ���� �� �� ���� -�
��
,��
 �
�����1	 ��� ��	
���
� �����9 �	
����9 ���
� �� �	
�����9
��� ���������� ���� �����:	 ��� �����
��� ����	������� 	"�
	������ �
	
���
����	�� '�	 �����	
 ���� ������	� � �	��
������ �- -��
 ��� ��	
��
��
� �!��� �� 9 ����������9 ��������
 ����������9 ��� ���������� �����������
<���� �	�	�� ���� �� ��	 �
		 ��
����
	 �- �� 	"�
	������

������� "	 ���������� ����������� ����������� (� ���� �����
�	
 <	 �	��
��	 ��	 ����� �
�
����� ��
����
	� �� ��� ��� ��	 ��	�	
��
����
	� �� �	��
��	 � ����	
 �- 	�	�	���
� ���
������ '�	 �����	

������	� � ���	 ����� <���� �	��
��	� �� ���
���� ���� ���1	� � ����� �-

�� �
�	
 �
����
� ��?	
	����� 	8������� ���� ��	 �	��
����� �- 1�
����	�
�	����8�	 ��� ��	 �	���� �- 	"��� 	8������� <��� ���	
���� -����
��

������� #	 ��������� ����������� '��� �����	
 �	��
��	�
	��
�
���� �� � �
�
����� �	����8�	 �� ������	
 ��	�
� ��� �1	� � ����	

�- 	"����	� ���� ������
��	 ��� ��1����	� ��� ������������ (� ������	� � ���	
����� ���� �	��
��	� �� 	�	�	���
� ���	
����� ���
���� <���� ��� ��	
�����	
�1���1	� -�
 � �����	� ����� �- -�������� ���� ��	 ���	�
 �
��	
��	� �-
��	 ���	
�� ��� ��	 ������������ �	����� !"�	������ �- ��	 ���
���� ��
������	 ��	 	�	�	���
�
������� -������� ���	
�����9 ���	 �
�����	�
��
���	
���9 	�	�	���
� ���	
����� �� ��
��9 ��� ��	 ��	�
��� -������� -�
�
�
	 �	��
��	� �� ��	 	"	
���	��

������� $	 ��������� �� %���������� �� �������� �!����&
������ '��� �����	
 �� ����	
�	� <��� ��	 ���
����� ���� �����:	 ��� ���
�������	 ����������� ���
������� 	"�
	������� (� ������	� �������������
�	 ������� -�
 1�
���� �����	� �- ����������� ���
������� 	"�
	������ ����
�
	 ���	� �� ��	 ���	
��� �
		 ��
����
	 �- 	"�
	������� ���
����� ���	�
�� ��	 �
�����1	 ��	
������ ���
����	� �� �����	
 � �
	 �1	� -�
 �	
		

	��
�����

��� ��	D��	�� �����������9 ��	D��	�� ����	�����9 	"�������9 ���
��������
�:����� �- ��	�
��� 	"�
	�������
������� '	 �!��������� �� (������������ (���������������

'��� �����	
 �� ����	
�	� <��� ���
����� ���� ���������	 	"���	����� ���
�
�����	�
�� -��������� (� ������	� ���
����� -�
 	"���	����� 	"�������
���
	�������9 �
�����	�
�� 	"������� ���
	�������9 ��� � ������ ������
���
���� ���� ��� 1	
�-� � ��
	 ����� �- �
�����	�
�� ��	�����	��

)
�-��
���
�)��-���
������� �)��*����� ��������� '��� �����	
 �� � �����
� �- ��	

���5
���� ���	
��� -
�� �
������� 	
�������� ���� �
�1��	� � -
��	�
<�
5 -�
 ��	 ����	������� ��� ������������� ����������� �� ��	 ���5� (�
������	� � �	��
������ �- ��	 ����	������� ���	��������	 �����9 � �
�	-
���������� �- ��	 �
		 ��
����
	 ��� ���������� ��
����
	 �- ��	�
��� 	"�
�
	������9 ��� � �����
� �- ��	 ����� ����	������� ��	
���
� ���� ���	�

�� ��
 ���
������
������� �	
�������+ �������� ,������+ �� -����� '��� �����

�	
 �� ����	
�	� <��� ��	 ���	
���� ��=	��� ���� �
��	 �� ������	
 ��	�
�9
�������� ���		
�9
������� ����	
�9 ��� ��	�
��� ����	
�� (� ������	�
!�����G� ���
���� -�
 ��	
	��	�� ������ ��1���
 �- �<� ���		
�9 ��	
	"�	��	� !�����	�� ���
����9 ��	 ����	�	
	�����	
 ���
����9 ��� �
������ ������ ���
���� ���� �
���-�
�� �� ��1��1	� �
����	��� 	"�
	�����
<��� ���		
� ��� -
������� �� �
������� ����	
 �� ������
� -�
�� (� ���
������9 �� ���
����	� ��	 ����	�� �- � 	�� <���� �	��
��	� �� � 	�	
�� <��
��	 �
��	
��	� �- ����	
 ����	�� ���� �
��	 �� ������	
 ��	�
��
������� �	 ��������� ������.������� ��������� ������ ������

�� �	 �	� �� ��	 ����	����� �- ��	�
��� ��� �
�����	�
�� ������ ������
�
���-�
������� ���� �
	 �����	� �� �� 	"�
	����� �� ��
� �- ��	 	1��������
�
��	��� (� ���� �����	
 <	 ��5	 �� ����	��� ���5 �� ��	 ��	�
��� ������
�	�� �- ���� �
��	��9 �1	 � �
	���	 �	 ������ �- �� ������������� ������ 	�
	"�
	�����9 ��� �	��
��	 �� ���1��1	�� ���
���� ���� �
���-�
�� ����	�
������� 	"�
	������ �� ������������� ������ 	� -�
�� ������� ���������
������ ������ �� 	��	����� -�
 ��	 ��	
����� �- ������	
 ��	�
� ��-�<�
	9
���� �� ��	 ���� �	����	� �
	���	�� �- ��	 ����� �� ��	 �	"����5 ���	
���
	�
������� "	 ������ /������� %����������� '��� �����	
 �� ����

�	
�	� <��� ���
����� -�
 ����	 1�
����	 ����������� <��� ��	D��	��� ��
� 	��� ��� ���
����� �� ���� �����	
 �
	 �������	�� ���	� �� ����������
��1������ (� ������	� ���
����� -�
 ���������� ��1����� ��� 	"�������9
!�����G� ���
���� -�

	��	�� ������ ��1���
 �����������9 ��	 	"�	��	�
!�����	�� ���
����9 ��� � ���������� 1	
���� �- ��	 ����	�	
	�����	

���
����� (� ��������9 ��	 ����� ���������� ��1����� ��� �� ���
�����

����� 	�

�
	 ��	� �� �1	 ���
����� -�
 ���	
���� ������������ �� 	�	�	���
� ���
	�
��� ����	
 	���� '�	�	 ���
����� �
	 ��	� ��	� �� �	1	��� ��1�����
��� �� ���
����� -�
 ����������� <��� ��	�
��� ����	
 ��	D��	���� '�	
�����	
 �������	� <��� �� ���
���� -�
 ��
���� -
������ 	"������� ���� ��
���	� �� ��	 	"�	��	� !�����	�� ���
�����
������� #	 %��������� 0������������� ���������� �	��������

���� �� � �
��	�� ���� �	�	
���	� �- � ���������� ��� �	
	�
	�	��	� �� �
����������� �- ��<	
 �	
		 ������������ (� ���� �����	
 <	 ������� ���	
��	�
	����� ���	��� �- ��	 �	����������� �
���	� ��� �1	 �� ���
����
���	� �� ���������� -����
�:����� ���� 	���	
 ��� � �	����������� �
 �	�
�	
���	� ���� �� �	����������� 	"�����
������� $	 ����������� %����������� '��� �����	
 	�	
���:	�

��	 ��1����� ��� �� ���
����� �� �����1�
���	 ����������� <��� ��	-�
 ��	��� �� �� ���	
�� ������� (� ������	� ���
����� -�
 ��
		 �������
���� ��1����� ��	
������ �
	��
��1	 ��1�����9 ������������	� ��1�����9 ���
��	������1������9 ���������� 	"������� ��������� �� ����������� �� ��	
��	�
��� ������������ �
���	��9 ��� ��	 �
�����1	 ��� ���
	������� ����

����� -�
 �� ������������
������� '	 (�� ���������� '��� �����	
 ���
����	� ��	
	������� �-

�<� �����������9 <���� �� �	 �	� �� ��	 �	�	
������ �- � ���
�" <���	 	��
�
�	� �	�	�� �� ��	 ��	D��	��� �- ��	 ������������ F	 �	��
��	 � !�����	��
���
���� ��� � ���
	������� ���
���� -�

	������� ����������� ��� ��	
��	
	������� �� �� ����������
	������� -�
 	"������ ��	�
��� ����	
��
������� 1	 %��������� ������.������ 2��� ��� ����������

'��� �����	
 ������	� �� ���
�������� �� %
E���	
 ����� ����������� <���
�� ����������� �� ��	 ���������� ������ ������ �
���	�� '� ������-� ��	
�
	�	�������9 <	 �����	 ���� ����������� ��1	
������� ����	
 ��	D��	���
��� ��	 ��	 �	"���
������� �
�	
�� ���	�	 -�
 ����������
������� 3	 %��������� -������4������ '�	 ��� �- ���� �����	
 ��

��	 �	��
������ �- � ����� 1	
���� �- � ���	
� -����
�:����� ���
���� -�

����	 1�
����	 ����������� �� 52�3� (� ������	� �8��
	�-
		 -����
�:����� ���
�
����� ��� 52�3 ��� 6�2�3�9 H
��	�5	
G� ��������� -����
�:����� ���
����
-�
 62�39 4	
�	5���G� ���
���� -�
 -����
�:����� �� 6�2�39 ��� � ����� 1	
�
���� �- ��	 I	��	� ��-��� ���
�����

�������� �����
 !�	�/
��
�� �����
��
F	 ��	 � �
��	��
	 ����	 �- �
�
����� ���� ��

	������ ���� ����	��
�� ��	 �
�
����� ��
����
	� ��� ����	 �- ��	 ����	9 ����	������9 ���
����0 ����	�� ���9 �� � �	��	
 �	
		9 �� ��	 ������� ��� *	���	
����	��� (� ��������9 ���	 ���
����� �
	 �	��
��	� �� �
���-�
������

��	� ���� �
������	 �� ��	 ����	
� ������� �����	� �� ��	 ����	������

	��
�����

��� ����	 ����	��� @�-�
�����	��9 ��	 �
�
����� ����	 ��	� �	
	 ��	�
��� �
������	 	����� �� ��	 ��
����
	� �� ��	 �"��� ����	��

'�	 ������	� ��� ���
����� �� ��	�	 ���5� ��1	 �		� ����	�	��	�
�� ��	 ����)�79 ����	������ $��9 ��� ����0 �
� �J	
���� ��7� ����
�	��� '�	 ������	� ��� �
�
��� �
	 -���� �� � �0 ������	� <��� ��	
���5�� (� 	��� ���59 �1������	 ������	� ��� �
�
��� �
	 �������	� �� ��	
<�
� K(���	�	�������L -����<	� �� � ����	� ���	 ����	9 ����	������9
�
 ����0� ����	� ������	� �
	 �� � ���	���5 -�
��� ��<� �� ����	9 ��
�� ����	������9 ��� ��� �� ����0�9 ��� �
��	��
	� �
	 �� �	"� ����((�
-�
���� �,�
 	"����	9 �		 ��	 ������	 �� ,��
	 ��$ �� ��)� ��� ��	
�
��	��
	 �� ,��
	 ��� �� ��	 ���� (� ���	 	"����	�9 ��	 ������	 ����
���� �- � ������	
 ��	�
� ����	� �1	� �� ��	 �	"� ��� �		� ���� 	� ��
���� �� �� �� ��	 �
���	� ��	�

3��������� $������ �	 �-� ����
'�	�	 ���5� ��1	 �		� �
��	��	� �� ��	 ��'!M�� ����	� <��� ��	 ��������
���5�	9 <���� ����<� ���	
�	"� ���5� �� �����	
 ����	
�9 �	����� ����	
�9
�������	� ���� ����	
	�� -�
�����9 ��	�
	��9 	"����	�9 �
	�9 -������	�9
	"	
���	�9 ��	 ����	 �- ����	���9 ��	 ���	"9 ��	 ������
����9 ��� <	� ���	��
�� 	�	��
���� 1	
���� �- ��	 ���5 ��� <	�� �� ����������
	-	
	��	 �	�� ��
��	 ��
����	 �����	�� -�
��� ��0,�9 <���� �� �������	� <��� ��	 ����	
��
���� ��-�<�
	9 �� ������	� �� ��	 �0�

 ����/����������
(��
��	-�� �� ��	 ���� ����	��� ��� ����	��	� <��
	�� ��� �	��	�
�	�� �
	������
� 1	
����� �- ���� ���5� '�	�
 ��1��	9 	����
�	�	��9
��	������9 �
��������9 ��� ��

	������ ��1	
	���� ���
�1	� ��	 ����	 ���
��
����
	 �- ��	 ���5� '���5� �� +�
��� 4�	���	��9 ���
	< 4�
�9 ��	"
��������9 ��	 ���	 C��5 ���	�9 *��	
� �����	9 %	�
	 0���1��9 4���
0�
�9 *����
� ,��	���9 ������� ,	
�	
9 ��
� %������9 I	
� %
		��	
9
C�����	 I�������9 ��� ���9 N����� ��9 %����� ���9 C��� ��
��	
9
C��	��� ��
�	��9 ������ ��	���	
9 C���	 ���1	
�9 ������� J��=���
�9 ���
0���	 F��	
�

(��
��	-�� �� %<	� 0��: ��� ��	" �������� -�
 ��	�
 �	�� <���
��	 ��'!M �����	�� �
	��
�����> 4
���� F�	����9 <��
	�� ���� �- ��	
�	"� ��� �
������	� ���� �- ��	 �
�
��� �� ��	 ����0 �����	> ������
+�
���9 <�� �
	��	� ���	 �- ��	 �
	�> ��� �����	� F	��	
 <�� �
����
���	� ���� �- ��	 �
�
��� �� ��	 ����	������9 ����09 ��� �������
�����	�� '���5� �� ����	 4��	�9 <��
	�� ��	 	���
	 ������
��� ���
���	 ���	
��� ��	������ ���� ���
�1	� ��	 	"��������9 ��������9 ���

����� 	���

�	��	� ���
�-� ���-���� �	������ �- ��	 ���5� I	
 ��
	-��
	���� �����1�
	
	� ���	
��� ����
�������9
���������9 ��� ����	������� 	

�
��

(���� ��5��<�	�	 ��	 �����	
� �����
� ��� 	����
�	�	�� �- ��
���	 �����������9 ��	 @��1	
���� �- 0	�1	
� 0�
�� ��	 <
���� �- ��	
���59 (<�� �<�
�	� �<� ���������� �	�1	� �� �	1	��� ���� ���	
����

��	���� ����5� �� �� -����� -�
 	����
�	�	�� ��� �����
�; �� ���	
��
	��� !��	
� ��� C����� ���	�9 0���	� ���	�9 ,����	 ���	�9 ��� �����
��� !��:��	�� &�	
��
-	
�

,������9 (<���� ��5	 �� ����5 �� <�-	9 H���
��9 <�� �� ��� �� ��	 ���

	�	��	
9 ��� ��1	� ��
��� �
�-� �-�	
 �
�-� �- ���� ���59 ��� <�� <���
����	��	9 ��1	9 ��� �����
� ��� �	��	� ��5	 ���� ���5 �������	�

C�	� �� ���	�
0	�1	
9 ����
���
+�1	��	
 �69 �77�

1

Background Concepts

In this chapter we summarize the background material that provides a
framework for the mathematical and computational discussions in the book.
A more detailed discussion of this material can be found on the CD that
accompanies this book and in our companion book, Computer Algebra and
Symbolic Computation, Elementary Algorithms, (Cohen [24]). Readers who
are familiar with this material may wish to skim this chapter and refer to
it as needed.

1.1 Computer Algebra Systems

A computer algebra system (CAS) or symbol manipulation system is a com-
puter program that performs symbolic mathematical operations. In this
book we refer to the computer algebra capabilities of the following three
systems which are readily available and support a programming style that
is most similar to the one used here:

• Maple – a very large CAS originally developed by the Symbolic
Computation Group at the University of Waterloo (Canada) and now
distributed byWaterloo Maple Inc. Information about Maple is found
in Heck [45] or at the web site http://www.maplesoft.com.

• Mathematica – a very large CAS developed by Wolfram Research
Inc. Information about Mathematica can be found in Wolfram [102]
or at the web site http://www.wolfram.com.

1

http://www.maplesoft.com
http://www.wolfram.com

2 1. Background Concepts

• MuPAD – a large CAS developed by the University of Paderborn
(Germany) and SciFace Software GmbH & Co. KG. Information about
MuPAD can be found in Gerhard et al. [40] or at the web site
http://www.mupad.com.

1.2 Mathematical Pseudo-Language (MPL)

Mathematical pseudo-language (MPL) is an algorithmic language that is
used throughout this book to describe the concepts, examples, and algo-
rithms of computer algebra. MPL algorithms are readily expressed in the
programming languages of Maple, Mathematica, and MuPAD, and imple-
mentations of the dialogues and algorithms in these systems are included
on the CD that accompanies this book.

Mathematical Expressions

MPL mathematical expressions are constructed with the following symbols
and operators:

• Integers and fractions that utilize infinite precision rational number
arithmetic.

• Identifiers that are used both as programming variables that repre-
sent the result of a computation and as mathematical symbols that
represent indeterminates (or variables) in a mathematical expression.

• The algebraic operators +, −, ∗, /, ∧ (power), and ! (factorial). (As
with ordinary mathematical notation, we usually omit the ∗ operator
and use raised exponents for powers.)

• Function forms that are used for mathematical functions (sin(x),
exp(x), arctan(x), etc.), mathematical operators (Expand(u), Fac-
tor(u), Integral(u,x), etc.), and undefined functions (f(x), g(x,y), etc.).

• The relational operators =, �=, <, ≤, >, and ≥, the logical constants
true and false, and the logical operators, and, or, and not.

• Finite sets of expressions that utilize the set operations ∪, ∩, ∼ (set
difference), and ∈ (set membership). Following mathematical conven-
tion, sets do not contain duplicate elements and the contents of a set
does not depend on the order of the elements (e.g., {a, b} = {b, a}).
• Finite lists of expressions. A list is represented using the brackets [
and] (e.g., [1, x, x2]). The empty list, which contains no expressions,

http://www.mupad.com

1.2. Mathematical Pseudo-Language (MPL) 3

is represented by []. Lists may contain duplicate elements, and the
order of elements is significant (e.g., [a, b] �= [b, a]).

The MPL set and list operators and the corresponding operators in
computer algebra systems are given in Figure 1.1.

MPL mathematical expressions have two (somewhat overlapping) roles
as either program statements that represent a computational step in a pro-
gram or as data objects that are processed by program statements.

Assignments, Functions, and Procedures

The MPL assignment operator is a colon followed by an equal sign (:=) and
an assignment statement has the form f := u where u is a mathematical
expression.

An MPL function definition has the form f(x1, . . . , xl)
function
:= u, where

x1, . . . , xl is a sequence of symbols called the formal parameters, and u is
a mathematical expression. MPL procedures extend the function concept
to mathematical operators that are defined by a sequence of statements.
The general form of an MPL procedure is given in Figure 1.2. Functions
and procedures are invoked with an expression of the form f(a1, . . . , al),
where a1, . . . , al is a sequence of mathematical expressions called the actual
parameters.

In order to promote a programming style that works for all languages,
we adopt the following conventions for the use of local variables and formal
parameters in a procedure:

• An unassigned local variable cannot appear as a symbol in a math-
ematical expression. In situations where a procedure requires a lo-
cal (unassigned) mathematical symbol, we either pass the symbol
through the parameter list or use a global symbol.

• Formal parameters are used only to transmit data into a procedure
and not as local variables or to return data from a procedure. When
we need to return more than one expression from a procedure, we
return a set or list of expressions.

Decision and Iteration Structures

MPL provides three decision structures: the if structure, the if-else struc-
ture which allows for two alternatives, and the multi-branch decision struc-
ture which allows for a sequence of alternatives.

MPL contains two iteration structures that allow for repeated evalua-
tion of a sequence of statements, the while structure and the for structure.
Some of our procedures contain for loops that include a Return statement.

4 1. Background Concepts

MPL Maple Mathematica MuPAD

set notation
{a, b, c} {a,b,c} {a,b,c} {a,b,c}

∅ { } { } { }
A ∪ B A union B Union[A,B] A union B

(set union)
A ∩ B A intersect B Intersection[A,B] A intersect B

(set intersection)
A ∼ B A minus B Complement[A,B] A minus B

(set difference)
x ∈ A member(x, A) MemberQ[x,A] contains(A,x)

(set membership)

(a) Sets. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

MPL Maple Mathematica MuPAD

list notation
[a, b, c] [a,b,c] {a,b,c} [a,b,c]

empty list [] [] { } []

First(L) op(1,L) First[L] op(L,1)

(first member
of L)
Rest(L) [op(2..nops(L),L)] Rest[L] [op(L,2..nops(L))]

(a new list
with first

member of
L removed)
Adjoin(x, L) [x,op(L)] Prepend[L,x] [x, op(L)]

(a new list
with x

adjoined to
the beginning

of L)
Join(L, M) [op(L),op(M)] Join[L,M] concat(L,M)

(a new list
with members
of L followed
by members

of M)
x ∈ L member(x,L) MemberQ[x,L] contains(L,x)

(list
membership)

(b) Lists. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

Figure 1.1. MPL set and list operations in CAS languages.

1.3. Automatic Simplification and Expression Structure 5

Procedure f(x1, . . . , xl);
Input

x1 : description of input to x1;
...

xl : description of input to xl;
Output

description of output;
Local Variables

v1, . . . , vm;
Begin

S1;
...
Sn

End

Figure 1.2. The general form of an MPL procedure. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

In this case, we intend that both the loop and the procedure terminate
when the Return is encountered.1

All computer algebra languages provide decision and iteration struc-
tures (Figure 1.3).

1.3 Automatic Simplification and Expression Structure

As part of the evaluation process, computer algebra systems apply some
“obvious” simplification rules from algebra and trigonometry that remove
extraneous symbols from an expression and transform it to a standard form.
This process is called automatic simplification. For example,

x+ 2 x+ y y2 + z0 + sin(π/4)→ 3 x+ y3 + 1 +
√
2/2

where the expression to the right of the arrow gives the automatically
simplified form after evaluation.

In MPL (as in a CAS), all expressions in dialogues and computer pro-
grams operate in the context of automatic simplification. This means: (1)

1 The for statements in both Maple and MuPAD work in this way. However, in
Mathematica, a Return in a For statement will only work in this way if the upper limit
contains a relational operator (e.g., i<=N). (Implementation: Mathematica (nb).)

6 1. Background Concepts

MPL Maple Mathematica MuPAD

if if If if

if-else if-else If if-else

if-elseif-else if-elseif-else Which if-elseif-else

(multi-branch)

(a) Decision Structures. (Implementation: Maple (mws),
Mathematica (nb), MuPAD (mnb).)

MPL Maple Mathematica MuPAD

for for For for

while while While while

(b) Iteration Structures. (Implementation: Maple (mws),
Mathematica (nb), MuPAD (mnb).)

Figure 1.3. MPL decision structures and iteration structures and the corre-
sponding structures in Maple, Mathematica, and MuPAD.

all input operands to mathematical operators are automatically simplified
before the operators are applied; (2) the result obtained by evaluating an
expression is in automatically simplified form.

Expression Structure

The structure of an expression involves the relationships between the op-
erators and operands that make up the expression. Since mathematical
expressions are the data objects in computer algebra programming, an un-
derstanding of this structure is essential.

An expression tree is a diagram that displays this structure. For ex-
ample, the expression c+ d ∗ x ∧ 2 is represented by the expression tree in
Figure 1.4. The operator at the root of the tree is called the main operator
of the expression, a designation that emphasizes that c+ d ∗x∧ 2 is viewed
as a sum with two operands c and d ∗ x ∧ 2.

Algebraic Expressions

The algebraic expressions are constructed using integers, symbols, function
forms, and the algebraic operators (+, −, ∗, /, ∧, and !). For example, the
expression x2 + cos(x) + f(x, y, z) is an algebraic expression, while [a, b, c]
and x + y = 2 are not. The evaluation process modifies the structure
of these expressions to a form where the algebraic operators satisfy the
following properties:

1.3. Automatic Simplification and Expression Structure 7

❅
❅

❅
❅

�
�

�
�

❅
❅

�
�

x

d

+

c ∗

∧

2

Figure 1.4. The expression tree for c + d ∗ x ∧ 2.

• The operator + is an n-ary infix operator with two or more operands
and none of its operands is a sum. In addition, at most one operand
of + is an integer or fraction.

• The operator ∗ is an n-ary infix operator with two or more operands
and none of its operands is a product. In addition, at most one
operand of ∗ is an integer or fraction, and when an integer or fraction
is an operand of a product, it is the first operand.2

• The unary operator − and the binary operator − do not appear in
simplified expressions. Unary differences are represented as products
(e.g. −x → (−1)x) and binary differences as sums (e.g. (a − b →
a+ (−1) b).

• The binary operator / does not appear in simplified expressions. Quo-
tients are represented as either products (e.g., a/b → a b−1), powers
(e.g., 1/a2 → a−2), or numerical fractions (described below).

• A quotient that represents a fraction c/d, where c and d �= 0 are
integers is represented by an expression tree with root the symbol
fraction, first operand c, and second operand d.

2In both Maple and Mathematica, an integer or fraction operand in a product is
the first operand. In MuPAD, however, an integer or fraction operand in a product is
represented internally as the last operand even though the displayed form indicates it
is the first operand. Since some algorithms in later chapters assume that an integer or
fraction in a product is the first operand, the MuPAD implementations are modified to
account for this difference.

8 1. Background Concepts

❅
❅

❅
❅

�
�

❅
❅

�
�

✟✟✟✟
❍❍❍❍

✟✟✟✟
❍❍❍❍

−

/

∗ 3

x y

3−1

yx

∗

fraction

unsimplified simplified

Figure 1.5. Expression trees for −x ∗ y/3 and its simplified form (−1/3) ∗ x ∗ y.

• For u = v∧n, where n is an integer, the expression v is not an integer,
fraction, product, or power (e.g., (x2)3 → x6).

• The operand of ! is not a non-negative integer (e.g., 3!→ 6).

Figure 1.5 shows the expression trees for the expression −x ∗ y/3 and its
simplified form ((−1)/3)∗x∗y. Observe that in simplified form, the operator
∗ is an n-ary operator with three operands, the − is part of the integer −1,
and the fraction (−1)/3 has main operator fraction.

The structure of algebraic expressions is described in detail in Cohen
[24], Chapter 3. Non-algebraic expressions include relational and logical ex-
pressions, lists, and sets. The structure of these expressions in a particular
CAS can be determined using the primitive operators in Figure 1.6.

Primitive Operators for Simplified Mathematical Expressions

MPL uses four primitive operators to access the structure of expressions
and to construct expressions.

• Kind(u). This operator returns the type of expression (e.g., symbol,
integer, fraction, +, ∗, ∧, !, =, <, ≤, >, ≥, �=, and, or, not, set,
list, and function names). For example, Kind(m ∗ x+ b)→ +.

• Number of operands(u). This operator returns the number of operands
of the main operator of u. For example,

Number of operands(a ∗ x+ b ∗ x+ c)→ 3.

1.3. Automatic Simplification and Expression Structure 9

• Operand(u, i). This operator returns the ith operand of the main
operator of u. For example, Operand(m ∗ x+ b, 2)→ b.

• Construct(f, L). Let f be an operator (+, ∗, =, etc.) or a symbol,
and let L = [a, b, . . . , c] be a list of expressions. This operator returns
an expression with main operator f and operands a, b, . . . , c. For
example, Construct(” + ”, [a, b, c])→ a+ b + c.

The primitive operators in computer algebra systems are given in Figure
1.6(a). Although Mathematica has an operator that constructs expressions,
Maple and MuPAD do not. However, in both of these languages, the
operation can be simulated with a procedure. (Implementation: Maple
(txt), MuPAD (txt).)

MPL Maple Mathematica MuPAD

Kind(u) whattype(u) Head(u) type(u)

and and
op(0,u) op(u,0)

for function for undefined
names function names

Operand(u, i) op(i,u) Part[u,i] op(u,i)

and Numerator[u]

and Denominator[u]

for fractions
Number of operands(u) nops(u) Length[u] nops(u)

Construct(f, L) (simulated Apply[f,L] (simulated
with a with a

procedure) procedure)

(a) Primitive Structural Operators. (Implementation: Maple (mws),

Mathematica (nb), MuPAD (mnb).)

MPL Maple Mathematica MuPAD

Free of(u, t) not(has(u,t)) FreeQ[u,x] not(has(u,t))

Substitute(u, subs(t=r,u) ReplaceAll[u,t->r] subs(u,t=r)

t=r) or
u/.t->r

(b) Structure-based Operators. (Implementation: Maple (mws),

Mathematica (nb), MuPAD (mnb).)

Figure 1.6. Operators in Maple, Mathematica, and MuPAD that are most
similar to MPL’s primitive structural operators and structure-based operators.

10 1. Background Concepts

Structure-Based Operators

A complete sub-expression of an automatically simplified expression u is
either the expression u itself or an operand of some operator in u. In
terms of expression trees, the complete sub-expressions of u are either the
expression tree for u or one of its sub-trees. For example, for a∗ (1+ b+ c),
the expression 1 + b+ c is a complete sub-expression while 1 + b is not.

The next two MPL operators are based only on the structure of an
expression.

• Free of(u, t). Let u and t (for target) be mathematical expressions.
This operator returns false when t is identical to some complete sub-
expression of u and otherwise returns true. For example,

Free of ((a+ b) c, a+ b)→ false.

• Substitute(u, t = r). Let u, t, and r be mathematical expressions.
This operator forms a new expression with each occurrence of the
target expression t in u replaced by the replacement expression r. The
substitution occurs whenever t is structurally identical to a complete
sub-expression of u. For example,

Substitute((a+ b) c, a+ b = x)→ x c.

The operators in computer algebra systems that are most similar to MPL’s
structure-based operators are given in Figure 1.6(b).

The Map Operator
TheMap operator provides another way to apply an operator to all operands
of the main operator of an expression. Let u be a mathematical expres-
sion with n = Number of operands(u) ≥ 1, and let F (x) and G(x, y, . . . , z)
be operators. The MPL Map operator has the two forms Map(F, u) and
Map(G, u, y, . . . , z). The statement Map(F, u) returns a new expression
with main operator Kind(u) and operands

F (Operand(u, 1)), . . . , F (Operand(u, n)).

The statement Map(G, u, y, . . . , z) returns an expression with main opera-
tor Kind(u) and operands

G(Operand(u, 1), y, . . . , z), . . . , G(Operand(u, n), y, . . . , z).

The Map operators in CAS languages are given in Figure 1.7.

1.4. General Polynomial Expressions 11

MPL Maple Mathematica MuPAD

Map(F, u) Map(F,u) Map[F,u] Map(u,F)

Map(G,u, y, z) Map(G,u,y,z) Map[G[#,y,z]&,u] Map(u,G,y,z)

Figure 1.7. The MPL Map operator and the corresponding operators in CAS
languages. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

1.4 General Polynomial Expressions

In this section we describe the polynomial structure of an algebraic expres-
sion and MPL’s primitive polynomial operators that obtain this structure.

Let c1, c2, . . . , cr be algebraic expressions, and let x1,x2,. . . ,xm be al-
gebraic expressions that are not integers or fractions. A general monomial
expression (GME) in {x1, x2, . . . , xm} has the form

c1 c2 · · · cr xn1
1 xn2

2 · · ·xnm
m ,

where the exponents nj are non-negative integers and each ci satisfies the
independence property

Free of(ci, xj)→ true, j = 1, 2, . . . ,m. (1.1)

The expressions xj are called generalized variables because they mimic the
role of variables, and the expressions ci are called generalized coefficients
because they mimic the role of coefficients. The expression xn1

1 · · ·xnm
m is

called the variable part of the monomial, and if there are no generalized
variables in the monomial, the variable part is 1. The expression c1 · · · cr is
called the coefficient part of the monomial, and if there are no generalized
coefficients in the monomial, the coefficient part is 1.

An expression u is a general polynomial expression (GPE) if it is either a
GME or a sum of GMEs in {x1, x2, . . . , xm}. For example, 3 a b x2 sin(x)−
c x + d is a GPE with x1 = x and x2 = sin(x). On the other hand,
the expression (sin(x))x2 + (ln(x))x is not a GPE in x alone because the
coefficients of powers of x (sin(x) and ln(x)) do not satisfy the independence
property in Equation 1.1.

Primitive Polynomial Operators

The following operators obtain the polynomial structure of an expression.

• Polynomial gpe(u, v). Let u be an algebraic expression and let v
be either a generalized variable x or a set S of generalized variables.
The MPL operator Polynomial gpe(u, v) returns true whenever u is

12 1. Background Concepts

a GPE in {x} or in S, and otherwise returns false. For example,
Polynomial gpe(x2 + y2, {x, y})→ true.

• Degree gpe(u, x). Let u = c1 · · · cr · xn1
1 · · ·xnm

m be a monomial with
non-zero coefficient part. The degree of u with respect to xi is de-
noted by deg(u, xi) = ni. By mathematical convention, the degree of
the 0 monomial is−∞. If u is a GPE in xi that is a sum of monomials,
then deg(u, xi) is the maximum of the degrees of the monomials. If
the generalized variable xi is understood from context, we use the sim-
pler notation deg(u). The MPL operator Degree gpe(u, x) returns
deg(u, x). For example, Degree gpe(sin2(x)+b sin(x)+c, sin(x))→ 2.

• Coefficient gpe(u, x, j). Let u be a GPE in x, and let j be a non-
negative integer. The MPL operator Coefficient gpe(u, x, j) returns
the sum of the coefficient parts of all monomials of u with variable
part xj . For example, Coefficient gpe(a x+ b x+ y, x, 1)→ a+ b.

• Leading coefficient gpe(u, x). Let u be a GPE in x. The leading
coefficient of a GPE u �= 0 with respect to x is the sum of the coef-
ficient parts of all monomials with variable part xdeg(u,x). The zero
polynomial has, by definition, leading coefficient zero. The leading
coefficient is represented by lc(u, x), and when x is understood from
context by lc(u). The MPL operator Leading coefficient gpe(u, x) re-
turns lc(u, x). For example, Leading coefficient gpe(a x+b x+y, x)→
a+ b.

• Variables(u). The polynomial structure of an algebraic expression u
depends on which expressions are chosen as the generalized variables.
The MPL operator Variables(u) selects a set of generalized variables
so that the coefficients of all monomials in u are rational numbers.
For example, Variables(4x3 + 3x2 sin(x))→ {x, sin(x)}.

The operators in computer algebra languages that are most similar to
MPL’s polynomial operators are given in Figure 1.8.

1.5 Miscellaneous Operators

Some additional MPL operators that are used in our algorithms and ex-
ercises are given in Figure 1.9. Many more operators are defined in later
chapters.

1.5.
M
iscellaneous

Operators
13

MPL Maple Mathematica MuPAD

Polynomial gpe(u, x) type(u,polynom(anything,x)) PolynomialQ[u,x] testtype(u, Type::PolyExpr(x))

Degree gpe(u, x) degree(u,x) Exponent[u,x] degree(u,x)

Coefficient gpe(u, x, n) coeff(u,x,n) Coefficient[u,x,n] coeff(u,x,n)

Leading coefficient gpe(u, x, n) lcoeff(u,x) Coefficient[u,x, lcoeff(u,x)

Exponent[u,x]]

Variables(u) indets(u) Variables[u] indets(u,PolyExpr)

Figure 1.8. The polynomial operators in Maple, Mathematica, and MuPAD that are most similar to those in MPL. (Imple-
mentation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

14 1. Background Concepts

MPL Maple Mathematica MuPAD

Return(u) RETURN(u) Return[u] return(u)

Operand list(u) [op(u)] Apply[List,u] [op(u)]

Absolute value(u) abs(u) Abs[u] abs(u)

|u|
Max({n1, . . . , nr}) max(n1, . . . , nr) Max[n1, . . . , nr] max(n1, . . . , nr)

Algebraic expand(u) expand(u) Expand[u] expand(u)

Numerator(u) numer(u) Numerator[u] numer(u)

Denominator(u) denom(u) Denominator[u] denom(u)

Derivative(u, x) diff(u, x) D[u, x] diff(u, x)

Figure 1.9. Miscellaneous operators. (Implementation: Maple (mws),
Mathematica (nb), MuPAD (mnb).)

Further Reading

1.1 Computer Algebra Systems. Additional information on computer alge-
bra can be found in Akritas [2], Buchberger et al. [17], Davenport, Siret, and
Tournier [29], Geddes, Czapor, and Labahn [39],Lipson [64], Mignotte [66],
Mignotte and Ştefănescu [67], Mishra [68], von zur Gathen and Gerhard [96],
Wester [100], Winkler [101], Yap [105], and Zippel [108]. Two older (but in-
teresting) discussions of computer algebra are found in Pavelle, Rothstein, and
Fitch [77] and Yun and Stoutemyer [107]. Simon ([89], and [90]), Wester [100]
(Chapter 3), and the web site

http://math.unm.edu/~wester/cas_review.html

give comparisons of commercial computer algebra software. Information about
computer algebra and computer algebra systems can be found at the web sites:

• SymbolicNet: http://www.SymbolicNet.org.

• Computer Algebra Information Network (CAIN):
http://www.riaca.win.tue.nl/CAN/

• COMPUTER ALGEBRA, Algorithms, Systems and Applications:
http://www-troja.fjfi.cvut.cz/~liska/ca/

• sci.math.symbolic:
http://mathforum.org/discussions/about/sci.math.symbolic.html

The Association for Computing Machinery (ACM) has a Special Interest Group
on Symbolic and Algebraic Manipulation (SIGSAM). This group publishes a quar-
terly journal the SIGSAM Bulletin which provides a forum for exchanging ideas
about computer algebra. In addition, SIGSAM sponsors an annual conference,
the International Symposium on Symbolic and Algebraic Computation (ISSAC).
Information about SIGSAM is found at http://www.acm.org/sigsam. The main
research journal in computer algebra is the Journal of Symbolic Computation
(http://www.academicpress.com/jsc).

http://math.unm.edu/~wester/cas_review.html
http://www.SymbolicNet.org
http://www.riaca.win.tue.nl/CAN/
http://www-troja.fjfi.cvut.cz/~liska/ca/
http://mathforum.org/discussions/about/sci.math.symbolic.html
http://www.acm.org/sigsam
http://www.academicpress.com/jsc

1.5. Miscellaneous Operators 15

1.2 Mathematical Pseudo-language (MPL). The basic elements of MPL are
described in Cohen [24], Chapter 2, and the basic concepts in computer algebra
programming are described in Chapters 4 and 5.

1.3 Automatic Simplification and Expression Structure. The evaluation
process and the structure of expressions is described in greater detail in Cohen
[24], Chapter 3, and an algorithm for the Free of operator is given in Chapter 5.

1.4 General Polynomial Expressions. Algorithms for the operators in this
section are given in Cohen [24], Chapter 6.

1.5 Miscellaneous Operators. Cohen [24] has algorithms for Algebraic expand ,

Numerator , and Denominator (Chapter 6), and Derivative (Chapter 5).

2

Integers, Rational Numbers,
and Fields

The chapter is concerned with the numerical objects that arise in computer
algebra including the integers, the rational numbers, and other classes of
numerical expressions. In Section 2.1 we discuss the basic mathematical
properties of the integers and describe some algorithms that are important
for computer algebra. Section 2.2 is concerned with the manipulation of
rational numbers. We define a standard form for a rational number and
describe an algorithm that evaluates involved arithmetic expressions with
integers and fractions to a rational number in standard form. In Section 2.3
we introduce the concept of a field, which is a mathematical system with
axioms that describe in a general way the algebraic properties of the ratio-
nal numbers and other classes of expressions that arise in computer algebra.
We give a number of examples of fields and show that many transformations
that are routinely used in the manipulation of mathematical expressions
are logical consequences of the field axioms.

2.1 The Integers

In this section we describe some mathematical and computational proper-
ties of the integers

Z = {. . .− 2,−1, 0, 1, 2, . . .}.

17

18 Integers, Rational Numbers, and Fields

The following theorem gives the basic division property of the integers.1

Theorem 2.1. For integers a and b �= 0, there are unique integers q and r
such that

a = q b+ r (2.1)

and
0 ≤ r ≤ |b| − 1. (2.2)

The integer q is the quotient and is represented by the operator iquot(a, b)
(for integer quotient). The integer r is the remainder and is represented
by irem(a, b).

Example 2.2.

8 = q · 3 + r = 2 · 3 + 2,
8 = q · (−3) + r = (−2) · (−3) + 2, (2.3)
−8 = q · 3 + r = (−3) · 3 + 1, (2.4)
−8 = q · (−3) + r = 3 · (−3) + 1. (2.5)

�

In Theorem 2.1, the quotient and remainder are chosen so that r ≥ 0.
Another possibility is to choose the quotient and remainder so that

|r| ≤ |b| − 1, r · a ≥ 0. (2.6)

In this case, Equations (2.4) and (2.5) have the form

−8 = q · 3 + r = (−2) · 3− 2,
−8 = q · (−3) + r = 2 · (−3)− 2.

A third possibility is to choose the quotient and remainder so that

|r| ≤ |b| − 1, r · b ≥ 0. (2.7)

In this case, Equations (2.3) and (2.5) have the form

8 = q · (−3) + r = (−3) · (−3)− 1,
−8 = q · (−3) + r = 2 · (−3)− 2.

Most computer algebra languages have operators similar to iquot and irem,
although the remainder may satisfy either property (2.6) or (2.7) instead
of (2.2) (see Figure 2.1).

1A proof of the theorem based on the formal axioms of the integers is given in Dean
[31], pages 10–11.

2.1. The Integers 19

MPL Maple Mathematica MuPAD

iquot(a, b), (2.2) iquo(a, b), (2.6) Quotient[a, b], iquo(a, b), (2.6)
(2.7) a div b, (2.2)

irem(a, b), (2.2) irem(a, b), (2.6) Mod[a, b], (2.7) irem(a, b), (2.6)
a mod b, (2.2) a mod b, (2.2)

Figure 2.1. Integer operations in Maple, Mathematica, and MuPAD. For each
operator, the remainder satisfies the property indicated by the equation number
to the right of the expression. (Implementation: Maple (mws), Mathematica
(nb), MuPAD (mnb).)

Definition 2.3.

1. The integer b �= 0 is a divisor of (or divides) the integer a if there is
an integer q such that a = q · b. We use the notation b | a to indicate
that b divides a and b /| a if it does not.

2. A common divisor (or common factor) of the integers a and b is
an integer c such that c | a and c | b.

In other words, b | a if and only if irem(a, b) = 0. For example, 3|18,
and a common divisor of 18 and 45 is 3.

The properties of the divisor operator are given in the next theorem.

Theorem 2.4. Let a, b, and c be integers.

1. Suppose a �= 0, b �= 0, b|a, and a|b. Then a = ±b.
2. Suppose c �= 0, c|a, and c|b. Then c|(a+ b).

3. Suppose c �= 0 and c|a. Then c|(a · b).
4. Suppose a �= 0, b �= 0, a|b, and b|c. Then a|c.

Proof: We prove (1) and leave the proofs of the other properties to the
reader (Exercise 4). By definition, there are integers q1 and q2 such that
b = q1 a and a = q2 b. This implies b (1 − q1 q2) = 0, and since b �= 0,
q1 q2 = 1. Therefore, both q1 and q2 are either +1 or −1, and a = ±b. �

Definition 2.5. Two integers a and b are relatively prime if their only
common divisors are 1 and −1.

For example, 16 and 21 are relatively prime.

20 Integers, Rational Numbers, and Fields

Greatest Common Divisors

The greatest common divisor of two integers a and b is the largest (non-
negative) common divisor of a and b. Although this description is intu-
itively appealing, a more formal definition is helpful for the development
of an algorithm.

Definition 2.6. Let a and b be integers. The greatest common divisor (gcd)
of a and b (at least one of which is non-zero) is an integer d that satisfies
the following three properties:

1. d is a common divisor of a and b.

2. If e is another common divisor of a and b, then e|d.

3. d > 0.

The notation gcd(a, b) denotes the greatest common divisor.
If both a = 0 and b = 0, the above definition does not apply. In this

case, by definition, gcd(0, 0) = 0.

Property 2 is a roundabout way of saying that d is the largest common
divisor of a and b.

Example 2.7.

gcd(24, 18) = 6,
gcd(−24, 18) = 6,

gcd(34, 0) = 34,
gcd(17, 23) = 1.

Let’s formally verify that gcd(24, 18) = d = 6 using Definition 2.6. Since
properties (a) and (c) are obviously true, we need only verify (b). Dividing
24 by 18, we have 24 = 1 · 18+ 6, and so, by Theorem 2.4(2), any common
divisor e of 24 and 18 also divides d. �

The greatest common divisor is used to reduce a fraction to lowest
terms. For example, to reduce 18/24, we have gcd(18, 24) = 6, and divide
the numerator and denominator by the gcd to obtain 3/4.

The next theorem gives three important properties of the greatest com-
mon divisor.

2.1. The Integers 21

Theorem 2.8. Let a and b be integers. Then,

1. gcd(a, b) exists;

2. gcd(a, b) is unique;

3. gcd(b, 0) = |b|.

Proof: While Part (1) may appear obvious from the intuitive idea of a
greatest common divisor, it is included here to emphasize that we should
not simply assume that there is an integer d that satisfies the second prop-
erty in Definition 2.6. We omit the proof of this fact, but note that the
algorithm that computes the gcd given later in this section implies that
the gcd exists.2

To show Part (2), suppose either a �= 0 or b �= 0, and suppose d1 and d2

are both greatest common divisors. Property (2) in Definition 2.6 implies
d1|d2 and d2|d1, and so by Theorem 2.4(1), d1 = ±d2. Since d1 > 0 and
d2 > 0, we have d1 = d2. If both a = 0 and b = 0, the gcd is unique by
definition.

The proof of Part (3) is left to the reader (Exercise 12). �

Euclid’s Greatest Common Divisor Algorithm

A simple (but highly inefficient) approach for finding the gcd is to test
all integers less than or equal to min({|a|, |b|}). A much more efficient
algorithm, which uses the remainders in integer division, is based on the
next theorem:

Theorem 2.9. Let a and b �= 0 be integers, and let r = irem(a, b). Then,

gcd(a, b) = gcd(b, r). (2.8)

Proof: Let d = gcd(b, r). We show that d is the gcd of a and b by showing
that it satisfies the three properties in Definition 2.6. The proof is based
on the relationship

a = q b+ r. (2.9)

First, since d|b and d|r, Theorem 2.4(2),(3) implies d|a, and so d satisfies
Definition 2.6(1). Next, if e is any divisor of a and b, then Equation (2.9)
implies e|r, and so e is a common divisor of b and r. Therefore, Defini-
tion 2.6(2) (applied to b and r) implies e|d, which means Definition 2.6(2)

2A non-algorithmic proof that the gcd exits, which is based on the formal axioms of
the integers, is given in Akritas [2], page 36.

22 Integers, Rational Numbers, and Fields

holds for a and b as well. Finally, since d is a gcd, it is positive, and
Definition 2.6(3) is satisfied. �

The gcd algorithm that is based on Equation (2.8) is known as Euclid’s
algorithm. It is one of the earliest known numerical algorithms (about
300 B.C.E.). When b �= 0, define a sequence of integers R−1, R0, R1, . . .
with the scheme

R−1 = a,

R0 = b,

R1 = irem(R−1, R0),
... (2.10)

Ri+1 = irem(Ri−1, Ri),
...

The sequence (2.10) is called an integer remainder sequence. By Theo-
rem 2.1,

0 ≤ · · · < Ri+1 < Ri < · · · < R1 ≤ |b| − 1, (2.11)

and so some member of the sequence is zero. Let Rρ be the first remainder
that is zero. By repeatedly applying Equation (2.8), we have

gcd(a, b) = gcd(R−1, R0)
= gcd(R0, R1)

...
= gcd(Rρ−1, Rρ)
= gcd(Rρ−1, 0)
= |Rρ−1|. (2.12)

Notice that we have included the absolute value operation in (2.12) even
though the remainders in (2.11) are all non-negative. There are, however,
two cases where the absolute value is needed. First, when b �= 0 and b|a,
we have irem(a, b) = 0, and so the remainder sequence terminates with
R1 = 0. Therefore,

gcd(a, b) = gcd(b, 0) = |b| = |R0|.
The second case involves R0 = b = 0 which means there are no iterations,
and so

gcd(a, b) = gcd(a, 0) = |a| = |R−1|.

2.1. The Integers 23

Procedure Integer gcd(a, b);
Input

a, b : integers;
Output

gcd(a, b);
Local Variables

A,B,R;
Begin

1 A := a; B := b;
2 while B �= 0 do
3 R := Irem(A,B);
4 A := B;
5 B := R;
6 Return(Absolute value(A))

End

Figure 2.2. An MPL procedure for Euclid’s greatest common divisor algorithm.
(Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

We summarize this discussion with the following theorem.

Theorem 2.10. Let a and b be integers. Then

gcd(a, b) = |Rρ−1|, (2.13)

where the absolute value operation is not needed when ρ ≥ 2.

Example 2.11. Using Euclid’s algorithm,

gcd(45, 18) = gcd(18, 9) = gcd(9, 0) = 9. �

A procedure that obtains the greatest common divisor using Euclid’s
algorithm given in Figure 2.2.

The Extended Euclidean Algorithm

We obtain a useful relationship involving a, b, and gcd(a, b) by applying a
back-substitution process to the remainder sequence. For example, if the
remainder sequence terminates with R4 = 0, we have

a = Q1b+R1, (2.14)
b = Q2R1 +R2, (2.15)

24 Integers, Rational Numbers, and Fields

R1 = Q3R2 +R3, (2.16)
R2 = Q4R3,

where Qi = iquot(Ri−2, Ri−1) and

gcd(a, b) = R3.

Using Equation (2.16) to substitute for R3 in this expression, we have

gcd(a, b) = R1 −Q3R2. (2.17)

Next, using Equations (2.14) and (2.15) to substitute for R1 and R2 in
Equation (2.17), we obtain

gcd(a, b) = ma+ n b, (2.18)

where
m = 1 +Q2Q3, n = −Q1 −Q3 −Q1Q2Q3. (2.19)

This discussion suggests the following theorem.

Theorem 2.12. For integers a and b, there are integers m and n such that

ma+ n b = gcd(a, b).

A constructive proof of the theorem is given by an algorithm that com-
putes m and n. (See the discussion following Theorem 2.14 and Equa-
tion (2.27).)

Example 2.13. Let a = 45 and b = 18. The remainder sequence is

R−1 = 45, R0 = 18, R1 = 9, R2 = 0.

Therefore, since Q1 = 2,

gcd(45, 18) = |R1| = 9 = 45−Q1 · 18 = 1 · 45 + (−2) · 18,
and so m = 1 and n = −2. �

An algorithm that obtains m and n along with gcd(a, b) is called the
extended Euclidean algorithm and is simply a formalization of the back-
substitution process. The algorithm is based on the following theorem.

Theorem 2.14. For integers a and b, there are integers mi and ni such that

mi a+ ni b = Ri, i = −1, 0, 1, ..., ρ.

2.1. The Integers 25

Proof: First, for i = −1 and i = 0,

R−1 = a = 1 · a+ 0 · b = m−1 a+ n−1 b, (2.20)
R0 = b = 0 · a+ 1 · b = m0 a+ n0 b, (2.21)

and so
m−1 = 1, m0 = 0, (2.22)

and
n−1 = 0, n0 = 1. (2.23)

Notice that Equations (2.20) and (2.21) include the case b = 0 because
ρ = 0 when this occurs. So let’s suppose b �= 0 which implies ρ ≥ 1.
Consider the remainder sequence

a = R−1 = Q1R0 +R1,

b = R0 = Q2R1 +R2,

...
Ri−2 = QiRi−1 +Ri, (2.24)

...

where Qi = iquot(Ri−2, Ri−1), Ri = irem(Ri−2, Ri−1), and the sequence
terminates when Rρ = 0. Using Equation (2.24), we derive a recurrence
relation for mi and ni:

Ri = Ri−2 −Qi Ri−1

= mi−2 a+ ni−2 b−Qi (mi−1 a+ ni−1 b)
= (mi−2 −Qi mi−1) a+ (ni−2 −Qi ni−1) b. (2.25)

Therefore, since Ri = mi a+ ni b, we obtain the two recurrence relations

mi = mi−2 −Qi mi−1, ni = ni−2 −Qi ni−1. (2.26)

These recurrence relations, together with the initial conditions (2.22) and
(2.23), give a scheme for computing the values mi and ni. �

Let’s return now to the computation of m and n. Since

gcd(a, b) = |Rρ−1|,

and
Rρ−1 = mρ−1a+ nρ−1b,

26 Integers, Rational Numbers, and Fields

Procedure Integer ext euc alg(a, b);
Input

a, b : integers;
Output

the list [gcd(a, b),m,n];
Local Variables
mpp,mp, npp,np, A,B,Q,R,m, n;

Begin
1 mpp := 1; mp := 0 ; npp := 0 ; np := 1 ; A := a; B := b;
2 while B �= 0 do
3 Q := Iquot(A,B);
4 R := Irem(A,B);
5 A := B; B := R;
6 m = mpp − Q ∗mp; n := npp − Q ∗ np ;
7 mpp := mp; mp := m; npp := np; np := n;
8 if A ≥ 0 then
9 Return([A, mpp, npp])
10 else
11 Return([−A, −mpp, − npp])

End

Figure 2.3. An MPL procedure for the extended Euclidean algorithm. (Imple-
mentation: Maple (txt), Mathematica (txt), MuPAD (txt).)

we have
m = ±mρ−1, n = ±nρ−1, (2.27)

where the plus signs apply when Rρ−1 ≥ 0 and the minus signs apply
otherwise.

Example 2.15. Let a = 45 and b = 18. We have

Q1 = 2, R1 = 9, m1 = 1, n1 = −2,
Q2 = 2, R2 = 0, m2 = −2, n2 = 5.

Therefore ρ = 2 and

gcd(45, 18) = |R1| = 9, m = m1 = 1, n = n1 = −2. �

A procedure that computes gcd(a, b) and the integers m and n from the
recurrence relations (2.26) with initial conditions (2.22) and (2.23) is given
in Figure 2.3. The variables mp and np contain the previous values mi−1

and ni−1, and mpp and npp contain the values for mi−2 and ni−2.

2.1. The Integers 27

Theorem 2.12 is important for computer algebra in both a theoretical
sense and a computational sense. For example, the next theorem is based
on this theorem. Recall that an integer n > 1 is prime if its only positive
divisors are 1 and n.

Theorem 2.16. Suppose that a, b, and c are integers.

1. If c|(a b) and c and a are relatively prime, then c|b.
2. If c|(a b) and c is prime, then c|a or c|b.
3. If a|c, b|c, and gcd(a, b) = 1, then (a b)|c.

Proof: To prove (1), by Theorem 2.12 there are integers m and n such
that mc+ n a = 1. Therefore

mc b+ n a b = b,

and since c divides each term in the sum on the left, c|b.
To prove (2), if c /|a, then, since c is prime, c and a are relatively prime

and so by Part (1), c|b.
To prove (3), let c = q1 a. Using Part (1), since b|(q1 a) and b and a are

relatively prime, we have b|q1. Therefore, q1 = q2 b, and c = q2 a b. �

Prime Factorization of Positive Integers

The following theorem is known as the Fundamental Theorem of Arith-
metic.3

Theorem 2.17. An integer n > 1 can be factored uniquely as

n = pn1
1 · pn2

2 · · · pns
s , (2.28)

where p1, p2, . . . , ps are prime numbers with pi < pi+1 and n1, n2, . . . ,ns
are positive integers.

For example, 60 = 22 · 3 · 5.
For large integers the factorization problem is computationally much

more difficult than the gcd problem. The references at the end of the
chapter describe some approaches to this problem.

The prime factorization is obtained with the operator ifactor in both
Maple andMuPAD and the operator FactorInteger in Mathematica. (Im-
plementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

3A proof of the theorem is given in Dean [31] pages 23–24. A similar proof for the
factorization of polynomials is given for Theorem 4.38 on page 138.

28 Integers, Rational Numbers, and Fields

The Chinese Remainder Problem

We conclude this section with a discussion of the Chinese remainder prob-
lem, which is concerned with the solution of a system of integer remainder
equations.

Definition 2.18. Let m1,m2, . . . ,mr be distinct positive integers that satisfy

gcd(mi,mj) = 1, for 1 ≤ i < j ≤ r. (2.29)

A collection of integers that satisfies the condition (2.29) is called pairwise
relatively prime. The remainder representation for an integer x is
the sequence of remainders irem(x,m1), irem(x,m2), . . . , irem(x,mr).

Example 2.19. Let m1 = 3 and m2 = 4. The remainder representations
for 0 ≤ x ≤ 15 in terms of m1 and m2 are given in the table:

x irem(x, 3) irem(x, 4)

0 0 0

1 1 1

2 2 2

3 0 3

4 1 0

5 2 1

6 0 2

7 1 3

x irem(x, 3) irem(x, 4)

8 2 0

9 0 1

10 1 2

11 2 3

12 0 0

13 1 1

14 2 2

15 0 3

Observe that for 0 ≤ x < m1 m2 = 12, each x has a unique remainder
representation, while for x ≥ 12 the remainder representation is the same
as for x− 12. �

Now let’s consider the inverse problem where we are given a remainder
representation and want to find an integer x that gives this representa-
tion. This problem is known as the Chinese remainder problem. Sup-
pose we are given a sequence of pairwise relatively prime positive integers
m1,m2, . . . ,mr and a sequence of integers x1, x2, . . . , xr, where 0 ≤ xi <
mi. The goal is to find an integer x that satisfies the remainder equations

irem(x,mi) = xi, i = 1, 2, . . . , r. (2.30)

In the next example, we describe one approach to this problem.

Example 2.20. Consider the two remainder equations

irem(x, 5) = 4, (2.31)
irem(x, 3) = 2. (2.32)

2.1. The Integers 29

We show that a solution is obtained with a sequence of divisions that
involves the remainder sequence (2.10) for 5 and 3 that is given by Euclid’s
algorithm:

R−1 = 5, R0 = 3, R1 = 2, R2 = 1, R3 = 0.

First, observe that Equations (2.31) and (2.32) imply there are integers m
and n such that

x = 5n+ 4 = 3m+ 2. (2.33)

Once we find the integers m and n so that both of these sums give the
same integer x, we will have a solution to the remainder equations. Solving
Equation (2.33) for m, we obtain

m =
5n+ 2

3

= n+
2n+ 2

3
, (2.34)

where the last expression is obtained by dividing the denominator 3 (which
just happens to be R0) into each of the coefficients of 5n+ 2. Since m is
an integer, the fraction in Equation (2.34)

p =
2n+ 2

3

must also reduce to an integer. Solving this equation for n we have

n =
3 p− 2

2
= p+

p

2
− 1, (2.35)

where the last expression is obtained by dividing the denominator R1 = 2
into each of the coefficients of 3 p− 2. Since n is an integer, the fraction in
Equation (2.35) q =

p

2
must also reduce to an integer. Therefore,

p = 2 q, (2.36)

and the process terminates since the denominator of 2 q is the remainder
R2 = 1. At this point, we obtain a solution to Equation (2.33) by assign-
ing q an integer value and obtaining integer values for p, n, and m using
Equations (2.36), (2.35), and (2.34). For example, if q = 1, we have p = 2,
n = 2, m = 4 which gives solutions to Equation (2.33)

x = 5 · 2 + 4 = 3 · 4 + 2 = 14.

30 Integers, Rational Numbers, and Fields

Therefore, x = 14 is a solution to the remainder equations (2.31) and (2.32).
Notice that there are infinitely many solutions to the remainder equations
because each integer q gives a distinct solution. �

The approach described in the last example gives an algorithm for the
solution of two remainder equations. The process terminates since m1 and
m2 are relatively prime, and so some member of the remainder sequence is
gcd(m1,m2) = 1. In Exercise 21 we describe a procedure that solves the
Chinese remainder problem using this approach.

Another approach to the Chinese remainder problem is based on the
extended Euclidean algorithm. Let m1 and m2 be two relatively prime
positive integers, and consider the remainder equations

irem(x,m1) = x1, (2.37)
irem(x,m2) = x2, (2.38)

where 0 ≤ x1 < m1 and 0 ≤ x2 < m2. By the extended Euclidean
algorithm, there are integers c and d such that

cm1 + dm2 = 1. (2.39)

We use this relation to obtain a solution to the remainder equations. First,
by multiplying both sides of this equation by x1 and rearranging we have
dm2 x1 = (−c x1)m1 + x1, which implies

irem(dm2 x1, m1) = x1, irem(dm2 x1, m2) = 0. (2.40)

In other words, dm2 x1 is a solution to Equation (2.37) but not to Equation
(2.38) (unless x2 = 0). In a similar way, by multiplying Equation (2.39) by
x2, we obtain

irem(cm1x2, m2) = x2, irem(cm1x2, m1) = 0, (2.41)

which implies that cm1x2 is a solution to Equation (2.38) but not neces-
sarily to Equation (2.37). However, the relations (2.40) and (2.41) suggest
that we can obtain a solution to both Equations (2.37) and (2.38) with the
sum of the two partial solutions

w = cm1x2 + dm2x1. (2.42)

Indeed, using the relation in Exercise 1(a), we have

irem(w,m1) = irem(dm2 x1, m1) = x1,

irem(w,m2) = irem(cm1 x2, m2) = x2.

2.1. The Integers 31

Example 2.21. Let m1 = 5, m2 = 3, x1 = 4, and x2 = 2. Then, in
Equation (2.39), c = −1 and d = 2, and from Equation (2.42), w = 14 is a
solution to the remainder equations. �

In the next theorem and its proof, we describe a general solution and
algorithm for the Chinese remainder problem. The proof, which is similar
to the above discussion, is based on the extended Euclidean algorithm.

Theorem 2.22. [Chinese Remainder Theorem] Let m1,m2, . . . ,mr be pos-
itive integers that are pairwise relatively prime, and let x1, x2, . . . , xr be
integers with 0 ≤ xi < mi. Then, there is exactly one x in the interval

0 ≤ x < m1 ·m2 · · ·mr (2.43)

that satisfies the remainder equations

irem(x,mi) = xi, i = 1, 2, . . . , r. (2.44)

Proof: Observe that we obtain a unique solution by requiring that the
solution be in the interval (2.43). We show first that there is some solution
to the remainder equations (2.44) and then obtain a solution in this interval
using integer division.

The proof is obtained with mathematical induction on the number of
equations r. For the base case r = 1, integer division shows that x = x1

is a solution to the first remainder equation. For the induction step, let’s
assume there is an integer s that satisfies the remainder equations

irem(s,mi) = xi, i = 1, . . . , r − 1, (2.45)

and show how to extend the process one step further to find an integer w
that satisfies all of the remainder equations (2.44). Observe that Equation
(2.45) implies

s = qimi + xi, i = 1, . . . , r − 1, (2.46)

where qi = iquot(s,mi). In addition, for

n = m1 · · ·mr−1, (2.47)

the condition (2.29) implies gcd(n,mr) = 1, and using the extended Eu-
clidean algorithm, we obtain integers c and d such that

c n+ dmr = 1. (2.48)

Let

w = c n xr + dmr s, (2.49)
m = m1 · · ·mr.

32 Integers, Rational Numbers, and Fields

We show that w satisfies all of the remainder equations. First, for 1 ≤ i ≤
r − 1, we use Equation (2.48) to eliminate dmr from w to obtain

w = c n xr + (1− c n) s = (c n xr − c n s) + s. (2.50)

Using the equations (2.46) to eliminate the s on the far right, we obtain

w = (c n xr − c n s+ qimi) + xi.

Observe that by Equation (2.47), mi divides each of the terms in paren-
theses, and therefore, the uniqueness property for integer division implies

irem(w,mi) = xi, 1 ≤ i ≤ r − 1.

For i = r, we use Equation (2.48) to eliminate c n from w to obtain

w = (dmr s− dmr xr) + xr.

Since mr divides each term in parentheses, the uniqueness property for
integer division implies irem(w,mr) = xr, and, therefore, w satisfies all of
the remainder equations.

Although w satisfies all of the remainder equations, it may lie outside
the 0 ≤ x < m. To obtain a solution in the interval, divide w by m to
obtain w = q m + x, where 0 ≤ x < m. To show that x satisfies all the
remainder equations, we have (using the relation in Exercise 1(a))

irem(x,mi) = irem(−q ·m+ w, mi)
= irem((−q ·m1 · · ·mi−1 ·mi+1 · · ·mr)mi + w, mi)
= irem(w,mi)
= xi.

To show the uniqueness of the solution, suppose both x and x′ satisfy
the conditions in the theorem. Then, for 1 ≤ i ≤ r we can represent x and
x′ as

x = fimi + xi, x′ = gimi + xi

which implies (x− x′) = (fi− gi)mi. Therefore, mi|(x− x′), and since the
integers m1, . . . ,mr are relatively prime, Theorem 2.16(3) implies

m|(x− x′). (2.51)

However, since both x and x′ are positive and lie within the interval (2.43),
we have −m < x − x′ < m. This inequality together with the condition
(2.51) implies x = x′. �

2.1. The Integers 33

Example 2.23. Let

m1 = 3, m2 = 4, m3 = 5,
x1 = 1, x2 = 2, x3 = 4.

We find the solution to the three remainder equations

irem(x, 3) = 1, irem(x, 4) = 2, irem(x, 5) = 4.

Following the proof of the theorem, we build up the solution in steps. If
r = 1, then the solution so far is s = x1 = 1 and n = m1 = 3. By applying
the extended Euclidean algorithm to n = m1 and m2, we obtain a = −1
and b = 1. Therefore, Equation (2.49) (with r = 2) gives w = −2. Notice
that w satisfies the first two remainder equations, but is not in the proper
range (≥ 0 and < 3 · 4). Nevertheless, as in the proof of the theorem, we
assume this is the solution so far and compute the remainder that gives a
solution in the proper range at the end of the entire process.

At this point r = 3, n = m1 m2 = 12, and s = −2. Applying the
extended Euclidean algorithm to n and m3, we obtain a = −2 and b = 5.
Therefore, Equation (2.49) (with r = 3) gives w = −146, and the solution
to the problem is x = irem(−146, m1 m2 m3) = 34. �

A procedure that finds a solution to the Chinese remainder problem is
shown Figure 2.4. As in the proof of the theorem, the remainder opera-
tion that finds the solution in the proper range is done at the end of the
procedure (line 11).

Exercises
1. Let a, b, c, m �= 0, and n > 0 be integers. Show that

(a) irem(am + b, m) = irem(b, m).

(b) irem(a + b + c, m) = irem(a + irem(b + c, m), m).

(c) irem(a + b, m) = irem(irem(a, m) + irem(b, m), m).

(d) irem(a b, m) = irem(irem(a, m) · irem(b, m), m).

(e) irem(an, m) = irem((irem(a, m))n, m).

2. Let b, c > 0, and m �= 0 be integers.

(a) Show that irem(c b, cm) = c · irem(b, m).

(b) Show that the relationship in Part (a) may not hold if c < 0.

3. Let m be an integer. Show that iquot(m, 2) + iquot(m− 1, 2) + 1 = m.

4. Prove properties (2), (3), and (4) in Theorem 2.4.

34 Integers, Rational Numbers, and Fields

Procedure Chinese remainder(M,X);
Input

M : a list of distinct pairwise relatively prime positive integers;
X : a list of non-negative integers with

Number of operands(M) = Number of operands(X)
and Operand(X, i) < Operand(M, i);

Output
the solution described in Theorem 2.22;

Local Variables
n, s, i, x,m, e, c, d;

Begin
1 n := Operand(M, 1);
2 s := Operand(X, 1);
3 for i from 2 to Number of operands(M) do
4 x := Operand(X, i);
5 m := Operand(M, i);
6 e := Integer ext euc alg(n,m);
7 c := Operand(e, 2);
8 d := Operand(e, 3);
9 s := c ∗ n ∗ x + d ∗m ∗ s;
10 n := n ∗m;
11 Return(Irem(s, n))

End

Figure 2.4. An MPL procedure that obtains the solution to the system of remain-
der equations described in the Chinese remainder theorem. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

5. Let u be a rational number. The floor of u (notation �u�) is the largest
integer ≤ u. The ceiling of u (notation �u�) is the smallest integer ≥ u.
Give procedures Floor(u) and Ceiling(u) that performs these operations.
Assume that the input expression u is an algebraic expression. When u is
not an integer or fraction, return the unevaluated form of the operators.

6. Give a procedure Integer divisors(n) that finds the positive and negative
divisors of an integer n �= 0. The result should be returned as a set or a
list. For example,

Integer divisors(15) → {1,−1, 2,−2, 3,−3, 5,−5, 15,−15}.
This exercise is used in the procedure Find S sets described in Exercise 5,
page 369.

7. Let n be an integer. Give a procedure Number of digits(n) that returns
the number of digits in n.

2.1. The Integers 35

8. Let n ≥ 0 and b ≥ 2 be integers. The integer n has a unique representation
in the base b given by

n = b0 + b1 b + · · · + bk b
k (2.52)

where 0 ≤ bi ≤ b− 1. For example, for b = 2,

5 = 1 + 0 · 2 + 1 · 22.

Give a procedure Base rep(n, b) that obtains this representation. Since
automatic simplification transforms the right side of Equation (2.52) to
n, the procedure should return the representation as a list [b0, b1, . . . , bk],
where bk �= 0. For n = 0, return the empty list [].

9. Give a recursive procedure for Euclid’s algorithm.

10. (a) Evaluate gcd(12768, 28424) using Euclid’s algorithm.

(b) Find integers m and n such that

m · 12768 + n · 28424 = gcd(12768, 28424).

11. The Fibonacci number sequence f0, f1, f2, . . . is defined using the recursive
definition:

fj =

k
1, when j = 0 or j = 1,
fj−1 + fj−2, when j > 1.

For n ≥ 2, let R−1 = fn and R0 = fn−1 and consider the remainder
sequence Ri in (2.10).

(a) Show that Ri = fn−(i+1) for i = −1, 0, . . . , ρ−1 and that the remain-
der sequence terminates with ρ = n− 1 and gcd(fn, fn−1) = 1.

(b) For this sequence, what is the relation between mi and ni in the
extended Euclidean algorithm and the Fibonacci numbers?

12. Prove Theorem 2.8(3).

13. Suppose that a, b, u, and v are integers and a = u gcd(a, b), b = v gcd(a, b).
Show that gcd(u, v) = 1.

14. Suppose that gcd(a, b) = 1 and t is a positive integer. Show that

gcd(at, bt) = 1.

15. Let a, b, and c be integers. Show that

gcd(c a, c b) = |c| gcd(a, b).

16. Let a �= 0 and b �= 0 be integers. Show that a and b are relatively prime if
and only if there are integers m and n such that ma + n b = 1.

17. Give an example that shows that m and n in Theorem 2.12 are not unique.

18. Let a �= 0 and b �= 0 be integers, and define the least common multiple c of
a and b as follows:

36 Integers, Rational Numbers, and Fields

(a) a|c and b|c.
(b) If a|d and b|d, then c|d.

(c) c > 0.

We use the notation lcm(a, b) to denote the least common multiple. For
example, lcm(4, 6) = 12.

In this exercise, we derive the relation

lcm(a, b) =
|a b|

gcd(a, b)
(2.53)

using the following steps:

(a) Suppose that a|d, b|d, a = u gcd(a, b), and b = v gcd(a, b). Show that
there is an integer r such that d = r u v gcd(a, b).

(b) Show that both a and b divide
|a b|

gcd(a, b)
.

(c) Derive Equation (2.53).

In addition:

(d) Show that there are integers m and n such that lcm(a, b) = ma+n b.

(e) Give a procedure Integer lcm(a, b) that obtains lcm(a, b).

19. Solve each of the following systems of remainder equations.

(a) irem(x, 3) = 2, irem(x, 5) = 1, 0 ≤ x < 15.

(b) irem(x, 3) = 2, irem(x, 4) = 1, irem(x, 5) = 2, 0 ≤ x < 60.

20. Suppose that m1 = 4 and m2 = 6, and consider the remainder equations

irem(x, m1) = x1, irem(x, m2) = x2, 0 ≤ x < m1m2, (2.54)

where 0 ≤ x1 < m1 and 0 ≤ x2 < m2. (Notice that m1 and m2 are not
relatively prime.)

(a) Find x1 and x2 so that there is more than one solution to the equa-
tions and inequality in (2.54).

(b) Find x1 and x2 so that the equations in (2.54) do not have a solution.

21. Let m > 0, n > 0, r, and s be integers with gcd(m,n) = 1. Give a
procedure Chinese remainder 2 (m, n, r, s) that obtains a solution to the
two remainder equations irem(x, m) = r, irem(x, n) = s that is based on
the algorithm used in Example 2.20. The final solution should be in the
range 0 ≤ x < mn. Do not use the extended Euclidean algorithm.

2.2. Rational Number Arithmetic 37

2.2 Rational Number Arithmetic

In a mathematical sense, a rational number is a fraction a/b where a and
b �= 0 are integers. With this definition, each rational number can be rep-
resented in infinitely many ways (e.g., 1/2 = 2/4 = (−2)/(−4), etc.). The
automatic simplification process removes this ambiguity by transforming a
fraction to a standard form. Some typical examples4 are

2/4→ 1/2, 2/(−4)→ (−1)/2 (−2)/(−4)→ 1/2, 4/1→ 4.

These transformations suggest the following definition.

Definition 2.24. Let a and b be integers. An expression a/b is a fraction
in standard form if it satisfies the following two properties:

1. b > 1.

2. gcd(a, b) = 1.

The fractions 2/3 and (-2)/3 are in standard form, while 4/6, 2/(−3),
4/1, and 0/2 are not.

Each fraction can be transformed to either a fraction in standard form
or an integer. This observation suggests the following definition.

Definition 2.25. An expression is a rational number in standard form
if it is either a fraction in standard form or an integer.

The Simplify rational number Operator
Let u be an integer or a fraction with non-zero denominator. The operator
Simplify rational number(u) transforms u to a rational number in standard
form (Figure 2.5). In order to bypass the automatic simplification process
in a CAS (which transforms fractions to standard form), we represent the
fraction a/b with the function notation FracOp(a, b) instead of the usual
infix notation.

Simplification of Rational Number Expressions

We consider next an algorithm that evaluates arithmetic expressions with
integers and fractions. The input to the algorithm is described in the next
definition.

4The displayed form of a fraction in a CAS may disguise the internal form.

38 Integers, Rational Numbers, and Fields

Procedure Simplify rational number (u);
Input

u : a fraction in function (FracOp) notation (with non-zero denominator)
or an integer;

Output
a fraction in standard form in function (FracOp) notation or an integer;

Local Variables
n, d, g;

Begin
1 if Kind(u) = integer then Return(u)
2 elseif Kind(u) = FracOp then
3 n = Operand(u, 1);
4 d = Operand(u, 2);
5 if Irem(n, d) = 0 then Return(Iquot(n, d))
6 else
7 g := Integer gcd(n, d);
8 if d > 0 then
9 Return(FracOp(Iquot(n, g), Iquot(d, g)))
10 elseif d < 0 then
11 Return(FracOp(Iquot(−n, g), Iquot(−d, g)))

End

Figure 2.5. The MPL Simplify rational number procedure. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

Definition 2.26. An algebraic expression u is a rational number expres-
sion (RNE) if it satisfies one of the following rules:

RNE-1. u is an integer.

RNE-2. u is a fraction.

At this point, we allow for the possibility of a fraction with zero denomi-
nator. The algorithm will recognize that such an expression is undefined.

RNE-3. u is a unary or binary sum with operands that are RNEs.

RNE-4. u is a unary or binary difference with operands that are RNEs.

RNE-5. u is a binary product with operands that are RNEs.

RNE-6. u is a quotient with operands that are RNEs.

RNE-7. u is a power with a base that is an RNE and an exponent that is
an integer.

2.2. Rational Number Arithmetic 39

Infix Example Function Example
notation name

/ (fraction) 2/3 FracOp FracOp(2, 3)
(−2)/3 FracOp(−2, 3)

+ 1 + 2 + 3/4 SumOp SumOp(1, 2,FracOp(3, 4))
+3 SumOp(3)

− 4− 5 DiffOp DiffOp(4, 5)
−2 DiffOp(2)

∗ 2 ∗ 3 ∗ (4 + 1) ProdOp ProdOp(2, 3,SumOp(4, 1))
∧ 3 ∧ 2 PowOp PowOp(3, 2)

/ (quotient) (2 + 3)/4 QuotOp QuotOp(SumOp(2, 3), 4)
! 5! FactOp FactOp(5)

Figure 2.6. The MPL function names used for fractions and algebraic operators.
Each name includes the suffix “Op” to avoid a conflict with a named function in
a real CAS.

An MPL algorithm that evaluates RNEs is given in Figures 2.7, 2.8,
and 2.9. To bypass the automatic simplification process, we represent frac-
tions and algebraic operations5 in the function notation given in Figure 2.6.
In this notation, each infix operator is given a function name, and the
operands associated with the operator are operands of the function. Ob-
serve that each name includes the suffix “Op” (which stands for “operator”)
to avoid a conflict with a named function in a real CAS.

In Figure 2.7, the main procedure Simplify RNE(u) takes an RNE as
input and returns either an integer, a fraction in standard form, or the
global symbol Undefined when a division by zero is encountered. For
example,

Simplify RNE (SumOp(FracOp(2, 3),FracOp(3, 4)))→ FracOp(17, 12),

Simplify RNE(PowOp(FracOp(4, 2), 3))→ 8,

Simplify RNE (QuotOp(1,DiffOp(FracOp(2, 4),FracOp(1, 2))))→
Undefined.

The main procedure calls on the recursive procedure Simplify RNE rec(u)
(at line 1) which numerically evaluates u, and if the expression returned
is not Undefined, it is transformed to a rational number in standard
form (line 3). This is the only place in the algorithm that involves a gcd
calculation.

5The factorial operator FactOp is not used in this section. It is used, however, in the
simplifier in Chapter 3.

40 Integers, Rational Numbers, and Fields

Procedure Simplify RNE (u);
Input

u : an RNE in function notation;
Output

an integer, fraction (in function notation) in standard form, or
the global symbol Undefined;

Local Variables v;
Begin

1 v := Simplify RNE rec(u);
2 if v = Undefined then Return(Undefined)
3 else Return(Simplify rational number(v))

End

Figure 2.7. The MPL Simplify RNE procedure. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

In Figure 2.8, the procedure Simplify RNE rec(u) determines the type
of u (integer, FracOp, SumOp, DiffOp, ProdOp, or QuotOp) and then
performs the appropriate operation. The unary operations are handled in
lines 5–9, while the binary operations are handled in lines 10–23. For each
arithmetic operation, the operand or operands are recursively simplified
(lines 6, 12, 13, and 21), and if some operand is Undefined, the procedure
returns Undefined (lines 7, 14, 22).6

The actual calculations are obtained with the calls to procedures in
lines 9, 16, 17, 18, 19, and 23. Two of the calculation procedures are
shown in Figure 2.9, and the others are left to the reader (Exercise 3).
The input to these procedures is either an integer or fraction, and the
output is either a fraction (which is probably not in standard form) or
(from Evaluate quotient or Evaluate power) the symbol Undefined.

In the procedure Evaluate quotient(u, v) in Figure 2.9, the operators
Numerator fun and Denominator fun obtain the numerator and denomi-
nator7 of the v and w. (These operators can be applied to either integers
or fractions (Exercise 3).) Since w can be an integer or a fraction (which
is probably not in standard form), we determine if it represents 0 by ex-

6There are three places in the algorithm which lead to undefined expressions.
They are line 3 in Simplify RNE rec when a fraction has zero denominator, line 1 in
Evaluate quotient when a quotient has a zero denominator, and line 12 in Evaluate power
when 0 is raised to a non-positive exponent.

7We cannot use the numerator and denominator operators in a CAS since these act
on expressions in infix notation. The suffix “ fun” in the operators Numerator fun and
Denominator fun indicate they apply to expressions in function notation.

2.2. Rational Number Arithmetic 41

Procedure Simplify RNE rec(u);
Input

u : an RNE in function notation;
Output

an integer, fraction (in function notation), or the global symbol
Undefined;

Local Variables v, w;
Begin

1 if Kind(u) = integer then Return(u)
2 elseif Kind(u) = FracOp then
3 if Denominator fun(u) = 0 then Return(Undefined)
4 else Return(u)
5 elseif Number of operands(u) = 1 then
6 v := Simplify RNE rec(Operand(u, 1));
7 if v = Undefined then Return(Undefined);
8 elseif Kind(u) = SumOp then Return(v)
9 elseif Kind(u) = DiffOp then Return(Evaluate product(−1, v))
10 elseif Number of operands(u) = 2 then
11 if Kind(u) ∈ {SumOp,ProdOp,DiffOp,QuotOp} then
12 v := Simplify RNE rec(Operand(u, 1));
13 w := Simplify RNE rec(Operand(u, 2));
14 if v = Undefined or w = Undefined then

Return(Undefined)
15 else
16 if Kind(u) = SumOp then

Return(Evaluate sum(v, w))
17 elseif Kind(u) = DiffOp then

Return(Evaluate difference(v, w))
18 elseif Kind(u) = ProdOp then

Return(Evaluate product(v, w))
19 elseif Kind(u) = QuotOp then

Return(Evaluate quotient(v, w))
20 elseif Kind(u) = PowOp then
21 v := Simplify RNE rec(Operand(u, 1));
22 if v = Undefined then Return(Undefined)
23 else Return(Evaluate power(v,Operand(u, 2)))

End

Figure 2.8. The MPL Simplify RNE rec procedure. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

42 Integers, Rational Numbers, and Fields

Procedure Evaluate quotient(v, w);
Input v, w : an integer or a fraction in function notation with

non-zero denominator;
Output

a fraction in function notation or the global symbol Undefined;
Begin

1 if Numerator fun(w) = 0 then Return(Undefined)
2 else Return(FracOp(Numerator fun(v) ∗Denominator fun(w),

Numerator fun(w) ∗Denominator fun(v)))
End

Procedure Evaluate power(v, n);
Input

v : an integer or a fraction in function notation with
non-zero denominator;

n : an integer;
Output

a fraction in function notation or the global symbol Undefined;
Local Variables s;
Begin

1 if Numerator fun(v) �= 0 then
2 if n > 0 then
3 s := Evaluate power(v, n− 1);
4 Return(Evaluate product(s, v))
5 elseif n = 0 then Return(1)
6 elseif n = −1 then Return(FracOp(Evaluate quotient(v),

Numerator fun(v)))
7 elseif n < −1 then
8 s := FracOp(Evaluate quotient(v),Numerator fun(v));
9 Return(Evaluate power(s,−n))
10 elseif Numerator fun(v) = 0 then
11 if n ≥ 1 then Return(0)
12 elseif n ≤ 0 then Return(Undefined)

End

Figure 2.9. The MPL Evaluate quotient and Evaluate power procedures. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

amining Numerator fun(w) (line 1). The procedure Evaluate power(v, n),
which evaluates v to the exponent n, obtains the result by recursion on the
power (lines 3 and 9).

When these procedures and the procedure Simplify rational number are
implemented in a CAS, the only arithmetic operations used are the prim-

2.2. Rational Number Arithmetic 43

itive integer operations addition, subtraction, multiplication, integer quo-
tient, and integer remainder. In addition, the Integer gcd operator called
at line 7 of Simplify rational number only uses the integer remainder and
the absolute value operations.

Some of the procedures in this section are used for numerical calcula-
tions in the automatic simplification algorithm described in Chapter 3.

Exercises

1. Let m be an integer and n/d a fraction in standard form. Show that
(md + n)/d is a fraction in standard form.

2. (a) Let a, b, c, and d be integers, and suppose that

gcd(a, b) = 1, gcd(c, d) = 1, gcd(b, d) = 1.

Show that gcd(a d + b c, b d) = 1.

(b) Use Part (a) to show that if the fractions a/b and c/d are in standard
form, and if gcd(b, d) = 1, then (a d + b c)/(b d) is also a fraction in
standard form.

(c) Give an example that shows that Part(a) is not true if gcd(b, d) �= 1.

(d) Suppose that a/b and c/d are fractions in standard form, where now b
and d may not be relatively prime. Let g = gcd(b, d) and l = lcm(b, d).
Show that

a · iquot(d, g) + c · iquot(b, g)

l

is also a fraction in standard form. Hint: According to Exercise 18
on page 35, l = iquot(b d, g).

3. Let u, v, and w be either integers or fractions (in function notation) with
non-zero denominators. Give procedures for the following operators:

(a) Numerator fun(u).

(b) Denominator fun(u).

(c) Evaluate sum(v, w).

(d) Evaluate difference(v, w).

(e) Evaluate product(v, w).

The output of Numerator fun and Denominator fun is an integer, and the
output for Evaluate sum, Evaluate difference, and Evaluate product is a
fraction in function notation.

44 Integers, Rational Numbers, and Fields

2.3 Fields

A field is a general mathematical system with axioms that describe the basic
algebraic properties of number systems and other classes of expressions
that arise in computer algebra. In this section we give a formal definition
of a field, give a number of examples, and show that many transformations
routinely used in manipulations are logical consequences of the field axioms.

Definition 2.27. Let F = {u, v, w, . . .} be a set of expressions, and assume
that there is an addition operation u+v and a multiplication operation u ·v
that are defined for any u and v in F. The set F is a field if the operations
satisfy the following properties.

Closure Properties

F-1. u+ v is in F.

F-2. u · v is in F.

Commutative Properties

F-3. u+ v = v + u.

F-4. u · v = v · u.

Associative Properties

F-5. u+ (v + w) = (u+ v) + w.

F-6. u · (v · w) = (u · v) · w.

Distributive Properties

F-7. u · (v + w) = u · v + u · w (left distributive property).

F-8. (u+ v) · w = u · w + v · w (right distributive property).

Identities

F-9. There is an additive identity 0 in F such that u+ 0 = u for every
u in F.

F-10. There is a multiplicative identity 1 in F such that u · 1 = u for
every u in F.

2.3. Fields 45

Inverses

F-11. Each element u in F has an additive inverse in F denoted by (−u)
such that u+ (−u) = 0.

F-12. Each element u �= 0 in F has a multiplicative inverse in F de-
noted by u−1 such that u · u−1 = 1.

Although the field axioms are expressed in terms of a familiar nota-
tion that suggests the nature of the operations, we caution the reader not
to assume more about the notation than is formally stated in the defi-
nition. For example, although + is an addition-like operation and · is a
multiplication-like operation, the operations can be quite different from
what we ordinarily associate with addition and multiplication.8 In a sim-
ilar way, the notation for identities and inverses are only names for these
expressions. For example, although the multiplicative inverse is expressed
using the power notation u−1, at this point it doesn’t imply anything about
a power operation.9

Example 2.28. A simple example of a field is the set Q of rational numbers,
where the two field operations are ordinary addition and multiplication.
In this case, the additive identity is the integer 0 and the multiplicative
identity the integer 1. The additive inverse of a rational number u is −u,
and the multiplicative inverse of u = a/b �= 0 is 1/u = b/a. In a similar
way, the set R of (mathematical) real numbers is a field. �

Example 2.29. Consider the set of real numbers of the form a+b
√
2, where

a and b are rational numbers. Let’s show that this set with the operations
of ordinary addition and multiplication of real numbers is a field. Since
this set is included in R, we only verify the properties F-1, F-2, F-11, and
F-12, and assume that the others are inherited from the properties of the
real numbers. Since,

(a+ b
√
2) + (c+ d

√
2) = (a+ c) + (b+ d)

√
2,

(a+ b
√
2) · (c+ d

√
2) = (a c+ 2 b d) + (b c+ a d)

√
2,

the sum and product have the proper form, and so F-1 and F-2 are satisfied.
The additive inverse of a+b

√
2 is (−a)+(−b)√2. To find the multiplicative

inverse of
a+ b

√
2 �= 0, (2.55)

8For example, in Exercise 3 we describe a field with four expressions where u+u = 0
for all expressions in the field.

9For example, in the field Z5 (see page 52), there is an expression u �= 1 such that
u = u−1.

46 Integers, Rational Numbers, and Fields

we must find rational numbers x and y such that

(a+ b
√
2) · (x + y

√
2) = 1.

Expanding the left side of the equality, we obtain

(a x+ 2 b y) + (b x+ a y)
√
2 = 1.

In this equation, b x + a y = 0 because, if this were not so, we could solve
for
√
2 and conclude that it is a rational number. Therefore, we have two

equations

b x+ a y = 0, a x+ 2 b y = 1,

and solving for x and y, we obtain

(a+ b
√
2)−1 = x+ y

√
2 =

a

a2 − 2 b2
+

−b
a2 − 2 b2

√
2.

The multiplicative inverse can also be found by rationalizing the denomi-
nator:

1
a+ b

√
2
=

1
a+ b

√
2

a− b
√
2

a− b
√
2
=

a

a2 − 2b2
+

−b
a2 − 2b2

√
2.

By the way, the denominator that appears in the expression on the right
satisfies

a2 − 2b2 �= 0. (2.56)

To see why, first, if b = 0, then from the condition (2.55) we must have
a �= 0, and the condition (2.56) follows. Next, if b �= 0, then if a2−2 b2 = 0,
we have

√
2 =

√
a2/b2 = |a/b| which implies that

√
2 is a rational number.

Since
√
2 is irrational, the condition (2.56) must be true.

The field described in this example is denoted by Q(
√
2). The notation

indicates that the field is constructed by adjoining the expression
√
2 to

the base field Q. �

Example 2.30. Consider the set of expressions of the form a + b ı where
ı =
√−1 and a and b are rational numbers. This set is a field with the two

operations + and · defined by

(a+ b ı) + (c+ d ı) = (a+ c) + (b + d) ı, (2.57)

(a+ b ı) · (c+ d ı) = (a c− b d) + (c b+ a d) ı. (2.58)

(The addition and multiplication operations that are inside the parenthe-
ses on the right sides of the equations are addition and multiplication of

2.3. Fields 47

rational numbers.) The additive inverse of a+ b i is (−a) + (−b) ı, and, for
a+ b ı �= 0, the multiplicative inverse is

(a+ b ı)−1 =
a

a2 + b2
+

(−b)
a2 + b2

ı

This field, which is denoted by Q(ı), is known as the Gaussian rational
number field.

In a similar way, the set C of complex numbers a+b ı, where a and b are
real numbers, is a field with the operations + and · defined by Equations
(2.57) and (2.58). �

Example 2.31. Consider the set of expressions of the form

u = a+ b
√
2 + c

√
3 + d

√
2
√
3,

where a, b, c, and d are rational numbers together with the operations of
ordinary addition and multiplication. We leave to the reader the verifica-
tion that the sum and product of two of these expressions are also in this
form and the derivation of expressions for the additive and multiplicative
inverses (Exercise 2(a)). This field is denoted by Q(

√
2,
√
3) where the

notation indicates that the field is constructed from the base field Q by
adjoining the two radicals

√
2 and

√
3. By grouping terms, we have

a+ b
√
2 + c

√
3 + d

√
2
√
3 = (a+ b

√
2) + (c+ d

√
2)
√
3,

which shows that we can also view this field as (Q(
√
2))(
√
3), where the

notation indicates that the field is constructed by first adjoining
√
2 to Q

to obtain Q(
√
2) and then adjoining

√
3 to Q(

√
2). �

Example 2.32. Consider the set of rational expressions of the form

u(x)
v(x)

where u(x) and v(x) �= 0 are polynomials in x with rational number co-
efficients. We interpret this definition in a broad sense to include simpler
expressions such as polynomials, fractions, and integers. This set, together
with the addition and multiplication operations defined by

u(x)
v(x)

+
r(x)
s(x)

=
Algebraic expand (u(x) s(x) + v(x) r(x))

Algebraic expand(v(x) s(x))

and

48 Integers, Rational Numbers, and Fields

u(x)
v(x)

· r(x)
s(x)

=
Algebraic expand(u(x) r(x))
Algebraic expand(v(x) s(x))

,

is a field. In this case, the identities are the integers 0 and 1, the additive
inverse of u(x)/v(x) is the rational expression ((−1) · u(x))/v(x) (with the
numerator expanded), and if u(x)/v(x) �= 0, the multiplicative inverse is
v(x)/u(x). The field of rational expressions is denoted by Q(x), where the
notation indicates the field is obtained by adjoining the symbol x to the
base field Q.

Although the fields Q(x) and Q(ı) use a similar notation to denote the
field, the expressions in Q(x) are more complicated than those in Q(ı).
In the latter case, the symbol ı satisfies the simplification transformation
ı2 = −1, and so involved rational expressions in the symbol ı simplify to
the appropriate form. For example,

2 + 3 ı
4 + 5 ı+ 6 ı2

= 11/29 + (−16/29) ı.

On the other hand, since the symbol x does not satisfy a simplification
transformation,

2 + 3 x
4 + 5 x+ 6 x2

does not simplify. �

Example 2.33. Not all of the familiar sets of numbers are fields. For
example, the set Z of integers is not a field because it does not contain
multiplicative inverses. However, Z does satisfy all of the field properties,
except F-12. In addition, the integers satisfy the property:

if a · b = 0, then either a = 0 or b = 0.

This property is described by saying that Z has no zero divisors. A math-
ematical system that satisfies field axioms F-1 through F-11 and has no
zero divisors is called an integral domain. �

Consequences of the Field Axioms

The field axioms embody the basic transformation rules that are needed to
perform calculations with expressions in F. Other properties and transfor-
mation rules that are used routinely in calculations are derived as logical
consequences of the basic axioms. This process is illustrated in the proofs
of the next two theorems.

2.3. Fields 49

Theorem 2.34. Let F be a field.

1. The identities 0 and 1 in F are unique.

2. Every u in F has a unique additive inverse (−u), and if u �= 0, it has
a unique multiplicative inverse u−1.

Proof: Notice that the field axioms do not say that identities and inverses
are unique, only that they exist. Could there be a field that has, for
example, two distinct additive identities? Of course, the answer is no, but
this must be verified from the axioms.

To prove (1), suppose that there were two additive identities, say 0 and
0′. Then, by F-9, with 0′ acting as an additive identity,

0 = 0 + 0′.

Applying F-3 to the right side of the equality, we have

0 = 0′ + 0.

Applying F-9 with 0 acting as an additive identity, we obtain

0 = 0′.

In a similar way, we can show that the multiplicative identity is unique.
Statement (2) follows in a similar manner (Exercise 4). �

Theorem 2.35. Let u and v be expressions in a field F. Then,

1. u · 0 = 0;

2. (−u) = (−1) · u;

3. (−0) = 0;

4. 1−1 = 1;

5. (−1)−1 = −1;
6. (−u) · (−v) = u · v;

7. If u �= 0, then (u−1)−1 = u;

8. If u �= 0 and v �= 0, then (u · v)−1 = u−1 · v−1.

50 Integers, Rational Numbers, and Fields

Proof: To prove (1), by F-9,

u · (u+ 0) = u · u,

and so by F-7,
u · u+ u · 0 = u · u.

Adding the additive inverse of u ·u to both sides of this equality and using
F-9, we have

(u · u+ u · 0) + (−(u · u)) = u · u+ (−(u · u)) = 0. (2.59)

Next, using the field axioms, the left side of this equation can be trans-
formed in the following way:

(u · u+ u · 0) + (−(u · u)) = (−(u · u)) + (u · u+ u · 0) (by F-3)
= ((−(u · u)) + u · u) + u · 0 (by F-5)
= (u · u+ (−(u · u))) + u · 0 (by F-3)
= 0 + u · 0 (by F-11)
= u · 0 + 0 (by F-3)
= u · 0 (by F-9). (2.60)

Therefore, by comparing Equations (2.59) and (2.60), we have u · 0 = 0.
To prove (2), we show first that (−1) ·u is the additive inverse of u. We

have

u+ (−1) · u = u · 1 + u · (−1) (by F-4 and F-10)
= u · (1 + (−1)) (by F-7)
= u · 0 (by F-11)
= 0 (by Part (1) of the theorem).

Therefore, by statement (2) of Theorem 2.34, (−u) = (−1) · u.
The proofs of the remaining statements of the theorem are left to the

reader (Exercise 5). �

Theorem 2.36. Suppose that u and v are in a field F with u · v = 0. Then,
either u = 0 or v = 0.

This property is described by saying that a field has no zero divisors.
The proof of the theorem is left to the reader (Exercise 6).

2.3. Fields 51

Subtraction, Division and Exponentiation in a Field

Although subtraction, division, and exponentiation are not directly part of
the field definition, the operations are easily defined using the field opera-
tions.

Definition 2.37. Let u and v be expressions in a field F. The subtraction
(or difference) operation is defined by

u− v = u+ (−v), (2.61)

where (−v) is the additive inverse of v.

Using Theorem 2.35(2), subtraction can also be represented as

u− v = u+ (−1) · v,

which is the automatically simplified form for differences in most computer
algebra systems.

Definition 2.38. Let u and v �= 0 be expressions in a field F. The division
or quotient operation is defined by

u/v = u · v−1. (2.62)

The automatic simplification process in most computer algebra systems
transforms a quotient to the form on the right in Equation (2.62).

Definition 2.39. Let u be an expression in a field F, and let n be an integer.
The exponentiation or power operation un is defined with the recursive
definition.

1. If u �= 0 and n = −1, then u−1 is the multiplicative inverse of u.

2. If u �= 0 and n �= −1, then

un =

un−1 · u, when n ≥ 1,
1, when n = 0,(
u−1

)(−n)
, when n ≤ −2.

3. If u = 0, then

0n =
{
0 when n ≥ 1,
Undefined, when n ≤ 0.

52 Integers, Rational Numbers, and Fields

For example, a strict interpretation of the definition gives (for u �= 0)

u−3 = (u−1)3 = (u−1)2 · u−1 = ((u−1)1 · u−1) · u−1

= (((u−1)0 · u−1) · u−1) · u−1 = ((1 · u−1) · u−1) · u−1

= (u−1 · u−1) · u−1.

The exponentiation operation satisfies the following properties.

Theorem 2.40. Let u �= 0 and v �= 0 be expressions in a field F, and let m
and n be integers. Then,

1. (u · v)m = um · vm;

2. um · un = um+n;

3. (um)n = umn.

When either u = 0 or v = 0, the properties hold as long as the expressions
on both sides of the equal sign are defined.

Proof: To prove Part (1), first assume that u �= 0 and v �= 0. The proof for
m ≥ 0 uses mathematical induction. The base case m = 0 follows directly
from Definition 2.39(2). For m ≥ 1, assume that the relation is true for
m − 1. Then, using Definition 2.39(2) and the induction hypothesis, we
have

(u · v)m = (u · v)m−1 · (u · v) = um−1 · vm−1 · u · v = um · vm.
For m = −1, the relation follows from Theorem 2.35(8). For m ≤

−2, we have −m ≥ 2 and so using the above case together with Defini-
tion 2.39(2) and Theorem 2.35(8), we have

(u · v)m = ((u · v)−1)−m = (u−1 · v−1)−m = (u−1)−m · (v−1)−m = um · vm.
For the case when either u = 0 or v = 0, the relation is defined when

m ≥ 1 and follows from Definition 2.39(3).
The proofs for Parts (2) and (3) are left to the reader (Exercise 9). �

Finite Fields

Some fields contain only a finite number of expressions. For example, let
p > 1 be an integer, and consider the set Zp = {0, 1, . . . , p− 1}. Define an
addition operation ⊕p and multiplication operation ⊗p by

a⊕pb = irem(a+ b, p), a⊗pb = irem(a · b , p)
where + and · are the ordinary integer operations. For example, when
p = 5, the operations are given in the following operation tables.

2.3. Fields 53

⊕5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

⊗5 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

It is apparent from the tables that each element has an additive inverse,
and each non-zero element has a multiplicative inverse. Since Z5 inherits
the field properties F-3 through F-10 from the integers, it is a field.

However, Z6 is not a field. In this case, the ⊗6 table is given in the
following table.

⊗6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

It is apparent that 2, 3, and 4 do not have multiplicative inverses.
The next theorem describes when Zp is a field.

Theorem 2.41. Let p > 1 be an integer. The set Zp with the operations ⊕p
and ⊗p is a field if and only if p is a prime number.

Proof: Let’s assume that p is prime and show that Zp is a field. Since
the closure properties F-1 and F-2 follow from the definitions of ⊕p and
⊗p, and the properties F-3 through F-10 are inherited from the integers,
we only need to verify the inverse properties. Let s be in Zp. The additive
inverse of s is given by p− s.

We verify the multiplicative inverse property by giving an algorithm
that obtains the inverse. Let 0 < s ≤ p − 1. Since p is prime, using the
extended Euclidean algorithm, we obtain integers m and n such that

m · s+ n · p = 1. (2.63)

When m is in the range 0 < m ≤ p − 1, we can show that s−1 = m.
Unfortunately, m may lie outside of this range although m cannot be a
multiple of p. (If m were a multiple of p, then by Equation (2.63), p|1
which is not true.) Therefore, to obtain the inverse, divide m by p to get

m = q · p+ r, (2.64)

54 Integers, Rational Numbers, and Fields

with 1 ≤ r < p. Using Equations (2.63) and (2.64), we obtain

s⊗pr = irem(s · r, p)
= irem(s · (m− q · p), p)
= irem((1− p · n)− s · q · p, p)
= irem(1− p · (n+ s · q), p)
= 1,

which implies that r = s−1. It is now a simple matter to give a procedure
that finds s−1 (Exercise 11).

We have shown that whenever p is prime, Zp is a field. The proof of
the converse statement is left to the reader (Exercise 12). �

Example 2.42. Let p = 47 and s = 16. The extended Euclidean algorithm
gives m = 3, n = −1, and since m is in Z47, 16−1 = 3.

Next let p = 47 and s = 17. In this case, m = −11 and n = 4, and since
m is not in Z47, we obtain the inverse with 17−1 = irem(−11, 47) = 36. �

The next theorem gives three simple arithmetic relationships in Zp.

Theorem 2.43. Let p be a prime, and let u and v be in Zp. Then,

1. u⊕p · · · ⊕pu︸ ︷︷ ︸
p

= 0, where the notation indicates the sum has p copies

of u;

2. (u⊕pv)p = up⊕pvp;
3. up = u.

The relationship (3) is known as Fermat’s little theorem.

Proof: Part (1) follows from

u⊕p · · · ⊕pu︸ ︷︷ ︸
p

= irem(u+ · · ·+ u︸ ︷︷ ︸
p

, p) = irem(p · u, p) = 0.

To show Part (2), we have, using the binomial theorem,

(u⊕pv)p =
p∑
j=0

(
p!

(p− j)! j!

)(
up−j⊗pvj

)

= up ⊕

p−1∑
j=1

(
up−j⊗pvj

)⊕p · · · ⊕p (up−j⊗pvj)︸ ︷︷ ︸
p!

(p−j)! j!

⊕ vp. (2.65)

2.3. Fields 55

However, since p divides the integer
p!

(p− j)! j!
, for 1 ≤ j ≤ p− 1, we have

by Part (1) of the theorem(
up−j⊗pvj

)⊕p · · · ⊕p (up−j⊗pvj)︸ ︷︷ ︸
p!

(p−j)! j!

= 0

which eliminates the sum in parentheses in Equation (2.65). Therefore,
(u⊕pv)p = up⊕pvp.

Part (3) is proved using mathematical induction on u. First, the rela-
tionship is true when u = 0 or u = 1. Suppose now that 2 ≤ u ≤ p − 1,
and assume that the relationship holds for u − 1. Using Part (2) and the
induction hypothesis, we have

up = ((u − 1)⊕p1)p = (u − 1)p⊕p1p = (u − 1)⊕p1 = u.

Part (3) of the theorem has a number of useful consequences. First, it
shows that Part (2) of the theorem is a simple relationship because both
sides simplify to u⊕pv. Another application has to do with the computation
of multiplicative inverses in Zp. For u �= 0, (3) implies that up−2⊗pu = 1,
and therefore u−1 = up−2. �

Other examples of finite fields are given in Exercise 3 and Exercise 7,
page 164. Finite fields are used in some modern greatest common divisor
and factorization algorithms for polynomials (see Chapter 9).

Algebraic Numbers

Definition 2.44. A complex number c is called an algebraic number if it
is the root of a polynomial equation u(x) = 0, where u(x) is in Q[x] with
positive degree.10 The set of algebraic numbers is denoted by A.

Example 2.45. The following are algebraic numbers because each one sat-
isfies the polynomial equation on the right:

x = 2/3, 3 x− 2 = 0,

x =
√
2, x2 − 2 = 0,

x = i =
√−1, x2 + 1 = 0,

x = 71/3, x3 − 7 = 0,
10Although the terms algebraic number defined here and algebraic expression defined

in Chapter 1 are similar, the mathematical concepts are quite different.

56 Integers, Rational Numbers, and Fields

x =
1+
√
5

2
, x2 − x+ 1 = 0, (2.66)

x =
√
2 +
√
2, x4 − 4 x2 + 2 = 0,

x =
√
2 +
√
3, x4 − 10 x2 + 1 = 0. �

Definition 2.46. An expression u is an explicit algebraic number if it
satisfies one of the following rules:

EAN-1. u is an integer or fraction.

EAN-2. u = vw, with v �= 0 an explicit algebraic number and w an integer
or fraction.

EAN-3. u is a product or sum of explicit algebraic numbers.

All of the expressions in Example 2.45 are explicit algebraic numbers.
However, not all algebraic numbers are explicit. This is a consequence of
Galois theory11 which states that it is impossible to express the roots of all
polynomial equations with degree ≥ 5 as explicit algebraic numbers. For
example the polynomial equation

u = 4 x5 − 10 x2 + 5 = 0 (2.67)

has three distinct real roots and two distinct (non-real) complex roots, but
none of them are explicit. In other words, some algebraic numbers can be
expressed explicitly while others are only known implicitly as the root of
an equation.

Definition 2.47. An algebraic number that is not explicit is called an im-
plicit algebraic number.

The five roots of Equation (2.67) are implicit algebraic numbers.
Given an explicit algebraic number, it is often possible to find with

some simple manipulations a polynomial that has the number as a root.
For example, to find the polynomial associated with

x =
√
2 +
√
3, (2.68)

first square both sides, and then move the integer part to the left side

x2 − 5 = 2
√
2
√
3.

11The theory is named after the brilliant French mathematician Evariste Galois (1811-
1832) who outlined its essential ideas. Galois was killed in a duel at the age of 20.

2.3. Fields 57

Squaring both sides again, we get

x4 − 10 x2 + 1 = 0. (2.69)

For a more complicated explicit algebraic number, the manipulations to
find the polynomial are more involved. In Section 7.2 we give an algorithm
that finds a polynomial that has a given explicit algebraic number as a root.

Now, let’s reverse the process to find the roots of Equation (2.69). First,
solving for x2,

x2 = 5± 2
√
2
√
3. (2.70)

Next, solving Equation (2.70) for x, we get the four roots

x = ±
√
5± 2

√
2
√
3. (2.71)

Notice that the explicit form (2.71) is quite different from the form (2.68).
Since Equation (2.71) gives all four roots of Equation (2.69), we have

±
√
2±
√
3 = ±

√
5± 2

√
2
√
3. (2.72)

It is easy to check this relationship by squaring both sides of the equation.
However, this relationship points out a difficulty that arises with explicit
algebraic numbers: namely, they may have more than one representation.
This is not particularly surprising because by simply rationalizing a de-
nominator, two representations can look different. For example,

(2 + 3
√
2)−1 = −1/7 + 3/14

√
2.

In general, however, it is a difficult simplification problem to determine
when two explicit algebraic expressions are the same number.12 For exam-
ple,

√
2 +
√
3 +
√
5 =

√
2
√
5 · 101/4 + 103/4 +

√
3
√
7
√
10 + 20

101/8
. (2.73)

Algebraic Number Fields

Definition 2.48. An algebraic number field F is a field constructed from
the base field Q by adjoining a finite number of algebraic numbers.

Example 2.49. Q(
√
2),Q(i), andQ(

√
2,
√
3) are algebraic number fields. �

12See Davenport, Siret, and Tournier [29] for a discussion of this problem.

58 Integers, Rational Numbers, and Fields

We give algorithms for computations in some simple algebraic number
fields in Section 4.3.

The set A of all (implicit or explicit) algebraic numbers is also a field13

but not an algebraic number field in the sense of Definition 2.48 because
it cannot be constructed from Q by adjoining a finite number of algebraic
numbers.

Transcendental Numbers

Definition 2.50. A complex number c that is not an algebraic number is
called a transcendental number.

The numbers π and e are real numbers that are transcendental.14 In
addition, although the number eπ is also transcendental, it is not known
whether π + e, π · e, or πe are algebraic or transcendental.

Explicit Algebraic Numbers: Theory versus Practice

In Exercise 15, we describe an operator Explicit algebraic number(u) that
returns true when u is an explicit algebraic number and otherwise returns
false. Since we assume that the simplification context for the operator is
automatic simplification, there are algebraic expressions that the operator
determines are explicit algebraic numbers even though the expressions are
undefined in a mathematical sense. For example, the expression

u =
1

21/2 + 31/2 − (
5 + 2 · 21/2 · 31/2

)1/2
is undefined mathematically because the denominator simplifies to 0 (see
Equation (2.72)), but this is not obtained by automatic simplification in
Maple, Mathematica or MuPAD. For this reason, implementations of the
operator in these systems obtain Explicit algebraic number(u)→ true. In
fact, it is a difficult problem to determine when an explicit algebraic number
simplifies to 0. We return to this point in Section 7.2.

Exercises

1. Consider the set of real numbers that have the form a+b 21/3 +c 22/3 where
a, b, and c are rational numbers. Show that this set with the operations of
ordinary addition and multiplication is a field.

13This is proved in Theorem 7.16 on page 289.
14For proofs of the transcendence of π and e, see Hardy and Wright [43].

2.3. Fields 59

2. (a) Verify that Q(
√

2,
√

3) described in Example 2.31 is a field.

(b) Let u be in Q(
√

2,
√

3). Give a procedure Mult inv 23 (u) that finds
the multiplicative inverse in this field.

3. Let x and y be symbols, and consider the set of expressions F = {0, 1, x, y}
with the operations defined by

⊕ 0 1 x y

0 0 1 x y

1 1 0 y x

x x y 0 1

y y x 1 0

⊗ 0 1 x y

0 0 0 0 0

1 0 1 x y

x 0 x y 1

y 0 y 1 x

Show that F is a field.

4. Prove Theorem 2.34(2). Hint: For the uniqueness of the additive inverse,
suppose that there are two expressions x and y such that u + x = 0 and
u+ y = 0. Show that x = y. In a similar way, show that the multiplicative
inverse is unique.

5. Prove properties (3) through (8) of Theorem 2.35.

6. Prove Theorem 2.36.

7. Let u and v be expressions in a field F. Show that the division operation
satisfies the following.

(a) u/1 = u.

(b) u/(−1) = (−u).

(c) If u �= 0 and v �= 0, (u/v)−1 = v/u.

8. Let u �= 0 be an expression in a field F. Prove that the exponentiation
operation satisfies the following.

(a)
i
u−1
Jn

= u−n.

(b)
i
u−1
Jn

= (un)−1.

Do not use Theorem 2.40 in this exercise.

9. (a) Prove Theorem 2.40(2). Hint: Use mathematical induction on n ≥ 0,
and consider the three cases m + n − 1 ≥ 0, m + n − 1 = 0, and
m + n− 1 ≤ −1. The relations in Exercise 8 are useful here.

(b) Prove Theorem 2.40(3). Hint: The relations in Exercise 8 are useful
here.

10. Are Theorem 2.43(1) and Theorem 2.43(2) true when p is not a prime?
Either prove statements (1) and (2) in this setting or give examples that
show that the statements are not always true.

11. Let p be prime, and let s, t �= 0 be in Zp.

60 Integers, Rational Numbers, and Fields

(a) Give a procedure Multiplicative inverse p(t, p) that obtains the mul-
tiplicative inverse t−1.

(b) Give a procedure Division p(s, t , p) that obtains s/t in Zp.

12. Let p > 1 be an integer. Show that if Zp is a field, then p is prime.

13. Show that each of the following is an algebraic number by finding a (non-
zero) polynomial with rational number coefficients that each one satisfies.

(a)
√

7 +
√

11.

(b)
�√

7 +
√

11.

(c) 1
1 +

√
2

.

(d) 1 +
√

2
√

3.

(e)
√

2 +
√

3 +
√

5.

14. Using the fact that π is transcendental, show that each of the following is
also transcendental.

(a) π2.

(b) 1/π.

15. Give a procedure Explicit algebraic number(u) that returns true if an
algebraic expression is an explicit algebraic number and false otherwise.

16. Suppose that u is an explicit algebraic number. Give a procedure

Nest depth(u)

that gives the nesting depth of u which is defined using the following
rules.

(a) If u is an integer or fraction, then Nest depth(u) → 0.

(b) If u = ar, where r is a fraction, then

Nest depth(u) → 1 + Nest depth(a).

(c) If u is a sum or a product with n operands then

Nest depth(u) → Max ({Nest depth(Operand(u, 1)),

. . . ,Nest depth(Operand(u, n))}) .

For example,

Nest depth

W
5 ·
Q

1 + 21/2
w1/3
}

→ 2.

2.3. Fields 61

17. Let u be an algebraic expression. Give a procedure Variables 2 (u) that
returns the set of generalized variables of u that are not explicit algebraic
numbers. For example,

Variables 2 (21/2 x + 3 · 52/3 y + z) → {x, y, z}.

Note: The Variables operator described on page 12 is one of our primitive
polynomial operators.

18. Give a procedure Alg collect(u) that collects explicit algebraic number co-
efficients of like terms in a sum u. If u is not a sum, then return u. For
example,

Alg collect
Q√

2x y + 3x y +
√

3 x + 4x
w
→
Q√

2 + 3
w
x y +
Q√

3 + 4
w
x,

Alg collect
Q√

2
√

3 +
√

2 z +
√

3 z
w
→

√
2
√

3 +
Q√

2 +
√

3
w
z,

Alg collect
Q√

2x y + 2x y + x
w
→
Q√

2 + 2
w
x y + x,

Alg collect
Q
a
Q√

2x + x
ww

→ a
Q√

2x + x
w
.

In the last example, collection is not done because the input expression is
not a sum.

19. A Gaussian rational number c is in standard form if it has one of the
following forms:

(a) c is a rational number in standard form.

(b) c = ı.

(c) c = b · ı, where b �= 0, 1 is a rational number in standard form.

(d) c = a+b·ı, where a �= 0 and b �= 0, 1 are rational numbers in standard
form.

(e) c = a + ı, where a �= 0 is a rational number in standard form.

In forms (c), (d), and (e) the order of the operands in a sum or product is
a significant property of the standard form. (For example, the expression
ı ·b is out of order, and so is not in standard form.) In this exercise, we ask
you to give an algorithm Simplify Gaussian(u) that transforms a Gaussian
rational number expression (defined below) to either a Gaussian rational
number in standard form or the symbol Undefined when a division by
zero is encountered. The Gaussian rational number expressions (GRNE)
are the ones that satisfy one of the following rules:

GRNE-1. u is an integer.

GRNE-2. u is a fraction. At this point, we allow for the possibility of
a fraction with zero denominator. The algorithm will recognize that
such an expression is undefined.

62 Integers, Rational Numbers, and Fields

GRNE-3. u is the symbol ı.

GRNE-4. u is a unary or binary sum with operands that are GRNEs.

GRNE-5. u is a unary difference or a binary difference with operands
that are GRNEs.

GRNE-6. u is a binary product with operands that are GRNEs.

GRNE-7. u is a quotient with operands that are GRNEs.

GRNE-8. u is a power with a base that is a GRNE and an exponent that
is an integer.

To bypass the automatic simplification rules in a CAS, represent the arith-
metic operations and fractions with the function forms given in Figure 2.6
on page 39. For example,

Simplify Gaussian(SumOp(

FracOp(1, 2),QuotOp(1,SumOp(3, ı))))

→ SumOp(FracOp(4, 5),ProdOp(FracOp(−1, 10), ı)).

Further Reading

2.1 The Integers. See Birkhoff and Mac Lane [10], Dean [31], or Pinter [79]
for derivations of properties of the integers. Euclid’s algorithm appears in Book
Seven of Euclid’s Elements, Propositions 1 and 2. See Calinger [19], pages 119-
120 for Euclid’s original approach. An explicit formula for the gcd is given in
Polezzi [80]. See Cormen, Leiserson and Rivest [28] and von zur Gathen and
Gerhard [96] for algorithms for the prime factorization of positive integers. Lib-
brecht [61] has an historical essay on the Chinese remainder theorem. Davis and
Hersh [30] has an interesting discussion of the Chinese remainder theorem and
its generalizations.

2.3 Fields. See Birkhoff and Mac Lane [10], Dean [31], or Pinter [79] for a

discussion of fields and algebraic numbers. A history of the field concept is given

in Kleiner [52], [53]. The theory and application of finite fields is described in

Lidl and Niederreiter [62]. See Jeffrey and Rich [49] for a discussion of some

simplification problems with square roots. An interesting discussion of algebraic

and transcendental numbers is given in Stevenson [93].

3

Automatic Simplification

The automatic simplification process is defined as a collection of algebraic
and trigonometric simplification transformations that is applied to an ex-
pression as part of the evaluation process. In this chapter we take an
in-depth look at the algebraic component of this process.

In Section 3.1 we describe the automatic simplification process in an
informal way, focusing on which transformations should be included in the
process and which ones are best handled by other operators. Next, we
give a precise definition of an automatically simplified algebraic expression
which includes an order relation that describes actions of the additive and
multiplicative commutative transformations.

In Section 3.2 we describe the basic automatic simplification algorithm.
Although the algorithm is based only on the rules of elementary algebra, it
is quite involved. To handle a large variety of expressions, the automatic
simplification process includes over 30 rules (or rule groups), some of which
are recursive. The problem addressed in this section is how to organize this
involved process into a coherent algorithm.

3.1 The Goal of Automatic Simplification

The transformation rules in automatic simplification are motivated by the
field axioms (which are assumed to hold for expressions as well as for num-
ber fields) and by the transformations that are logical consequences of these
axioms. We begin by examining the role of each of the axioms in the au-
tomatic simplification process.

63

64 3. Automatic Simplification

The Basic Distributive Transformations

The (right) distributive property (field axiom F-8) has the form

(a+ b) · c = a · c+ b · c. (3.1)

This transformation is applied during automatic simplification in a right
to left manner to combine constant (integer or fraction) coefficients of like
terms in a sum. A typical transformation is

2 x+ y + (3/2)x = (7/2)x+ y.

There are, however, some similar manipulations that are omitted from
automatic simplification. One natural generalization of this manipulation
involves the collection of non-constant coefficients of like terms as well as
the constant ones as is done in

3 x+ a x+ y = (3 + a)x+ y. (3.2)

There are two reasons why this transformation is omitted from automatic
simplification. First, there is uncertainty about which parts of an expres-
sion are the like terms and which parts are the coefficients. This happens
with the expression

a x+ b x+ b y,

for if we collect coefficients of x, we obtain (a+b)x+b y, while if we collect
coefficients of b, we obtain a x+b (x+y). In other words, since the structure
of an expression by itself does not identify semantic roles such as coefficient
and like term, the operation is ambiguous.

A second reason to avoid collecting non-constant coefficients has to do
with its relationship to the Algebraic expand operator. Since this operator
applies Equation (3.1) in the opposite (left to right) direction, the collec-
tion of non-constant coefficients cancels out some of its actions. For these
reasons, it is common practice in computer algebra systems to collect only
rational number coefficients with automatic simplification. Unfortunately,
this means that coefficients that are not rational numbers but play the se-
mantic role of constants (e.g., π,

√
2) are also not collected. For example, in

2 x+ 3 x+
√
2 x = 5 x+

√
2 x,

we combine only the integer coefficients of x.
Since automatic simplification uses the tree structure to recognize like

terms, it is only able to combine coefficients of like terms with a similar
structure. This means that the manipulation

sin(x) + 2 sin(x) = 3 sin(x)

3.1. The Goal of Automatic Simplification 65

is obtained with automatic simplification, while

1 + x+ 2 (1 + x) = 3 (1 + x) (3.3)

is not. In the latter case, the 1 + x at the far left is not a complete sub-
expression of the sum and so is not structurally the same as the 1 + x in
the product 2 (1 + x).

There is another way to use distributive properties to simplify the ex-
pression (3.3). If we apply the left distributive property (field axiom F-7)

a · (b+ c) = a · b+ a · c
in a left to right fashion to distribute the constant 2 over 1 + x, and then
use the distributive property again to combine coefficients of x, we obtain

1 + x+ 2 (1 + x) = 3 + 3 x. (3.4)

This manipulation is more involved because it involves the application of
the distributive property both to distribute and collect constants. Because
of this, there is some question about whether it belongs in automatic sim-
plification or should be obtained with the Algebraic expand operator. In
addition, if constants are distributed over sums, then what should be done
with 2 (3 + x) (4 + x)? Should the 2 be distributed over one of the two
sums in the product and if so which one? This uncertainty is reflected in
the different approaches taken by computer algebra software. Maple and
MuPAD achieve manipulations like Equation (3.4) with automatic simpli-
fication,1 while Mathematica does not. However, all three systems achieve
the manipulation

x+ 1 + (−1) (x+ 1) = 0, (3.5)

even though it also involves both the distribution and collection of con-
stants.

With these considerations in mind, we include the following transfor-
mation in our automatic simplification algorithm.

Definition 3.1. The basic distributive transformation in automatic
simplification refers to the collection of integer and fraction coefficients of
like terms in a sum.

Observe that the basic distributive transformation does not distribute
constants over sums2 and so does not obtain the simplifications in Equa-
tions (3.4) and (3.5).

1Automatic simplification in Maple and MuPAD distributes a constant over a single
sum but does not change 2 (3 + x) (4 + x). (Implementation: Maple (mws), MuPAD
(mnb).)

2A modification of the automatic simplification algorithm that does distribute con-
stants over sums is described in Exercise 8, page 108.

66 3. Automatic Simplification

As a result of this transformation, a simplified sum cannot have two
operands with the same like term.3

The Basic Associative Transformations

The associative transformations are based on the additive and multiplica-
tive associative field axioms (F-5 and F-6):

a+ (b + c) = (a+ b) + c, (3.6)

(a · b) · c = a · (b · c). (3.7)

The associative properties suggest that the parentheses in Equations (3.6)
and (3.7) are superfluous, and so a natural way to incorporate associa-
tivity into automatic simplification is simply to eliminate the parentheses.
This means automatic simplification should perform the following manip-
ulations:

(w + x) + (y + z) = w + x+ y + z,

((w · x) · y) · z = w · x · y · z,
(((u + v) · w) · x+ y) + z = (u + v) · w · x+ y + z.

The tree structures that correspond to these simplifications are shown in
Figures 3.1 and 3.2. In a structural sense, the associative transformations
tend to reduce the number of levels in an expression tree by removing super-
fluous addition or multiplication operators and reassigning their operands
to appropriate instances of the same operator in the tree.

When the automatic simplification process is applied to a particular
sub-expression of an expression, the additive associative transformation is
always applied before the distributive transformations. The next two ex-
amples show how this order of application affects the simplification process.

Example 3.2. Consider the manipulation

x+ (x+ y) = x+ x+ y = 2 x+ y.

In this case, we first apply an associative transformation that modifies the
structure of the expression and then apply a distributive transformation
that collects coefficients of like terms. On the other hand, if the distributive
transformation were applied before the associative transformation, it would
not combine the two unlike terms x and x + y, and so after applying the
associative transformation, the simplified form would be x+ x+ y. �

3This statement also requires that the basic associative transformation for sums be
applied before the basic distributive transformation (see Definition 3.5 and Example 3.2).

3.1. The Goal of Automatic Simplification 67

�
��

❅
❅❅

❅❅�� ❅❅ ��

✆
✆✆

�
��

❅
❅❅

❊
❊❊

+

zyxw

+

+

+
w x y z

(unsimplified) (simplified)

(a) Tree structures for (w + x) + (y + z) = w + x+ y + z.

��

��

❏❏

✜✜ ❏❏

∗∗

∗
∗ z

y

w x

�
��

✆
✆✆

❊
❊❊
❅

❅❅
w x y z

(unsimplified) (simplified)

(b) Tree structures for ((w · x) · y) · z = w · x · y · z.

Figure 3.1. Tree transformations with the basic associative transformations.

Example 3.3. Sometimes the additive associative transformation inhibits
an application of the distributive transformation. This happens with the
expression

(1 + x) + 2 (1 + x). (3.8)

(We considered a similar expression in Equation (3.3) where parentheses
were omitted from the 1 + x at the left.) In this unsimplified form, both
instances of 1+x are syntactically identical, which suggests that a distribu-
tive transformation might collect the coefficients of 1 + x. However, since
the associative transformation is applied first, the parentheses about the
1 + x on the left are removed and the operands 1 and x become operands
of the main + operator. As we pointed out in the discussion following

68 3. Automatic Simplification

�� ❅❅ �� ❅❅

❡❡��

❅❅��

��

��

❅❅

❅❅��

❅❅

❅❅��

+

z

y

+

∗ y z

+ w x

u v

+

∗ x

w

u

∗

v

+

(unsimplified) (simplified)

(c) Tree structures for (((u + v) · w) · x+ y) + z = (u + v) · w · x+ y + z.

Figure 3.2. Tree transformations with the basic associative transformations (con-
tinued).

Equation (3.3), when the expression is in this form, the distributive trans-
formation does not recognize the two instances of 1 + x as like terms, and
so the simplified form of the expression (3.8) is 1 + x+ 2 (1 + x). �

The next example shows how the multiplicative associative transforma-
tion paves the way for the distributive transformation by transforming the
operands of a sum to a common form that makes it easy to recognize like
terms.

Example 3.4. Consider the manipulation

2 (x y z) + 3 x (y z) + 4 (x y) z = 2 x y z + 3 x y z + 4 x y z
= 9 x y z.

Since the sum on the left has three terms with different structures, the
recognition of like terms is more complicated than it needs to be. However,
when the simplification process is applied recursively to the operands of
the sum, the multiplicative associative transformation puts each term in

3.1. The Goal of Automatic Simplification 69

the standard form shown in the sum on the right. Since each term in this
new sum has a similar form, it is now easy to recognize the like terms. �

With these considerations in mind, we include the following transfor-
mations in our automatic simplification algorithm.

Definition 3.5. The basic associative transformations refer to the
transformations that modify the structure of an expression u in the follow-
ing ways.

1. Suppose that u is a sum. If s is an operand of u that is also a
sum, then the operator of s is removed from the expression tree, and
the operands of s are affixed to the main operator of u. At a given
level in an expression, this transformation is applied before the basic
distributive transformation (Definition 3.1, page 65).

2. Suppose that u is a product. If p is an operand of u that is also a
product, then the operator of p is removed from the expression tree,
and the operands of p are affixed to the main operator of u. At a
given level in an expression, this transformation is applied before the
basic power transformation (3.14) in Definition 3.8, page 74.

In Examples 3.9 and 3.10 below, we show how the product associative
transformation affects the action of the power transformation (3.14).

The basic associative transformations imply two more properties of au-
tomatically simplified expressions. As a result of these transformations, a
simplified sum cannot have an operand that is also a sum, and a simplified
product cannot have an operand that is a product.

The Basic Commutative Transformations

The commutative transformations are based on the field commutative prop-
erties (axioms F-3 and F-4)

a+ b = b + a, (3.9)

a · b = b · a. (3.10)

The next example shows how these transformations prepare an expression
for an application of a distributive transformation.

Example 3.6. Consider the manipulation

2 z x y + 3 y x z + 4 x z y = 2 x y z + 3 x y z + 4 x y z
= 9 x y z.

70 3. Automatic Simplification

In the first line, the three operands of the main operator + are transformed
recursively by commutative transformations to a standard form. In this
form, it is easy to recognize the like terms and obtain the simplified form. �

In order to include the commutative transformations in a simplification
algorithm, we need to describe the standard forms for a sum and a product
that are produced by these transformations. There are two ways to define
these standard forms. The approach that is most often used is to define
an order relation for expressions and to reorder the operands in a sum or
product using this relation. The Mathematica and MuPAD systems use
this approach as will our simplification algorithm. Another approach, used
by the Maple system, is described later in this section.

Let’s take a brief look at the order relation approach. Although the
general definition of an order relation is quite involved, a few of its rules
are easy to state. For example, for symbols the order is based on the lexi-
cographical (i.e., alphabetical) order of the symbol names. For example, in

b+ c+ a = a+ b+ c,

the operands of the sum on the left are out of order and are reordered by
commutative transformations to the standard form on the right. Another
order rule4 places constants in a product before symbols as is done in

x 3 a = 3 a x.

A third rule orders powers in a sum that have a common base according
to their exponents as is done in

x3 + x2 + x4 = x2 + x3 + x4.

The rules that are used to determine the order of more complicated ex-
pressions are quite involved although they are ultimately based on rules
similar to those given above. (A complete description of the reordering
process is given in Definition 3.26 starting on page 84.) For example, the
order relation used by our algorithm produces the standard form shown on
the right:

3 (x2 + 2) y x3 (x2 + 1) = 3 x3 (1 + x2) (2 + x2) y.

One advantage of basing commutative transformations on an order re-
lation is that expressions are often displayed in a form that resembles the
conventions used in mathematical notation. There are, however, other

4In MuPAD, an integer or fraction operand in a product is represented internally as
the last operand even though the displayed form indicates it is the first operand.

3.1. The Goal of Automatic Simplification 71

In[1] := u = Expand[(x2 + b ∗ x) ∗ (c + x)]

Out [1] = b c x + b x2 + c x2 + x3

In[2] := ReplaceAll[u, x− > a]

Out [2] = a3 + a2 b + a2 c + a b c

In[3] := D[Cos[x] + x2 ∗ Sin[x], x]

Out [3] = x2 Cos[x] − Sin[x] + 2 x Sin[x]

Figure 3.3. An interactive dialogue with the Mathematica system that shows the
effect of commutative transformations in automatic simplification. (Implementa-
tion: Mathematica (nb), MuPAD (mnb).)

instances where the reordering of an expression can confuse the presenta-
tion. Both of these possibilities arise in the dialogue with the Mathematica
system shown in Figure 3.3. At In[1], the Expand operator creates a poly-
nomial that is ordered by increasing powers of x and assigned to u. At
In[2], the symbol x in u is replaced by the symbol a which significantly
changes the order in the expression. Since the ordering scheme is oblivious
to the semantics of an operation, it has transformed the expression to a
form that makes the operation appear awkward. At In[3], the result of
the differentiation has been reordered so that the displayed form obscures
the application of the differentiation rules. Results similar to these are in-
evitable when an order relation determines the actions of the commutative
transformations.

The Maple system uses another approach to determine the actions of the
commutative transformations. In this system, the simplified form of a sum
or product is determined by the simplified form of the expression when it
is first encountered in a session. For example, consider the Maple dialogue
shown in Figure 3.4. At the first prompt, the expression a ∗ (z + x + y)
is assigned to u. At this point, Maple stores the sub-expression z + x +
y and the expression a ∗ (z + x + y) in a table that defines these forms
as the simplified forms of these expressions. At the second prompt, the
statement includes two sub-expressions that are equivalent by commutative
transformations to z + x + y. At this point the Maple system searches
the table to see if a simplified form of this expression or any of its sub-

72 3. Automatic Simplification

> u := a*(z + x + y);

u := a (z + x+ y)

> v := b*(x + y + z) + c*(y + z + x);

v := b (z + x+ y) + c (z + x+ y)

> w := (3*z + 2*x + y - x - 2*z)*(x*x + a - x^2);

w := a (z + x+ y)

Figure 3.4. An interactive dialogue with the Maple system that illustrates the
actions of the commutative transformations. (Implementation: Maple (mws).)

expressions can be transformed by commutative transformations to one
already in the table. Since z + x + y is already in the table, this form is
used in the final simplified displayed expression. In a similar way, at the
third prompt an involved expression is simplified to a form that is already
in the table.

Each of the two approaches that determines the actions of the commu-
tative transformations has its strengths and weaknesses. Let’s contrast the
two approaches by comparing the Mathematica dialogue in Figure 3.3 to a
similar dialogue with the Maple system (Figure 3.5). The first statement
in the Maple dialogue assigns an expression in powers of x to a variable u.
However, in this case the simplified form is harder to comprehend than the
more systematic form produced by the Mathematica system. On the other
hand, the next two Maple manipulations are much easier to follow than
the Mathematica ones because the expressions are not reordered. The last
statement in the Maple session shows the sort operator which redefines
the internal structure of a polynomial so that the powers now appear in
decreasing order.

From a user’s perspective, it is difficult to make a general statement
about which of the two approaches produces more readable results. If
expressions are entered in the Maple system in a systematic way, there is a
good chance the results will be displayed in a reasonable form. We didn’t
do this in the first statement in Figure 3.5 because x2+ b∗x has decreasing
powers of x while c+ x has increasing powers of x. If we had reversed the

3.1. The Goal of Automatic Simplification 73

> u := expand((x^2+b*x)*(c+x));

u := x2 c+ x3 + b x c+ b x2

> v := subs(x=a,u);

v := a2 c+ a3 + b a c+ b a2

> diff(cos(x) + x^2*sin(x), x);

− sin(x) + 2 x sin(x) + x2 cos(x)

> sort(u,x);

x3 + c x2 + b x2 + b c x

Figure 3.5. An interactive dialogue with the Maple system that is similar to the
Mathematica dialogue in Figure 3.3. (Implementation: Maple (mws).)

order of one of these, the result would be in a more systematic form. On the
other hand, in some cases a system that uses an order relation has a better
chance of reordering an awkward expression into a more understandable
form. With either approach, however, it is inevitable that some expressions
will be displayed in an awkward way.

The following transformations are included in our automatic simplifica-
tion algorithm.

Definition 3.7. The basic commutative transformations refer to trans-
formations that are based on the additive and multiplicative commutative
properties that reorder the operands in a sum or a product to a standard
form. The standard form is based upon the order relation that is defined in
Definition 3.26 starting on page 84.

The Basic Power Transformations

The power transformations are based on the three relations in Theorem 2.40.
For m and n integers,

am · an = am+n, (3.11)

74 3. Automatic Simplification

(am)n = am·n, (3.12)

(a · b)n = an · bn. (3.13)

In both the real field R and the complex field C, the power operation can
be generalized to allow exponents that are also members of the field. In
these more general settings, the transformation (3.11) is true, while the
transformations (3.12) and (3.13) are only true when n is an integer (see
Example 3.11). With these considerations in mind, we assume that similar
transformations are applied to mathematical expressions during automatic
simplification.

Definition 3.8. Let n be an integer. The following basic power transfor-
mations are applied during automatic simplification:

uv · uw → uv+w, (3.14)

(uv)n → uv·n, (3.15)

(u · v)n → un · vn. (3.16)

As a result of these transformations, the simplified form of a power with
an integer exponent cannot have a base that is also a power or a product.
In addition, the simplified form of a product cannot have two operands
that have a common base.

The power transformations in MPL are similar to those in Maple, Math-
ematica, and MuPAD (Figure 3.6).

Example 3.9. Consider the simplification:

(x · y) · (x · y)2 = (x · y) · (x2 · y2)
= x · y · x2 · y2

= x3y3.

In the first step, the second operand (x · y)2 is simplified (recursively)
using the transformation (3.16). In the second step, a basic associative
transformation is applied to each operand of the main product. In the
third step, the transformation (3.14) is applied to give the final form.5

Notice how the associative transformation prepares the expression for the
final power transformation. �

5Although the actual path taken by our algorithm for the last two steps is more
involved than what is shown in this example, the final result is the same.

3.1. The Goal of Automatic Simplification 75

Input MPL Maple Mathematica MuPAD

x2 ∗ x3 x5 x5 x5 x5

x1/2 ∗ x1/3 x5/6 x5/6 x5/6 x5/6

xa ∗ xb xa+b xaxb xa+b xaxb

(x2)3 x6 x6 x6 x6

(xa)2 x2a (xa)2 x2a x2a

(x2)1/2 (x2)1/2 (x2)1/2 (x2)1/2 (x2)1/2

(x1/2)2 x x x x

(x2)a (x2)a (x2)a (x2)a (x2)a

(x ∗ y)2 x2y2 x2y2 x2y2 x2y2

(x ∗ y)1/3 (x y)1/3 (x y)1/3 (x y)1/3 (x y)1/3

(x ∗ y)a (x y)a (x y)a (x y)a (x y)a

Figure 3.6. Power transformations in automatic simplification in MPL, Maple,
Mathematica, and MuPAD. (Implementation: Maple (mws), Mathematica (nb),
MuPAD (mnb).)

Example 3.10. Consider the simplification

(x · y) · (x · y)1/2 = x · y · (x · y)1/2.
In this case, the second operand (x ·y)1/2 is in simplified form, and the final
result is obtained by applying a basic associative transformation. Notice
that automatic simplification does not obtain (x · y)3/2 because the asso-
ciative transformation converts the expression to a form where the power
transformation (3.16) does not apply. �

Example 3.11. The following examples show that the transformations
(3.15) and (3.16) do not hold in a complex setting when n is not an integer.6

Indeed, if the transformations were true, we would obtain the following:

1 = 11/2 = (ı4)1/2 �= ı2 = −1,
1 = 11/2 = ((−1) · (−1))1/2 �= (−1)1/2(−1)1/2 = ı2 = −1. �

The Basic Difference Transformations

Definition 3.12. The following basic difference transformations are
applied by automatic simplification.

1. Each unary difference is replaced by the product

− u→ (−1) · u. (3.17)
6See Pennisi [78], pp. 112–113 for exponent relationships in a complex setting.

76 3. Automatic Simplification

2. Each binary difference is replaced by the sum

u− v → u+ (−1) · v. (3.18)

As a result of these transformations, automatically simplified expres-
sions do not contain the difference operator. Most computer algebra sys-
tems apply these transformations during automatic simplification.

The Basic Quotient Transformation

Definition 3.13. During automatic simplification the following basic quo-
tient transformation is applied:

u

v
→ u · v−1. (3.19)

As a result of this transformation, automatically simplified expressions
do not contain the quotient operator. Most computer algebra systems apply
the quotient transformation during automatic simplification although this
may not be apparent from the displayed form of an expression which may
still contain a quotient operator.

Example 3.14. The quotient transformation prepares an expression for a
power transformation as is done in

a · x3

x
= (a · x3) · x−1 = a · x3 · x−1 = a · x2. �

The Basic Identity Transformations

Definition 3.15. The following basic identity transformations are ap-
plied by automatic simplification:

u+ 0 → u, (3.20)
u · 0 → 0, (3.21)
u · 1 → u, (3.22)

0w →
{ 0, if w is a positive integer or

fraction,
Undefined, otherwise,

(3.23)

1w → 1, (3.24)

3.1. The Goal of Automatic Simplification 77

v0 →
{
1, if v �= 0,
Undefined, if v = 0, (3.25)

v1 → v. (3.26)

In light of Definition 3.15, automatically simplified expressions satisfy
the following properties.

1. A sum cannot have 0 as an operand.

2. A product cannot have 0 or 1 as an operand.

3. A power cannot have 0 or 1 as a base or an exponent.

The transformations (3.20)–(3.26) are considered basic because each
one appears in some form in our algorithm. Other manipulations involving
identities are consequences of these basic identity transformations, numer-
ical calculations with identity elements, and other transformations in this
section (Exercise 1, page 107). These include the following transformations
with quotients and differences:

u

0
→ Undefined, (3.27)

0
u
→

{
0, if u �= 0,
Undefined, if u = 0, (3.28)

u/1 → u, (3.29)
u− 0 → u, (3.30)
0− u → (−1) · u. (3.31)

Although transformations similar to (3.20)–(3.31) are achieved by au-
tomatic simplification in most computer algebra systems, some systems
transform powers with base 0 to other forms (see Figure 3.7). For exam-
ple, although 00 is usually considered indeterminate, some mathematicians
define 00 as 1, and this transformation is obtained by both Maple and Mu-
PAD.7 In addition, in MPL the expression 0w is considered undefined when
w is not a positive integer or fraction. Certainly, this is appropriate when
w is a negative integer or fraction, and when w is some other algebraic ex-
pression, we take the conservative (safe) approach and simply assume that
the expression is undefined. On the other hand, when w is not a non-zero
integer or fraction, Maple transforms 0w → 0, and both Mathematica and
MuPAD consider 0w as an unevaluated power.

Unfortunately, since the transformations (3.23), (3.25), and (3.28) in-
clude test conditions, they may give results that are not mathematically

7Knuth, Graham, and Patashnik [56] (page 162) assume that 00 = 1. Their motiva-
tion is based on some limiting cases of the binomial theorem.

78 3. Automatic Simplification

MPL Maple Mathematica MuPAD
00 Undefined 1 Indeterminate 1
0−2 Undefined error ComplexInfinity error

message message
0w Undefined 0 0w 0w

Figure 3.7. Transformations of powers with base 0 in MPL, Maple, Mathemat-
ica, and MuPAD. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).)

legitimate in a larger simplification context. For example, for the transfor-
mation (

sin2(x) + cos2(x) − 1
)0 → 1,

the base is not transformed to 0 by automatic simplification. Therefore,
automatic simplification does not recognize this as the undefined expression
00 and transforms it instead to 1.

The Basic Unary Transformations

Definition 3.16. The following basic unary transformations are applied
during automatic simplification:

· x → x, (3.32)
+x → x. (3.33)

These transformations apply to unary operations that appear in an
expression and to those that are created during the course of the simplifi-
cation. As a result of these transformations, a simplified expression cannot
contain a unary product or sum.

The Basic Numerical Transformations

Definition 3.17. The following basic numerical transformations are
applied during automatic simplification:

1. the multiplication of constant operands in a product,

2. the addition of constant operands in a sum,

3. the evaluation of powers with an integer or fraction base and an in-
teger exponent, and

3.1. The Goal of Automatic Simplification 79

Input MPL Maple Mathematica MuPAD
41/2 41/2 41/2 2 2
541/3 541/3 541/3 3 · 21/3 541/3

Figure 3.8. Numerical power transformations with radicals in automatic simpli-
fication in MPL, Maple, Mathematica, and MuPAD. (Implementation: Maple
(mws), Mathematica (nb), MuPAD (mnb).)

4. the evaluation of factorials with a non-negative integer operand.

All arithmetic operations result in rational numbers in the standard form
described in Definition 2.25 on page 37.

As a result of these transformations, automatically simplified expres-
sions have the following properties.

1. A sum or product can have at most one operand that is constant.

2. A power with an integer exponent cannot have a constant base.

3. A factorial cannot have a non-negative integer operand.

Although some computer algebra systems evaluate radicals during au-
tomatic simplification (e.g., 41/2 = 2, 541/3 = 3 · 21/3 (Figure 3.8)), these
transformations are not included in our algorithm.

The ”Undefined” Transformation

We take the view that if some operand of an expression is undefined, then
the entire expression is considered undefined. For example, x + 0−1/2 is
undefined because the second operand of the sum 0−1/2 is undefined. With
these considerations in mind, we include the following in automatic simpli-
fication.

Definition 3.18. The following “Undefined” transformation is applied dur-
ing automatic simplification:

if u is a compound expression with an operand that is the sym-
bol Undefined, then automatic simplification transforms u to
Undefined.

80 3. Automatic Simplification

Basic Algebraic Expressions

In order to describe the automatic simplification algorithm, we need precise
definitions for the expressions that are the input and output of the algo-
rithm. The following definition describes the class of input expressions.

Definition 3.19. A basic algebraic expression (BAE) is an expression
that satisfies one of the following rules.

BAE-1. u is an integer.

BAE-2. u is a fraction.

BAE-3. u is a symbol.

BAE-4. u is a product with one or more operands that are BAEs.

BAE-5. u is a sum with one or more operands that are BAEs.

BAE-6. u is a quotient with two operands that are BAEs.

BAE-7. u is a unary or binary difference where each operand is a BAE.

BAE-8. u is a power where both operands are BAEs.

BAE-9. u is a factorial with an operand that is a BAE.

BAE-10. u is a function form with one or more operands that are BAEs.

Example 3.20. The following are BAEs:

2/4, a · (x+ x), a+ b3/b, b− 3 · b, a+ (b + c) + d,

2 · 3 · x · x2, f(x)1, + x2 − x, 0−3, · x 2/(a− a), 3! �

The BAEs are similar to conventional algebraic expressions, except now
products and sums can have one or more operands. By including these
expressions in the definition, the automatically simplified expressions (see
Definition 3.21) are included in the BAEs. Notice that we have included
unary products as well as unary sums because they can be created in the
course of a simplification. All unary products and sums are eliminated
during the simplification process.

At this point, we allow expressions that are transformed by automatic
simplification to a mathematically undefined form because the algorithm
recognizes when these situations arise and returns the symbol Undefined.
For example, in the last example, the expressions 0−3 and 2/(a − a) are
mathematically undefined.

3.1. The Goal of Automatic Simplification 81

Automatically Simplified Algebraic Expressions

In Chapter 1 we described some of the structural properties of automat-
ically simplified algebraic expressions. The next definition, which gives a
complete description of these expressions, defines the goal of automatic
simplification. The properties in the definition are the result of the basic
transformations given in the beginning of this section.

Definition 3.21. An expression u is an automatically simplified alge-
braic expression (ASAE) if it satisfies one of the following rules.

ASAE-1. u is an integer.

ASAE-2. u is a fraction in standard form.

ASAE-3. u is a symbol except the symbol Undefined.

The next rule describes the simplified form of a product. An important
simplification transformation for products is the basic power transforma-
tion uv · uw = uv+w. Since the relation holds when an exponent is un-
derstood to be 1 (e.g., b · b2 = b3), it is useful to view each non-constant
operand of a product as a power. With these considerations in mind, we
define the base and exponent of an ASAE u as

base(u) =

u, when u is a symbol, product, sum,
factorial, or function

Operand(u, 1), when u is a power,
Undefined, when u is an integer or fraction,

exponent(u) =

1, when u is a symbol, product, sum,

factorial, or function,
Operand(u, 2), when u is a power,
Undefined, when u is an integer or fraction.

For example,

base(x2) = x, exponent(x2) = 2,

base(x) = x, exponent(x) = 1.

The implementation of procedures for these operators is left to the reader
(Exercise 1).

The base operator is used to define the simplified form of a product.

82 3. Automatic Simplification

ASAE-4. u is a product with two or more operands u1, u2, . . . , un that
satisfy the following properties.

1. Each operand ui is an ASAE which can be either an integer (�=
0, 1), fraction, symbol (�= Undefined), sum, power, factorial,
or function. (An operand of a product cannot be a product.) An
expression that satisfies this property is called an admissible
factor of a product.

2. At most one operand ui is a constant (integer or fraction).

3. If i �= j, then base(ui) �= base(uj).

4. If i < j, then ui✁uj.

The operator ✁ in ASAE-4-4 refers to the order relation on expressions
that is used to define the actions of the commutative properties. The
definition of ✁ is given later in the section (see Definition 3.26 starting on
page 84).

Example 3.22. The expression 2 · x · y · z2 is a simplified product. It
can be easily checked that this expression satisfies ASAE-4-1, ASAE-4-2,
and ASAE-4-3, and once ✁ is defined, we shall see that it also satisfies
ASAE-4-4. On the other hand, the following are not simplified:

2 · (x · y) · z2, (ASAE-4-1 is not satisfied),
1 · x · y · z2, (ASAE-4-1 is not satisfied),
2 · x · y · z · z2, (ASAE-4-3 is not satisfied). �

The next rule describes the simplified form of a sum. An important
simplification transformation for a sum is the basic distributive transfor-
mation that collects constant coefficients of like terms. In order to describe
the result of this transformation, we need to precisely define “like term.”
With this consideration in mind, we define the like-term part and constant
part of an ASAE u with the operators

3.1. The Goal of Automatic Simplification 83

term(u) =

·u, when u is a symbol, sum, power, factorial,
or function,

u2 · · ·un, when u = u1 · · ·un is a product
and u1 is constant,

u, when u = u1 · · ·un is a product
and u1 is not constant,

Undefined, when u is an integer or fraction,

const(u) =

1, when u is a symbol, sum, power, factorial,
or function,

u1, when u = u1 · · ·un is a product
and u1 is constant,

1, when u = u1 · · ·un is a product
and u1 is not constant,

Undefined, when u is an integer or fraction.

The definitions assume that a simplified product has at least two operands,
and when a constant appears as an operand, it is the first operand.8 Ob-
serve that when u is not an integer or fraction, the term operator returns a
product with one or more operands. When the term operator is applied to
an operand of a sum, it returns the part used to determine the like terms,
while the const operator returns the corresponding coefficient part. For
example,

term(x) = ·x, term(2 · y) = ·y, term(x · y) = x · y,

const(x) = 1, const(2 · y) = 2, const(x · y) = 1.

Notice that term(u) is either a product or Undefined. This means ex-
pressions such as x and 2 · x have like-term parts that are structurally the
same. The implementation of procedures for these operators is left to the
reader (Exercise 1).

The term operator is used to define the simplified form of a sum.

ASAE-5. u is a sum with two or more operands u1, u2, . . . , un that satisfy
the following properties.

1. Each operand ui is an ASAE that can be either an integer (�= 0),
fraction, symbol (�= Undefined), product, power, factorial, or
function. (An operand of a sum cannot a sum.) An expres-
sion that satisfies this property is called an admissible term of
a sum.

2. At most one operand of u is a constant (integer or fraction).
8See rule O-7 on page 87.

84 3. Automatic Simplification

3. If i �= j, then term(ui) �= term(uj).

4. If i < j, then ui✁uj.

Example 3.23. The sum 2 ·x+3 · y+4 · z is an ASAE. On the other hand,
the following expressions are not simplified:

1 + (x + y) + z, (ASAE-5-1 is not satisfied),
1 + 2 + x, (ASAE-5-2 is not satisfied),
1 + x+ 2 · x, (ASAE-5-3 is not satisfied),
z + y + x, (ASAE-5-4 is not satisfied). �

ASAE-6. u is a power vw that satisfies the following properties.

1. The expressions v and w are ASAEs.

2. The exponent w is not 0 or 1.

3. If w is an integer, then the base v is an ASAE which is a
symbol(�= Undefined), sum, factorial, or function.

4. If w is not an integer, then the base v is any ASAE except 0
or 1.

Example 3.24. The expressions x2, (1 + x)3, 2m, (x · y)1/2, and (x1/2)1/2

are ASAEs, while 23, (x2)3, (x y)2, (1 + x)1, and 1m are not. �

ASAE-7. u is a factorial with an operand that is any ASAE except a
non-negative integer.

Example 3.25. The expressions n! and (−3)! are ASAEs, while 3! is not. �

ASAE-8. u is a function with one or more operands that are ASAEs.

The ✁ Order Relation

The ✁ order relation defines the actions of the basic commutative trans-
formations, and, in a simplified sum or product, the operands are ordered
according to this relation. Since the operands of these expressions are sim-
plified recursively, it is sufficient to define the order relation for expressions
that are automatically simplified.

Definition 3.26. Let u and v be distinct ASAEs. The ✁ order relation is
defined by the following rules.

3.1. The Goal of Automatic Simplification 85

O-1. Suppose that u and v are both constants (integers or fractions). Then,

u✁v → u < v.

This notation indicates the value of u✁v is obtained by evaluating the order
relation < for integers or fractions. For example,

2✁5/2→ 2 < 5/2→ true.

O-2. Suppose that u and v are both symbols. Then, u✁v is defined by
the lexicographical order of the symbols. The lexicographical order is
similar to an alphabetical order except now the individual characters
are constructed from upper and lower case letters and digits which
are ordered as

0, 1, . . . , 9, A,B, . . . , Z, a, b, . . . , z.

For example, a✁b, v1✁v2 , and x1✁xa.

O-3. Suppose that u and v are either both products or both sums with
operands

u1, u2, . . . , um and v1, v2, . . . , vn.

1. If um �= vn, then u✁v → um✁vn.

2. If there is an integer k with 1 ≤ k ≤ min({m,n})− 1 such that

um−j = vn−j , j = 0, 1, . . . , k − 1 and um−k �= vn−k,

then u✁v → um−k✁vn−k.

3. If
um−k = vn−k, k = 0, 1, . . . ,min({m,n})− 1,

then u✁v → m < n.

In O-3, since u and v are ASAEs, their operands satisfy

ui✁uj, vi✁vj , for i < j.

Therefore, the most significant operand in each expression (with respect
to ✁) is the last operand. The value of u✁v is determined by comparing
corresponding operands in each expression starting with the most signifi-
cant operands um and vn. Rule O-3-1 says that if um �= vn, then the value
u✁v is determined by evaluating um✁vn with a recursive application of
the rules. On the other hand, according to Rule O-3-2, if um = vn the

86 3. Automatic Simplification

focus shifts one operand to the left to um−1 and vn−1, and if um−1 �= vn−1,
then u✁v = um−1✁vn−1. Again, if um−1 = vn−1, the focus shifts one
more step to the left to um−2 and vn−2. This process continues until ei-
ther two unequal operands are found (say um−k �= vn−k) in which case
u✁v → um−k✁vn−k, or until either u or v runs out of operands in which
case condition O-3-3 applies. For example,

a+ b✁a+ c, a+ c+ d✁b+ c+ d, c+ d✁b+ c+ d.

O-4. Suppose that u and v are both powers.

1. If base(u) �= base(v), then

u✁v → base(u)✁base(v).

2. If base(u) = base(v), then

u✁v → exponent(u)✁exponent(v).

In other words, if the bases are different, the order is determined by the
order of bases, and if the bases are the same, the order is determined by
the order of the exponents.

Example 3.27. Using O-4, O-1, and O-3-1, we have

(1 + x)2✁(1 + x)3✁(1 + y)2. (3.34)

�

O-5. If u and v are both factorials, then

u✁v → Operand(u, 1)✁Operand(v, 1).

The order of two factorials is obtained by comparing their operands.

O-6. Suppose that u and v are functions.

1. If Kind(u) �= Kind(v), then u✁v → Kind(u)✁Kind(v).
2. Suppose that Kind(u) = Kind(v), and the operands of the func-

tions are given by u1, u2, . . . , um and v1, v2, . . . , vn.

(a) If u1 �= v1, then u✁v → u1✁v1.

(b) If there is an integer k with 1 ≤ k ≤ min({m,n}) such that

uj = vj , j = 1, . . . , k − 1 and uk �= vk,

then u✁v → uk✁vk.

3.1. The Goal of Automatic Simplification 87

(c) If
uk = vk, k = 1, . . . ,min({m,n}),

then u✁v → m < n.

When two functions have different names, the order is determined by the
function names. For example, f(x)✁g(x). The comparison of functions
with the same name is similar to the comparison of two products or two
sums, except now the first operand is the most significant operand. For
example, f(x)✁f(y) and g(x)✁g(x, y).

The rules given so far apply when either u and v are both constants or
Kind(u) = Kind(v). The remaining rules apply when u and v are different
types.

O-7. If u is an integer or fraction and v is any other type, then u✁v.

As a consequence of this rule, whenever a constant is an operand in a
simplified sum or product, it must be the first operand.

O-8. Suppose that u is a product. If v is a power, sum, factorial, function,
or symbol, then9

u✁v → u✁ · v. (3.35)

In other words, in this rule the order is determined by viewing both expres-
sions as products and recursively applying O-3. Notice that we streamline
the rule list by not mentioning explicitly the case where u is a product
and v a constant because this is handled through rule O-13, where u and
v are interchanged together with a recursive application of O-7. For the
remaining rules, we omit cases that are handled by earlier rules through
rule O-13.

Example 3.28. This rule is a natural way to compare a product and a
power because it implies that an expression like a · x2 + x3 with increasing

9Strictly speaking, � is only defined for automatically simplified expressions. Al-
though the expression ·v in this rule is not automatically simplified, the order u � · v is
still well defined because it simply provides a way to compare the last operand of u to
v. In fact, the rule can be defined without the unary product. If u = u1 · · · un, then the
transformation (3.35) is equivalent to

u � v → un � v, if un �= v,
true, if un = v.

We use the unary product form of the rule, however, because the rules are somewhat eas-
ier to describe in this format. These comments also apply to rules O-9, O-10, and O-11.

88 3. Automatic Simplification

powers of x is an ASAE. Indeed, using O-8 followed by O-3-1, O-4-2, and
O-1, we have

a · x2✁x3 → a · x2✁ · x3 → x2✁x3 → 2 < 3→ true. �

O-9. Suppose that u is a power. If v is a sum, factorial, function, or
symbol, then

u✁v → u✁v1.

In other words, in this rule the order is determined by viewing both ex-
pressions as powers and recursively applying rule O-4.

Example 3.29. Using O-9 followed by O-4-1, O-3-2, and O-2, we have

(1 + x)3✁(1 + y)→ (1 + x)3✁(1 + y)1 → (1 + x)✁(1 + y)→ x✁y → true.

�

O-10. Suppose that u is a sum. If v is a factorial, function, or symbol,
then

u✁v → u✁+ v.

In other words, in this rule the order is determined by viewing both ex-
pressions as sums and recursively applying rule O-3.

Example 3.30. Using O-10, O-3-1, and O-2, we have 1 + x✁y. �

O-11. Suppose that u is a factorial. If v is a function or symbol, then

1. If Operand(u, 1) = v then u✁v → false.
2. If Operand(u, 1) �= v then u✁v → u✁v!.

In other words when Operand(u, 1) �= v, the order is determined by viewing
both expressions as factorials and then recursively applying rule O-5. For
example, this rule implies m!✁n.

O-12. Suppose that u is a function, and v is a symbol.

1. If Kind(u) = v, then u✁v → false.
2. If Kind(u) �= v, then u✁v → Kind(u)✁v.

3.1.
The

GoalofAutom
atic

Sim
plification

89

v → constant · ∧ + ! function symbol
u
↓

constant O-1 true true true true true true
(<)

· false O-3 u(· v u(· v u(· v u(· v u(· v

∧ false ·u(v O-4 u(v1 u(v1 u(v1 u(v1

+ false ·u(v u1(v O-3 u(+ v u(+ v u(+ v

if Operand(u, 1) = v if Operand(u, 1) = v
! false ·u(v u1(v +u(v O-5 then false then false

else u(v! else u(v!

if u = Operand(v, 1) if Kind(u) = v
function false ·u(v u1(v +u(v then true O-6 then false

else u!(v else Kind(u)(v

if u = Operand(v, 1) if u = Kind(v)
symbol false ·u(v u1(v +u(v then true then true O-2

else u!(v else u(Kind(v) (lexicographical)

Figure 3.9. A summary of the rules for u(v. The entries along the diagonal correspond to rules O1 through O-6. The entries
above the diagonal correspond to rules O-7 through O-12, while those below the diagonal correspond to the complementary
rules implied by rule O-13.

90 3. Automatic Simplification

Example 3.31. Rule O-12-1 implies x✁x(t), and Rules O-12-2 and O-2
imply x✁y(t). �

O-13. If u and v do not satisfy the conditions in any of the above rules,
then

u✁v → not(v✁u).

Example 3.32. If u = x and v = x2, then the first 12 rules do not apply.
However, using rules O-13, O-9, O-4-2, and O-1, we have

x✁x2 → not(x2✁x)→ not(x2✁x1)→ not(2 < 1)→ not(false)→ true.
�

A summary of the ✁ rules, which includes the complementary rules
implied by O-13, is given in Figure 3.9.

The ✁ transformation rules can be readily expressed in a procedure
that determines the order of two expressions. The details of the procedure
are left to the reader (Exercise 2).

Exercises
1. Let u be an ASAE in function notation. Give a procedure for each of the

following operators.

(a) An operator Base(u) for base(u).

(b) An operator Exponent(u) for exponent(u).

(c) An operator Term(u) for term(u).

(d) An operator Const(u) for const(u).

These operators are used in the automatic simplification algorithm de-
scribed in Section 3.2.

2. Let u and v be ASAEs in function notation. Give a procedure

Compare(u, v)

that evaluates the order relation u (v. The operator returns true when
u (v and false otherwise. Note: To obtain the order of two symbols
the following commands can be used: in Maple, the lexorder com-
mand; in Mathematica, the Order command; and in MuPAD, the sysorder
command. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).)

This operator is used in the automatic simplification algorithm described
in Section 3.2.

3. Let u be a BAE in function notation. Give a procedure ASAE (u) that
returns true if u is an ASAE and false otherwise.

3.2. An Automatic Simplification Algorithm 91

4. Determine u (v for each of the following pairs of expressions. In each case,
give the sequence of rules used to determine u (v.

(a) u = a + b, v = c.

(b) u = a · b, v = a + b2.

(c) u = c2, v = a + b4.

(d) u = (2 + 4 · x)3, v = y2.

(e) u = c · (x + 4 · y2), v = (a + 3 · b2) · (x + 4 · y2).

5. Give the automatically simplified form of each of the following expressions.
Indicate which simplification rules are applied to determine the simplified
form.

(a) m · c2.

(b)
m · v2

2
.

(c) a · x2 + b · x + c.

(d) ((x1/2)1/2)8.

(e) ((x · y)1/2 · z2)2.

6. Show that each of the following expressions is an ASAE.

(a) 1 + x + 2 · (1 + x).

(b) x2 · (x2)y .

(c) 3 · x3 · (1 + x2) · (2 + x2) · y.

3.2 An Automatic Simplification Algorithm

In this section we describe an automatic simplification algorithm that is
based on the basic algebraic transformations described in Section 3.1. The
algorithm does the following:

1. For u a BAE, the algorithm returns either an ASAE or the symbol
Undefined.

2. For u an ASAE, the algorithm returns u.

The Main Simplification Procedure

The main procedure of the algorithm is given in Figure 3.10. In order to
bypass a CAS’s automatic simplification process, we assume that the input
expression is in function notation (see Figure 2.6, page 39) instead of infix
notation. For clarity, however, we use infix notation in our discussion and
examples.

92 3. Automatic Simplification

Procedure Automatic simplify(u);
Input
u : a BAE in function notation;

Output
An ASAE in function notation or the symbol Undefined;

Local Variables
v;

Begin
1 if Kind(u) ∈ {integer, symbol} then
2 Return(u);
3 elseif Kind(u) = FracOp then
4 Return(Simplify rational number(u))
5 else
6 v := Map(Automatic simplify, u);
7 if Kind(v) = PowOp then
8 Return(Simplify power(v))
9 elseif Kind(v) = ProdOp then
10 Return(Simplify product(v))
11 elseif Kind(v) = SumOp then
12 Return(Simplify sum(v))
13 elseif Kind(v) = QuotOp then
14 Return(Simplify quotient(v))
15 elseif Kind(v) = DiffOp then
16 Return(Simplify difference(v))
17 elseif Kind(v) = FactOp then
18 Return(Simplify factorial(v))
19 else
20 Return(Simplify function(v))

End

Figure 3.10. The main MPL procedure in the Automatic simplify algorithm.
(Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

To begin, since integers and symbols are in simplified form, the pro-
cedure simply returns the input expression (lines 1–2). For fractions, the
simplified form is obtained (at line 4) with the Simplify rational number
procedure described in Section 2.2. For other compound expressions, we
first recursively simplify the operands (line 6) and then apply the appro-
priate simplification operator (lines 7–20).

Because of the large number of basic transformations described in Sec-
tion 3.1 and the complex interactions between them, the automatic simpli-
fication algorithm is quite involved. In Figure 3.11, we list the operators

3.2.
An
Autom

atic
Sim
plification

Algorithm
93

Simplify product rec

Merge products

Automatic Simplify

Simplify product Simplify difference

Simplify function

Simplify sum Simplify factorialSimplify quotientSimplify power

Simplify RNE

Simplify sum rec

Merge sums

Simplify integer power

Compare

Figure 3.11. The relationship between the operators in the automatic simplification algorithm.

94 3. Automatic Simplification

called by Automatic simplify along with other operators that make up the
algorithm. An arrow from one operator to another operator indicates that
the first operator calls on the second operator, and a circular reference
indicates the operator is recursive. Each of the operators is defined by a
collection of transformation rules, and in order to guide the reader through
the maze of rules, we give a large number of examples to illustrate how the
rules are applied.

Simplification of Powers

The Simplify power operator, which transforms a power vw to either an
ASAE or the symbol Undefined, is based on the following transforma-
tions:

1. the basic power transformations (3.15) and (3.16),

2. the basic identity transformations (3.23), (3.24), (3.25), and (3.26),

3. the basic numerical transformation in Definition 3.17(3), and

4. the “Undefined” transformation in Definition 3.18.

The operator is defined in terms of a main sequence of non-recursive trans-
formation rules (Definition 3.33) which calls on another sequence of recur-
sive rules (Definition 3.34).

Definition 3.33. Let u = vw where the base v = Operand(u, 1) and the
exponent w = Operand(u, 2) are either ASAEs or the symbol Undefined.
The operator Simplify power(u) is defined by the following transformation
rules.

SPOW-1. If v = Undefined or w = Undefined then

Simplify power (u)→ Undefined.

SPOW-2. Suppose that v = 0. If w is a positive integer or fraction, then

Simplify power (u)→ 0,

otherwise
Simplify power (u)→ Undefined.

SPOW-3. If v = 1, then

Simplify power (u)→ 1.

3.2. An Automatic Simplification Algorithm 95

SPOW-4. If w is an integer, then

Simplify power (u)→ Simplify integer power(v, w).

(Simplify integer power is defined in Definition 3.34 below.)

SPOW-5. If the first four rules do not apply, then

Simplify power (u)→ u.

Rule SPOW-1 states that a power with anUndefined operand inherits
this Undefined value. This happens, for example, with (1/0)2 because the
simplified form of the base is Undefined.

Rules SPOW-2 and SPOW-3 are the basic identity transformations
(3.23) and (3.24). Rule SPOW-4, which simplifies powers with integer
exponents, is defined by the Simplify integer power operator (see Defini-
tion 3.34 below). The last rule SPOW-5, which handles all other cases,
simply returns u without change.

Definition 3.34. Consider the expression vn where v �= 0 is an ASAE and
n is an integer. The operator Simplify integer power(v, n) is defined by the
following transformation rules.

SINTPOW-1. If Kind(v) ∈ {integer,FracOp}, then

Simplify integer power (v, n)→ Simplify RNE(PowOp(v, n)).

Rule SINTPOW-1, performs the numerical computation of powers using
the Simplify RNE operator described in Section 2.2.

SINTPOW-2. If n = 0, then Simplify integer power(v, n)→ 1.

SINTPOW-3. If n = 1, then Simplify integer power(v, n)→ v.

Rules SINTPOW-2, and SINTPOW-3, achieve the two basic identity trans-
formations (3.25) and (3.26). In SINTPOW-2, since SPOW-2 above is
applied before this rule, we assume that v �= 0.

SINTPOW-4. Suppose that Kind(v) = PowOp with base

r = Operand(v, 1)

and exponent
s = Operand(v, 2).

In addition, let

p = Simplify product(ProdOp(s, n)). (3.36)

(Simplify product is given in Definition 3.37.)

96 3. Automatic Simplification

1. If p is an integer, then

Simplify integer power(v, n)→ Simplify integer power(r, p).
(3.37)

2. If p is not an integer, then

Simplify integer power(v, n)→ PowOp(r, p). (3.38)

This rule, which applies when the base v is also a power, is based on the
power transformation (rs)n = rs·n in Equation (3.15). The Simplify product
operator in Equation (3.36), which simplifies the new product s · n, is de-
scribed in Definition 3.37. Observe that the transformation (3.37) is recur-
sive because the new power rp may not be simplified (see Example 3.35
below). On the other hand, if p is not an integer, then rp is an ASAE
because r is the base of the simplified power rs, and so rp is returned.

Example 3.35. Consider the simplification of the expression

((x1/2)1/2)8,

where v = (x1/2)1/2 and n = 8. Observe that ASAE-6 implies that v is
an ASAE. To apply rule SINTPOW-4, let r = x1/2 and s = 1/2. We have
p = s·n = 4, and so rp = (x1/2)4 which is not in simplified form. However, a
recursive application of Simplify integer power in the transformation (3.38)
obtains the simplified form x2. �

SINTPOW-5. Suppose that Kind(v) = ProdOp, and let

r = Map(Simplify integer power , v, n). (3.39)

Then,

Simplify integer power (v, n)→ Simplify product(r). (3.40)

This rule, which applies when v is a product, is based on the power trans-
formation

vn = (v1 · · · vm)n = vn1 · · · vnm
in Equation (3.16). The expression r that is defined with the Map operator
is a new product r = r1 · · · rm, where

ri = Simplify integer power (vi, n)

is the simplified form of vni . Notice that Equation (3.39) involves a recur-
sive application of Simplify integer power, because the new power vni may

3.2. An Automatic Simplification Algorithm 97

not be in simplified form. In addition, since the new product r may not
be in simplified form, it is simplified in transformation (3.40) with the
Simplify product operator. These points are illustrated in Example 3.36.

Example 3.36. Consider the simplification of(
(x · y)1/2 · z2

)2

,

where
v = v1 v2 = (x · y)1/2 · z2, n = 2.

Then,

r = Simplify integer power
(
(x · y)1/2 , 2

)
· Simplify integer power

(
z2, 2

)
→ (x · y) · z4. (3.41)

Notice that the expression (3.41) is not a simplified product because of the
parentheses about x · y. Using the transformation (3.40), we obtain the
simplified form

Simplify product(r)→ x · y · z4. �

SINTPOW-6. If none of the rules apply, then

Simplify integer power (v, n)→ PowOp(v, n).

The last rule applies when v is a symbol, sum, factorial, or function.
In this rule, vn is already simplified, and so this expression is returned in
function notation.

Simplification of Products

The Simplify product operator, which transforms a product to either an
ASAE or the symbolUndefined, is based on the following transformations:

1. the basic associative transformation (Definition 3.5(2)),

2. the basic commutative transformation for products (Definition 3.7),

3. the basic power transformation (3.14),

4. the basic identity transformations (3.21) and (3.22),

5. the basic unary transformation (3.32),

98 3. Automatic Simplification

6. the basic numerical transformation in Definition 3.17(1), and

7. the basic “Undefined” transformation (Definition 3.18).

This operator is defined in terms of a main sequence of non-recursive trans-
formation rules (Definition 3.37) together with two sequences of recursive
rules (Definition 3.38 and Definition 3.42).

Definition 3.37. Let u be a product with one or more operands that
are ASAEs, and let L = [u1, . . . , un] be the list of the operands of u.
The Simplify product(u) operator is defined by the following transforma-
tion rules.

SPRD-1. If Undefined ∈ L, then

Simplify product(u)→ Undefined.
SPRD-2. If 0 ∈ L, then Simplify product(u)→ 0.

Rule SPRD-1 states that a product with an operand that is undefined
inherits the simplified form Undefined. Rule SPRD-2 is based on the
identity transformation (3.21). Both rules are included at this point be-
cause the expressions Undefined and 0 are not created at any other point
during the simplification of a product (which means the rules never have
to be recursively reapplied), and the presence of these expressions has such
a profound effect on the output.

SPRD-3. If L = [u1], then Simplify product(u)→ u1.

Rule SPRD-3 states that a unary product simplifies to its operand.

SPRD-4. Suppose that the first three rules do not apply, and let

v = Simplify product rec(L). (3.42)

The Simplify product rec operator, which is given in Definition 3.38,
returns a list with zero or more operands, and if v has two or more
operands, they satisfy the conditions of ASAE-4. There are three
cases.

1. If v = [v1], then Simplify product(u)→ v1.

2. If v = [v1, v2, . . . , vs] with s ≥ 2, then

Simplify product(u)→ Construct(ProdOp, v).

3. If v = [], then Simplify product(u)→ 1.

3.2. An Automatic Simplification Algorithm 99

Rule SPRD-4-1 is invoked when the operands of u simplify to a product
with single operand v1, in which case the simplified form is just the operand
v1. For example, using the rules in Definition 3.38 and Definition 3.42, we
have

v = Simplify product rec([a−1, b, a])→ [b],

and therefore by SPRD-4-1,

Simplify product(a−1 · b · a)→ b.

Rule SPRD-4-2 corresponds to the case where the simplified form of a
product is also a product. For example, since

v = Simplify product rec([c, 2, b, c, a])→ [2, a, b, c2],

we have
Simplify product(c · 2 · b · c · a)→ 2 · a · b · c2.

Rule SPRD 4-3 is included since an integer 1 that is created during the
simplification of a product is not included in the operand list (see rules
SPRDREC-1-1 and SPRDREC-1-3). (It is convenient to do this because
ASAE-4-1 states that an operand of a simplified product cannot be the
integer 1.) For this reason, Simplify product rec(L) may return the empty
list, and when this happens, the product simplifies to 1 (see Example 3.39).

Definition 3.38. Let L = [u1, u2, . . . , un] be a non-empty list with n ≥ 2
non-zero ASAEs. The operator Simplify product rec(L) (for “Simplify prod-
uct recursive”) returns a list with zero or more operands. The operator is
defined by the following transformation rules.

SPRDREC-1. Suppose that L = [u1, u2] and neither operand is a product.

1. Suppose that both u1 and u2 are constants, and let

P = Simplify RNE(ProdOp(u1, u2)).

If P = 1, then

Simplify product rec(L)→ [],

and if P �= 1, then

Simplify product rec(L)→ [P].

2. (a) If u1 = 1, then Simplify product rec(L)→ [u2].
(b) If u2 = 1, then Simplify product rec(L)→ [u1].

100 3. Automatic Simplification

3. Suppose that base(u1) = base(u2), and let

S = Simplify sum(SumOp(exponent(u1), exponent(u2)))

and
P = Simplify power(PowOp(base(u1), S)).

If P = 1, then

Simplify product rec(L)→ [],

and if P �= 1, then

Simplify product rec(L)→ [P].

4. If u2✁u1, then

Simplify product rec(L)→ [u2, u1].

5. If the first four rules do not apply, then

Simplify product rec(L)→ L.

Rule SPRDREC-1 applies when L has two operands and neither one is a
product. (The case when one of the operands is a product is handled in rule
SPRDREC-2.) Rule SPRDREC-1-1 is the basic numerical transformation
in Definition 3.17(1). Observe that when the product P = 1, the empty
list is returned. This is done so that the integer 1 created during the
simplification process is not included as an operand of a product (see also
rules SPRD-4-3 and SPRDREC-1-3).

Rule SPRDREC-1-2 is based on the basic identity transformation (3.22).
Rule SPRDREC-1-3 performs the basic power transformation (3.14).

The Simplify sum operator (Exercise 7) simplifies the sum of the expo-
nents, and since the new power may not be an ASAE, the rule includes an
application of Simplify power. Again, when the product P = 1, the empty
list is returned.

Example 3.39. If L = [a, a−1], then S = 0 and aS = a0, which is not in
simplified form. Applying the Simplify power operator, we have P = 1 and
so Simplify product rec([a, a−1])→ []. �

Rule SPRDREC-1-4 is invoked when the two operands are out of order
with respect to the ✁ order relation. When the last rule SPRDREC-1-5 is
invoked, the earlier conditions that lead to a modification of the input do
not apply, and so the input is returned without change.

3.2. An Automatic Simplification Algorithm 101

SPRDREC-2. Suppose that L = [u1, u2], and suppose that at least one of
its two operands is a product.

1. If u1 is a product with operands p1, p2, . . . , ps and u2 is a product
with operands q1, q2, . . . , qt, then

Simplify product rec(L)→
Merge products([p1, p2, . . . , ps], [q1, q2, . . . , qt]).

(Merge products is given in Definition 3.42.)
2. If u1 is a product with operands

p1, p2, . . . , ps

and u2 is not a product, then

Simplify product rec(L)→ Merge products([p1, p2, . . . , ps], [u2]).

3. If u1 is not a product and u2 is a product with operands

q1, q2, . . . , qt,

then

Simplify product rec(L)→ Merge products([u1], [q1, q2, . . . , qt]).

Rule SPRDREC-2, which is based on the basic associative transforma-
tion in Definition 3.5(2), applies when L has two operands and at least
one operand is a product. This rule (together with SPRDREC-3) guar-
antees that a simplified product will not have an operand that is also a
product. The Merge products operator, which is given in Definition 3.42,
applies the associative property and combines and re-orders the operands
of the two products to create a new operand list. This rule is recursive
because Merge products invokes one of the earlier SPRDREC rules.

Example 3.40. To simplify the expression u = (2 · a · c · e) · (3 · b · d · e), we
have by SPRDREC-2-(a)

Simplify product rec([2 · a · c · e, 3 · b · d · e])
→ Merge products([2, a, c, e], [3, b, d, e])
→ [6, a, b, c, d, e2].

Therefore, the original expression u simplifies to 6 · a · b · c · d · e2. �

In SPRDREC-2-2 and SPRDREC-2-3, only one of the operands is a
product, and so the remaining operand (u2 or u1) is merged with the
operands of the product (p1, . . . , ps or q1, . . . , qt).

102 3. Automatic Simplification

SPRDREC-3. Suppose that L = [u1, u2, . . . , un] with n > 2, and let

w = Simplify product rec(Rest(L)). (3.43)

1. If u1 is a product with operands p1, p2, . . . , ps, then

Simplify product rec(L)→ Merge products([p1, p2, . . . , ps], w).

2. If u1 is not a product, then

Simplify product rec(L)→ Merge products([u1], w).

Rule SPRDREC-3 is invoked when the input list L has more than two
operands. The first rule SPRDREC-3-1 is similar to the associative trans-
formation SPRDREC-2-1. It merges the operands of the product u1 with
the list of operands that make up the simplified form of Rest(L). In a
similar way, rule SPRDREC-3-2 merges the single operand u1 with the
operands of w.

Example 3.41. Suppose that L = [a · b, c, b]. Then, applying the rules
SPRDREC-3-1 and SPRDREC-1-4, we have

w = Simplify product rec([c, b])→ [b, c].

Therefore,

Simplify product rec([a · b, b, c]) = Merge products([a, b], [b, c])
→ [a, b2, c]. �

The transformation rules for Merge products(p, q) are given in the next
definition. When

p = [p1, . . . , pm], q = [q1, . . . , qn]

represent the operands of two simplified products, the operator applies the
basic product associative transformation and, using Simplify product rec,
combines and reorders the operands of p and q into a new operand list.

Definition 3.42. Let p and q be lists of zero or more admissible factors in ✁

order. In addition, if p or q has two or more operands, the operands satisfy
the properties of ASAE-4. The operator Merge products(p, q) is defined
using the following rule sequence:

MPRD-1. If q = [], then Merge products(p, q)→ p.

3.2. An Automatic Simplification Algorithm 103

MPRD-2. If p = [], then Merge products(p, q)→ q.

MPRD-3. Suppose that p and q are non-empty lists, and let p1 = First(p)
and q1 = First(q). Define

h = Simplify product rec([p1, q1]). (3.44)

There are four possibilities for h.

1. If h = [], then

Merge products(p, q)→ Merge products(Rest(p),Rest(q)).

2. If h = [h1] (a one operand list), then

Merge products(p, q)→
Adjoin(h1,Merge products(Rest(p),Rest(q))).

3. If h = [p1, q1], then

Merge products(p, q)→ Adjoin(p1,Merge products(Rest(p), q)).

4. If h = [q1, p1], then

Merge products(p, q)→ Adjoin(q1,Merge products(p,Rest(q))).

Rules MPRD-1 and MPRD-2 are invoked when at least one of the input
lists is empty. In this case, there is no merging to be done, and so the
other list is returned. These rules serve as termination conditions for the
recursion.

Rule MPRD-3 includes four cases. If MPRD-3-1 applies, p1 ·q1 simplifies
to 1 which is not included in the operand list. In this case, the operator
returns the result of a recursive application of the Merge products rules to
the rest of the two lists. If MPRD-3-2 applies, p1 and q1 are combined
(using SPRDREC-1-1 or SPRDREC-1-3) to give a new operand h1 �= 1
which is placed at the beginning of the output list. If MPRD-3-3 applies,
then p1✁q1, which means that p1 is placed at the beginning of the output
list while the rest of p is merged with q. Finally, if MPRD-3-4 applies,
then q1✁p1 and so q1 is placed at the beginning of the output list while p
is merged with the rest of q.

Example 3.43. Let’s consider the role of the Merge products operator in
the simplification of the product u = (a · c · e) · (a · c−1 · d · f). Observe
that the two operands of the main product operator are both products in

104 3. Automatic Simplification

simplified form. To obtain the simplification, we apply rule SPRD-4 with
L = [a · c · e, a · c−1 · d · f] and SPRDREC-2-1 with p = [a, c, e] and
q = [a, c−1, d, f]. To merge the two lists, we apply MPRD-3 followed by
SPRDREC-1-3 to obtain

h = Simplify product rec([a, a]) = [a2].

Therefore, using MPRD-3-2,

Merge products
(
[a, c, e], [a, c−1, d, f]

)
= Adjoin

(
a2,Merge products

(
[c, e], [c−1, d, f]

))
. (3.45)

Applying the Merge products recursively, we have, using SPRDREC-1-3,

h = Simplify product rec([c, c−1]) = [],

and therefore, using MPRD-3-1,

Merge products([c, e], [c−1, d, f])
= Merge products([e], [d, f]). (3.46)

Again, applying the rules recursively, we have, using SPRDREC-1-4,

h = Simplify product rec([e, d]) = [d, e],

and therefore, using MPRD-3-4,

Merge products([e], [d, f])
= Adjoin(d,Merge products([e], [f])). (3.47)

Again, applying the rules recursively, using SPRDREC-1-5,

h = Simplify product rec([e, f]) = [e, f],

and therefore, using MPRD-3-3,

Merge products([e], [f])
= Adjoin(e,Merge products([], [f])). (3.48)

Finally, applying the rules one last time, using MPRD-1, we have

Merge products([], [f]) = [f]. (3.49)

Now, using Equations (3.49), (3.48), (3.47), (3.46), and (3.45), the recursion
unwinds, and

Merge products([a, c, e], [a, c−1, d, f]) = [a2, d, e, f].

3.2. An Automatic Simplification Algorithm 105

Therefore,

Simplify product rec([a · c · e, a · c−1 · d · f])→ [a2, d, e, f],

and
Simplify product((a · c · e) · (a · c−1 · d · f))→ a2 · d · e · f. �

Simplification of Sums

The Simplify sum operator, which simplifies a sum to either an ASAE or
the symbol Undefined, is based on the following transformations:

1. the basic distributive transformation in Definition 3.1,

2. the basic associative transformation in Definition 3.5(1),

3. the basic commutative transformation for sums in Definition 3.7,

4. the basic identity transformation (3.20),

5. the basic unary transformation (3.33),

6. the basic numerical transformation in Definition 3.17(2), and

7. the basic “Undefined” transformation in Definition 3.18.

The operator is defined in terms of the following procedures.

1. The main procedure Simplify sum is defined by a sequence of non-
recursive transformation rules. The rules are similar to those for
Simplify product in Definition 3.37 although there is no analogue for
rule SPRD-2.

2. The procedure Simplify sum rec is defined by recursive transforma-
tion rules that are similar to the ones for Simplify product rec in Def-
inition 3.38. In this case the analogue of SPRDREC-1-3 is based on
the basic distributive transformation in Definition 3.1.

3. The procedureMerge sums is defined by a sequence of recursive trans-
formation rules that are similar to the ones for Merge products in
Definition 3.42.

We leave the details of the transformation rules and operators to the reader
(Exercise 7).

106 3. Automatic Simplification

Simplification of Quotients, Differences, Factorials, and
Functions

The operator Simplify quotient, which simplifies quotients, is based on the
basic quotient transformation u/v = u · v−1. Observe that this transfor-
mation creates a new power and a new product which are simplified using
the Simplify power and Simplify product operators.

The operator Simplify difference(u) is based on the basic difference
transformations −u = (−1) · u and u − v = u + (−1) · v. Observe that
these transformations create either a new product or a new sum which is
simplified using either the Simplify product or Simplify sum operators.

The operator Simplify factorial(u) is based on the basic numerical trans-
formation Definition 3.17(4) which evaluates a factorial with a non-negative
integer operand. If the operand of a factorial isUndefined, then the proce-
dure returnsUndefined. In other cases, the input expression u is returned
without change.

The operator Simplify function(u) applies to function forms. Although
there are no function transformations in our algorithm, some function argu-
ment may be Undefined, in which case the operator returns Undefined.
In other cases, return the input argument u without change.

The details of procedures for these operators are left to the reader (Ex-
ercise 6).

Algebraic Properties of ASAEs

Consider the set of all ASAEs, and, for u and v in this set, define the sum
of u and v as

Automatic simplify(u+ v)

and the product of u and v as

Automatic simplify(u · v).

This set together with these operations satisfies all the field axioms except
the distributive axioms F-7 and F-8 and the additive inverse axiom F-11.
Axioms F-1, F-2, F-3, F-4, F-5, and F-6 follow directly from the trans-
formation rules in this section. Axiom F-10 follows from SPRDREC-1-1
and SPRDREC-1-2, and Axiom F-9 follows from similar rules for sums
(Exercise 7). Axiom F-12 follows from SINTPOW-4 and SPRDREC-1-3.

On the other hand, the distributive axioms F-7 and F-8 are not always
true because expansion is not included in automatic simplification. For
example, for a, b, and c symbols, the expressions a ·(b+c) and a ·b+a ·c are
both already simplified but these expressions are not the same as expression

3.2. An Automatic Simplification Algorithm 107

trees. In addition, F-11 is not true because (−1) · (a+ b) does not have an
additive inverse. Indeed,

Automatic simplify((a+ b) + (−1) · (a+ b))→ a+ b+ (−1) · (a+ b)

rather than the 0 expression.

Exercises
1. Let u be a symbol. Indicate which of the simplification transformations

listed in this section are used to perform the following transformations.

(a) u/0 → Undefined.

(b) If u �= 0, 0/u → 0.

(c) u/1 → u.

(d) u− 0 → 0.

(e) 0 − u → (−1) · u.

2. Which of the simplification transformations in this section are used to
transform the quotient (in function notation) QuotOp(1, 2) to the fraction
FracOp(1, 2)?

3. Let x and y be symbols. Indicate which simplification transformations in
this section are used to obtain each of the following transformations.

(a) x/x → 1.

(b) (x/y) · (y/x) → 1

4. Trace the flow of the Simplify product rec operator for each of the following
input lists u.

(a) u = [c, b, a].

(b) u = [a, a−1, 1].

(c) u = [b, a, a−1, 1].

(d) u = [a, c, b, d, e].

5. Give procedures for the following operators.

(a) Simplify power(u) (Definition 3.33, page 94).

(b) Simplify integer power(v, n) (Definition 3.34, page 95).

(c) Simplify product(u) (Definition 3.37, page 98).

(d) Simplify product rec(L) (Definition 3.38, page 99).

(e) Merge products(p, q) (Definition 3.42, page 102).

6. Give procedures for the following operators.

(a) Simplify quotient(u).

108 3. Automatic Simplification

(b) Simplify difference(u).

(c) Simplify factorial(u).

(d) Simplify function(u).

(See the discussion starting on page 106.)

7. (a) Give transformation rules for the operators.

i. Simplify sum(u).

ii. Simplify sum rec(L).

iii. Merge sums(p, q).

(See the discussion starting on page 105.)

(b) Give procedures for these operators.

8. Modify the automatic simplification algorithm so that for a product with
two operands, one a constant and the other a sum, the constant is dis-
tributed over the sum. For example, the modification should obtain

Automatic simplify(2 · (x + y)) → 2 · x + 2 · y.
If a product has more than two operands, the transformation does not
occur. For example, 2 · (3 + x) · (4 + x) is not changed. Hint: The best
place to apply this transformation is in SPRD-4.

9. For ı =
√−1, modify the automatic simplification algorithm so that all field

operations in Q(ı) (including integer powers and quotients) are performed
by automatic simplification. (An algorithm for simplifying expressions with
Gaussian rational numbers is described in Exercise 19, page 61.)

10. Let N be a set of variables that are designated as integer variables. De-
fine an integer expression as one constructed using the symbols in N , the
integers, and the addition, multiplication, and power (with non-negative
integer exponents) operations.

(a) Let u be an ASAE. Give a procedure Integer expression(u) that
returns true if u is an integer expression and false otherwise. Use
function notation for u.

(b) Modify the automatic simplification algorithm so that the transfor-
mations (3.15) and (3.16) are applied when n is an integer expression.

11. Let u be an ASAE in function notation and let x be a symbol. Give a
procedure Derivative fun(u, x) that obtains the derivative of u with respect
to x. Be sure to return the derivative as an ASAE.

Further Reading

3.1 The Goal of Automatic Simplification. Discussions of automatic simpli-

fication are given in Fateman [36], Korsvold [57], Nievergelt, Farrar, and Reingold

3.2. An Automatic Simplification Algorithm 109

[75], Tobey, Bobrow, and Zilles [95], Weissman [99], Wooldridge [103], Wulf et

al. [104], and Yun and Stoutemyer [107]. Stoutemyer [94] gives an interesting

discussion of the misuse of some automatic simplification transformation rules.

Moses [71] has an interesting discussion of algebraic simplification.

4

Single Variable Polynomials

In this chapter we are concerned with the mathematical and computational
properties of polynomials with one variable with coefficients from a field F.
All the algorithms considered here are ultimately based on polynomial
division.

In Section 4.1 we introduce the basic definitions, describe an algorithm
for polynomial division, and then give an algorithm for polynomial expan-
sion. In Section 4.2 we examine the gcd problem for polynomials and give
versions of Euclid’s algorithm and the extended Euclidean algorithm in this
setting. In Section 4.3 we use the procedures in the first two sections to
perform arithmetic operations for expressions in simple algebraic number
fields and to extend the polynomial operations to this setting. In Section
4.4 we describe an algorithm for partial fraction expansion that is based
on polynomial division, polynomial expansion, and the extended Euclidean
algorithm.

Since the mathematical definitions and theorems apply for any coeffi-
cient field F, we present the ideas in this general setting. In a computational
setting, however, the algorithms make most sense for coefficient fields where
computation is effective and efficient.

4.1 Elementary Concepts and Polynomial Division

Let u be a polynomial of the form

u = unx
n + un−1x

n−1 + · · ·+ u1x+ u0,

111

112 4. Single Variable Polynomials

where the coefficients uj are from a field F. The notation F[x] represents
the set of all such polynomials.

Recall that lc(u, x) represents the leading coefficient of a polynomial
and deg(u, x) its degree.1 A polynomial with lc(u, x) = 1 is called a monic
polynomial.

The operators lc and deg satisfy the properties in the following theorem.

Theorem 4.1.
Let u and v be polynomials in F[x].

1. lc(u v) = lc(u) lc(v).

2. If u �= 0 and v �= 0, then deg(u v) = deg(u) + deg(v).

3. deg(u± v) ≤ max({deg(u), deg(v)}).

Proof: To prove (1), first, when either u = 0 or v = 0, both sides of the
equality are 0. Next, if both u �= 0 and v �= 0, the highest order monomial
in u v is lc(u) lc(v)xdeg(u)+deg(v). Since both lc(u) and lc(v) are not zero,
and since there are no zero divisors in a field (Theorem 2.36, page 50), the
product lc(u) lc(v) �= 0, and so (1) follows.

The proof for Part (2) is similar to the proof for Part (1).
Property (3) follows from the definition of degree. Notice that this re-

lationship is an inequality because addition (or subtraction) may eliminate
the leading terms of the polynomials. �

Theorem 4.2. Let u and v be polynomials in F[x]. If u v = 0, then either
u = 0 or v = 0.

This theorem, which is a consequence of Theorem 4.1(1), states that
there are no zero divisors in F[x]. The proof of the theorem is left to the
reader (Exercise 3).

Polynomial Division

For single variable polynomials, the familiar process of long division of u
by v is defined formally using recurrence relations.

1When the variable x is evident from context, we use the simpler notations lc(u) and
deg(u).

4.1. Elementary Concepts and Polynomial Division 113

Definition 4.3. Let u and v �= 0 be two polynomials in F[x], and consider
the sequence of quotients qi and remainders ri:

q0 = 0, r0 = u,

qi = qi−1 +
lc(ri−1)
lc(v)

xdeg(ri−1)−deg(v), (4.1)

ri = ri−1 − lc(ri−1)
lc(v)

xdeg(ri−1)−deg(v) v. (4.2)

The iteration terminates when

deg(ri) < deg(v). (4.3)

If the process terminates with i = σ, then qσ is the quotient of u divided
by v, and rσ is the remainder. We also represent the quotient and the
remainder by the operators quot(u, v, x) and rem(u, v, x).

Example 4.4. Let u = 5 x2 + 4 x+ 1 and v = 2 x+ 3. Then,

q0 = 0, r0 = 5 x2 + 4 x+ 1,
q1 = 5/2 x, r1 = −7/2 x+ 1,
q2 = 5/2 x− 7/4, r2 = 25/4.

Since deg(r2) < deg(v), the process stops after two iterations (σ = 2),
and

u = qσ v + rσ = (5/2 x− 7/4) (2 x+ 3) + 25/4. �

Polynomial division satisfies the properties in the following theorem.

Theorem 4.5. Let u and v �= 0 be polynomials in F[x].

1. The polynomial division process terminates.

2. Let qσ and rσ be defined by the iteration in Definition 4.3. Then,

u = qσ v + rσ (4.4)

and
deg(rσ) < deg(v). (4.5)

3. The quotient qσ and the remainder rσ are unique in the sense that
they are the only polynomials that satisfy both conditions (4.4) and (4.5).

114 4. Single Variable Polynomials

The property of the remainder in the inequality (4.5) is called the Eu-
clidean property of polynomial division.

Proof: To show (1), let’s assume that we have obtained ri−1 (which does
not satisfy the termination condition (4.3)), and show that

deg(ri) < deg(ri−1). (4.6)

This condition implies that the inequality (4.3) is eventually satisfied for
some ri.

Since the process does not terminate with ri−1, we have

deg(ri−1) ≥ deg(v). (4.7)

It is convenient to express the recurrence relation for ri in the form

ri =
(
ri−1 − lc(ri−1)x deg(ri−1)

)
(4.8)

−
(
v − lc(v)x deg(v)

) (
lc(ri−1)
lc(v)

)
x deg(ri−1)− deg(v)

which is equivalent to the form (4.2). There are two cases. First, if v is the
monomial lc(v)x deg(v), then Equation (4.8) implies

deg(ri) = deg
(
ri−1 − lc(ri−1)x deg(ri−1)

)
< deg(ri−1). (4.9)

On the other hand, when v−lc(v)x deg(v) �= 0, Equation (4.8) and Theorem
4.1(2),(3) imply that

deg(ri) ≤ max
({

deg
(
ri−1 − lc(ri−1)x deg(ri−1)

)
,

deg
(
x deg(ri−1)− deg(v)

(
v − lc(v)x deg(v)

))})
≤ max

({
deg

(
ri−1 − lc(ri−1)x deg(ri−1)

)
,

(deg(ri−1)− deg(v)) + deg
(
v − lc(v)x deg(v)

)})
< deg(ri−1).

Therefore, the inequality (4.6) is satisfied, and in this case, deg(rσ) <
deg(v).
To show (2), first observe that if deg(v) > deg(u), there are no iter-

ations (σ = 0), and Equation (4.4) is satisfied with qσ = 0 and rσ = u.
If deg(v) ≤ deg(u), there is at least one iteration. From Equations (4.1)
and (4.2), we have

qi v + ri = qi−1 v + ri−1, i = 1, 2, . . . , σ, (4.10)

and therefore

4.1. Elementary Concepts and Polynomial Division 115

u = q0 v + r0 = q1 v + r1 = · · · = qσ v + rσ.

The inequality (4.5) is satisfied because it is the stopping criterion for the
iteration.

To verify the uniqueness property (3), suppose that there are two pairs
of polynomials qσ1 , rσ1 and qσ2 , rσ2 that satisfy the conditions (4.4) and
(4.5). Then,

u = qσ1 v + rσ1 = qσ2 v + rσ2 ,

and so
(qσ1 − qσ2) v = rσ2 − rσ1 . (4.11)

First, if deg(v) = 0, then the inequality (4.5) implies rσ1 = rσ2 = 0, and
so qσ1 = qσ2 as well. Suppose next that deg(v) > 0. If qσ1 − qσ2 �= 0, then

deg((qσ1 − qσ2) v) ≥ deg(v). (4.12)

However, (4.5) implies

deg(rσ2 − rσ1) < deg(v), (4.13)

and since the conditions (4.11), (4.12), and (4.13) cannot all be true, it
must be that qσ1 − qσ2 = 0, and so qσ1 = qσ2 and rσ1 = rσ2 . �

The approach that we used to prove the uniqueness property is called a
degree argument because it is based primarily on the properties of degree.
Degree arguments are frequently used to obtain properties of polynomials.

Theorem 4.6. Let u be a polynomial in F[x] with positive degree, and
suppose that c in F is a root of u = 0. Then, u can be factored as u =
(x− c) q, where q is in F[x].

The proof of the theorem, which follows directly from Theorem 4.5, is
left to the reader (Exercise 13).

In Figure 4.1, we give a procedure for polynomial division and functions
that extract the quotient and remainder.2 Observe that in line 10 we have

2When deg(v) = 0, the termination of Polynomial division at line 6 depends on

deg(0) → −∞. (4.14)

This operation is obtained by the MPL operator Degree gpe used at lines 3, 4, and 11. If
a CAS’s degree operator is used instead, it must also obtain the operation (4.14). Both
Maple’s degree operator and Mathematica’s Exponent operator obtain (4.14), while
MuPAD’s degree operator obtains deg(0) → 0. If the MuPAD implementation uses its
degree operator, line 6 must be replaced by

while m ≥ n and r �= 0 do .

116 4. Single Variable Polynomials

Procedure Polynomial division(u, v, x);
Input

u, v : GPEs in x with v �= 0;
x : a symbol;

Output
a list [q, r] with quotient q and remainder r;

Local Variables
q, r,m,n, lcv, s, lcr;

Begin
1 q := 0;
2 r := u;
3 m := Degree gpe(r, x)
4 n := Degree gpe(v, x)
5 lcv := Leading Coefficient gpe(v, x);
6 while m ≥ n do
7 lcr := Leading Coefficient gpe(r, x);
8 s := lcr/lcv;
9 q := q + s ∗ xm−n;
10 r := Algebraic expand((r − lcr ∗ xm) − (v − lcv ∗ xn) ∗ s ∗ xm−n);
11 m := Degree gpe(r, x);
12 Return([q, r])

End

Quotient(u, v, x)
function

:= Operand(Polynomial division(u, v, x), 1);

Remainder(u, v, x)
function

:= Operand(Polynomial division(u, v, x), 2);

Figure 4.1. An MPL procedure for polynomial division of u by v in F[x]. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

used the iteration formula for ri in Equation (4.8) rather than the formula
in Equation (4.2). In fact, as long as all the field operations in F are
obtained by automatic simplification, we can use Equation (4.2). However,
when some field operations are not included in automatic simplification,
Equation (4.2) may not eliminate the leading term from ri−1, and the
algorithm may not terminate. In Exercise 7, we give an example where the
procedure with line 10 replaced by the formula in Equation (4.2) does not
terminate.

Although the Polynomial division procedure terminates whenever u
and v are GPEs in x, for some coefficient fields it may return qσ and rσ

4.1. Elementary Concepts and Polynomial Division 117

in an inappropriate form. In Maple, Mathematica, and MuPAD, two fields
where it does give appropriate results areQ andQ(ı), because all numerical
simplifications (in lines 8 and 10) are handled by automatic simplification.
For example, for the polynomials in Q(ı)[x]:

u = (2 + 4ı)x2 + (−1− 8ı)x+ (−3 + 3ı),

v = (1 + 2ı)x+ (1− ı),

all three systems obtain with two iterations qσ = 2 x− 3 and rσ = 0.
On the other hand, consider the polynomials in Q(

√
2)[x]:

u = (2− 4
√
2)x2 + (−1 + 4

√
2)x+ (−3 + 3

√
2),

v = (1− 2
√
2)x+ (1−

√
2),

where u = (2 x − 3) v. In this case, all three systems obtain the involved
expressions

qσ =
2− 4

√
2

1− 2
√
2
x+
−1 + 4

√
2− 10

1−2
√

2
+ 6

√
2

1−2
√

2

1− 2
√
2

,

rσ = −3 + 3
√
2 +

9
1− 2

√
2
− 5

√
2

1− 2
√
2
+

22(
1− 2

√
2
)2 − 16

√
2(

1− 2
√
2
)2 ,

rather than the simplified forms

qσ = 2 x− 3, rσ = 0.

The problem here is that some field operations for Q(
√
2) are not obtained

by automatic simplification in these systems. As we shall see in Section 4.2,
this is more than just an inconvenience because the greatest common divisor
algorithm given in that section gives an incorrect result when it cannot
determine that a remainder is zero.

Polynomial Divisors

Definition 4.7. Let u, v, and q be polynomials in F[x]. A polynomial v �= 0
is a divisor of (or divides) a polynomial u if there is a polynomial q such
that u = q v. We use the notation v | u to indicate that v is a divisor of u
and v /| u if it does not. The polynomial q is called the cofactor of v in u
and is represented by cof(v, u).

Example 4.8. For the polynomials in Q[x]:

u = x2 + 5x+ 6, v = x+ 2, (4.15)

118 4. Single Variable Polynomials

then v|u with q = cof(v, u) = x+ 3. In general, if v|u, then for c �= 0 in F,
c v|u as well because

u = q v = ((1/c) q) (c v).

Therefore, 2 x+ 4 is also a divisor of u in (4.15). �

Definition 4.9. Let u, v, and w be polynomials in F[x].

1. A common divisor (or common factor) of u and v is a polynomial
w such that w|u and w|v.

2. The polynomials u and v are relatively prime if they have no com-
mon divisor of positive degree.

Example 4.10. The polynomial x + 2 is a common divisor of u = x2 − 4
and v = x2 + 5x + 6. The polynomials x2 − 4 and x2 − 1 are relatively
prime. �

Irreducible Polynomials

An irreducible polynomial is the polynomial analogue of a prime number.

Definition 4.11. A polynomial u in F[x] is reducible if there are polyno-
mials v and w in F[x] with positive degree such that u = v w. A polynomial
is irreducible if it is not reducible.

Irreducibility depends, of course, on the coefficient field.

Example 4.12. The polynomial x2 − 2 is irreducible when F = Q but is
reducible as x2 − 2 = (x−√2)(x +√2) when F = Q(

√
2). �

Polynomial Expansion

The polynomial expansion of u in terms of v involves the representation
of u as a sum whose terms contain non-negative integer powers of v. The
following polynomial expansion theorem is based on polynomial division.

Theorem 4.13. Let u and v be polynomials in F[x], and suppose that v has
positive degree. Then, there are unique polynomials

dk(x), dk−1(x), . . . , d0(x)

4.1. Elementary Concepts and Polynomial Division 119

with deg(di) < deg(v) such that

u = dkv
k + dk−1v

k−1 + · · ·+ d1v + d0. (4.16)

The representation for u in Equation (4.16) is called the polynomial
expansion3 of u in terms of v. For example, for

u = x5 + 11x4 + 51x3 + 124x2 + 159x+ 86, v = x2 + 4x+ 5,

then
u = (x + 3) v2 + (x+ 2) v + (x+ 1).

When v = x − c, the polynomial expansion coincides with the Taylor ex-
pansion of u about x = c (Exercise 15).

Proof of Theorem 4.13: We show first that the sequence d0, d1, . . . , dk exists
by giving an algorithm to compute it. Using polynomial division, there are
polynomials c0 and d0 such that

u = c0 v + d0, (4.17)

where deg(d0) < deg(v). If c0 = 0, there is only one term in the expansion
(k = 0) with u = d0. If c0 �= 0 but deg(c0) < deg(v), then the expansion
has two terms (k = 1) with d1 = c0 and d0 defined by Equation (4.17).
Finally, if deg(c0) ≥ deg(v), form the quotient sequence

u = c0 v + d0,

c0 = c1 v + d1,

c1 = c2 v + d2,

... (4.18)
ck−2 = ck−1 v + dk−1,

ck−1 = ck v + dk,

ck = 0,

where ci = quot(ci−1, v, x), di = rem(ci−1, v, x), and deg(di) < deg(v).
Since Theorem 4.1 implies deg(ci) < deg(ci−1), the quotient sequence
terminates after a finite number of steps with ck = 0. Substituting the
expression for ci into the expression for ci−1, we obtain

3Don’t confuse polynomial expansion with the Algebraic expand operation, which
actually destroys a polynomial expansion. The term expansion is used here as it is in
the Taylor expansion of a function in calculus.

120 4. Single Variable Polynomials

u = c0v + d0

= (c1v + d1) v + d0 = c1 v
2 + d1 v + d0

= ((c2 v + d2) v + d1) v + d0 = c2v
3 + d2 v

2 + d1 v + d0

... (4.19)
= ck v

k+1 + dk v
k + dk−1 v

k−1 + · · ·+ d1 v + d0

= dk v
k + dk−1 v

k−1 + · · ·+ d1 v + d0.

Now that we know the coefficient sequence di exists, we use a degree
argument to show that it is the only sequence that satisfies the properties
mentioned in the hypothesis of the theorem. Suppose that u had another
polynomial expansion:

u = ek′v
k′ + ek′−1v

k′−1 + · · ·+ e1v + e0, (4.20)

where the coefficients ei(x) satisfy deg(ei) < deg(v). We must show that
the expansions in Equations (4.16) and (4.20) have the same number of
terms (k = k′), and that the coefficients of the various powers of v are
equal. First, let’s show that e0 = d0. Subtracting Equation (4.20) from
Equation (4.16), we obtain

0 = dkv
k+dk−1v

k−1+ · · ·+d1v+d0− (ek′vk′ +ek′−1v
k′−1+ · · ·+e1v+e0),

and moving the terms e0 and d0 to the other side of the equation, we have

dkv
k + dk−1v

k−1 + · · ·+ d1v − (ek′vk
′
+ ek′−1v

k′−1 + · · ·+ e1v) = e0 − d0.

Notice that v is a factor of each term of the left side of the equality. There-
fore, if this side of the equality is not zero, it has degree ≥ deg(v). On the
other hand, the right side has degree < deg(v). Since, both of these degree
conditions cannot be true simultaneously, both sides of the equation must
be zero. Therefore, e0 = d0 and

dkv
k + dk−1v

k−1 + · · ·+ d1v − (ek′vk
′
+ ek′−1v

k′−1 + · · ·+ e1v) = 0.

Dividing both sides of this equation by v and moving the terms containing
e1 and d1 to the other side, we obtain

dkv
k−1+dk−1v

k−1+· · ·+d2v−(ek′vk′−1+ek′−1v
k′−2+· · ·+e2v) = e1−d1.

Using the same degree argument as above, we conclude that e1 = d1. Con-
tinuing in this fashion, we conclude that ei = di for 2 ≤ i ≤ min({k, k′}).
If both expansions have the same number of terms (k = k′), the proof is

4.1. Elementary Concepts and Polynomial Division 121

complete. If the number of terms are different (say k > k′), then after
showing dk′ = ek′ , we have

dkv
(k−k′−1) + dk−1v

(k−k′−2) + · · · dk′+1 = 0.

Using the same degree argument as above, we can conclude that all coeffi-
cients di in this expression are zero, and therefore k = k′. �

Example 4.14. Consider the polynomials in Q[x]:

u = x5 + 11x4 + 51x3 + 124x2 + 159x+ 86, v = x2 + 4x+ 5.

We obtain

c0 = x3 + 7x2 + 18x+ 17, d0 = x+ 1,
c1 = x+ 3, d1 = x+ 2,
c2 = 0, d2 = x+ 3.

The polynomial expansion for u in terms of v is

u = d2 v
2 + d1 v + d0

= (x+ 3) (x2 + 4x+ 5)2 + (x+ 2) (x2 + 4x+ 5) + (x+ 1). �

Definition 4.15. Let u and v be polynomials in F[x] with deg(v) > 0, and
let t be a symbol. Define the polynomial expansion polynomial

Pu(t) = dk t
k + dk−1 t

k−1 + · · ·+ d1 t+ d0, (4.21)

where the coefficients di(x) are defined by the quotient sequence (4.18).

The polynomial Pu is simply the expansion (4.16) with the polynomial
v replaced by the symbol t.

Theorem 4.16. Suppose that u, v, u1, u2, and w polynomials are F[x] with
deg(v) > 0. (All polynomial expansions are in terms of the polynomial v.)
The expansion polynomial satisfies the following properties:

1. P0 = 0.

2. If deg(u) < deg(v), then Pu = u.

3. Pu1+u2 = Pu1 + Pu2 .

4. Pv w = t Pw.

122 4. Single Variable Polynomials

Procedure Polynomial expansion(u, v, x, t);
Input

u : a GPE in x;
v : a GPE in x with deg(v, x) > 0 ;
x, t : symbols;

Output
The polynomial Pu;

Local Variables
d, q, r;

Begin
1 if u = 0 then
2 Return(0)
3 else
4 d := Polynomial division(u, v, x);
5 q := Operand(d, 1);
6 r := Operand(d, 2);
7 Return(Algebraic expand(t ∗ Polynomial expansion(q, v, x, t) + r))

End

Figure 4.2. An MPL procedure for polynomial expansion. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

The verification of these properties is straightforward and is left to the
reader (Exercise 18).

The next theorem describes a recurrence relation that gives a simple
algorithm for computing Pu.

Theorem 4.17. Let u and v be polynomials in F[x] with deg(v, x) > 0, and
suppose that from polynomial division, u = q v + r. Then, the expansion
polynomial satisfies the recurrence relation

Pu = t Pq + r.

The proof follows directly from the previous theorem (Exercise 19).
A recursive procedure to compute Pu is given in Figure 4.2. The pro-

cedure uses the condition in Theorem 4.16(1) for termination (lines 1–2).
The Algebraic expand operator is applied to the recurrence relation (line 7)
so that the expression is returned as a polynomial in t rather than as a
composite expression.

Notice that the procedure accepts u and v that are GPEs in x, al-
though in some cases more simplification is required to obtain the ex-

4.1. Elementary Concepts and Polynomial Division 123

pansion in a usable form (Exercise 14(b)). Since deg(v) > 0, it follows
that deg(q) < deg(u), which implies that each successive recursive call in-
volves a polynomial u of smaller degree. Therefore, for some recursive call
deg(u) < deg(v), which implies q = 0 at line 5, and the next call terminates
the recursion.

To get the representation for u in Equation (4.16), evaluate the expres-
sion

Substitute(Polynomial expansion(u, v, x, t), t = v). (4.22)

Example 4.18. For the polynomials in Example 4.14

u = x5 + 11 x4 + 51 x3 + 124 x2 + 159 x+ 86, v = x2 + 4 x+ 5,

and so

Polynomial expansion(u, v, x, t)→ x t2 + 3 t2 + x t+ 2 t+ x+ 1.

Applying the operation (4.22), we have the expansion

(x + 3) (x2 + 4 x+ 5)2 + (x + 2) (x2 + 4 x+ 5) + x+ 1. �

Expansion-Based Substitutions. Using polynomial expansion, we can gener-
alize the notion of substitution for expressions in F[x] to allow substitutions
for “hidden” polynomials. For example, let

u = (x+ 1)3 + 2 (x+ 1) + 4,

which has the algebraically expanded form

u = x3 + 3x2 + 5x+ 7. (4.23)

Now suppose that we would like to substitute t for x+1 in the polynomial
(4.23). In this form, x + 1 is not a complete sub-expression of u, and so
the substitution is not possible with the structural substitution. However,
the substitution is readily obtained with the operation

Polynomial expansion(u, x+ 1, x, t)→ t3 + 2 t+ 4.

In this sense, polynomial expansion is a generalization of substitution.

Expansion-Based Polynomial Operators. By using polynomial expansion,
we can extend the polynomial structural operations (Degree gpe,
Coefficient gpe, etc.) to polynomials u that are not (comfortably) poly-
nomials in v in the sense of the definitions in Section 1.4. For example,
although

u = 3 x4 + 5 x2 + 7

124 4. Single Variable Polynomials

can be viewed as a polynomial in v = x2, the basic structural operators give

Degree gpe(u, x2)→ 1, Coefficient gpe(u, x2, 2)→ 0.

The problem arises because these operators are structure-based, and x2

is not a complete sub-expression of x4. The problem can be overcome,
however, using polynomial expansion. For example,

Degree gpe(Polynomial expansion(u, x2, t), t)→ 2,

Coefficient gpe(Polynomial expansion(u, x2, t), t, 2)→ 3.

In Exercise 20, we describe procedures that perform the basic polynomial
structural operations in this setting.

Polynomial Decomposition. Let u = 2 x4 + 4 x3 + 9 x2 + 7 x + 9 and v =
x2+x+1 be polynomials in Q[x]. The polynomial expansion of u in terms
of v is given by u = 2 v2 + 3 v + 4 where, in this case, all the coefficients
ri are in Q. When this occurs, u(x) can be represented as a composition
of polynomials u = f(v(x)) where f(x) = 2 x2 + 3 x+ 4 is also in Q[x]. In
other words, u(x) has a particularly simple structure as a composition of
two lower degree polynomials.

Now let’s reverse our point of view. Suppose that we are given a poly-
nomial u(x). When is it possible to find polynomials f(x) and v(x) (with
deg(v) < deg(u) and deg(f) < deg(u)) so that u(x) = f(v(x))? This
problem is called the polynomial decomposition problem and is considerably
more involved than polynomial expansion. We examine the decomposition
problem in Chapter 5.

Exercises
1. Let F be a field. Explain why F[x] is not a field.

2. Suppose that u �= 0 is in F[x] and k is a positive integer. Show that

deg(uk) = k deg(u).

3. Prove Theorem 4.2.

4. (a) Let u and v be in F[x]. Show that if u|v and v|u, then u = c v for
some c in F.

(b) Suppose that u, v, w, and p are polynomials in F[x] and u = v + w.
Show that if p divides any two of the polynomials u, v, and w, then
it also divides the third polynomial.

5. Let u = x2 + 1 and v = x + 2 be polynomials in Z5[x]. Find the quotient
and remainder of u divided by v.

4.1. Elementary Concepts and Polynomial Division 125

6. Let u, v, and w �= 0 be polynomials in F[x], and let c be in F. Show that

quot(u + v,w) = quot(u,w) + quot(v,w), quot(c u,w) = c quot(u,w),

rem(u + v,w) = rem(u,w) + rem(v,w), rem(c u,w) = c rem(u,w).

7. Let F[x] = (Q(
√

2))[x] and consider the polynomials u = x and v =
x +

√
2x. Suppose that line 10 in Figure 4.1 is replaced by

r := Algebraic expand
i
r − v ∗ s ∗ xm−n

J
.

(See the recurrence relation for ri in Equation (4.2).) Explain why the
Maple, Mathematica, and MuPAD implementations of Polynomial division
do not terminate using this recurrence relation.

8. Give a recursive procedure for polynomial division. Is it better to use
iteration or recursion to implement polynomial division?

9. The polynomial division procedure in Figure 4.1 does not work for poly-
nomials in Zp[x] (p a prime) because the operations in lines 8 and 10 are
evaluated by automatic simplification using rational number arithmetic.
Give a procedure Poly div p(u, v, x, p) that performs polynomial division
for polynomials in Zp[x]. The procedure returns a list with the quotient
and remainder. The procedure Division p described in Exercise 11, page 59
is useful in this problem. This exercise is used in the Poly gcd p procedure
described in Exercise 4, page 142.

10. Find all irrreducible polynomials in Z3[x] with degree = 2.

11. Let h be a polynomial in F[x], and let c and d be distinct members of F.
Show that h− c and h− d are relatively prime.

12. Let u be a polynomial in Q[x]. Give a procedure Polynomial divisors(u, x)
that returns the set of monic divisors of u with positive degree. If u is not
a polynomial in x, return the global symbol Undefined. Use the factor
operator in a CAS to find the factors of u. Each divisor should be returned
in expanded form. This procedure is used by the procedures Poly decomp 2
in Figure 5.1 and Complete poly decomp in Figure 5.2.

13. Prove Theorem 4.6.

14. For each of the following, find the polynomial expansion of u in terms of v.

(a) u = 2 x5 + 13x4 + 41 x3 + 68x2 + 63 x + 11, v = x2 + 3x + 4.

(b) In Q(
√

2)[x], the polynomials

u = (20 + 14
√

2)x3 + (18 + 12
√

2) x2 + (6 + 3
√

2) x + 1,

v = (2 +
√

2)x + 1.

In this case, u has a particularly simple expansion in terms of v.

15. Suppose that v = x − c. Explain why the polynomial expansion for a
polynomial u in terms of v is the same as the Taylor expansion of u about
x = c.

126 4. Single Variable Polynomials

16. Find the polynomial expansion of u = xn in terms of v = x − 1 for n =
1, 2, 3, 4, 5. What pattern do you observe with the coefficients di? Explain
why the coefficient pattern appears in these expansions.

17. Suppose that u is expressed as a polynomial expansion in terms of v with
deg(v) > 0. Show that deg(u) = deg(dk) + deg(v) k.

18. Prove Theorem 4.16.

19. Prove Theorem 4.17.

20. Let u and v be polynomials in Q[x] with deg(v, x) ≥ 1. Let’s define u to
be a polynomial in v if the coefficients di in the polynomial expansion of
u in terms of v are all rational numbers. For example, 3 x4 + 4x2 + 5 is a
polynomial in terms of x2, while x3 + x2 is not. Give procedures for the
following operators.

(a) Polynomial exp(u, v, x) which returns true if u is a polynomial in
terms of v as defined above and false otherwise.

(b) Degree exp(u, v, x) which returns the degree of u in terms of v when
u is a polynomial in v or the symbol Undefined when u is not a
polynomial in v.

(c) Coefficient exp(u, v, x, i) which returns the coefficient di when u is a
polynomial in v or the symbol Undefined when u is not a polynomial
in v.

4.2 Greatest Common Divisors in F[x]

The concept of the greatest common divisor of two polynomials u and v
is a fundamental one in computer algebra. Loosely speaking, a greatest
common divisor of u and v is a divisor of u and v that contains all the
factors that u and v have in common. The concept is defined formally in
the following definition.

Definition 4.19. Let u and v be polynomials in F[x]. The greatest com-
mon divisor (gcd) of u and v (at least one of which is non-zero) is a
polynomial d that satisfies the following properties.

1. d is a common divisor of u and v.

2. If e is any common divisor of u and v, then e|d.
3. d is a monic polynomial.

The operator gcd(u, v, x) denotes the greatest common divisor. When there
is no chance of confusion, we omit the variable x and use the simpler
notation gcd(u, v).

4.2. Greatest Common Divisors in F[x] 127

When both u = 0 and v = 0, the above definition does not apply. In
this case, by definition, gcd(0, 0, x) = 0.

In other words, according to property (2), the greatest common divisor
of u and v is “greatest” in the sense that any common divisor of u and v
must also divide gcd(u, v).

Example 4.20. Let

u = 2 x3 + 12 x2 + 22 x+ 12 = 2 (x+ 1) (x+ 2) (x+ 3),
v = 2 x3 + 18 x2 + 52 x+ 48 = 2 (x+ 2) (x+ 3) (x+ 4).

From the factorizations of the two polynomials, it appears that the greatest
common divisor is d = x2 + 5 x + 6. Let’s verify this by showing that d
satisfies the three properties in Definition 4.19. First, polynomial division
shows that (1) is satisfied. To show (2), we again use polynomial division
of u by v to obtain

qσ = quot(u, v, x) = 1, rσ = rem(u, v, x) = −6 x2 − 30 x− 36,

which implies that

u = qσ v + rσ = (1) v + (−6) d.

Therefore, if e|u and e|v, we have e|d, and (2) is satisfied. Finally, since d
is monic, (3) is satisfied. �

The next theorem gives three important properties of the greatest com-
mon divisor.

Theorem 4.21. Let u and v be polynomials in F[x].

1. gcd(u, v) exists.

2. gcd(u, v) is unique.

3. If u �= 0, then gcd(0, u) = u/lc(u).

Proof: We show (1) by giving an algorithm to compute gcd(u, v) later in
this section. Parts (2) and (3) follow directly from Definition 4.19 (Exer-
cise 2). �

128 4. Single Variable Polynomials

Euclid’s GCD Algorithm in F[x]
The gcd of two polynomials is obtained with a polynomial version of Eu-
clid’s algorithm described in Section 2.1 The algorithm is based on the
following theorem.

Theorem 4.22. Let u and v �= 0 be polynomials in F[x], and let

rσ = rem(u, v, x).

Then,
gcd(u, v) = gcd(v, rσ).

Proof: The proof of this theorem is the same as the proof for the integer
case (see Theorem 2.9, page 21). �

We can find the gcd(u, v) by repeatedly applying Theorem 4.22. When
v �= 0, define a sequence of polynomials R−1, R0, R1, . . . with the following
scheme:

R−1 = u,

R0 = v,

R1 = rem(R−1, R0, x),
... (4.24)

Ri+1 = rem(Ri−1, Ri, x),
...

The sequence (4.24) is called a polynomial remainder sequence. Since

deg(Ri+1) < deg(Ri),

some member of the sequence is 0. Let Rρ be the first such remainder. By
Theorem 4.22 and Theorem 4.21(3),

gcd(u, v) = gcd(R−1, R0)
= gcd(R0, R1)
... (4.25)
= gcd(Rρ−1, Rρ−2)
= gcd(Rρ−1, Rρ)
= gcd(Rρ−1, 0)
= Rρ−1/lc(Rρ−1),

4.2. Greatest Common Divisors in F[x] 129

where we have used the condition Rρ = 0 to terminate the iteration. This
discussion is summarized in the following theorem.

Theorem 4.23. Let u and v be polynomials in F[x], at least one of which
is not zero. Then, gcd(u, v) = Rρ−1/lc(Rρ−1).

Proof: Although the relation was derived by assuming that v �= 0, it is
true when u �= 0 and v = 0 as well. In this case, ρ = 0 and gcd(u, 0) =
u/lc(u) = R−1/lc(R−1). �

Example 4.24. Let u = x7−4 x5−x2+4 and v = x5−4 x3−x2+4. Then,

R1 = x4 − 5 x2 + 4, R2 = x3 − x2 − 4 x+ 4, R3 = 0.

Therefore, gcd(u, v) = x3 − x2 − 4 x+ 4. �

A procedure that obtains gcd(u, v) using the polynomial remainder se-
quence (4.24) is given in Figure 4.3. Lines 1 and 2 are included so that a
division by zero is not encountered at line 6 for the special case when both
u = 0 and v = 0. The Algebraic expand operator at line 9 is included to
distribute 1/Leading Coefficient gpe(U, x) when U is a sum.

Notice that in Polynomial gcd, we require that all field operations in F
be obtained with automatic simplification. If this is not so, the procedure
may return an incorrect result. The next example illustrates this point.

Example 4.25. Consider the polynomials in Q
(√

2
)
[x]:

u = x2 +
(
−1−

√
2
)
x, v = x2 +

(
−2− 2

√
2
)
x+ 3 + 2

√
2.

In this case, gcd(u, v) = x + (−1−√2). However, if automatic simplifica-
tion does not perform all operations in Q(

√
2)[x], we obtain the remainder

sequence4

R1 = x+
√
2x− 3− 2

√
2,

R2 = 3+ 2
√
2− 14√

2 + 1
− 10

√
2√

2 + 1
+

17(√
2 + 1

)2 +
12
√
2(√

2 + 1
)2 ,

R3 = 0.

Since R2 is free of x, Polynomial gcd returns gcd(u, v) = 1, which is incor-
rect. In fact, R2 simplifies to 0, and so the iteration should have terminated
with R2 = 0, giving gcd(u, v) = R1/lc(R1) = x+ (−1−√2). �

4Similar results are obtained with Maple, Mathematica, and MuPAD implementa-
tions of Polynomial division and Polynomial gcd.

130 4. Single Variable Polynomials

Procedure Polynomial gcd(u, v, x);
Input

u, v : polynomials in F[x] where all field operations
in F are obtained with automatic simplification;

x : a symbol;
Output

gcd(u, v, x);
Local Variables
U,V,R;

Begin
1 if u = 0 and v = 0 then
2 Return(0)
3 else
4 U := u; V := v;
5 while V �= 0 do
6 R := Remainder(U, V, x);
7 U := V ;
8 V := R;
9 Return(Algebraic expand(1/Leading Coefficient gpe(U, x) ∗ U))

End

Figure 4.3. An MPL procedure for Euclid’s algorithm for polynomials. (Imple-
mentation: Maple (txt), Mathematica (txt), MuPAD (txt).)

Algorithms for division and gcd computation for polynomials with al-
gebraic number coefficients are given in Section 4.3.

Computational Difficulties with Euclid’s Algorithm

Although Euclid’s algorithm is simple and works well for low degree poly-
nomials, it has a property that makes it unsuitable as a general purpose
algorithm in a CAS.

Example 4.26. Consider the two polynomials in Q[x]:

u = x8 + 5 x7 + 7 x6 − 3 x5 + 4 x4 + 17 x3 − 2 x2 − 6 x+ 3,

v = x8 + 6 x7 + 3 x6 + x5 + 10 x4 + 8 x3 + 2 x2 + 9 x+ 8.

The remainder sequence is given by:

R1 = −x7 + 4 x6 − 4 x5 − 6 x4 + 9 x3 − 4 x2 − 15 x− 5,
R2 = 39 x6 − 45 x5 − 41 x4 + 94 x3 − 53 x2 − 146 x− 42,

4.2. Greatest Common Divisors in F[x] 131

R3 = −896
507

x5 − 101
169

x4 +
132
169

x3 − 655
169

x2 − 2749
507

x− 327
169

,

R4 = −3280121
802816

x4 − 3461627
200704

x3 − 36161099
802816

x2 − 8166587
802816

x

+
17428125
802816

,

R5 = −554215997440
63663868489

x3 − 4783122333696
63663868489

x2 − 2030741536768
63663868489

x

+
2198164799488
63663868489

,

R6 = −10141289265339652563
54656781667532800

x2 − 103051366981906031
1115444523827200

x

+
1272943070806564261
13664195416883200

,

R7 = −126501666385563244213043200
124265326150557573927519717

x

−126501666385563244213043200
124265326150557573927519717

,

R8 = 0.

Dividing R7 by its leading coefficient, we have gcd(u, v) = x+ 1. �

Notice that there is a dramatic increase in the number of digits required
to represent the coefficients of the remainders, even though the coefficients
in the gcd require few digits. This phenomenon, which is known as co-
efficient explosion, occurs frequently with computer algebra algorithms.
The culprit here is the recurrence relation for the remainder in polynomial
division (see Equation (4.8)). With each application of this formula, a
new polynomial is obtained using arithmetic with rational numbers. Un-
fortunately, the result of an arithmetic operation with rational numbers
usually requires more digits than either of the original operands (e.g.,
2/3 + 2/5 = 16/15). For this reason, as the iteration proceeds, there is
a tendency for the coefficients to require more and more digits. In fact, for
polynomials of degree n with coefficients that are randomly chosen single
digit integers (for which it is nearly certain that the polynomials are rela-
tively prime), Rρ−1 has coefficients with approximately n2 digits. On the
other hand, if deg(gcd(u, v)) is close to min({deg(u), deg(v)}), few itera-
tions are required, and the coefficient explosion is not nearly as significant.

Coefficient explosion significantly increases both the time and memory
requirements of the algorithm. It can be reduced, however, with more
sophisticated algorithms that compute the gcd. We return to this problem
again in Section 6.3.

132 4. Single Variable Polynomials

The Extended Euclidean Algorithm in F[x]
An extended Euclidean algorithm for polynomials in F[x] is similar to the
algorithm for the integers described in Section 2.1.

Theorem 4.27. For u and v polynomials in F[x], there exist polynomials A
and B in F[x] such that

Au+B v = gcd(u, v). (4.26)

The polynomials A and B are given in Equation (4.31).

Proof: Since the development for polynomials is nearly identical to what
was done for the integers (page 23), we only summarize the approach. First,
for the special case u = 0 and v = 0, we use A = 0 and B = 0. When
either u or v is not zero, there are polynomials Ai and Bi such that

Ri = Ai u+Bi v. (4.27)

These polynomials are given by the recurrence relations:

A−1 = 1, A0 = 0, (4.28)

B−1 = 0, B0 = 1, (4.29)

Ai = Ai−2 −QiAi−1, Bi = Bi−2 −QiBi−1, i ≥ 1, (4.30)

where Qi = quot(Ri−2, Ri−1, x). Now, since gcd(u, v) = Rρ−1/lc(Rρ−1),
we have

A = Aρ−1/lc(Rρ−1), B = Bρ−1/lc(Rρ−1). (4.31)

�

Example 4.28. Let

u = x7 − 4 x5 − x2 + 4, v = x5 − 4 x3 − x2 + 4.

The greatest common divisor of these polynomials is given in Example 4.24
as gcd(u, v) = R2 = x3 − x2 − 4 x+ 4. In addition,

A1 = 1, B1 = −x2,

A2 = −x, B2 = x3 + 1.
A3 = x2 + x+ 1, B3 = −x4 − x3 − x2 − x− 1.

Therefore, by Equation (4.31),

A = A2/lc(R2) = −x,

4.2. Greatest Common Divisors in F[x] 133

B = B2/lc(R2) = x3 + 1. �

A procedure that obtains A and B using the recurrence relations (4.30)
with initial conditions (4.28) and (4.29) is given in Figure 4.4. The variables
Ap and Bp represent the previous values Ai−1 and Bi−1, and App and Bpp
represent Ai−2 and Bi−2.

Theorem 4.27 has many applications in computer algebra including the
statements in the next theorem which are used frequently in the remainder
of the book.

Theorem 4.29. Suppose that u, v, and w are in F[x].

1. If w|u v and w and u are relatively prime, then w|v.
2. If w|u v and w is irrreducible, then w|u or w|v.
3. If u|w, v|w, and gcd(u, v) = 1, then u v|w.

Proof: The proofs are similar to the ones for Theorem 2.16 on page 27.�

Using Theorem 4.27, we obtain the following description of relatively
prime polynomials.

Theorem 4.30. Let u and v be polynomials in F[x] at least one of which is
not 0. Then u and v are relatively prime if and only if there are polynomials
A and B in F[x] such that

Au+B v = 1. (4.32)

Proof: First, if u and v are relatively prime, then Theorem 4.27 implies
Equation (4.32).

On the other hand, if Equation (4.32) is true, then since gcd(u, v)|u
and gcd(u, v)|v, we have gcd(u, v)|1. Therefore, deg(gcd(u, v)) = 0 which
implies that u and v are relatively prime. �

Properties of Ai and Bi
In the next few theorems, we describe some properties of the polynomial
sequences Ai and Bi.

Theorem 4.31. Let u and v be non-zero polynomials in F[x]. Then, for
i = 1, 2, . . . , ρ,

u = (−1)i(BiRi−1 −Bi−1 Ri), (4.33)
v = (−1)i−1(AiRi−1 −Ai−1 Ri). (4.34)

134 4. Single Variable Polynomials

Procedure Extended Euclidean algorithm(u, v, x);
Input

u, v : polynomials in F[x] where all field operations
in F are obtained with automatic simplification;

x : a symbol;
Output

The list [gcd(u, v), A,B];
Local Variables

U, V,Ap,App,Bp,Bpp, q, r,A,B, c;
Begin

1 if u = 0 and v = 0 then
2 Return([0, 0, 0])
3 else
4 U := u; V := v; App := 1; Ap := 0; Bpp := 0; Bp := 1;
5 while V �= 0 do
6 q := Quotient(U, V, x);
7 r := Remainder(U, V, x);
8 A := App − q ∗ Ap; B := Bpp − q ∗ Bp ;
9 App := Ap; Ap := A; Bpp := Bp; Bp := B;
10 U := V ; V := r;
11 c := Leading Coefficient gpe(U, x);
12 App := Algebraic expand(App/c);
13 Bpp := Algebraic expand(Bpp/c);
14 U := Algebraic expand(U/c);
15 Return([U, App, Bpp])

End

Figure 4.4. An MPL procedure for the extended Euclidean algorithm which
returns the list [gcd(u, v), A, B]. (Implementation: Maple (txt), Mathematica
(txt), MuPAD (txt).)

Proof: We verify Equation (4.33) with mathematical induction. For i = 1,
we obtain using Equations (4.29) and (4.30), B1 = −Q1. Therefore,

u = Q1 v +R1 = Q1 R0 +R1

= −B1 R0 +B0 R1 = (−1)(B1R0 −B0R1)

which is Equation (4.33) for i = 1. Suppose next that i ≤ ρ, and assume
the induction hypothesis that Equation (4.33) holds for i−1. By definition
of the remainder sequence,

Ri−2 = QiRi−1 +Ri,

4.2. Greatest Common Divisors in F[x] 135

and from Equation (4.30)

Bi−2 = Bi +QiBi−1.

Using these relationships and the induction hypothesis, we have

u = (−1)i−1 (Bi−1 Ri−2 −Bi−2 Ri−1)
= (−1)i−1 (Bi−1 (QiRi−1 +Ri)− (Bi +QiBi−1)Ri−1)
= (−1)i (BiRi−1 −Bi−1 Ri)

which verifies the relationship for i. �

One way to find the cofactors cof(gcd(u, v), u) and cof(gcd(u, v), v) is
to divide u and v by gcd(u, v). It is also possible to obtain them using the
relationships in the next theorem.

Theorem 4.32. Let u and v be non-zero polynomials in F[x]. Then

cof(gcd(u, v), u) = (−1)ρBρ lc(Rρ−1),
cof(gcd(u, v), v) = (−1)ρ−1Aρ lc(Rρ−1).

Proof: Since Rρ = 0 and gcd(u, v) = Rρ−1/lc(Rρ−1), these relationships
follow directly from Equations (4.33) and (4.34). �

Example 4.33. Let u = x7 − 4 x5 − x2 + 4 and v = x5 − 4 x3 − x2 + 4. The
greatest common divisor of these polynomials is given in Example 4.24 as
gcd(u, v) = R2 = x3 − x2 − 4 x + 4 with ρ = 3. The sequences Ai and Bi
are given in Example 4.28 where

A3 = x2 + x+ 1, B3 = −x4 − x3 − x2 − x− 1.

Therefore,

cof(gcd(u, v), u) = (−1)3B3 lc(R2) = x4 + x3 + x2 + x+ 1,
cof(gcd(u, v), v) = (−1)2A3 lc(R2) = x2 + x+ 1. �

In Example 4.28, the degrees of the sequences Ai and Bi increase with i.
In the next theorem we substantiate this observation.

Theorem 4.34. Let u and v be non-zero polynomials in F[x].

1. If ρ ≥ 2, then deg(A1) < deg(A2) < · · · < deg(Aρ).

136 4. Single Variable Polynomials

2. If ρ ≥ 2 and Q1 �= 0, then deg(B1) < deg(B2) < · · · < deg(Bρ).

3. If ρ ≥ 3 and Q1 = 0, then deg(B2) < deg(B3) < · · · < deg(Bρ).

Proof: We prove the theorem for the sequence Ai using mathematical
induction. First, according to Exercise 3, deg(Qi) > 0 for i = 2, 3, . . . , ρ.
Now, since A1 = 1 andA2 = −Q2, we have deg(A1) < deg(A2), and so the
degree relation holds for the base case i = 2. Let’s suppose that 3 ≤ i ≤ ρ,
and assume the induction hypothesis that deg(Ai−2) < deg(Ai−1). This
inequality together with Theorem 4.1(2) implies that

deg(Ai−2) < deg(Qi) + deg(Ai−1) = deg(QiAi−1),

which in turn implies that

deg(Ai−2−QiAi−1) = max({ deg(Ai−2), deg(QiAi−1)}) = deg(QiAi−1).

Finally, this relation together with the recurrence relation (4.30) gives

deg(Ai−1) < deg(Qi) + deg(Ai−1)
= deg(QiAi−1)
= deg(Ai−2 −QiAi−1)
= deg(Ai)

which is the degree relation for i.
The proof of the degree relationships for the sequence Bi is left to the

reader (Exercise 7). In this case the initial step for the induction depends
on whether or not Q1 = 0. �

Using the previous theorem we have the following important result.

Theorem 4.35. Let u and v be polynomials in F[x] with positive degree.
Then, deg(A) < deg(v) and deg(B) < deg(u).

Proof: First assume that ρ = 1. In this case v|u, and so gcd(u, v) =
v/lc(v). Therefore, A = 0 and B = 1/lc(v) which implies that deg(A) <
deg(v) and deg(B) < deg(u).
Next suppose that ρ ≥ 2. Since A = Aρ−1/lc(Rρ−1), we have by Theo-

rem 4.32 and Theorem 4.34:

deg(A) = deg(Aρ−1)
< deg(Aρ)
≤ deg((−1)ρ−1Aρ lc(Rρ−1) gcd(u, v))
= deg(v).

4.2. Greatest Common Divisors in F[x] 137

A similar argument shows that deg(B) < deg(v) when ρ ≥ 2, although
the case with ρ = 2 and Q1 = 0 is handled separately. �

Uniqueness of A and B
The polynomials A = Aρ−1/lc(Rρ−1) and B = Bρ−1/lc(Rρ−1) are not the
only ones that satisfy Equation (4.26). Indeed, if w is any polynomial,
define

A′ = A+ w v, B′ = B − wu.

Then,

A′ u+B′ v = (A+ w v)u+ (B − wu) v = Au+B v = gcd(u, v).

However, when u and v are relatively prime, we have the following unique-
ness result.

Theorem 4.36. Let u and v be polynomials in F[x] with positive degree, and
suppose that gcd(u, v) = 1. Then the polynomials A and B obtained with
the extended Euclidean algorithm are the only polynomials with deg(A) <
deg(v) and deg(B) < deg(u) such that Au+B v = 1.

Proof: The existence of A and B is guaranteed by Theorem 4.35. To show
the uniqueness property, suppose that there are two pairs of polynomials
A, B and A′, B′ that satisfy the degree properties. Then, Au+B v = 1 =
A′ u+B′ v, and

(A−A′)u = (B′ −B) v.

Since u divides the left side of this equation, it must also divide the
right side. Therefore, since gcd(u, v) = 1, Theorem 4.29(1) implies that
u|B′ −B. However, since

deg(B′ −B) < deg(u),

we have B′ −B = 0. In a similar way A′ −A = 0. �

Example 4.37. The preceding theorem is not true when u and v have a
common factor with positive degree. For example, for u = x2 − 1 and
v = x2 + 2 x+ 1, then

gcd(u, v) = R1/lc(R1) = x+ 1, A = −1/2, B = 1/2.

However, the polynomials A′ = x/2 and B′ = −x/2 + 1 also satisfy the
degree requirements, and A′ u + B′ v = x + 1. In fact, there are infinitely

138 4. Single Variable Polynomials

many pairs of polynomials A′ and B′ that satisfy these conditions (Exer-
cise 13). This example is not just a rare occurrence but is indicative of the
underlying theory. We show in Chapter 7 that whenever u and v are not
relatively prime, this non-uniqueness property appears. �

Factorization of Polynomials

An important application of Theorem 4.27 is the following factorization
theorem for polynomials.5

Theorem 4.38. Let u be a polynomial in F[x] with deg(u) > 0. Then, u
can be factored as

u = c p1 p2 · · · pr, (4.35)

where c is in F and each pi is a monic, irrreducible polynomial in F[x] with
deg(pi) > 0. The factorization is unique up to the order of the polynomi-
als. The factorization (4.35) is called the irreducible factorization of u
in F[x].

In other words, the uniqueness property states that two factorizations
with the factors pi listed in different orders are considered the same factor-
ization.

Example 4.39. In Q[x] we have the unique factorization

2 x2 + 10 x+ 12 = 2 (x+ 2) (x+ 3).

An irreducible factorization depends on the field of coefficients. For exam-
ple, u = x2 − 2 is irrreducible in Q[x] but can be factored as x2 − 2 =
(x +

√
2) (x − √2) in Q

(√
2
)
[x]. Another example is x2 + 1 which is

irrreducible in Q[x] and Z3[x], but can be factored as

x2 + 1 = (x+ ı)(x− ı), in Q(ı)[x],
x2 + 1 = (x+ 1)2, in Z2[x],
x2 + 1 = (x+ 2)(x+ 3), in Z5[x]. �

Proof of Theorem 4.38: First, if u is irrreducible, then its irreducible
factorization is given by

u = lc(u) p,

where p is the monic polynomial with coefficients obtained from the coef-
ficients of u divided by lc(u).

5Theorem 4.27 is applied through Theorem 4.29(2) which follows from Theorem 4.27.

4.2. Greatest Common Divisors in F[x] 139

Next, if u is reducible, it can be factored u = v w where 0 < deg(v) <
deg(u) and 0 < deg(w) < deg(u). If v and w are irrreducible, the process
terminates. If not, the process continues by factoring v and w. Theorem
4.1(2) implies that the process eventually terminates with the factorization

u = q1 q2 · · · qr, (4.36)

where each qi is irrreducible and 0 < deg(qi) < deg(u). In addition,

u = q1 q2 · · · qr = c p1 p2 · · · pr
where

c = lc(q1) lc(q2) · · · lc(qr),
and pi is an irrreducible monic polynomial with coefficients obtained from
the coefficients of qi divided by lc(qi).

To show the uniqueness of the factorization, suppose that u has two
irreducible factorizations

u = c p1 p2 · · · pr = c′ p′1 p
′
2 · · · p′s. (4.37)

Since c = lc(u) = c′, we divide both factorizations by the leading coefficient
to obtain

p1 p2 · · · pr = p′1 p
′
2 · · · p′r′ . (4.38)

Now, since the irrreducible polynomial p1 divides the both sides of Equation
(4.38), it divides some factor p′j on the right (Theorem 4.29(2)). In fact,
since both polynomials are monic and irrreducible, pi = p′j . Dividing both
sides of Equation (4.38) by this polynomial, we obtain

p2 p3 · · · pr = p′1 p
′
2 · · · p′j−1 p

′
j+1 · · · p′r′ .

Repeating this argument for each successive polynomial pi, i = 2, . . . , r, it
follows that r = r′ and each polynomial pi corresponds to a unique polyno-
mial on the right side of Equation (4.37). Therefore, the two factorizations
are the same except for a possible rearrangement of the factors. �

By combining like factors in the previous theorem we obtain the follow-
ing theorem.

Theorem 4.40. Let u be a polynomial in F[x] with deg(u) > 0. Then, u
can be factored uniquely as

u = c pn1
1 pn2

2 · · · pns
s ,

where the polynomials pi are monic, irrreducible, and relatively prime.

140 4. Single Variable Polynomials

Theorems 4.38 and 4.40 are “non-constructive” mathematical state-
ments because they assert the existence of a unique factorization but do
not give an algorithm to compute it. In Chapter 9 we describe algorithms
that obtain the irreducible factorization of polynomials in Q[x].

Chinese Remainder Problem in F[x]

The next theorem, which is also based on the extended Euclidean algo-
rithm, is the polynomial version of the Chinese Remainder Theorem.

Theorem 4.41. Let u1, u2, . . . , ur be polynomials in F[x] with positive de-
gree that are pairwise relatively prime, and let a1, a2, . . . , ar be polynomials
in F[x] with deg(ai) < deg(ui). Then, there is exactly one h in F[x] with

deg(h) < deg(u1) + · · ·+ deg(ur) (4.39)

that satisfies the remainder equations

rem(h, ui) = ai, i = 1, 2, . . . , r. (4.40)

Proof: We prove the theorem with mathematical induction. First, for the
base case r = 1, the division property for polynomials implies that h = a1.
Let’s assume now that there is a polynomial z that satisfies the remainder
equations

rem(z, ui) = ai, i = 1, . . . , r − 1, (4.41)

with deg(z) < deg(u1)+· · ·+deg(ur−1) and show how to extend the process
one step further to find a polynomial h that satisfies the conditions in the
theorem. Observe that the condition (4.41) implies that

z = qi ui + ai, i = 1, . . . , r − 1, (4.42)

where qi = quot(z, ui). In addition, for v = u1 · · ·ur−1, the pairwise rela-
tively prime hypothesis in the theorem implies that gcd(v, ur) = 1. Now,
using the extended Euclidean algorithm, we obtain polynomials A and B
such that

Av +B ur = 1. (4.43)

Let

g = Av ar +B ur z, (4.44)
u = v ur = u1 · · ·ur.

4.2. Greatest Common Divisors in F[x] 141

Although it can be shown that g satisfies the remainder equations, it does
not satisfy the degree condition (4.39). To obtain a solution with the proper
degree, divide g by u to obtain

g = q u+ h, (4.45)

where the remainder h satisfies (4.39).
We show now that h satisfies all the remainder equations. First, for

1 ≤ i ≤ r − 1, we use Equation (4.43) to eliminate B ur from h:

h = g − q u

= Av ar +B ur z − q u

= Av ar + (1 −Av) z − q u

= Av ar −Av z − q u+ z. (4.46)

Using Equation (4.42) to eliminate the z on the far right, we obtain for
1 ≤ i ≤ r − 1,

h = (Av ar −Av z − q u+ qi ui) + ai.

Observe that ui divides each of the terms in parentheses, and therefore, the
uniqueness property for polynomial division implies that rem(h, ui) = ai
(for 1 ≤ i ≤ r − 1).

For i = r, we use Equation (4.43) to eliminate Av from h:

h = g − q u

= Av ar +B ur z − q u

= (B ur z −B ur ar − q u) + ar.

Since ur divides each term in parentheses, the uniqueness property for
polynomial division implies that rem(h, ur) = ar, and therefore, h satisfies
all the remainder equations.

To show the uniqueness of h, suppose that h and h′ both satisfy the
conditions in the theorem. Then, for 1 ≤ i ≤ r, we represent h and h′ as

h = fi ui + ai, h′ = gi ui + ai

which implies that h − h′ = (fi − gi)ui. Therefore, ui|h − h′, and since
u1, . . . , ur are pairwise relatively prime, Theorem 4.29(3) implies that

u|h− h′. (4.47)

However, since deg(h − h′) < deg(u), we have h − h′ = 0 which proves
the uniqueness property. �

142 4. Single Variable Polynomials

Example 4.42. Let

u1 = x2 + 3 x+ 2, u2 = x+ 3,

a1 = 4 x+ 5, a2 = 2,

be polynomials in Q[x]. Then, using the notation in the proof of the
theorem, when r = 2, we have z = a1 and v = u1. Applying the extended
Euclidean algorithm to v and u2, we obtain A = 1/2, B = (−1/2)x.
Therefore Equation (4.44) gives g = −2 x3 − 15/2 x2 − 9/2 x + 2, which
satisfies the remainder equations but not the degree condition. However,
h = rem(g, u1 u2) = 9/2 x2 + 35/2 x+ 14 satisfies the remainder equations
and the degree condition. �

A procedure that finds the polynomial h in the Chinese remainder the-
orem is similar to the one for the integer version of the theorem described
in Section 2.1. We leave the details to the reader (Exercise 21).

Exercises
1. Use Euclid’s algorithm to find the gcd of each of the pairs of polynomials.

(a) u = x2 + 6x + 9, v = x2 + 5 x + 6.

(b) u = x3 + 9x2 + 26x + 24, v = x3 − 2 x2 − 11 x + 12.

(c) u = x3 + 2x2 + 10x + 8, v = x3 − 1.

(d) u = x3+5x2+
√

2x2+6x+5
√

2x+6
√

2, v = x3+
√

2x2−4x−4
√

2.

(e) u = 2x2 + 3x + 1, v = 2x2 + 4x + 2, in Z5[x].

2. Use Definition 4.19 to give proofs for properties (2) and (3) in Theorem 4.21.

3. Let u and v �= 0 be polynomials in F[x], and consider the remainder se-
quence (4.24). Let Qi = quot(Ri−2, Ri−1, x) and suppose that ρ ≥ 2.
Explain why deg(Qi) > 0 for i = 2, 3, . . . , ρ. Give an example where
deg(Q1) = 0.

4. Let p be a prime number, and let u and v be polynomials in Zp[x].

(a) Give a procedure
Poly gcd p(u, v, x, p)

that computes the gcd of u and v in Zp[x].

(b) Give a procedure

Ext Euclidean alg p(u, v, x, p)

that returns the list [A,B, gcd(u, v)] generated by the extended Eu-
clidean algorithm in Zp[x].

4.2. Greatest Common Divisors in F[x] 143

The procedure Poly div p described in Exercise 9 on page 125 and the
procedure Multiplicative inverse p described in Exercise 11 on page 59 are
useful in this exercise.

5. Compute A and B obtained with the extended Euclidean algorithm for
each pair of polynomials in Exercise 1.

6. In this exercise we describe an approach for deriving the integral reduction
formula�

dx

(x2 + c)n
=

1

2c (n− 1)

W
x

(x2 + c)n−1
+ (2n− 3)

�
dx

(x2 + c)n−1

}
(4.48)

where the constant c �= 0 and n ≥ 1 is an integer. The derivation uses
Theorem 4.27.

(a) Let s = x2 + c and so s′ = 2x. Using the extended Euclidean algo-
rithm, find polynomials A and B such that As + B s′ = 1.

(b) Show that�
dx

(x2 + c)n
=

�
dx

sn
=

�
A dx

sn−1
+

�
B s′

sn
dx. (4.49)

(c) Using integration by parts, show that the second integral in the sum
(4.49) is given by�

B s′

sn
dx =

−B

(n− 1)sn−1
+

�
B′

(n− 1)sn−1
dx. (4.50)

(d) Combine Equations (4.49) and (4.50) to obtain Equation (4.48).

7. (a) Prove Theorem 4.34(2),(3).

(b) Give an example where Q1 = 0 and deg(B1) = deg(B2).

8. Let u and v be in F[x].

(a) Show that if gcd(u, v) �= 1, then deg(Aρ) < deg(v) and deg(Bρ) <
deg(u).

(b) Give an example that shows that the conclusion in (a) is not true
when u and v are relatively prime.

9. Let u, v, and w be in F[x] with gcd(u, v) = 1 and deg(w) > 0. Suppose that
w is irrreducible and wn|u v. Show that either wn|u or wn|v but wn does
not divide both u and v. Give an example that shows that this statement
is false if gcd(u, v) �= 1.

10. Let u, v, and w be in F[x] with gcd(u, v) = 1, w a monic polynomial, and
w|u v. Show that

w = gcd(w, u) gcd(w, v).

Give an example that shows that this statement is false if gcd(u, v) �= 1.

144 4. Single Variable Polynomials

11. Let u, v, and w �= 0 be in F[x]. Show that

gcd(wu, w v) = w/lc(w) gcd(u, v).

12. Let u v, and w be in F[x] with gcd(u, v) = 1. Show that

gcd(w, u v) = gcd(w, u) gcd(w, v).

Give an example that shows that this statement is false if gcd(u, v) �= 1.

13. Suppose that u = x2 − 1 and v = x2 + 2 x + 1 where gcd(u, v) = x + 1.
Show that there are infinitely many pairs of polynomials A and B where
Au + B v = x + 1 and deg(A) < deg(v), deg(B) < deg(u).

14. Let u and v be relatively prime and have positive degree, and suppose that
S and T are two polynomials such that S u + T v = 1. (S and T are not
necessarily the ones generated by the extended Euclidean algorithm.) Let
A = rem(S, v) and B = rem(T, u). Show that A and B are the polynomials
obtained with the extended Euclidean algorithm.

15. Let u and v be polynomials in F[x] with positive degree. Show that
gcd(u, v) �= 1 if and only if there are polynomials C and D with deg(C) <
deg(v) and deg(D) < deg(u) such that C u = D v.

16. In this problem, p and u are polynomials in Q[x] where p is irrreducible
and u′ is the derivative of u.

(a) Suppose that u = pn w. Show that pn−1|gcd(u, u′).

(b) Now show the converse of Part (a). Suppose that pn−1|gcd(u, u′).
Show that pn|u.

17. Let u, v and w be in F[x] where u and v have positive degree, gcd(u, v) = 1,
and deg(w) < deg(u)+deg(v). Show there are unique polynomials C and D
in F[x] with deg(C) < deg(v) and deg(D) < deg(u) such that C u+ Dv =
w.

18. In this exercise we describe a simple version of a rational simplification
operator. The operator is applied to expressions in the class RS-IN (where
IN refers to “input”) that satisfy one of the following rules.

RS-IN-1. u is an integer.

RS-IN-2. u is a fraction.

RS-IN-3. u is the symbol x.

RS-IN-4. u is a sum with operands that are in RS-IN.

RS-IN-5. u is a product with operands that are in RS-IN.

RS-IN-6. u = vn, where v is in RS-IN, and n is an integer.

The goal is to transform u to a rational expression v in Q(x) in a standard
form that satisfies one of the following rules.

4.2. Greatest Common Divisors in F[x] 145

RS-1. v is a polynomial in Q[x].

RS-2. For n = Numerator(v) and d = Denominator(v), n and d are monic
polynomials in Q[x] which satisfy the following conditions.

(a) d has positive degree.

(b) n and d are relatively prime as polynomials in Q[x].

RS-3. v = cw where c is a rational number and w satisfies RS-2.

(a) Give a procedure for Rational simplify sv(u, x) (where the suffix “sv”
stands for “single variable”) that either returns the standard form of u
or the global symbol Undefined if a division by zero is encountered.
For example,

Rational simplify sv

W
x2 − 1

x + 1
, x

}
→ x− 1,

Rational simplify sv

W
x + 1

x2 − 1 − (x + 1) ∗ (x− 1)
, x

}
→

Undefined,

Rational simplify sv

~
1

1 + 1
x+1

+
2

x + 2
, x

^
→ x + 3

x + 2
,

Rational simplify sv

W
2x + 4

3x + 9
, x

}
→ (2/3)

x + 2

x + 3
.

(b) For a CAS, the standard form for a rational expression may be differ-
ent from the one given above. Experiment with a CAS to determine
the standard form for rationally simplified expressions in Q(x). (Use
normal in Maple and MuPAD and Together in Mathematica.) On
page 257 we describe another standard form for rational expressions.

19. Find the irreducible factorization of each of the following polynomials in
Z5[x].

(a) x2 + 2x + 2.

(b) x3 + 1.

20. Consider the polynomial (−1 + 5 ı)x2 + (9 + 8 ı)x + (3 − 6 ı) in (Q(ı))[x].
Factor the polynomial in the form (4.35).

21. Let A = [a1, . . . , ar] and U = [u1, . . . , ur] be lists of polynomials in Q[x]
that satisfy the conditions in the Chinese Remainder Theorem (Theorem
4.41). Give a procedure Poly Chinese rem(A,U, x) that obtains the poly-
nomial h described in the theorem.

146 4. Single Variable Polynomials

4.3 Computations in Elementary Algebraic Number Fields

Although the polynomial procedures described in Sections 4.1 and 4.2 ter-
minate for expressions that are GPEs in x, they may return inappropriate
or incorrect results when automatic simplification does not handle all of the
field operations. In this section we describe procedures for field operations,
polynomial division, and polynomial gcd calculations when the coefficient
field is a simple algebraic number field. This section is both an application
and an extension of the previous sections. It is an application in the sense
that polynomial division and the extended Euclidean algorithm are used to
perform arithmetic with algebraic numbers, and an extension in the sense
that the polynomial procedures in Sections 4.1 and 4.2 are extended to this
more general setting.

Simplification of Algebraic Number Polynomial Expressions

Consider the polynomial

u = 2 + 3 ı+ 4 ı2 + 5 ı3 + 6 ı4

where the symbol i satisfies
ı2 = −1. (4.51)

Although u is a polynomial in the symbol i, it differs from a polynomial
in a variable x because it can be simplified using the side relation (4.51).
One way to simplify u is to apply the structural substitutions

ı2 = −1, ı3 = −i, ı4 = 1

which simplifies the expression to 4 − 2 ı. Since structural substitution
replaces only complete sub-expressions, all three substitutions are required.

A better way to obtain the simplification involves polynomial division.
Dividing u by the polynomial p = ı2 + 1 we obtain

u = quot(u, p, ı) · p+ rem(ı, p, ı) = (6 ı2 + 5 ı− 2) (ı2 + 1) + (4− 2 ı).

Since ı2 + 1 simplifies to 0, this expression simplifies to the remainder
4 − 2 ı. Simplification by polynomial division is used for the remainder of
this section.

Example 4.43. Consider the expression

u = 3 (2 +
√
2)3 + (2 +

√
2)2 − 4,

4.3. Computations in Elementary Algebraic Number Fields 147

and let’s view u as a polynomial in the algebraic number x = 2+
√
2, which

satisfies the side relation f(x) = x2 − 4 x+ 2 = 0. The simplified form of u
is given by

u = rem(u(α), f(α), α) = −30 + 46α (4.52)

= −30 + 46 (2 +
√
2). (4.53)

In fact, the general relation in Equation (4.52) holds for any root of f(x) =
0. For example, for the root α = 2−√2, we also have the simplification

3 (2−√2)3 + (2 −√2)2 − 4 = −30 + 46 (2−√2). �

The Minimal Polynomial of an Algebraic Number

Let α be an algebraic number that is a root of the polynomial equation
f(x) = 0, where f is in Q[x] and deg(f) ≥ 2. In order to simplify a
polynomial u(α), we must divide u by the simplest polynomial that has α
as a root. This polynomial is described in the following theorem.

Theorem 4.44. Let α be an algebraic number. Then, there is a unique,
monic, irrreducible polynomial p(x) �= 0 in Q[x] such that p(α) = 0. The
polynomial p is called the minimal polynomial of α.

Proof: Suppose that α is a root of the polynomial equation f(x) = 0.
Then f can be factored as f(x) = c · p1(x) · p2(x) · · · pn(x), where each pi
is a monic and irrreducible polynomial in Q[x]. Since f(α) = 0, α is the
root of one of these polynomials, say pi′ . Let p = pi′ .

To show that p is the only polynomial with these properties, we first
show that p is a divisor of any (non-zero) polynomial g(x) in Q[x] that
has α as a root. Since p is irrreducible, the two polynomials p and g are
either relatively prime or p|g. We show that the first of these two options
is impossible.

If p and g were relatively prime, then, by the extended Euclidean algo-
rithm, there are polynomials A(x) and B(x) in Q[x] such that

A(x) p(x) +B(x) g(x) = gcd(g, p) = 1. (4.54)

Substituting x = α into this expression, we obtain

A(α) p(α) +B(α) g(α) = A(α) · 0 +B(α) · 0 = 0. (4.55)

Since Equations (4.54) and (4.55) cannot both be true (0 �= 1), p and g
cannot be relatively prime, and so p|g. Therefore, if g is a polynomial

148 4. Single Variable Polynomials

which satisfies the three properties in the theorem (monic, irrreducible,
g(α) = 0), we must have p = g. �

Example 4.45. In order to find the simplest form of u(α) using polyno-
mial division, the side relation associated with α must be the minimal
polynomial. For example, let α = ı and

u = 2 + 3 ı+ 4 ı2 + 5 ı3 + 6 ı4.

The minimal polynomial of ı is p(x) = x2 + 1. Of course ı is also a root of
any multiple of p(x) such as

f(x) = (x2 + 1) (x− 1) = x3 − x2 + x− 1.

However,
rem(u, f(ı), ı)→ 9 ı2 − 2 ı+ 13,

rather than the simplified form

rem(u, ı2 + 1, ı) = 4− 2 ı. �

Arithmetic in Algebraic Number Fields

In Section 2.3 we described a number of fields that are constructed by
adjoining an algebraic number to the rational numbers Q (e.g., Q(ı)). In
the next definition and theorem we describe a systematic approach for
arithmetic in this setting.

Definition 4.46. Let α be an algebraic number with minimal polynomial p
such that deg(p, x) = n ≥ 2, and let Q(α) be the set of polynomials u in
Q[α] such that deg(u, α) < n. For polynomials u(α) and v(α) in Q(α),
define an addition operation as ordinary polynomial addition

u+ v,

and a multiplication operation as

rem(u · v, p(α), α).

Notice that with these operations both the sum and product of poly-
nomials in Q(α) are in simplified form with respect to the side relation
p(α) = 0.

4.3. Computations in Elementary Algebraic Number Fields 149

Example 4.47. Let α = 21/3. Since the minimal polynomial of α is p(x) =
x3 − 2, the set Q(α) consists of polynomials of the form a + b α + c α2,
where a, b, and c are rational numbers. Let

u = 1 + α+ 2α2, v = 2− α+ 3α2.

Using the operations described in Definition 4.46, the sum of u and v is

u+ v = 3 + 5α2,

and the product is

rem(u · v, p(α), α) = rem(2 + α+ 6α2 + α3 + 6α4, α3 − 2, α)
= 4 + 13α+ 6α2. �

Theorem 4.48. The set Q(α) with the addition and multiplication opera-
tions described in Definition 4.46 is a field.

Proof: The addition and multiplication operations are defined so that
the closure axioms (F-1 and F-2) are automatically satisfied, and using the
properties of polynomials, the field axioms F-3 through F-11 are also easy
to verify.

To show that Q(α) is a field, we need only show that each field element
u(α) �= 0 has a multiplicative inverse (Axiom F-12). Since the minimal
polynomial p is irrreducible with deg(u) < deg(p), and since u(α) �= 0, we
have gcd(u(α), p(α)) = 1. By the extended Euclidean algorithm, there are
polynomials A(α) and B(α) such that

A(α)u(α) +B(α) p(α) = 1 (4.56)

where, by Theorem 4.36, deg(A) < deg(p). To show that A(α) is the
multiplicative inverse of u(α), we compute the product of A(α) and u(α)
in Q(α). Using Equation (4.56), we have

rem(A(α)u(α), p(α), α) = rem(1−B(α) p(α), p(α), α) = 1.

Therefore, A is the multiplicative inverse of u, and Q(α) is a field. �

Example 4.49. Consider the field Q(21/3), where the minimal polynomial
of α = 21/3 is p(x) = x3 − 2. Let u = 2 + 3 · 21/3. Applying the extended
Euclidean algorithm we obtain

150 4. Single Variable Polynomials

u−1 = A = 9/62α2 − 3/31α+ 2/31,

and therefore,(
2 + 3 · 21/3

)−1

= 9/62 · 22/3 − 3/31 · 21/3 + 2/31.

In fact, A is the inverse for all solutions α of x3 − 2 = 0. For example,
another solution is

α = 21/3

(
−1
2
+

31/2 ı

2

)
,

and so(
21/3

(
−1
2
+

31/2 ı

2

))−1

= 9/62 ·
(
21/3

(
−1
2
+

31/2 ı

2

))2

− 3/31 ·
(
21/3

(
−1
2
+

31/2 ı

2

))
+2/31. �

Procedures for the Field Operations in Q(α). Addition of u and v in Q(α)
is obtained with automatic simplification, and the additive inverse of u is
obtained with6

Algebraic expand(−1 · u).
Multiplication in Q(α) is given by

Remainder(Algebraic expand(u · v), p, α),

where the minimal polynomial is expressed in terms of the symbol α instead
of the symbol x.

Procedures for the multiplicative inverse and division operations are
given in Figure 4.5. The multiplicative inverse is obtained in the procedure
Alg mult inverse with the extended Euclidean algorithm (line 1).

A general simplifier for expressions constructed from integers, fractions,
the algebraic number α, sums, products, and powers with integer exponents
is described in Exercise 4.

Procedures for Polynomial Operations in Q(α)[x]. Let’s consider now the ex-
tension of the polynomial operations described in Sections 4.1 and 4.2 for
polynomials in Q(α)[x].

6In a computer algebra system where −1 is distributed over a sum by automatic
simplification, the Algebraic expand operator can be omitted.

4.3. Computations in Elementary Algebraic Number Fields 151

Procedure Alg mult inverse(v, p, α);
Input

α : a symbol that represents an algebraic number;
p : a monic, irrreducible polynomial in Q[α] with deg(p, α) ≥ 2;
v : a non-zero polynomial in Q(α) with deg(v) < deg(p);

Output
The multiplicative inverse of v in Q(α);

Local Variables
w;

Begin
1 w := Extended Euclidean algorithm(v, p, α);
2 Return(Operand(w, 2))

End

Procedure Alg divide(u, v, p, α);
Input

α : a symbol that represents an algebraic number;
p : a monic, irrreducible polynomial in Q[α] with deg(p, α) ≥ 2;
u, v : polynomials in Q(α) with degree < deg(p) and v �= 0;

Output
The quotient of u divided by v in Q(α);

Local Variables
w;

Begin
1 w := Alg mult inverse(v, p, α);
2 Return(Remainder(Algebraic expand(u ∗ w), p, α))

End

Figure 4.5. MPL procedures for the division and multiplicative inverse operations
in Q(α). In both procedures, the minimal polynomial is expressed in terms of the
symbol α rather than the symbol x. (Implementation: Maple (txt), Mathematica
(txt), MuPAD (txt).)

The polynomial division procedure7 shown in Figure 4.6 is a modifica-
tion of the one given in Figure 4.1 on page 116.

Observe that at line 8, we obtain the quotient lcr/lcv with the Alg divide
operator. At line 10, the product of the algebraic number s with the
coefficients of v may give coefficients that are unsimplified with respect to
p(α) = 0 (see Example 4.50). For this reason, the operator Alg coeff simp
is included at line 11 to simplify each of the (algebraic number) coefficients
of the polynomial (Exercise 2).

7See the comment concerning the MuPAD implementation in footnote 2 on page 115.

152 4. Single Variable Polynomials

Procedure Alg polynomial division(u, v, x, p, α);
Input

u, v : polynomials in Q(α)[x] with v �= 0;
x : a symbol;
α : a symbol that represents an algebraic number;
p : a monic, irrreducible polynomial in Q[α] with degree ≥ 2;

Output
A list [q, r] with the quotient and remainder;

Local Variables
q, r,m,n, lcv, lcr, s;

Begin
1 q := 0;
2 r := u;
3 m := Degree gpe(r, x);
4 n := Degree gpe(v, x).
5 lcv := Leading Coefficient gpe(v, x);
6 while m ≥ n do
7 lcr := Leading Coefficient gpe(r, x);
8 s := Alg divide(lcr, lcv, p, α);
9 q := q + s ∗ xm−n;
10 r := Algebraic expand

i
(r − lcr ∗ xm) − (v − lcv xn) ∗ s ∗ xm−n

J
;

11 r := Alg coeff simp(r, x, p, a);
12 m := Degree gpe(r, x);
13 Return([q, r])

End

Alg quotient(u, v, x, p, α)
function

:=

Operand(Alg polynomial division(u, v, x, p, α), 1);

Alg remainder(u, v, x, p, α)
function

:=

Operand(Alg polynomial division(u, v, x, p, α), 2);

Figure 4.6. An MPL procedure for polynomial division in Q(α)[x] and func-
tions that extract the quotient and remainder. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

4.3. Computations in Elementary Algebraic Number Fields 153

Example 4.50. Let α be a root of p(x) = x2 − 2 = 0, and consider the
polynomials in Q(α)[x]:

u = 2 x2 + αx, v = αx+ α.

Let’s consider the division of u by v using the Alg polynomial division pro-
cedure. The quotient and remainder are initialized at lines 1–2 with

q = 0, r = 2 x2 + αx.

On the first pass through the loop, we have

s =
2
α
= α, q = αx,

and
r = xα− α2 x = (α− 2)x,

where the middle expression is the unsimplified form from line 10 and the
expression on the right is the simplified form from line 11. On the second
pass, we have

s =
α− 2
α

= 1− α, q = αx+ 1− α,

and
r = −α+ α2 = −α+ 2,

where again the middle expression is the unsimplified form and the ex-
pression on the right is the simplified form. At this point, the process
terminates with quotient q = αx+ 1− α and remainder −α+ 2. �

A procedure that obtains the greatest common divisor8 inQ(α)[x] based
on Euclid’s algorithm is given in Figure 4.7. The operator Alg monic in
line 6 assures that the gcd is a monic polynomial (Exercise 3).

Example 4.51. Let α be a root of p(x) = x2 − 2 = 0 and consider the
polynomials in Q(α)[x]:

u = x2 + (−1− α)x, v = x2 + (−2− 2α)x+ 3 + 2α.

The remainder sequence produced by Alg polynomial gcd at line 3 is

R = x+ αx− 3− 2α, (4.57)
R = 0.

8Another approach is suggested in Exercise 10, page 347.

154 4. Single Variable Polynomials

Procedure Alg polynomial gcd(u, v, x, p, α);
Input

u, v : polynomials in Q(α)[x];
x : a symbol;
α : a symbol that represents an algebraic number;
p : a monic, irrreducible polynomial in Q[α] with degree ≥ 2;

Output
gcd(u, v);

Local Variables
U,V, R;

Begin
1 U := u; V := v;
2 while V �= 0 do
3 R := Alg remainder(U, V, x, p, α);
4 U := V ;
5 V := R;
6 Return(Alg monic(U,x, p, α))

End

Figure 4.7. An MPL procedure for the Euclidean algorithm that computes
gcd(u, v) in Q(α)[x]. (Implementation: Maple (txt), Mathematica (txt), MuPAD
(txt).)

Therefore, using the remainder (4.57), at line 6 we obtain

gcd(u, v) = R/lc(R) = x− 1− α. �

In a similar way, we can modify the procedures for polynomial expansion
and the extended Euclidean algorithm to handle polynomials in Q(α)[x]
(Exercises 5 and 6).

Multiple Algebraic Extensions

We consider now the arithmetic and polynomial operations when a finite
set {α1, α2, . . . , αs} of algebraic numbers is adjoined to Q. We begin with
some examples.

Example 4.52. Consider the simplification problem for a polynomial ex-
pression in the two positive algebraic numbers α1 =

√
2 and α2 =

√
3,

which satisfy the two side relations

p1(x1) = x2
1 − 2 = 0, p2(x2) = x2

2 − 3 = 0.

4.3. Computations in Elementary Algebraic Number Fields 155

To simplify

u = 2 + 3α1 + 4α2
1 + α2 − α1 α2 + α2

1 α2 + 3α2
2 − α1 α

2
2 − 2α2

1 α
2
2,

we view u as a polynomial in Q(α1)[α2]:

u = (2 + 3α1 + 4α2
1) + (1 − α1 + α2

1)α2 + (3− α1 − 2α2
1)α

2
2.

Simplifying the coefficients in parentheses by replacing each of them with
the remainder of division by p1(α1), we obtain

u = (10 + 3α1) + (3− α1)α2 + (−1− α1)α2
2.

The final simplification is the remainder obtained by dividing this polyno-
mial (considered in Q(α1)[α2]) by p2(α2):

u = rem(u, p2(α2), α2) → 7 + (3− α1)α2

= 7 +
(
3−√2

) √
3. �

Example 4.53. Consider the simplification problem for a polynomial ex-
pression in the two positive algebraic numbers α1 =

√
2 and α2 =

√
8,

which satisfy the two side relations

p1(x1) = x2
1 − 2 = 0, p2(x2) = x2

2 − 8 = 0.

Let
u = α1 α2 − 4,

and consider the problem of simplifying u. If we proceed as in the last
example by dividing u by p2(α2), we obtain the remainder u = α1 α2 − 4
rather than the simplified form u =

√
2
√
8 − 4 = 0. The difficulty arises

because there is a dependence relation between
√
2 and

√
8:

2α1 − α2 = 2
√
2−√8 = 0. �

The last example shows that when there is an algebraic relationship
between algebraic numbers, simplification with polynomial division by the
minimal polynomials may not determine that an expression simplifies to
zero. In the next definition we describe the form of these dependence
relations.

Definition 4.54. Let S = {α1, α2, . . . , αs} be algebraic numbers, and let
pi(xi) be the minimal polynomial of αi. The set S is algebraically depen-
dent if there exists a non-zero polynomial h(x1, x2, . . . , xs) with rational
number coefficients such that

deg(h, xi) < deg(pi, xi), for i = 1, 2, . . . , s (4.58)

156 4. Single Variable Polynomials

and
h(α1, α2, . . . , αs) = 0. (4.59)

If the set S is not dependent, it is called algebraically independent.

In other words, a set S of algebraic numbers is algebraically dependent if
there is a polynomial relation between the numbers. The degree condition
(4.58) is essential because without it the definition is meaningless. Indeed,

h(x1, . . . , xs) = p1(x1) · · · p(xs)

satisfies Equation (4.59) but not the inequality (4.58).

Example 4.55. Consider the positive algebraic numbers α1 =
√
2 and

α2 =
√
8 with minimal polynomials p1(x1) = x2

1 − 2 and p2(x2) = x2
2 − 8.

These numbers are algebraically dependent with

h(x1, x2) = 2 x1 − x2.

Notice that the dependence relation depends on which roots of the minimal
polynomials are considered. For example, for α1 = −

√
2 and α2 =

√
8, the

dependence relation is

h(x1, x2) = 2 x1 + x2.

The positive algebraic numbers α1 =
√
2, α2 =

√
3, and α3 =

√
6 are

algebraically dependent with

h(x1, x2, x3) = x1 x2 − x3.

The positive algebraic numbers

α1 =
√
2, α2 =

√
3, α3 =

√
30 + 12

√
6

are algebraically dependent with

h(x1, x2, x3) = 3 x1 + 2 x2 − x3.

The dependence relationship h(α1, α2, α3) = 0 can be verified by squaring
both sides of the equation

3
√
2 + 2

√
3 =

√
30 + 12

√
6. �

4.3. Computations in Elementary Algebraic Number Fields 157

Example 4.56. The positive algebraic numbers α1 =
√
2 and α2 =

√
3 are

algebraically independent. To show this we must show that it is impossible
to find a non-zero polynomial

h(x1, x2) = a+ b x1 + c x2 + d x1 x2, (4.60)

with a, b, c, and d rational numbers such that

h(α1, α2) = a+ b
√
2 + c

√
3 + d

√
2
√
3 = 0. (4.61)

First, if such a polynomial did exist, then both c and d cannot be zero
because, if this were so, Equation (4.61) becomes

a+ b
√
2 = 0. (4.62)

In this expression, b �= 0 because, if this were not so, then a = 0 as well,
and h(x1, x2) is the zero polynomial. On the other hand, if b �= 0, Equation
(4.62) implies that

√
2 is a rational number which, of course, is not true.

Therefore, we assume that either c or d is not zero which implies, using
the above reasoning, that c + d

√
2 �= 0. When this is so, Equation (4.61)

implies
√
3 =
−a− b

√
2

c+ d
√
2

,

and by rationalizing the denominator, we obtain
√
3 = e+ f

√
2,

where e and f are rational numbers. Squaring both sides of this expression,
we obtain

3 = e2 + 2 e f
√
2 + 2 f2. (4.63)

If both e �= 0 and f �= 0, then again we would conclude that
√
2 is a rational

number, and so either e or f is zero.
Suppose that e = 0 and f = f1/f2 where f1 and f2 are integers with

no common factor. Then from Equation (4.63), we have

3 f2
2 = 2 f2

1 . (4.64)

Since 3 divides the left side of the equality, Theorem 2.16(2) implies that
3|f2

1 , and then Theorem 2.16(1) implies that 3|f1. Therefore, 32|f2
1 , and by

Equation (4.64), 3|f2
2 . Again, Theorem 2.16(1) implies that 3|f2, and so we

conclude that f1 and f2 have a common factor, which is a contradiction.
Therefore, e �= 0. In a similar way we can conclude that f �= 0.

Finally, since both e and f cannot be non-zero, the polynomial (4.60)
does not exist, and so

√
2 and

√
3 are independent algebraic numbers. �

158 4. Single Variable Polynomials

The last example is a special case of the next theorem which gives a
large set of independent algebraic numbers.9

Theorem 4.57. Let n1, n2, . . . , ns be distinct prime numbers, and let m1,
m2,. . . ,ms be integers that are ≥ 2. Then {n1/m1

1 , n
1/m2
2 , . . . , n

1/ms
s } is an

set of independent algebraic numbers.

Arithmetic with Two Independent Algebraic Numbers

Definition 4.58. Let α1 and α2 be independent algebraic numbers with
minimal polynomials p1(x1) and p2(x2) with rational number coefficients
and degree ≥ 2. Let

Q(α1, α2)

be the set of polynomials u in Q(α1)[α2] with deg(u, α2) < deg(p2(x2), x2).
For u and v in Q(α1, α2), the addition operation is defined as ordinary
polynomial addition, and the multiplication operation is

rem
(
u · v, p2(α2), α2

)
,

where the remainder operation is performed in Q(α1)[α2].

For u �= 0, the multiplicative inverse is obtained with the extended
Euclidean algorithm in Q(α1)[x2] using an approach similar to what was
done in the proof of Theorem 4.48. (See Example 4.60 and Exercise 6.)
This approach requires that the minimal polynomial p2(x2) be irrreducible
in Q(α1)[x2]. Although p2(x2) is irrreducible as a polynomial in Q[x2],
it is only irrreducible in the larger setting Q(α1)[x2] when α1 and α2 are
independent algebraic numbers. This is the content of the next theorem.

Theorem 4.59. Let α1 and α2 be algebraic numbers with minimal polynomials
p1(x1) and p2(x2). The polynomial p2(x2) is irrreducible in Q(α1)[x2] if
and only if α1 and α2 are algebraically independent.

Proof: First assume that α1 and α2 are algebraically independent. Let’s
suppose that p2 were reducible as

p2 = f g

where f and g are monic polynomials in Q(α1)[x2] and

0 < deg(f, x2) < deg(p2, x2), 0 < deg(g, x2) < deg(p2, x2). (4.65)
9Theorem 4.57 is proved in Besicovitch [9].

4.3. Computations in Elementary Algebraic Number Fields 159

Since α2 is a root of p2, it is a root of one of the factors (say f), and since
p2 is the (unique) minimal polynomial of α2, at least one coefficient of f
must depend on α1. (Otherwise f would be the minimal polynomial for α2

over Q.) Define a multivariate polynomial with

h(x1, x2) = Substitute(f, α1 = x1)

where
h(α1, α2) = f(α2) = 0. (4.66)

In addition, since f is in Q(α1)[x2], we have

deg(h, x1) < deg(p1, x1), (4.67)

and (4.65) implies

deg(h, x2) = deg(f, x2) < deg(p2, x2). (4.68)

Observe that the conditions (4.66), (4.67), and (4.68) imply that h is a
dependence relation for α1 and α2. However, since α1 and α2 are inde-
pendent, a dependence relation does not exist, and so p2 irrreducible in
Q(α1)[x2].

Conversely, let’s assume next that p2(x2) is irrreducible in Q(α1)[x2].
If there were a dependence relation h(x1, x2) that satisfies the conditions
of Definition 4.54, then, since deg(h, x2) < deg(p2, x2), we have

gcd(h(α1, x2), p2(x2), x2) = 1

in Q(α1)[x2]. By the extended Euclidean algorithm, there are polynomials
A and B in Q(α1)[x2] such that

A(x2)h(α1, x2) +B(x2) p2(x2) = 1.

However, when x2 = α2, the left side of this equations is zero. Therefore,
h(x1, x2) cannot exist, and so α1 and α2 are algebraically independent.�

Example 4.60. Consider the field Q(α1, α2) where

p1 = x2
1 − 2 = 0, p2 = x3

2 − 3 = 0.

By Theorem 4.57, α1 and α2 are algebraically independent. Let

u = (6α1 + 5) α2
2 + (4α1 + 3) α2 + 2α1 + 1.

160 4. Single Variable Polynomials

To find u−1, we view u as a polynomial in Q(α1)[α2] and apply the ex-
tended Euclidean algorithm (Exercise 6).10 Since u and p2(α2) are rela-
tively prime, the extended Euclidean algorithm obtains polynomials A and
B in Q(α1)[α2], such that

Au+B p2 = 1.

In addition, the product of A and u in Q(α1, α2) is

rem (A · u, p2, α2) = rem ((1−B p2) · u, p2, α2) = 1,

and so

u−1 = A

=
(

227
182354

α1 − 109
182354

)
α2

2 +
(
17289
364708

α1 − 7565
182354

)
α2

− 12985
364708

α1 +
3065
91177

. �

The General Approach

Definition 4.61. Let {α1, α2, . . . , αs} be a set of independent algebraic num-
bers with minimal polynomials p1(x1), p2(x2), . . . , ps(xs) with rational num-
ber coefficients and degree ≥ 2. Let

Q(α1, α2, . . . , αs)

be the set of all the polynomials u in Q(α1, α2, . . . , αs−1)[αs] such that

deg(u, αs) < deg(ps(xs), xs).

For u and v in Q(α1, α2, . . . , αs), the addition operation is defined as or-
dinary polynomial addition, and the multiplication operation is

rem
(
u · v, ps(αs), αs

)
where the remainder operation is performed in Q(α1, α2, . . . , αs−1)[αs].

As above, the independence of the algebraic numbers implies that ps(xs)
is irrreducible in Q(α1, α2, . . . , αs−1)[xs] (Exercise 10). In addition, we
obtain the multiplicative inverse using the extended Euclidean algorithm
as was done in Example 4.60 above.

This previous discussion is summarized in the following theorem.

Theorem 4.62. Suppose that {α1, α2, . . . , αs} is a set of independent alge-
braic numbers. Then Q(α1, α2, . . . , αs) is a field.

10Another(Exercise 6). approach is suggested in Exercise 11, page 347.

4.3. Computations in Elementary Algebraic Number Fields 161

Dependent Algebraic Numbers. Our description of the fieldQ(α1, α2, . . . , αs)
requires that the algebraic numbers are independent. When there are de-
pendence relations between the algebraic numbers, we can still obtain a
field as long as the simplifications are defined using division by both the
minimal polynomials and the dependence relations.

Example 4.63. Consider the dependent algebraic numbers α1 =
√
2 and

α2 =
√
8 with minimal polynomials p1(x1) = x2

1 − 2, p2(x2) = x2
2 − 8,

and dependence relation

h(x1, x2) = 2 x1 − x2 = 0, (4.69)

and consider the expression

u = α2
1 + 2 a2

2 + a2
1 a

2
2 − 8 a1 a2 − 2

which simplifies to 0. Simplification of u with division by the minimal
polynomials p1(α1) and p2(α2) obtains

u = −α1 α2 + 32

rather than the simplified form u = 0. However, simplification with division
by one of the minimal polynomials (say p1(α1)) and h(α1, α2) obtains the
simplified form u = 0. �

The simplification problem with dependent algebraic numbers is best
handled using the techniques in Chapter 8. We consider the above simpli-
fication again in Example 4.63 on page 161.

Procedures. When two independent algebraic numbers α1 and α2 are in-
volved, the field computations in Q(α1, α2) and polynomial computations
in Q(α1, α2)[x] are based on the procedures when only one algebraic num-
ber is involved. We leave these procedures to the reader (Exercise 11).

Procedures for arithmetic and polynomial calculations with more than
two independent algebraic numbers are based on the recursive structure
of the field described in the discussion preceding Theorem 4.62. These
procedures are also left to the reader (Exercise 12).

Manipulations with Explicit Algebraic Numbers. In most applications, the ex-
plicit algebraic numbers that appear in an expression are radicals of in-
tegers for which the minimal polynomials are easy to obtain. For more
complicated algebraic numbers, however, the minimal polynomials have

162 4. Single Variable Polynomials

high degree and coefficients with many digits. For example, the algebraic
number √√√√2 +

√
3 +

1√
5 +
√
7 +

(
11 +

√
13
)−1

has the minimal polynomial11

p(x) = x32 − 32 x30 +
66085344
145609

x28

−545732992
145609

x26 +
421691755033884
21201980881

x24

−1494907538191008
21201980881

x22 +
103051255680436160

614857445549
x20

−159162134521396736
614857445549

x18 +
4196565298931285686

17830865920921
x16

−1505578046340828000
17830865920921

x14 − 746238387428625184
17830865920921

x12

+
809449751146726016
17830865920921

x10 − 86721370491939780
17830865920921

x8

−97493394843118048
17830865920921

x6 +
14479220688074368
17830865920921

x4

+
4517575807284480
17830865920921

x2 +
229036045032825
17830865920921

.

In these situations, the algorithms described in this section involve con-
siderable computation, and the expressions for multiplicative inverses are
so involved, they are not useful in practice.

The Denesting Problem. Another simplification problem for explicit alge-
braic numbers is known as the denesting problem. The goal here is to
determine if an algebraic number that is defined using nested radicals can
also be expressed using fewer nested radicals. For example, each of the
following nested radicals on the left can be completely denested:√

5 + 2
√
2
√
3 =

√
2 +
√
3,(

21/3 − 1)
)1/3

= (1/9)1/3 − (2/9)1/3 + (4/9)1/3,√
51/3 − 41/3 = 1/3

(
21/3 + 201/3 − 251/3

)
.

11In Section 7.2 we describe a procedure that obtains a multiple of the minimal
polynomial of an explicit algebraic number although, in most cases, it involves con-
siderable computation. This minimal polynomial was obtained with this procedure.

4.3. Computations in Elementary Algebraic Number Fields 163

On the other hand, some nested radicals such as
√
1 + 2

√
2
√
3 cannot be

denested.
The denesting problem is a very involved problem which has only been

partially solved.12

Exercises

1. Find the multiplicative inverse of each of the following using the extended
Euclidean algorithm.

(a) 4 + 3
√

2.

(b) 1 − 51/3 + 2 · 52/3.

(c) 1 +
√

2 +
√

3.

2. Let α be an algebraic number with minimal polynomial p (in terms of α),
and let u be a polynomial in x that has coefficients that are polynomials
in Q[α]. Give a procedure Alg coeff simp(u, x, p, α) that simplifies each
coefficient of u using the side relation p(α) = 0. Return an expression in
collected form with respect to x. For example,

Alg coeff simp
i
α3 x + α2 + 3, x, p, x

J → 2αx + 5,

Alg coeff simp
ii
α2 + α
J
x− 2x− αx, x, p, x

J → 0.

3. Let α be an algebraic number with minimal polynomial p (in terms of α),
and let u be a polynomial in Q(α)[x]. Give a procedure

Alg monic(u, x, p, α)

that transforms a polynomial u to monic form.

4. Let α be an algebraic number with minimal polynomial p (in terms of α).
Consider the class G of expressions defined by the following rules.

G-1. u is an integer.

G-2. u is a fraction.

G-3. u is the symbol α.

G-4. u is sum with operands that are in G.

G-5. u is a product with operands that are in G.

G-6. u is a power with a base that is in G and an exponent that is an
integer.

Give a procedure

Alg gen simp(u, p, α)

12See Landau [60] and Jeffrey and Rich [49].

164 4. Single Variable Polynomials

that transforms u to either an expression in Q(α) or the global symbol
Undefined if a division by zero is encountered. For example, if p =
α5 − α + 1 and

u = 2 +
α

3 + α +
4

2α + α5

,

then

Alg gen simp(u, p, α) → − 1457

27821
α4 +

2191

27821
α3 − 5357

27821
α2

+
13555

27821
α +

50559

27821
,

Alg gen simp(1/p, p, α) → Undefined.

5. Let α be an algebraic number with minimal polynomial p (in terms of α),
and let u and v be polynomials in Q(α)[x] with deg(v, x) ≥ 1. Give a
procedure

Alg poly expansion(u, v, x, t, p, α)

for polynomial expansion in Q(α)[x].

6. Let α be an algebraic number with minimal polynomial p (in terms of α),
and let u and v be polynomials in Q(α)[x]. Give a procedure

Alg extend (u, v, x, p, α)

for the extended Euclidean algorithm in Q(α)[x].

7. This exercise describes another example of a finite field. Let p be a prime
number, and let f(x) be an irrreducible polynomial with positive degree
in Zp[x]. The field Zp(α) contains all polynomials u in Zp[α] which satisfy
deg(u) < deg(f), where the addition and multiplication operations are
defined as in Definition 4.46.

(a) Let f(x) = x2 + x + 1 in Z2[x]. List the polynomials in Z2(α), and
give the addition and multiplication tables.

(b) Suppose that deg(f) = n. Show that Zp(α) contains pn polynomials.
This field is called the Galois field of order pn.

8. (a) Let α be an algebraic number with minimal polynomial p (in terms of
α). This exercise is similar to Exercise 18 on page 144. Give a rational
simplification procedure Alg rational simplify sv(u, x, p, α) where the
coefficient field is now Q(α) instead of Q.

(b) Let α =
√

2, and consider

u =
x2 + (6 + 8α) x + 38 + 22α

x2 + (8 + 10α) x + 54 + 32α
.

i. Find the simplified form of this expression using the procedure
described in Part (a).

4.3. Computations in Elementary Algebraic Number Fields 165

ii. Try to simplify u using the following simple approach. Since
both the numerator and denominator of u are quadratic in x,
we can find factorizations for them using the quadratic formula
for the roots. What problems do you encounter when trying to
simplify the expression with this approach?

9. Determine whether the following sets of algebraic numbers are algebraically
dependent or independent. If the numbers are dependent, find the polyno-
mial h which gives the dependence relation between the numbers.

(a) S =
�√

2, i
a

.

(b) S =
�√

2,
√

3,
�

5 + 2
√

2
√

3
1
.

(c) S =
�√

2,
√

3,
√

5
a

.

(d) S =
�√

6,
√

10,
√

15
a

.

(e) S =
�√

3 +
√

2,
√

3 −√
2
a

.

(f) S =
�

21/3,−1/2 +
√

3/2 ı
1

.

(g) S =
�

21/3, 21/3(−1/2 +
√

3/2 ı)
1

.

10. Let α1, α2, . . . , αs be a set of independent algebraic numbers, and let pi be
the minimal polynomial of αi. Show that ps is irrreducible as a polynomial
in Q(α1, α2, . . . , αs−1)[xs].

11. Consider two independent algebraic numbers α1 and α2 with minimal
polynomials p1 and p2.

(a) Let a and b �= 0 be in Q(α1, α2). Give procedures for the following
operations.

i. Alg mult inverse 2 (a, p1, α1, p2, α2) for the multiplicative in-
verse of a.

ii. Alg divide 2 (a, b, p1, α1, p2, α2) for the division of a by b.

(b) Let u and v be in Q(α1, α2)[x]. Give procedures for the following
operations.

i. For v �= 0, Alg polynomial division 2 (u, v, x, p1, α1, p2, α2) for
polynomial division.

ii. Alg polynomial gcd 2 (u, v, x, p1, α1, p2, α2) for the polynomial
greatest common divisor.

iii. Alg extend 2 (u, v, x, p1, α1, p2, α2) for the extended Euclidean
algorithm.

12. Let {α1, α2, . . . , αs} be a set of independent algebraic numbers with minimal
polynomials p1, p2, . . . , ps. Define a list of two element lists

L = [[α1, p1], [α2, p2], . . . , [αs, ps]].

166 4. Single Variable Polynomials

(a) Let a and b �= 0 be in Q(α1, α2, . . . , αs). Give procedures for the
following operations.

i. Multiple alg mult inverse(b, L) for the multiplicative inverse of
a.

ii. Multiple alg divide(a, b, L) for division of a by b.

(b) Let u and v be in Q(α1, α2, . . . , αs)[x]. Give procedures for the fol-
lowing operations.

i. For v �= 0, Multiple alg polynomial division(u, v, x, L) for poly-
nomial division.

ii. Multiple alg gcd(u, v, x, L) for the polynomial greatest common
divisor.

iii. Multiple alg extend(u, v, x, L) for the extended Euclidean algo-
rithm.

4.4 Partial Fraction Expansion in F(x)

Partial fraction expansion provides a way to decompose an involved rational
expression into a sum of simpler rational expressions. The technique is
important for indefinite integration, the solution of differential equations,
and many areas of engineering. In this section we describe an approach that
is based on the extended Euclidean algorithm and polynomial expansion.

Let F be a field. In this section, a rational expression u/v is the ratio
of polynomials u and v �= 0, each of which is in F[x]. The notation F(x)
represents the set of all rational expressions.

Definition 4.64. A rational expression w = u/v in F(x) is proper if

deg(u, x) < deg(v, x).

If w is not proper, it is called improper.

Notice that, based on the definitions of the Numerator andDenominator
operators,13 this definition includes the expression 0 because

Numerator(0)→ 0, Denominator(0)→ 1,

and
deg(0) = −∞ < deg(1) = 0.

13Formal definitions of the MPL Numerator and Denominator operators are given on
the CD that accompanies this book. The corresponding operators in Maple, Mathemat-
ica, and MuPAD perform in this way (see page 14).

4.4. Partial Fraction Expansion in F(x) 167

Theorem 4.65. A rational expression w = u/v in F(x) can be represented
uniquely as

u

v
= q +

r

v

where q and r are in F[x] and r/v is proper.

Proof: The theorem follows from Theorem 4.1 (page 112) on polynomial
division (Exercise 1). �

The next theorem contains the fundamental relation for partial fraction
expansion.

Theorem 4.66. Let u, v1 �= 0, and v2 �= 0 be polynomials in F[x] such that
gcd(v1, v2) = 1, and suppose that

u

v1 v2

is a proper rational expression. Then, there are unique polynomials u1 and
u2 in F[x] such that

u

v1 v2
=

u1

v1
+

u2

v2

where u1/v1 and u2/v2 are proper rational expressions.

Proof: The proof, which is constructive, is based on the extended Eu-
clidean algorithm. Since gcd(v1, v2) = 1, using the extended Euclidean
algorithm, there are polynomials A(x) and B(x) such that Av1+B v2 = 1.
Therefore,

u

v1 v2
=

(Av1 +B v2) · u
v1 v2

=
Au

v2
+

B u

v1
. (4.70)

The proof is not complete, however, because the two rational expressions
in the last sum may not be proper (see Example 4.67). By performing the
divisions in the sum on the right, we obtain

B u = q1 v1 + u1, A u = q2 v2 + u2,

with deg(u1) < deg(v1) and deg(u2) < deg(v2), and so Equation (4.70)
becomes

u

v1 v2
= q2 +

u2

v2
+ q1 +

u1

v1
(4.71)

= q1 + q2 +
v1 u2 + v2 u1

v1 v2
. (4.72)

168 4. Single Variable Polynomials

Since both of the rational expressions on the right in Equation (4.71) are
proper, their sum in Equation (4.72) is also proper (Exercise 2). By Theo-
rem 4.65, the proper rational expression u/(v1 v2) can only be represented
in one way: as the sum of a polynomial and a proper rational expression.
Since the polynomial part of this expression is 0, q1+ q2 in Equation (4.72)
is also zero. Therefore,

u

v1 v2
=

u1

v1
+

u2

v2
.

To show the uniqueness property, suppose that there were two repre-
sentations

u

v1 v2
=

u1

v1
+

u2

v2
=

w1

v1
+

w2

v2
(4.73)

=
u1 v2 + u2 v1

v1 v2
=

w1 v2 + w2 v1

v1 v2
(4.74)

where all the rational expressions in Equation (4.73) are proper. Since both
expressions in Equation (4.74) have the same denominator, their numera-
tors are equal, and so

(u1 − w1) v2 = (w2 − u2) v1.

Therefore, since gcd(v1, v2) = 1, Theorem 4.29(1) (page 133) implies that

v2| (w2 − u2) . (4.75)

However, since all rational expressions in Equation (4.73) are proper,

deg(w2 − u2) < deg(v2), (4.76)

and therefore, the conditions (4.75) and (4.76) imply that w2 − u2 = 0. In
a similar way, u1 − w1 = 0, and so the representation is unique. �

Example 4.67. Let

u = x2 + 2, v1 = x+ 2, v2 = x2 − 1.

Therefore,
u

v1 v2
=

x2 + 2
x3 + 2 x2 − x− 2

is a proper rational expression with gcd(v1, v2) = 1. By the extended
Euclidean algorithm, we obtain polynomials A and B such that

Av1 +B v2 = (−1/3x+ 2/3) v1 + (1/3) v2 = 1.

4.4. Partial Fraction Expansion in F(x) 169

Therefore,

u

v1 v2
=

Au

v2
+

B u

v1

=
(−1/3)x3 + (2/3)x2 − (2/3)x+ 4/3

v2

+
(1/3)x2 + 2/3

v1
(4.77)

where the two rational expressions in Equation (4.77) are improper. Per-
forming the divisions in Equation (4.77), we obtain

u

v1 v2
= (−1/3)x+ 2/3 +

(−x+ 2)
v2

+ (1/3)x− 2/3 +
2
v1

=
2
v1

+
(−x+ 2)

v2
. �

A procedure that performs the manipulations in the proof of Theorem
4.66 is shown in Figure 4.8.

The next theorem describes the partial fraction expansion u/v in terms
of the irreducible factorization in F[x] of the denominator v.

Theorem 4.68. Let u/v be a proper rational expression, and let

v = c · pn1
1 · pn2

2 · · · pns
s

be the irreducible factorization of v in F[x]. Then, there are unique poly-
nomials u1, u2, . . . , us in F[x], with

deg(ui) < ni · deg(pi),
such that

u

v
= (1/c)

s∑
i=1

ui
pni

i

. (4.78)

Proof: Since the polynomials p1, . . . , ps are relatively prime, the two poly-
nomials

pn1
1 and pn2

2 · pn3
3 · · · pns

s (4.79)

are relatively prime as well. Therefore, by Theorem 4.66, there are poly-
nomials u1 and w such that

u

v
=

1
c

(
u1

pn1
1

+
w

pn2
2 pn3

3 · · · pns
s

)
(4.80)

170 4. Single Variable Polynomials

Procedure Partial fraction 1 (u, v1, v2, x);
Input

u, v1, v2 : polynomials in F[x] where all field operations
in F are obtained with automatic simplification,
gcd(v1, v2) = 1, and u/(v1 v2) is proper;

x : a symbol;
Output

the list [u1, u2];
Local Variables

s,A,B, u1, u2;
Begin

1 s := Extended Euclidean algorithm(v1, v2, x);
2 A := Operand(s, 2);
3 B := Operand(s, 3);
4 u1 := Remainder(Algebraic expand(B ∗ u), v1, x);
5 u2 := Remainder(Algebraic expand(A ∗ u), v2, x);
6 Return([u1, u2])

End

Figure 4.8. An MPL procedure for the two term partial fraction expansion
described in Theorem 4.66. (Implementation: Maple (txt), Mathematica (txt),
MuPAD (txt).)

where both rational expressions on the right are proper. The expansion is
completed by reapplying this process (recursively) to

w

pn2
2 pn3

3 · · · pns
s

.

The proof of the uniqueness is left to the reader (Exercise 5). �

A recursive procedure that returns the expansion in Theorem 4.68 is
given in Figure 4.9. The statement at line 1 is the termination condition
for the recursion. When the condition is true, v has only one factor and so
u/v is returned. The statements at lines 4–5 separate the first factor of v
from the remaining factors as is done in (4.79). In lines 6–7, a check is done
to see if this factor is not part of c in Equation (4.78). If f is not free of x,
then lines 9–11 obtain Equation (4.80) using procedure Partial fraction 1.
Notice that both f and r are expanded because both may be in a factored
form. At line 12, the first term is added to the partial fraction expansion
of the remaining terms of the sum which is determined recursively.

The most general form of the partial fraction expansion is described in
the next theorem.

4.4. Partial Fraction Expansion in F(x) 171

Procedure Partial fraction 2 (u, v, x)
Input

u : a polynomial in F[x] where all field operations
in F are obtained with automatic simplification;

v : the irreducible factorization of a polynomial in F[x] with
positive degree and u/v proper;

x : a symbol;
Output

the partial fraction expansion described in Theorem 4.68;
Local Variables

f, r, s, u1, w;
Begin

1 if Kind(v) �= ” ∗ ” then
2 Return(u/v)
3 else
4 f := Operand(v, 1);
5 r := v/f ;
6 if Free of(f, x) then
7 Return((1/f) ∗ Partial fraction 2 (u, r, x))
8 else
9 s := Partial fraction 1(u, Algebraic expand(f),

Algebraic expand(r), x);
10 u1 := Operand(s, 1);
11 w := Operand(s, 2);
12 Return(u1/f + Partial fraction 2 (w, r, x))

End

Figure 4.9. An MPL procedure for the partial fraction expansion described
in Theorem 4.68. (Implementation: Maple (txt), Mathematica (txt), MuPAD
(txt).)

Theorem 4.69. Let w = u/v be a rational expression in F(x), and let

v = c · pn1
1 · pn2

2 · · · pns
s

be the irreducible factorization of v in F[x]. Then, there are unique poly-
nomials q and

gi,j , i = 1, . . . , s, j = 1, . . . , ni,

with deg(gi,j) < deg(pi), such that

w =
u

v
= q + (1/c)

s∑
i=1

ni∑
j=1

gi,j

pji
. (4.81)

172 4. Single Variable Polynomials

Proof: By Theorems 4.65 and 4.68, a rational expression can be repre-
sented as

u

v
= q +

r

v
= q + (1/c)

s∑
i=1

ui
pni

i

(4.82)

where ui/pni

i is a proper rational expression. By Theorem 4.13 on polyno-
mial expansion, each polynomial ui, can be represented by the polynomial
expansion

ui =
ni−1∑
j=0

gi,jp
j
i , (4.83)

with deg(gi,j) < deg(pi). (Notice that since ui/p
ni

i is proper, the upper
limit of the sum is ni − 1.) Therefore,

ui
pni

i

=
ni∑
j=1

gi,j

pji
,

and substituting this expression into Equation (4.82) we obtain Equation
(4.81).

The proof of the uniqueness of the representation is left to the reader
(Exercise 6). �

The procedure that determines the representation in Theorem 4.69 is
left to the reader (Exercise 8).

Example 4.70. Consider the rational expression

f =
x3 + 7 x2 + 26 x− 105
5 x3− 25 x2−40 x+ 240

inQ(x). Since f is not proper, dividing the denominator into the numerator
we obtain

f = 1/5 +
12 x2 + 34 x− 153
5 (x+ 3) (x− 4)2

where we have represented the denominator of the rational part in factored
form. By Theorem 4.68, we can represent this expression as

f = 1/5 + (1/5)
(
(−3)
x+ 3

+
15 x− 35
(x− 4)2

)
. (4.84)

We modify the last term in the sum by finding the polynomial expansion
of 15 x− 35 in terms of x− 4:

15 x− 35 = 15 (x− 4) + 25. (4.85)

4.4. Partial Fraction Expansion in F(x) 173

Substituting Equation (4.85) into Equation (4.84), we obtain the complete
expansion

f = 1/5 + (1/5)
(
(−3)
x+ 3

+
15

x− 4
+

25
(x − 4)2

)
.

�

Exercises

1. Prove Theorem 4.65.

2. Show that the sum of two proper rational expressions is a proper rational
expression.

3. Show that the derivative of a proper rational expression is a proper rational
expression.

4. Find a partial fraction expansion (in Q(x)) for each of the following using
the algorithm described in this section.

(a)
1

x3 + 2x2 + x
.

(b)
x3 + 2x2 − x− 3

x4 − 4x2 + 4
.

(c)
x3

x2 + 3x + 2
.

5. Prove that the representation in Theorem 4.68 is unique.

6. Prove that the representation in Theorem 4.69 is unique.

7. Consider the proper rational expression u/v, and suppose that u and v
have a common factor of positive degree. How is this reflected in the
partial fraction expansion? Justify your answer.

8. In this exercise we describe procedures that obtain the partial fraction
expansion of a rational expression f in Q(x).

(a) Let u/v be a proper rational expression where u is in expanded form
and v is the irreducible factorization of a polynomial in Q(x). Give
a procedure Partial fraction 3 (u, v, x) that finds the partial fraction
expansion described in Theorem 4.69. (The quotient q is zero for this
case.)

(b) Let f be a rational expression in Q(x) (which may be proper or
improper) where the numerator and the denominator of f are in
algebraically-expanded form. Give a procedure Partial fraction(f, x)
that obtains the full partial fraction expansion described in Theorem
4.69. Use the factor operator in a CAS to obtain the factorization of
the denominator of f .

174 4. Single Variable Polynomials

9. Find the partial fraction expansion in Q
i√

2
J

(x) for

x4 +
i
2
√

2 + 1
J
x2 +
i
5 + 9

√
2
J
x + 9

√
2 − 12

x3 + 3x2 − 2x− 6
.

10. In this exercise we describe procedures that can evaluate the anti-derivative
of the partial fraction expansion in Equation (4.81) for rational expressions
in Q(x). The approach can obtain the anti-derivative when either gi,j/p

j
i

in Equation (4.81) satisfies

0 < deg(pi, x) ≤ 2,

or gi,j/p
j
i can be transformed using a substitution based on polynomial

expansion to a similar expression that satisfies this degree condition. The
algorithm proceeds in a number of steps depending on the forms of gi,j

and pi.

(a) Suppose that gi,j is a rational number and pi is linear in x. This case
is handled by

�
gi,j

(ax + b)j
dx =

− gi,j

(j − 1) a (a x + b)j−1
, j > 1,

gi,j ln(ax + b)

a
, j = 1.

(b) Suppose that gi,j = 1, and pi = a x2 + b x + c with a �= 0 and
d = b2 − 4 a c �= 0. (The case b2 − 4 a c = 0 does not occur here
because this implies a x2 + b x+ c = a (x+ b/(2a))2, which is handled
by the partial fraction expansion using case (a) with pi = x+ b/(2 a).
For this case, the integral is given by the reduction formula�

1

(ax2 + b x + c)n
dx = (4.86)

2

arctan

W
2 a x+b√
4 a c−b2

}
√

4 a c− b2
, if b2 − 4 a c < 0,

−2

arctanh

W
2 a x+b√
b2−4 a c

}
√
b2 − 4 a c

, if b2 − 4 a c > 0,

− 2

2a x + b
, if b2 − 4 a c = 0,

n = 1,

−(b + 2 ax)

(n− 1) d (ax2 + b x + c)n−1

+
−(4n− 6) a

(n− 1) d

�
1

(ax2 + b x + c)n−1
dx

, n > 1.

4.4. Partial Fraction Expansion in F(x) 175

(A similar formula is derived in Exercise 6 on page 143.) Give a
procedure

Rational red 1 (a, b, c, n, x)

which evaluates the integral using Equation (4.86).

(c) Suppose that gi,j = r x + s and pi = ax2 + b x + c with a �= 0. Then,�
r x + s

(a x2 + b x + c)n
dx = (4.87)

(r/(2 a)) ln(ax2 + b x + c)

+(s− r b/(2 a))

�
dx

ax2 + b x + c
, n = 1,

−r

2 (n− 1) a (a x2 + b x + c)n−1

+
−b r + 2 a s

(2 a)

�
1

(a x2 + b x + c)n
dx, n > 1

where the integrals are evaluated using Rational red 1 . Give a pro-
cedure

Rational red 2 (r, s, a, b, c, n, x)

that evaluates the integral using Equation (4.87).

(d) Suppose that deg(pi) > 2. For this case we only evaluate the anti-
derivative when gi,j(x)/pj

i (x) can be transformed using a substitution
v = f(x) to the form 1/q(v)j with

1 ≤ deg(q(v), v) ≤ 2. (4.88)

For example, the expression 2x/(x4 + 1) is transformed by the sub-
stitution v = x2 to 1/(v2 + 1), and�

2 x

x4 + 1
dx =

�
dv

v2 + 1
= arctan(v) = arctan(x2).

Notice that the polynomial v satisfies v′ = gi,j . In general, to find if
a substitution v = f(x) is possible, let f(x) =

	
gi,j dx and

q(v) = Polynomial expansion(pi, f(x), x, v).

If q(v) is a polynomial in v with rational number coefficients, then
the substitution is v = f(x). (If q(v) has coefficients that are not free
of x, then the substitution does not exist.) When

1 ≤ deg(q(v), v) ≤ 2, (4.89)	
dv/q(v)j is evaluated by either Part (a) or Equation (4.87), and�

gi,j

pj
i

dx = Substitute

W
v = f(x),

�
dv

qj

}
.

176 4. Single Variable Polynomials

If deg(q(v), v) > 2, the anti-derivative is not evaluated by the tech-
niques described here. Give a procedure

Rational red 3 (g, p, j, x)

that evaluates the anti-derivative of g/pj by

i. integrating g,

ii. obtaining the polynomial expansion with Polynomial expansion,

iii. checking if the substitution is possible, and

iv. evaluating the anti-derivative when the degree condition (4.89)
is satisfied.

If the anti-derivative cannot be evaluated with this approach, return
the global symbol Fail.

(e) Give a procedure
Rational red 4 (g, p, j, x)

that evaluates the anti-derivative of g/pj by evaluating the degrees
of g and p and applying one of the cases (a), (b), (c), or (d). If the
anti-derivative cannot be evaluated using these techniques, return the
global symbol Fail.

(f) Let f be an algebraic expression. Give a procedure

Rational integrate(f, x)

that checks if f is a rational expression in Q(x) and when this is so
evaluates

	
f dx using the approach described in this exercise. If f

does not have the proper form or if
	
f dx cannot be evaluated using

these techniques, return the global symbol Fail.

11. Give a procedure
Numerical part frac(r)

that expresses a rational number 0 ≤ r < 1 in terms of rational numbers
with prime denominators. For example, r = 1/6 = 1/2−1/3. To bypass the
automatic simplification of rational number expressions, use the function
representations described in Figure 2.6 on page 39.

Use the ifactor operator in Maple and MuPAD and the FactorInteger

operator in Mathematica to obtain the prime factorization of the denom-
inator of r. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).)

Further Reading

4.2 Greatest Common Divisors. See Akritas [2], Brown and Traub [16],
Davenport et al. [29], Geddes et al. [39], Knuth [55], Yap [105], Mignotte [66],

4.4. Partial Fraction Expansion in F(x) 177

von zur Gathen and Gerhard [96], and Zippel [108] for modern approaches in
greatest common divisor calculation.

4.3 Computations in Algebraic Number Fields. See Buchberger et al.
[17] and Smedley [91] for discussions of computations in algebraic number fields.
Landau [60] describes an algorithm for denesting radicals based on Galois theory.

4.4 Partial Fraction Expansion. von zur Gathen and Gerhard [96] discuss

partial fraction expansion.

5

Polynomial Decomposition

A polynomial u(x) is called a composite polynomial if there are polyno-
mials v(w) and w(x), both with degree greater than one, such that u is
represented by the functional composition u(x) = v(w(x)). The compos-
ite expression v(w(x)) is also called a decomposition of u in terms of the
components v(w) and w(x), and the process for finding v and w is called
decomposing a polynomial. For example,

u(x) = x4 − 5 x2 + 6 (5.1)

is a composite polynomial with decomposition given by

v(w) = w2 − 5w + 6, w(x) = x2.

Decomposition plays an important role in the solution of polynomial
equations. For example, to solve

u(w(x)) = (x2)
2 − 5 (x2) + 6 = 0,

first solve the equation for w(x) = x2 to obtain x2 = 2, 3, and then solve
these equations to obtain x = ±√2,±√3. Most computer algebra systems
apply decomposition as part of the solution of polynomial equations.

It is easy to recognize that u(x) in Equation (5.1) is a composite poly-
nomial. With more involved examples, however, a decomposition may not
be apparent or even possible. For example,

u(x) = x4 + 4 x3 + 3 x2 − 2 x+ 3 (5.2)

179

180 5. Polynomial Decomposition

can be decomposed as

(x2 + 2 x+ 1)2 − 3 (x2 + 2 x+ 1) + 5, (5.3)

while u(x) + x cannot be decomposed at all.
How can we determine if a polynomial can be decomposed? Surpris-

ingly, there are some simple algorithms that do the job. In Section 5.1 we
describe the basic theoretical concepts of polynomial decomposition, and in
Section 5.2 we describe an algorithm that either finds a decomposition for
u(x) (if one exists) or determines that no such decomposition is possible.

5.1 Theoretical Background

In this chapter all polynomials u(x) are in Q[x]. First of all, it is conve-
nient to simplify our notation. We denote a composite polynomial u(x) =
v(w(x)) using the operator notation ◦ as

u = v ◦ w,
and to emphasize the dependence on a variable x, we represent the com-
posite as

u(x) = (v ◦ w)(x).
For example, the composite polynomial

u(x) = (x2 + 2 x+ 1)2 − 3 (x2 + 2 x+ 1) + 5,

is expressed as

u(x) = (w2 − 3w + 5) ◦ (x2 + 2 x+ 1). (5.4)

It also simplifies matters if we use the same variable name x to describe all
polynomial formulas. With this convention, Equation (5.4) becomes

u(x) = (x2 − 3 x+ 5) ◦ (x2 + 2 x+ 1).

Using the ◦ notation we can also represent more complex composite ex-
pressions such as

f(x) = (u ◦ v ◦ w)(x) = u(v(w(x))).

Actually, the composition symbol ◦ is nothing more than a shorthand no-
tation for the Substitute operator

(v ◦ w)(x) = Substitute(v(x), x = w(x)).

5.1. Theoretical Background 181

The composition operator satisfies the following properties.

Theorem 5.1. Let u, v, and w be polynomials in Q[x].

1. u◦(v◦w) = (u◦v)◦w (associative property).

2. u◦x = x◦u = u.

3. For u �= 0 and v �= 0, deg((u◦v)) = deg(u) deg(v).

Proof: Statement (1) is a general statement about mathematical functions.
Statement (2), which is easy to verify, says that the polynomial I(x) = x
acts as an identity element with respect to composition. Statement (3),
which is also easy to verify, is left to the reader (Exercise 2). �

Example 5.2. In general, the composition operation is not commutative. If

v(x) = 3 x2 − x, w(x) = x2 + 2 x,

then
(v◦w)(x) = 3 x4 + 12 x3 + 11 x2 − 2 x,

while
(w◦v)(x) = 9 x4 − 6 x3 + 7 x2 − 2 x.

There are, however, some polynomials for which the operation is commu-
tative. (See Equation (5.7) and Exercise 8.) �

Definition 5.3. A polynomial in Q[x] is decomposable if there is a finite
sequence of polynomials g1(x), . . . , gn(x), each with degree greater than one,
such that

u = gn◦gn−1◦ . . . ◦g1, n > 1. (5.5)

Equation (5.5) is called a functional decomposition (or just a decom-
position) of u(x), and the polynomials gi(x) are the components of the
decomposition. If no such decomposition exists, then u(x) is indecompos-
able. If each of the gi is also indecomposable, then Equation (5.5) is called
a complete decomposition of u(x).

Most computer algebra systems have a command that obtains a poly-
nomial decomposition (compoly in Maple, Decompose in Mathematica,
polylib::decompose in MuPAD). (Implementation: Maple, Mathematica,
MuPAD.)

182 5. Polynomial Decomposition

The definition requires that the decomposition be non-trivial in the
sense that all components gi must have degree greater than one. This
means

4 x2 + 18 x+ 22 = (2 x+ 3)2 + 3 (2 x+ 3) + 4
is not a decomposition because 2 x+ 3 has degree one.

Example 5.4. The following polynomial has a decomposition with three
components:

u(x) = x8 + 4 x7 + 10 x6 + 16 x5 + 29 x4 + 36 x3 + 40 x2 + 24 x+ 39

=
(
(x2 + x)2 + 2 (x2 + x)

)2 + 12
(
(x2 + x)2 + 2 (x2 + x)

)
+ 39

= (x2 + 12 x+ 39)◦(x2 + 2 x)◦(x2 + x).

Since none of the components can be decomposed, the decomposition is
complete (Exercise 3). �

Example 5.5. A complete decomposition of a polynomial is not unique.
For example, here are two different decompositions of a polynomial:

u(x) = x6 + 2 x4 + x2 + 1
= (x3 + 2 x2 + x+ 1)◦(x2) (5.6)
= (x3 − x2 + 1)◦(x2 + 1). �

In fact, any polynomial that can be decomposed has infinitely many
decompositions. This fact is based on the observation that the two linear
polynomials f(x) = mx+b and g(x) = x/m−b/m are inverses with respect
to composition because they satisfy the property

(f◦g)(x) = (g◦f)(x) = x. (5.7)

Therefore, if u has a decomposition u = v◦w, another decomposition is
obtained (using Theorem 5.1) in the following way:

u = v◦w = v◦x◦w = v◦(f◦g)◦w = (v◦f)◦(g◦w). (5.8)

For Equation (5.6), with f = x − 1, g = x+ 1, this construction takes the
form:

u(x) = x6 + 2 x4 + x2 + 1
= (x3 + 2 x2 + x+ 1)◦x2

= (x3 + 2 x2 + x+ 1)◦x◦x2 (5.9)
= (x3 + 2 x2 + x+ 1)◦((x− 1)◦(x+ 1)

)◦x2

=
(
(x3 + 2 x2 + x+ 1)◦(x− 1)

)◦((x+ 1)◦x2
)

= (x3 − x2 + 1)◦(x2 + 1).

5.1. Theoretical Background 183

The next theorem plays an important role in our decomposition algo-
rithm.

Theorem 5.6. Let u be a polynomial that can be decomposed. Then, there
exists a decomposition u = v◦w such that w(0) = 0.

Proof: Suppose that u = v◦w. In case w(0) �= 0, define the new polyno-
mials

v2(x) = v(x+ w(0)), w2(x) = w(x) − w(0).

Then w2(0) = 0, and

(v2◦w2) (x) = v2(w2(x))
= v2(w(x) − w(0))
= v(w(x) − w(0) + w(0))
= v(w(x))
= u(x). �

Ritt’s Decomposition Theorem

Suppose that we have two distinct decompositions for a polynomial

u = vn◦vn−1◦ . . . v1 = wm◦wm−1◦ . . . w1. (5.10)

What is the relationship between the two decompositions? The theorem
that describes this connection is known as Ritt’s theorem.

Theorem 5.7. [Ritt’s Theorem] Let u(x) be a polynomial in Q[x].

1. Any two complete decompositions of u contain the same number of
components.

2. The degrees of the components in one complete decomposition are the
same as the those in another complete decomposition, except possibly
for the order in which they occur.

The proof of Ritt’s theorem utilizes some advanced mathematics and is
well beyond the scope of our discussion.1

Ritt’s theorem implies that the decomposition problem is not as clean as
the polynomial factorization problem. The factorization of a polynomial

1For a proof of Ritt’s theorem, see the references at the end of the chapter.

184 5. Polynomial Decomposition

into irrreducible factors is unique up to the order of the factors (Theo-
rem 4.38, page 138). On the other hand, two complete decompositions of
a polynomial can look quite different. For example,

x6 + 2 x4 + x2 + 1 = (x3 + 2 x2 + x+ 1)◦(x2) (5.11)
= (x2 + 1)◦(x3 + x).

Notice that each of these complete decompositions contains two polynomi-
als, one with degree two and one with degree three, but the degrees appear
in opposite order.

We have seen that one way two decompositions of a polynomial can
differ is through the application of linear polynomials and their inverses
as is done in Equation (5.8). In fact, in some cases, it is possible to go
from one decomposition to another by simply inserting linear polynomials
and their inverses at appropriate places in the first decomposition (see
Equation (5.9)). When this happens, the two decompositions are called
equivalent decompositions. However, the situation can be more complex.
For example, the two decompositions in Equation (5.11) are not equivalent
in this sense because it is impossible to change the order of the degrees
in a decomposition by simply inserting a linear polynomial and its inverse
(Exercise 4).

The relationship between different decompositions of a polynomial can
be described in more detail than we have done in this brief discussion.
However, it is not necessary to understand these relationships to describe
a decomposition algorithm, and because the algorithm is our primary goal,
we will not pursue this matter further. The reader who is interested in
pursuing these questions should consult the references at the end of the
chapter.

Sufficiency of Rational Decompositions

We conclude this section with an important theoretical point. Suppose
that u is a polynomial in Q[x] that is indecomposable if we require that
the components are also in Q[x]. Might it be possible to decompose u in
terms of polynomials with coefficients in a larger number field? After all,
a polynomial’s irrreducible factorization depends on the coefficient field.
Could the same thing happen for decompositions? Fortunately, for poly-
nomial decomposition the answer is no.

Theorem 5.8. Suppose that u is a polynomial in Q[x] that has a decom-
position u = v◦w. Then, u has an equivalent decomposition in terms of
polynomials with rational number coefficients.

5.1. Theoretical Background 185

Proof: Suppose that u = v◦w. By Theorem 5.6, there is an equivalent
decomposition with w(0) = 0, so we assume that w satisfies this property.
In a similar way, we can also find an equivalent decomposition so that w is
a monic polynomial (Exercise 11(a)); therefore, we assume that w satisfies
this property as well. We show that if u has rational coefficients and if
w satisfies these two properties, then both w and v must have rational
coefficients as well.

Let
u = um xm + um−1 x

m−1 + · · ·+ u1 x+ u0,

v = vn x
n + vn−1 x

n−1 + · · ·+ v1 x+ v0, n > 1,

w = xp + wp−1 x
p−1 + · · ·+ w1 x, p > 1, (5.12)

where the degrees of the polynomials satisfy the relation m = n p. (Notice
that w in Equation (5.12) is monic and w(0) = 0.) Then

u = v◦w
= vn (xp + wp−1 x

p−1 + · · ·+ w1 x)n

+vn−1 (xp + wp−1 x
p−1 + · · ·+ w1 x)n−1 (5.13)

+ · · ·+ v1 (xp + wp−1 x
p−1 + · · ·+ w1 x) + v0.

In this representation, vn is the coefficient of xnp, and since np = m =
deg(u), we have

vn = um (5.14)

which shows that vn is a rational number. In addition, the largest power
of x that is contributed by the second term of the representation (5.13) is
xp (n−1), and so all of the powers

xp n, xp n−1, . . . , xp (n−1)+1

come from the first term

vn (xp + wp−1x
p−1 + · · ·+ w1x)n. (5.15)

By examining the form of the coefficients in the expression (5.15), we will
show that all the coefficients of w are rational.

For example, let’s look at the coefficient of xp n−1. Expanding the
expression (5.15) with the binomial theorem, we have

vn
(
xp +

(
wp−1 x

p−1 + · · ·+ w1 x
))n

= vn

(
(xp)n + n (xp)n−1 (

wp−1 x
p−1 + wp−2 x

p−2 + · · ·+ w1 x
)

+
n (n− 1)

2
(xp)n−2 (

wp−1 x
p−1 + wp−2 x

p−2 + · · ·+ w1 x
)2

+ · · ·
)
.

(5.16)

186 5. Polynomial Decomposition

Observe that the largest power of x that is contributed by the second term
in Equation (5.16) is

xp (n−1)+(p−1) = xp n−1,

and the largest power contributed by the third term is

xp (n−2)+2 (p−1) = xp n−2.

From these observations, the coefficient of xp n−1 in Equation (5.16) is
vn nwp−1, and since n p− 1 = m− 1, we have from Equation (5.13)

um−1 = vn nwp−1.

Therefore, since um−1 and vn are both rational, wp−1 is rational as well.
Let’s consider next the coefficient of xpn−2 in Equation (5.16). This

term is obtained with

vn

(
nxp (n−1) wp−2 x

p−2 +
n (n− 1)

2
xp (n−2) w2

p−1 x
2 (p−1)

)

= vn

(
nwp−2 +

n (n− 1)
2

w2
p−1

)
xp n−2.

Therefore, since n p− 2 = m− 2, we have from Equation (5.13)

um−2 = vn

(
nwp−2 +

n (n− 1)
2

w2
p−1

)
,

and since um−2, vn, and wp−1 are rational, wp−2 is also rational. Contin-
uing in this fashion, we show that all the coefficients of w are rational.

We can also show that the coefficients of v are rational by comparing
coefficients in Equation (5.13). We have shown above that vn is rational (see
Equation (5.14)), and to show that vn−1 is rational, consider the coefficients
of xp (n−1). From Equation (5.13), we have

up (n−1) = vn r + vn−1,

where r is obtained by combining coefficients of xp (n−1) from the term

(xp + wp−1 x
p−1 + · · ·+ w1 x)n.

Since, all the coefficients of w are rational, r is rational, and since up(n−1)

and vn are rational, vn−1 is rational as well. In a similar way, by comparing
coefficients of xp (n−2), we can show that vn−2 is rational. Continuing in
this fashion, we can show that all of the coefficients of v are rational. �

5.1. Theoretical Background 187

Exercises
1. For the polynomial in Equation (5.2), solve the equation u(x) = 0 with the

help of polynomial decomposition.

2. Prove Theorem 5.1(3).

3. Explain why a polynomial of degree two or degree three cannot be decom-
posed.

4. Explain why the order of the degrees in a decomposition of a polynomial
u(x) cannot be changed by the insertion of a linear polynomial and its
inverse between two components.

5. Is every indecomposable polynomial irrreducible? Is every irrreducible
polynomial indecomposable?

6. Find six distinct decompositions of u(x) = x30 such that the powers of the
components appear in different orders.

7. Find two different decompositions for the polynomial u = x4 + 2x3 +
x2. Hint: there is a decomposition with one component x2. Do not use
computer algebra software for this problem.

8. The Chebyshev polynomial Tn(x) of degree n is defined (for −1 ≤ x ≤ 1)
by the trigonometric relations

Tn(x) = cos(n θ), x = cos(θ).

For example, T0(x) = cos(0) = 1 and T1(x) = cos(θ) = x.

(a) Show that T2(x) = 2x2 − 1.

(b) Derive the recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x).

Hint: Use the identity cos(a + b) + cos(a− b) = 2 cos(a) cos(b).

(c) Show that Tm n = Tm◦Tn.

(d) Show that Tn◦Tm = Tm◦Tn. In other words, the polynomials Tn and
Tm commute under composition.

9. Consider the two monic polynomials u = x2 + b x+ c and v = x2 + e x+ f .
Show that if u◦v = v◦u, then u = v. (This implies that two distinct
quadratic polynomials cannot commute with respect to composition.)

10. Consider the following four polynomials:

u1 = 2x2 + 3x + 4, v1 = x2 − 5,

u2 = 8x2 + 30 x + 31, v2 =
x2

2
− 4.

(a) Show that u1◦v1 = u2◦v2.

188 5. Polynomial Decomposition

(b) Find polynomials f = mx+b and g = x/m−b/m such that u1◦f = u2

and g◦v1 = v2.

11. Suppose that u has a complete decomposition

u = gp◦gp−1◦ · · · ◦g1.

(a) Show that it is possible to modify the decomposition so that all of
the components except gp are monic.

(b) Show that it is possible to modify the decomposition so that the only
component that has a constant term is gp.

12. In this exercise we describe a collection of polynomials that illustrates the
second statement in Ritt’s Theorem 5.7 (page 183). Let g(x) be a non-zero
polynomial, and consider the polynomials

u(x) = xn, v(x) = xr g(xn), w(x) = xr g(x)n.

(a) Show that deg(v, x) = deg(w, x) = r + deg(g, x)n.

(b) Show that u◦v = w◦u.

(c) Show that, if n and r+ deg(g, x)n are prime numbers, then u, v, and
w are indecomposable.

This implies, if n and r+ deg(g, x)n are distinct as well as prime, that u◦v
and v◦w are two distinct complete decompositions of the same polynomial
with degrees that occur in opposite order. For example, for n = 3, r = 2,
and g(x) = x3 − 1, we have v = x11 − x2, w = x11 − 3 x8 + 3 x5 − x2, and
u◦v = w◦u = x33 − 3x24 + 3 x15 − x6.

13. The polynomial
u = x4−10x3 + 27 x2−10x + 3

can be decomposed as

u =

W
2x2 +

W
2
√

6

3
+ 2

√
2

}
x +

10

3
+

2
√

3

3

}
◦
W√

2

2
x2 − 5

√
2

2
x−

√
6

6

}
.

Find an equivalent decomposition that involves polynomials with rational
coefficients.

5.2 A Decomposition Algorithm

In this section we describe an algorithm that finds the complete decom-
position of a polynomial u(x) (if it exists) or determines that no such
decomposition is possible. We begin, however, by looking at the simpler
problem of finding a two-level decomposition u = v◦w. In some cases, it
will be possible to decompose v or w.

5.2. A Decomposition Algorithm 189

Let’s assume that u = v◦w, and let

u(x) = umx
m + um−1x

m−1 + · · ·+ u1x+ u0,

v(x) = vnx
n + vn−1x

n−1 + · · ·+ v1x+ v0.

The algorithm is based on the properties of a decomposition that are de-
scribed in Theorems 5.9 and 5.10.

Theorem 5.9. Let u be a polynomial in Q[x] that can be decomposed. Then,
there is a decomposition u = v◦w such that w satisfies the following prop-
erties.

1. 1 < deg(w, x) < deg(u, x).

2. deg(w, x) | deg(u, x).
3. w(0) = 0.

4. w(x)|(u(x)− u0).

Proof: Property (1), which follows from Theorem 5.1(3), is just a re-
statement of the property that both v and w must have degree greater
than 1. Property (2) also follows from Theorem 5.1(3). Property (3) is a
restatement of Theorem 5.6.

To show property (4), we have, using property (3),

u0 = u(0) = v(w(0)) = v(0) = v0.

Therefore,

u(x)− u0 = u(x)− v0

= vnw(x)n + vn−1w(x)n−1 + · · ·+ v1w(x),

and since w(x) divides each term in the sum, it also divides u(x)− u0. �

The property w(0) = 0 is a sufficient condition to guarantee that

w(x)|(u(x)− u0)

but it is not a necessary condition. There can be other divisors of u(x)−u0

that don’t satisfy this condition but lead to a decomposition (see Exam-
ple 5.11).

Although we don’t know which divisors of u(x) − u0 lead to a decom-
position, we do know that there is a decomposition v(x)◦w(x) for which

190 5. Polynomial Decomposition

w(x) is one of these divisors. The next theorem gives a way to compute
v(x) and provides a test that determines whether or not some trial divisor
w(x) of u(x)− u0 leads to a decomposition.

Theorem 5.10. Suppose that a polynomial u in Q[x] can be decomposed as
u = v◦w. Then v is given by the polynomial expansion of u in terms of w,
and this expansion has coefficients that are free of x.

Proof: Since u = v◦w,
u(x) = vn w(x)n + vn−1 w(x)n−1 + · · ·+ v1 w(x) + v0 (5.17)

where the coefficients vi are rational numbers. But the representation
(5.17) is just the (unique) polynomial expansion u in terms of w (see
Theorem 4.13 on page 118). In general, the coefficients in a polynomial
expansion can be polynomials in x, but, in this case, the vi are rational
numbers and therefore free of x. �

The two previous theorems suggest the following approach to find a
decomposition for u(x). First, find the set of distinct polynomial divisors
of u(x)−u0. These divisors are found by first finding all irrreducible (non-
constant) factors of u(x) − u0 and then forming all possible products of
these factors. In this context, multiplication of a divisor w by a rational
number c is not another distinct divisor, and so, it is sufficient to consider
only monic divisors. For example, the set of distinct polynomial divisors
of 3 (x− 1) (x− 2)2 is (in factored form)

S =
{
x− 1, x− 2, (x − 2)2, (x− 1) (x− 2), (x− 1) (x− 2)2

}
.

Each divisor that satisfies properties (1), (2), and (4) of Theorem 5.9 is a
potential candidate for w(x).

Next, for each such candidate w(x) in S, form the polynomial expan-
sion (5.17). If all the coefficients vi are free of x, then v and w give a
decomposition of u. On the other hand, if none of the divisors in S leads
to an expansion with this property, then u is indecomposable.

Example 5.11. Consider the polynomial u(x) = x6 + 6 x4 + 3 x3 + 9 x2 +
9 x+ 5. Since u(x)− 5 can be factored as

u(x)− 5 = x (x2 + 3) (x3 + 3x+ 3),

the divisor set is

S =
{
x, x2 + 3, x(x2 + 3), x3 + 3 x+ 3, x (x3 + 3 x+ 3),

(x2 + 3) (x3 + 3 x+ 3), x (x2 + 3) (x3 + 3 x+ 3)
}
. (5.18)

5.2. A Decomposition Algorithm 191

However, the only polynomial that satisfies all the properties of Theo-
rem 5.9 is w(x) = x3 +3 x. To see if this expression gives a decomposition,
we find the polynomial expansion2 of u in terms of w:

v(t) = Polynomial expansion(u, w, x, t)→ t2 + 3 t+ 5.

Since all of the coefficients of v(t) are free of x, we have the decomposition

u = v(x)◦w(x) = (x2 + 3 x+ 5)◦(x3 + 3 x).

There are two other divisors in (5.18) that do not satisfy Theorem 5.9
(3) but do satisfy Parts (1), (2), and (4):

x2 + 3, x3 + 3 x+ 3.

For these cases, the polynomial expansions are

w(x) = x3 + 3 x+ 3, v(t) = t2 − 3 t+ 5, (5.19)
w(x) = x2 + 3, v(t) = t3 − 3 t2 + 3 x t+ 5. (5.20)

Since v(t) in (5.19) is free of x, we have another decomposition

u = v(x)◦w(x) = (x2 − 3 x+ 5)◦(x3 + 3 x+ 3)

even though w(0) �= 0. On the other hand, since v(t) in (5.20) is not free
of x, we do not obtain an expansion with w(x) = x2 + 3. �

Example 5.12. Consider the polynomial u(x) = x4 + x3 + 3. Since

u(x)− 3 = x3 (x + 1),

the divisor set is

S =
{
x, x+ 1, x2, x2 + x, x3, x3 + x2, x4 + x3

}
.

The only divisors that satisfy all the properties of Theorem 5.9 are w1(x) =
x2+x and w2(x) = x2. The polynomial expansion of u in terms of w1(x) is

3− x t+ t2

and the expansion in terms of w2(x) is

3 + x t+ t2.

2The Polynomial expansion operator is given in Figure 4.2 on page 122.

192 5. Polynomial Decomposition

Procedure Poly decomp 2 (u, x);
Input

u : a polynomial in Q[x];
x : a symbol;

Output
Either a decomposition [v, w] or u if no decomposition exists;

Local Variables U, S, i, w, v;
Global t;
Begin

1 U := u− Coefficient gpe(u, x, 0);
2 S := Polynomial divisors(U, x);
3 i := 1;
4 while i ≤ Number of operands(S) do
5 w := Operand(S, i);
6 if Degree gpe(w, x) �= Degree gpe(u, x) and Degree gpe(w, x) > 1

and Irem(Degree gpe(u, x), Degree gpe(w, x)) = 0 then
7 v := Polynomial expansion(u,w, x, t);
8 if Free of(v, x) then
9 Return[(Substitute(v, t = x), w]);
10 i := i + 1;
11 Return(u)

End

Figure 5.1. An MPL procedure for a two-level polynomial decomposition. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

In both cases, the expansion has a coefficient that depends on x, and so,
u(x) cannot be decomposed in terms of these polynomials. Therefore, u(x)
cannot be decomposed. �

A procedure for the decomposition process is shown in Figure 5.1. If
u is decomposable, the procedure returns a list [v, w] that contains the
polynomials that make up a two-level decomposition, and if u is not de-
composable, then the procedure returns u. The global symbol t is a mathe-
matical symbol that is used in line 7 as an auxiliary variable in the operator
Polynomial expansion. We have used a global symbol to avoid using a local
variable that would not be assigned before it was used (see page 3).

At line 2, the operator Polynomial divisors is used to obtain the divi-
sors3 of u − u0. At line 7, the operator Polynomial expansion returns a
polynomial in terms of the fourth input parameter t with coefficients that

3The Polynomial divisors procedure is described in Exercise 12 on page 125. The
factorization of u − u0 is obtained by the factor operator of a CAS in this procedure.

5.2. A Decomposition Algorithm 193

may depend on x. We check for this possibility by applying the Free of
operator to the entire polynomial (line 8). If the while loop (lines 4–10)
does not find a decomposition, the polynomial u cannot be decomposed.
In this case, the algorithm simply returns u (line 11).

Notice that the algorithm does not check the condition w(0) = 0 and
may return a decomposition without this property.

The Complete Decomposition Algorithm

Next, we describe an algorithm that finds a complete decomposition for
u. The algorithm either finds a sequence of indecomposable polynomials
g1, g2, . . . , gp (with p > 1) such that

u = gp◦gp−1◦ · · · ◦g1

or determines that u is indecomposable. The general idea is to build up
the decomposition, one component at a time, taking care not to miss any
intermediate components. We show below that it is possible to arrange
things so that each of the partial compositions

gi◦gi−1◦ · · · ◦g1, 1 ≤ i < p,

is a divisor of u−u0 where the components gi are obtained with polynomial
expansions (Theorems 5.13 and 5.14). We insure that each gi is indecom-
posable by applying a minimal degree condition to the divisors of u − u0

(Theorem 5.15).
Let’s see how to find the component gi (for i < p) assuming that the

components g1, g2, . . . , gi−1 have already been found. (The last component
gp is computed in a different way.) To simplify the notation, let

u = gp◦gp−1◦ · · · ◦gi+1◦gi◦gi−1◦ · · · ◦g1

= R◦gi◦C,
where

C = gi−1◦ · · · ◦g1 (5.21)

is the decomposition so far and

R = gp◦gp−1◦ · · · ◦gi+1 (5.22)

is the decomposition that remains to be found after gi has been found. (For
i = 1 we initialize C to x.) Since i < p, we can assume that deg(R, x) > 0.

Theorem 5.13. Let u be a polynomial in Q[x] that can be decomposed as

u = R◦gi◦C.
Then, for i < p, it is possible to choose gi with the following properties:

194 5. Polynomial Decomposition

1. deg(C, x) < deg(gi◦C, x) < deg(u, x).

2. deg(gi◦C, x) | deg(u, x).

3. (gi◦C)(0) = 0.

4. (gi◦C)(x)| (u(x)− u0).

Proof: The proof of this theorem is similar to the proof for Theorem 5.9
(Exercise 5). �

The theorem implies that we can find gi◦C by examining the divisors
of u(x) − u0. Notice in this case that we do not get gi directly as some
divisor of u − u0, but instead obtain the composite expression gi◦C. This
is consistent with what was done in the two-level algorithm because when
computing g1, C is initialized to x and we get g1 directly.

The next theorem gives a way to compute gi from gi◦C and provides a
way to tell if some trial divisor of u− u0 contributes to the decomposition.

Theorem 5.14. Suppose that u in Q[x] can be decomposed as u = R◦gi◦C.

1. The polynomial R is found by computing the polynomial expansion of
u in terms of gi◦C, and this expansion has coefficients that are free
of x.

2. The polynomial gi is found by computing the polynomial expansion of
gi◦C in terms of C, and this expansion has coefficients that are free
of x.

Proof: To verify (1), let

R = rs x
s + rs−1 x

s−1 + · · ·+ r0.

Observe that

u = R◦gi◦C = rs (gi(C))s + rs−1 (gi(C))s−1 + · · ·+ r0,

which is just the unique polynomial expansion of u in terms of gi(C).
Since the coefficients rs, rs−1, . . . , r0 are rational numbers, they are free of
x. Although statement (1) is similar to Theorem 5.10 in the two-level case,
we shall see that R only becomes part of the decomposition when finding
the final component gp. For the other components gi, i < p, we need only
check that the coefficients of R are free of x.

5.2. A Decomposition Algorithm 195

To verify (2), let

gi(x) = ap x
p + ap−1 x

p−1 + · · ·+ a1 x+ a0.

Observe that

(gi◦C)(x) = ap (C(x))p + ap−1 (C(x))p−1 + · · ·+ a1 C(x) + a0, (5.23)

which is just the unique polynomial expansion of gi◦C in terms of C. In
order for gi to be a component, its coefficients must be rational numbers
and hence free of x. �

The next theorem provides a way to choose gi◦C so that gi is indecom-
posable.

Theorem 5.15. Let u = R◦gi◦C, and suppose that gi◦C is the divisor of
u(x) − u0 of minimal degree that satisfies the conditions in Theorem 5.13
and Theorem 5.14. Then, gi is indecomposable.

Proof: If gi were decomposable, then we can show that gi◦C does not
satisfy the minimal degree condition. To see why, suppose that gi is de-
composable as

gi = v◦w
with deg(v, x) > 1 and deg(w, x) > 1. (This implies that deg(w, x) <
deg(gi, x).) Then

u = R◦gi◦C = R◦v◦w◦C
= (R◦v)◦(w◦C).

By an argument similar to the one in the proof of Theorem 5.9, we can
assume that (w◦C)(0) = 0, and therefore w◦C is a divisor of u− u0. Since

deg(w◦C, x) = deg(w, x) deg(C, x)
< deg(gi, x) deg(C, x)
= deg(gi◦C, x),

gi◦C does not satisfy the minimal degree condition. Therefore gi must be
indecomposable. �

The above theorems suggest the following approach for finding a com-
plete decomposition of u(x). First, find all the divisors of u − u0. To find
g1, initialize C to x, and find a divisor w of u− u0 of smallest degree that

196 5. Polynomial Decomposition

satisfies the conditions in Theorems 5.13 and 5.14. Since C = x, we imme-
diately have g1 = w as was done in the two-level case.4 If no such divisor
w exists, u is indecomposable.

To compute gi (1 < i < p), let C = gi−1◦ · · · ◦g1 be the decomposition
so far, and let w be a divisor of u− u0 of minimal degree that satisfies the
conditions in Theorems 5.13 and 5.14. In this case, we find gi using the
polynomial expansion of w in terms of C as is done in Equation (5.23).
If no such divisor w exists, then C includes the first p − 1 components in
the decomposition and we need only compute the last component gp. This
component can be found by computing the polynomial expansion of u in
terms of C. It is not difficult to show that gp computed in this way is
indecomposable (Exercise 6).

Example 5.16. Consider the polynomial

u := x8 + 4 x7 + 6 x6 + 4x5 + 3x4 + 4x3 + 2 x2 + 1.

The polynomial u− 1 can be factored as

u− 1 = x2 (x4 + 2 x3 + x2 + 2) (x+ 1)2.

Although there are 17 divisors of u − 1, the degree requirements of Theo-
rem 5.13 eliminate all but five of them:

x2, x2 + x, x2 + 2x+ 1, x4 + 2x3 + x2, x4 + 2x3 + x2 + 2. (5.24)

To compute g1, let C = x, and first consider the three divisors of degree
two in (5.24). There are three possibilities for g1◦C:

g1◦C = x2, R = t4 + (4 x+ 6) t3 + (4 x+ 3) t2

+ 2 t+ 1, (5.25)
g1◦C = x2 + x, R = t4 + 2 t2 + 1, (5.26)
g1◦C = x2 + 2 x+ 1, R = t4 + (2−4 x) t3 + (−1−4 x) t2

+ (−2−4 x) t+ 1. (5.27)

Again, we have expressed the polynomial expansions for R in terms of
a variable t to clearly distinguish the coefficients that may depend on x.
(When C = x, we have g1◦C = g1, and so we have not computed the
polynomial expansion of g1◦C in terms of C.) Since R in (5.26) is the only
one with coefficients that are free of x, we choose

g1◦C = x2 + x,
4For the sake of consistency, the algorithm finds g1 using polynomial expansion even

though it can be found directly.

5.2. A Decomposition Algorithm 197

and since C = x,
g1 = x2 + x.

Now to choose g2, let C = g1 and observe there are two divisors with
degree four in (5.24), each of which is a candidate for g2◦C. Computing
the polynomial expansions in Theorem 5.14 for each of them, we obtain

g2◦C = x4 + 2x3 + x2, g2 = t2, (5.28)
R = t2 + 2t+ 1, (5.29)

or

g2◦C = x4 + 2x3 + x2 + 2, g2 = t2 + 2, (5.30)
R = t2 − 2t+ 1. (5.31)

In both cases, both g2 and R are free of x and so either divisor will con-
tribute to the decomposition. Using Equation (5.28) (with x substituted
for t), we have g2 = x2. Since there are no more divisors to consider, we
obtain g3 by substituting x for t in R in Equation (5.29). Therefore, a
complete decomposition is

u = (x2 + 2x+ 1)◦(x2)◦(x2 + x). �

A procedure that obtains the complete decomposition of a polyno-
mial in Q[x] is shown in Figure 5.2. The procedure returns either a list
[gp, gp−1, . . . , g1] that represents the decomposition or u if the polynomial
is indecomposable. The while loop (lines 5–14) examines the divisors of
U = u− u0 and tries to choose an appropriate one to build up the decom-
position. At line 6, the Find min deg operator (Exercise 4) chooses a trial
divisor w of minimal degree from the set S, and the statement at line 8
checks the degree requirements mentioned in Theorem 5.13. If w passes
these tests, the polynomial expansions referred to in Theorem 5.14 are
computed (lines 9–10), and the conditions mentioned in this theorem are
checked in line 11. (Recall that the operator Polynomial expansion returns
a polynomial in terms of the fourth input parameter t with coefficients
that may depend on x.) If both expansions are free of x, we have found
the next component which is adjoined to the list decomposition (line 12).
At line 13, C is assigned the value w in preparation for searching for the
next component.

At line 14, the polynomial expansion R is assigned to final component .
At this point, R has been used only to check the validity of w for computing
the next component (line 11). However, when the next to last component
(gp−1) is computed, the current value of R is the polynomial expansion of

198 5. Polynomial Decomposition

Procedure Complete poly decomp(u, x);
Input

u : a polynomial in Q[x] ;
x : a symbol;

Output
A decomposition [gp, gp−1, . . . , g1] or u if no decomposition exists;

Local Variables
U, S, decomposition , C,w, g,R,final component ;

Global t;
Begin

1 U := u− Coefficient gpe(u, x, 0);
2 S := Polynomial divisors(U, x);
3 decomposition := [];
4 C := x;
5 while S �= ∅ do
6 w := Find min deg(S, x);
7 S := S − {w};
8 if Degree gpe(C,x) < Degree gpe(w, x)

and Degree gpe(w, x) < Degree gpe(u, x)
and Irem(Degree gpe(u, x),Degree gpe(w, x)) = 0 then

9 g := Polynomial expansion(w,C, x, t);
10 R := Polynomial expansion(u,w, x, t);
11 if Free of(g, x) andFree of(R, x) then
12 decomposition := Adjoin(Substitute(g, t = x), decomposition);
13 C := w;
14 final component := R;
15 if decomposition = [] then
16 Return(u)
17 else
18 Return(Adjoin(Substitute(final component , t = x), decomposition))

End

Figure 5.2. An MPL procedure for complete polynomial decomposition. (Imple-
mentation: Maple (txt), Mathematica (txt), MuPAD (txt).)

u in terms of gp−1◦ · · · ◦g1 which is the last component gp in the decompo-
sition.

If we go through the entire loop without finding any components, the
polynomial is indecomposable and we return the input polynomial (line 16).
Otherwise, we add the final component to the decomposition list (line 18).

Notice that nowhere in the algorithm do we use the condition w(0) = 0
(property (3) in Theorem 5.13). In fact, no harm is done by choosing a

5.2. A Decomposition Algorithm 199

divisor that does not satisfy this condition as long as all the other condi-
tions in Theorems 5.13 and 5.14 are satisfied. The condition w(0) = 0 in
Theorem 5.13 simply guarantees that we can limit our search to the divi-
sors of u − u0. If a divisor in S without this property is used, we simply
get another decomposition.

Exercises
1. Find a decomposition for the polynomial u(x) = x4 +6x3 +14 x2 +15x+9.

2. Find a decomposition for the polynomial u(x) = x8 +8x7 +48x6 +176 x5 +
503 x4 + 988 x3 + 1456 x2 + 1320 x + 749.

3. Show that u(x) = x4 + x + 1 cannot be decomposed.

4. Let S be a set of polynomials in Q[x]. Give a procedure Find min deg(S, x)
that returns a polynomial of smallest degree in S. If S = ∅, return the
global symbol Undefined.

5. Prove Theorem 5.13.

6. Show that final component gp selected by the algorithm in Figure 5.2 is
indecomposable.

7. Let u(x) = (x2 + 1)◦(x2 + 1)◦(x2 + 1). What decomposition is produced
for this polynomial by the algorithm in Figure 5.2? Explain why the above
decomposition cannot be found by the algorithm.

8. Another approach that finds the complete decomposition of a polynomial
u(x) is to modify the two-level procedure (Figure 5.1) so that it attempts to
further decompose v and w by recursively calling itself with each of these
polynomials as input. What are the advantages and disadvantages of this
approach compared with the approach described in the text?

Further Reading

5.1 Theoretical Background. Barbeau [4] discusses many interesting ques-
tions related to composition of polynomials. Theorem 5.7 was first proved by J.
F. Ritt in [85]. This article also describes in detail the relationship between two
different decompositions of a polynomial. Other proofs of Theorem 5.7 are given
in Dorey and Whaples [33] and Engstrom [34].

5.2 A Decomposition Algorithm. The algorithms given in this section are

similar to those given in Barton and Zippel [5]. Another algorithm that does not

require polynomial factorization is given in Kozen and Landau [59].

6

Multivariate Polynomials

Most symbolic computation involves mathematical expressions that con-
tain more than one symbol or generalized variable. In order to manipulate
these expressions, we must extend the concepts and algorithms described
in Chapter 4 to polynomials with several variables. This generalization is
the subject of this chapter. It includes a description of coefficient domains
and a recursive view of multivariate polynomials (Section 6.1), versions of
polynomial division and expansion (Section 6.2), greatest common divi-
sor algorithms (Section 6.3), and the extended Euclidean algorithm (Sec-
tion 6.3).

6.1 Multivariate Polynomials and Integral Domains

A multivariate polynomial u in the set of distinct symbols {x1, x2, . . . , xp}
is a finite sum with (one or more) monomial terms of the form

c xn1
1 xn2

2 · · ·xnp
p

where the coefficient c is in a coefficient domainK and the exponents nj are
non-negative integers. (The axioms for K (which may not be a field) are
given in Definition 6.2 below.) The notation K[x1, x2, . . . , xp] represents
the set of polynomials in the symbols x1, x2, . . . , xp with coefficients in K.
For example, Z[x, y] represents all polynomials in x and y with coefficients
that are integers.

A particularly important instance when K is not a field has to do with
the recursive representation of multivariate polynomials. For example, let

201

202 6. Multivariate Polynomials

Q[x, y] be the polynomials in x and y with rational number coefficients. By
collecting coefficients of powers of x, a polynomial u(x, y) is represented as

u(x, y) = um(y)xm + um−1(y)xm−1 + · · ·+ u0(y),

where the coefficients ui(y) are in Q[y]. In this sense, Q[x, y] is equivalent
to K[x] where the coefficient domain K = Q[y]. In general, we can view
K[x1, x2, . . . , xp] recursively as

K[x1, x2, . . . , xp] = K1[x1], (6.1)

where
Ki = Ki+1[xi+1], 1 ≤ i ≤ p− 1, and Kp = K.

When multivariate polynomials are represented in this way, x1 is called the
main variable and the remaining variables are called auxiliary variables.

Example 6.1. Consider the polynomial domain Q[x, y, z]. Then,

p = 3, x1 = x, x2 = y, x3 = z,

and

K3 = Q,

K2 = K3[x3] = Q[z],
K1 = K2[x2] = (Q[z])[y].

Therefore,

Q[x, y, z] =K1[x] = (K2[y])[x] = ((K3[z])[y])[x] = ((Q[z])[y])[x]. �

Integral Domains
The above discussion suggests that a fruitful way to approach the study of
polynomials in several variables is to consider polynomials in one variable
K[x] where K may not satisfy all of the properties of a field. But what
axioms should define K?

Let’s take as a prototype the recursive view of polynomials in two vari-
ables with rational number coefficients (Q[y])[x]. The coefficient domain is
not a field since polynomials in K = Q[y] with positive degree do not have
inverses that are polynomials. K does, however, have all the properties of
another algebraic system known as an integral domain.

Definition 6.2. Let K = {a, b, c, . . .} be a set of expressions and let a + b
and a · b be two operations defined for expressions a and b in K. The set K
is an integral domain if it satisfies the field axioms F-1, F-2,. . . ,F-11,
together with the axiom:

I-1. If a · b = 0, then either a = 0 or b = 0.

6.1. Multivariate Polynomials and Integral Domains 203

Axiom I-1 replaces the field axiom F-12 that is concerned with mul-
tiplicative inverses. However, since a field also satisfies axiom I-1 (Theo-
rem 2.36, page 50), a field is also an integral domain.

The converse, of course, is not true. Both the integers Z and the poly-
nomial domain Q[x] satisfy all the properties of an integral domain (see
Example 2.33 on page 48 and Theorem 4.2 on page 112) although neither
one is a field. By permitting the coefficients to come from a more general
algebraic system, we extend the applicability of the polynomial concepts
and algorithms described in Chapter 4 but do so, unfortunately, at the
expense of a more cumbersome development.

Divisors in K

Although an integral domain may not contain inverses, the divisibility con-
cept can still be defined.

Definition 6.3. Let b and c be expressions in an integral domain K.

1. An expression b �= 0 is a divisor of (or divides) c if there is an
expression d in K such that b · d = c. We use the notation b | c to
indicate that b is a divisor of c and b/| c if it does not. The expression
d is called the cofactor of b in c and is represented by cof(b, c).

2. A common divisor of b and c is an expression d �= 0 in K such that
d | b and d | c.

Axiom I-1 states that an integral domain has no zero divisors. The
axiom is equivalent to the following cancellation law.

Theorem 6.4. Let a �= 0, b, and c be expressions in an integral domain K.
If a · b = a · c, then b = c.

The proof is left to the reader (Exercise 1). �

Units and Associates

Definition 6.5. Let b, c, and d be expressions in an integral domain K.

1. An expression b is called a unit if it has a multiplicative inverse.

2. Two expressions c �= 0 and d �= 0 are called associates if c = b · d,
where b is a unit.

204 6. Multivariate Polynomials

In Q[x], the unit expressions are the non-zero polynomials with zero
degree (the rational numbers), and whenever one polynomial u is a (non-
zero) rational multiple of another polynomial v, the two are associates. In
Z, the only units are 1 and -1. At the other extreme, in a field all non-zero
expressions are units, and any two non-zero expressions are associates.

Definition 6.6. Two expressions b and c in an integral domain K are
relatively prime if any common divisors of b and c is a unit.

For example, in Z the integers 3 and 5 are relatively prime because the
only common divisors are the units 1 and −1.

In the field Q, any two rational numbers are relatively prime because
all common divisors are units.

On the other hand, in the integral domain Z[x], the polynomials 2 x+2
and 2 x− 2 are not relatively prime because 2, which is not a unit, divides
both polynomials.

Definition 6.7. An expression b �= 0 in an integral domain K is reducible
if there are non-unit expressions c and d such that b = c ·d. The expression
b is irreducible if it is not reducible.

For example, in Z the irrreducible expressions are ±1 and ±p where
p is prime number. In the field Q, all b �= 0 are irrreducible because all
non-zero expressions are units.

Example 6.8. Consider the expression u = 2 x + 2 as a member of the
integral domain Q[x]. In this context, u is irrreducible. However, when u
is viewed as a member of the integral domain Z[x], u is reducible with the
factorization u = 2 (x+ 1). �

Unique Factorization Domains

Our prototype coefficient domain Q[y] has an additional property, namely,
any polynomial u in Q[y] with positive degree has a unique factorization in
terms of irrreducible polynomials (Theorem 4.38, page 138). We postulate
a similar property for our coefficient domains.

Definition 6.9. A unique factorization domain K is an integral domain
that satisfies the following axiom.

6.1. Multivariate Polynomials and Integral Domains 205

UFD-1. Each a �= 0 in K that is not a unit has a factorization
in terms of non-unit, irrreducible expressions in K

a = a1 · a2 · · ·ar.

The factorization is unique up to the order of the factors and
associates of the factors.

The set of integers Z is a unique factorization domain (Theorem 2.17,
page 27).

The polynomial domain F[x] (F a field) is also a unique factorization
domain. By Theorem 4.38, each u in F[x] with positive degree has a unique
factorization of the form

u = c p1 p2 · · · pr,

where c is in F and each pi a is a monic, irrreducible polynomial in F[x]
with deg(pi) > 0. The factorization in Definition 6.9 is obtained from this
factorization by absorbing the coefficient c in one of the expressions pi.

When K is a field, it is a unique factorization domain in a superficial
sense because every non-zero expression is a unit.

The next theorem describes the divisor properties of a unique factor-
ization domain.

Theorem 6.10. Let K be a unique factorization domain, and let a, b, and
c be in K.

1. If c|(a · b) and a and c are relatively prime, then c|b.
2. If c|(a · b) and c is irrreducible, then c|a or c|b.

Proof: To show (1), first if one of the expressions a, b, or c is a unit,
the property follows immediately (Exercise 2(d)). Next, suppose that the
expressions a, b, and c are not units and have the irrreducible factorizations

a = a1 · a2 · · · al, b = b1 · b2 · · · bm, c = c1 · c2 · · · cn,

where none of the factors is a unit. Since c|(a · b), there is an expression d
such that

c1 · c2 · · · cn · d = a1 · a2 · · · al · b1 · b2 · · · bm,
and since K is a unique factorization domain, each irrreducible factor ci
is an associate of a (distinct) factor on the right side of the equation. In

206 6. Multivariate Polynomials

addition, since c and a are relatively prime, the factor ci cannot be an
associate of any of the factors aj . Therefore, for each factor ci, there is a
(distinct) bk so that ci and bk are associates. Therefore, c|b.

The proof of (2) follows directly from (1). �

Polynomial Domains

Let’s return now to the polynomial domain K[x]. Recall that lc(u, x) rep-
resents the leading coefficient of a polynomial and deg(u, x) its degree.1 As
before, the operators lc(u, x) and deg(u, x) satisfy the following properties.

Theorem 6.11. Let u and v be polynomials in K[x].

1. lc(u v) = lc(u) · lc(v).
2. If u �= 0 and v �= 0, then deg(u v) = deg(u) + deg(v).

3. deg(u± v) ≤ max ({deg(u), deg(v)}).

Proof: The proof is similar to the one for Theorem 4.1 on page 112. �

The next theorem states that the integral domain property of the coef-
ficient domain is inherited by the polynomial domain K[x].

Theorem 6.12. If K is an integral domain, then K[x] is also an integral
domain.

Proof: The theorem follows from Theorem 6.11(1), which implies that the
product of two non-zero polynomials is always a non-zero polynomial. �

By utilizing the recursive nature of multivariate polynomials, we extend
the integral domain property to multivariate polynomials.

Theorem 6.13. If K is an integral domain, then K[x1, x2, . . . , xp] is also
an integral domain.

Proof: Repeatedly apply Theorem 6.12. �

In Theorem 6.70 (page 260), we show that the unique factorization
property is also inherited from K to K[x] and K[x1, . . . , xp].

1 When the variable x is evident from context, we use the simpler notations lc(u)
and deg(u).

6.2. Polynomial Division and Expansion 207

Exercises

1. Prove Theorem 6.4.

2. Let a, b, and c be in an integral domain K. Prove each of the following
statements.

(a) If a and b are units, then a · b is a unit.

(b) If a is a unit, then a|b.
(c) If a · b = c, where c is a unit, then a and b are units.

(d) Prove Theorem 6.10(1) when at least one of the expressions a, b, or
c is a unit.

3. Explain why the polynomials u = x + x2 and v = 2x + 2x2 are associates
as polynomials in Q[x] but not associates as polynomials in Z[x].

4. Explain why Z6, which is described on page 53, is not an integral domain.

5. Let a and b be non-zero expressions in an integral domain K such that a|b
and b|a. Show that a = c · b, where c is a unit in K.

6. Give a procedure Associates(u, v, x) that determines if polynomials u and
v in Q[x] are associates. If the polynomials are associates, return a rational
number c such that u = c · v. If the polynomials are not associates, return
the symbol false.

7. Show that the units in K and the units in K[x] are the same expressions.

6.2 Polynomial Division and Expansion

Recursive Polynomial Division in K[x]

In Section 4.1, the division operation for polynomials with coefficients in a
field is defined using recurrence relations which include the field computa-
tion

lc(ri−1, x)/lc(v, x) (6.2)

(see Equations (4.1) and (4.2), page 113). This operation causes a problem
when the coefficient domain K is not a field because lc(v, x)−1 may not
exist in K.

For u and v polynomials in K[x], polynomial division is often used to
determine if u|v. If this is the goal, one way to define the division process
is to continue the iteration as long as lc(v, x)|lc(ri, x), that is, as long
as cof(lc(v, x), lc(ri, x)) exists in K. This suggests the following division
scheme.

208 6. Multivariate Polynomials

Definition 6.14. Let u and v �= 0 be polynomials in K[x]. Recursive
polynomial division is defined by the sequence of quotients and remain-
ders:

q0 = 0, r0 = u,

qi = qi−1 + cof(lc(v, x), lc(ri−1, x)) xdeg(ri−1,x)−deg(v,x), (6.3)

ri = ri−1 − cof(lc(v, x), lc(ri−1, x)) xdeg(ri−1,x)−deg(v,x) v.

The iteration terminates when either

deg(ri, x) < deg(v, x) (6.4)

or
lc(v, x) /| lc(ri, x). (6.5)

If the process stops after i = σ iterations, then qσ and rσ are the recur-
sive quotient and recursive remainder of u divided by v. We also
represent the quotient and the remainder by the operators recquot(u, v, x)
and recrem(u, v, x).

This process is called recursive polynomial division because it depends on a
division process in the coefficient domain that determines if lc(v, x) divides
lc(ri, x). For multivariate polynomials in K[x1, x2, . . . , xp], this means that
division in terms of the main variable x1 depends recursively on division of
polynomials in K[x2, . . . , xp].

Recursive polynomial division satisfies the following properties.

Theorem 6.15. Let u and v �= 0 be polynomials in K[x].

1. The division process in Equation (6.3) terminates.

2. At termination,

u = qσ v + rσ , (6.6)

where either
deg(rσ, x) < deg(v, x) (6.7)

or
lc(v, x) /| lc(rσ, x). (6.8)

Proof: The proof of this theorem is similar to the proof for Theorem 4.5
on page 113 when the coefficient domain is a field. �

6.2. Polynomial Division and Expansion 209

When the coefficient domain is a field, the remainder satisfies the degree
condition (6.7) which is known as the Euclidean property of polynomial
division (page 114). When the coefficient domain is not a field and when
the condition (6.8) terminates the division process, the remainder may not
satisfy the Euclidean property.

Example 6.16. Consider u = x2 y2 + x and v = x y + 1 as members of
Q[x, y] with main variable x. Then dividing u by v, the first iteration gives

q1 = x y, r1 = x− x y.

Since
lc(v, x) = y /| 1− y = lc(r1, x),

the division terminates after one iteration with

u = q1 v + r1 = (x y)(x y + 1) + (x− x y).

Notice that deg(r1, x) = deg(v, x) = 1, and so the remainder does not
satisfy the Euclidean property. On the other hand, when y is the main
variable, the process terminates after two iterations with

u = q2 v + r2 = (x y − 1)(x y + 1) + (x+ 1).

Observe that 0 = deg(r2, y) < deg(v, y) = 1, and so in this case the
remainder does satisfy the Euclidean property. �

If the second condition (6.8) stops the iteration, the representation (6.6)
may not be unique. This point is illustrated in the next example.

Example 6.17. Consider u = x y + x + y and v = x y as polynomials in
Q[x, y] with main variable x. Since

lc(v, x) = y /| y + 1 = lc(u, x),

the process terminates with σ = 0, q0 = 0, and r0 = x y + x + y. In this
case, u has another representation of the form in Equation (6.6)

u = 1 · (x y) + (y + x),

where again the expression y + x in the remainder position satisfies the
second condition (6.8). �

In the next theorem, we show that recursive polynomial division can
determine if v|u.

210 6. Multivariate Polynomials

Theorem 6.18. Let u and v �= 0 be polynomials in K[x], and suppose that
v|u. Then, the recursive division process terminates with qσ = cof(v, u)
and rσ = 0.

Proof: Since u = cof(v, u) v = qσv + rσ , we have

rσ = (cof(v, u)− qσ) v. (6.9)

By Theorem 6.11(1), this relationship implies that lc(v)|lc(rσ), and so the
termination condition (6.8) is not satisfied. In addition, if cof(v, u)−qσ �= 0,
then from Equation (6.9), rσ �= 0. Therefore, a degree argument shows that

deg(v) ≤ deg(rσ), (6.10)

and so the termination condition (6.7) is not satisfied. However, one of the
termination conditions (6.7) or (6.8) must hold, and so qσ = cof(v, u) and
rσ = 0. �

A procedure2 for recursive polynomial division for multivariate polyno-
mials is given in Figure 6.1. The procedure is based on the recursive struc-
ture of multivariate polynomials where the first symbol in L = [x1, . . . , xp]
is the main variable (line 7). Notice that division in the coefficient domain
K[x2, . . . , xp] is obtained by a recursive call on the procedure (line 15) and
lines 1–5 provide a termination condition for the recursion. At lines 1–5,
when L is the empty list, the division occurs in the coefficient domain which
can be either Z or Q.

Monomial-Based Division in Q[x1, . . . , xp]

Another approach to polynomial division is called monomial-based divi-
sion. Like recursive division, monomial-based division can determine if
v|u. However, because the process is based on the monomial structure of
polynomials rather than the recursive structure, it may produce a different
quotient and remainder when v /|u.

To simplify the presentation, we describe the process for the polynomial
domain Q[x1, . . . , xp]. For the remainder of this section, we view polyno-
mials in the form

u = u1 + · · ·+ un, (6.11)

2See footnote 2 on page 115 for comments about the termination condition in line 13.

6.2. Polynomial Division and Expansion 211

Procedure Rec poly div(u, v, L,K);
Input

u, v : multivariate polynomials in L with rational number
coefficients and v �= 0;

L : list of symbols;
K : the symbol Z or Q;

Output the list [qσ, rσ];
Local Variables x, r, q,m, n, lcv , lcr , d, c;
Begin

1 if L = [] then
2 if K = Z then
3 if Kind(u/v) = integer thenReturn([u/v, 0])
4 elseReturn([0, u])
5 else Return([u/v, 0])
6 else
7 x := First(L);
8 r := u;
9 m := Degree gpe(r, x);
10 n := Degree gpe(v, x);
11 q := 0;
12 lcv := Leading Coefficient gpe(v, x);
13 while m ≥ n do
14 lcr := Leading Coefficient gpe(r, x);
15 d := Rec poly div(lcr , lcv ,Rest(L),K);
16 if Operand(d, 2) �= 0 then Return([Algebraic expand(q), r])
17 else
18 c := Operand(d, 1) ;
19 q := q + c ∗ xm−n;
20 r := Algebraic expand(r − c ∗ v ∗ xm−n);
21 m := Degree gpe(r, x);
22 Return([Algebraic expand(q), r])

End

Rec quotient(u, v, L,K)
function

:= Operand(Rec poly div(u, v, L,K), 1);

Rec remainder(u, v, L,K)
function

:= Operand(Rec poly div(u, v, L,K), 2);

Figure 6.1. An MPL procedure for recursive polynomial division for multivariate
polynomials. The first symbol in L is the main variable. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

212 6. Multivariate Polynomials

where each ui is a monomial of the form

ui = c xn1
1 · · ·xnp

p .

Recall, from Section 1.4, that xn1
1 · · ·xnp

p is called the variable part of ui,
and the rational number c is called the coefficient part. We assume that
the monomials in Equation (6.11) have distinct variable parts.3

Let’s begin with a simple example in which the divisor v is a monomial.

Example 6.19. Consider the polynomials with x the main variable:

u = 2 x2 y + 3 x2 + 4 x y + 5 x+ 6 y + 7, v = x y.

First, for recursive polynomial division of u by v, since

lc(v, x) = y /| 2 y + 3 = lc(u, x),

the process terminates immediately with σ = 0, qσ = 0, and rσ = u.
On the other hand, monomial-based division recognizes that the mono-

mial v = x y divides the first and third monomials in u and we obtain

u = Qv +R = (2 x+ 4) (x y) +
(
3x2 + 5x+ 6y + 7

)
.

Notice that v does not divide any of the monomials in the remainder R.�

This example suggests another way to define a division process, at least
when v is a monomial. In general, for u = u1+ · · ·+un and v a monomial,
this division process gives

u = G(u, v) v +R(u, v),

where

G(u, v) =
n∑

i = 1
v|ui

ui/v (6.12)

and

R(u, v) =
n∑

i = 1
v /|ui

ui. (6.13)

In Equation (6.12), the sum for the quotient includes all monomials from
u where v|ui, while in Equation (6.13) the sum for the remainder includes
all monomials where v /|ui.

3In Maple, Mathematica, and MuPAD, in the context of automatic simplification,
the monomials in a polynomial in Q[x1, . . . , xp] have distinct variable parts.

6.2. Polynomial Division and Expansion 213

Lexicographical Ordering of Monomials

To complete the definition of the new division process, we must show how
it is defined when v is a sum of monomials. The approach we use is to
repeatedly apply a process similar to that in Equations (6.12) and (6.13),
but with v replaced by the leading monomial of v which is defined by the
order relation in the next definition.

Definition 6.20. Let u and v be monomials in Q[x1, . . . , xp].

1. u is less than v in lexicographical order with respect to the list
L = [x1, . . . , xp] if one of the following conditions is true.

(a) deg(u, x1) < deg(v, x1);

(b) For some 1 < j ≤ p, deg(u, xi) = deg(v, xi) for i = 1, 2, . . . , j−1
and deg(u, xj) < deg(v, xj).

The condition that u is less than v in lexicographical order is denoted
by u ≺ v.

2. The monomials u and v are called equivalent monomials if they
have the same variable part. The condition that u is equivalent to v
is represented by u ≡ v.

3. The condition that u ≺ v or u ≡ v is denoted by u � v.

Example 6.21. For L = [x, y, z],

x2 y3 z4 ≺ x2 y4 z3, x y2 z ≺ x2 y, y z5 ≺ x, 2 x y ≡ 3 x y. (6.14)

�

Lexicographical order depends on the order of the symbols in the list
L. In the previous example, when the order of the symbols is changed to
L = [z, y, x], the lexicographical order of the first three examples in (6.14)
is reversed.

The designation of this order relation as “lexicographical” suggests that
it is similar to an “alphabetical” order. Indeed, the most significant factor
in the order relation is the main variable x1. It is only when u and v have
the same degree in this variable that the next variable x2 is significant. If
the degrees of u and v with respect to x2 are also the same, then x3 is
significant and so forth.

A procedure that determines if two monomials are in lexicographical
order is described in Exercise 5.

214 6. Multivariate Polynomials

The properties of lexicographical order are given in the next theorem.

Theorem 6.22. Let u, v, and w �= 0 be monomials in Q[x1, . . . , xp].

1. If u≺v, then uw≺v w.

2. If v is not a rational number , then w≺v w.

The proof is left to the reader (Exercise 3).
The leading monomial of a polynomial is defined in terms of the lexi-

cographical order of its monomials.

Definition 6.23. Let u be in Q[x1, . . . , xp], and let L = [x1, . . . , xp]. If u
is a sum of monomials, then the leading monomial is the monomial of
u that is greatest in the lexicographical order. If u is a monomial, then the
leading monomial is just u itself. The operator notation

lm(u, L)

denotes the leading monomial of u. The inclusion of the list L in this
notation emphasizes that the leading monomial is defined with respect to
the order of the symbols in L. If this order is implicit from the discussion,
we use the simpler notation lm(u).

Example 6.24. If u = 3 x2 y + 4 x y2 + y3 + x+ 1, then

lm(u, [x, y]) = 3 x2 y, lm(u, [y, x]) = y3. �

The leading monomial operator satisfies the following properties.

Theorem 6.25. Let u, v, and w be polynomials in Q[x1, . . . , xp], and let
L = [x1, . . . , xp].

1. lm(u v, L) = lm(u, L) lm(v, L).

2. If u|v, then lm(u, L)|lm(v, L).
3. If lm(u, L)≺lm(v, L) and w �= 0, then lm(uw,L)≺lm(v w,L).

Proof: To show (1), if either u = 0 or v = 0, then both sides of the relation
in (1) are 0. If u �= 0 and v �= 0, let

u = u1 + u2 + · · ·+ um,

v = v1 + v2 + · · ·+ vn,

6.2. Polynomial Division and Expansion 215

Procedure Leading monomial(u,L);
Input

u : multivariate polynomial in L with rational number coefficients;
L : a list of symbols;

Output
lm(u,L);

Local Variables
x,m, c;

Begin
1 if L = [] then
2 Return(u)
3 else
4 x := First(L);
5 m := Degree gpe(u, x);
6 c := Coefficient gpe(u, x,m);
7 Return(xm ∗ Leading monomial(c,Rest(L)))

End

Figure 6.2. An MPL procedure that determines the leading monomial of a poly-
nomial with respect to the symbol order L = [x1, . . . , xp]. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

where ui and vj are monomials with distinct variable parts, and lm(u) = u1,
lm(v) = v1. We have

u v =
m∑
i=1

 n∑
j=1

uivj

 ,

and by Theorem 6.22(1), uivj≺u1v1 whenever either i �= 1 or j �= 1. There-
fore, lm(u v, L) = u1 v1 = lm(u, L) lm(v, L).

The proofs of Parts (2) and (3) are left to the reader (Exercise 4). �

A procedure that determines the leading monomial is given in Fig-
ure 6.2.

Monomial-Based Division Algorithm

Monomial-based division is defined by the following iteration scheme.

Definition 6.26. Let u and v �= 0 be polynomials in Q[x1, . . . , xp], and
let L = [x1, . . . , xp]. Suppose that vl = lm(v, L), and define the iteration

216 6. Multivariate Polynomials

scheme
q0 = 0, r0 = u, (6.15)

and for i ≥ 1,

fi = G(ri−1, vl), (6.16)
qi = qi−1 + fi, (6.17)

ri = ri−1 − fi v, (6.18)

where the function G is defined in Equation (6.12). The iteration termi-
nates when G(ri, vl) = 0. If i = τ is the first such index, then qτ is the
monomial-based quotient of u divided by v, and rτ is the monomial-
based remainder. We also represent the quotient and the remainder with
the operator notation mbquot(u, v, L) and mbrem(u, v, L).

The division process repeatedly applies steps similar to Equations (6.12)
and (6.13) with v replaced by vl. Using mathematical induction, we can
show that at each step

u = qi v + ri, (6.19)

(Exercise 7). If we define
vr = v − vl, (6.20)

then the remainder relation has the form,

ri = (ri−1 −G(ri−1, vl) vl) + (−G(ri−1, vl) vr). (6.21)

The operation ri−1 − G(ri−1, vl) vl eliminates some monomials from ri−1,
while −G(ri−1, vl) vr may contribute monomials to ri with new variable
parts that may be divisible by vl. In fact, because of these new monomi-
als, the process may continue at least one more iteration. This point is
illustrated in the next example.

Example 6.27. Let u = x3 + 3 x2 y + 4 x y2 and v = x y + 2 y + 3 y2, and
let L = [x, y] define the variable order. Then

q0 = 0, r0 = u, vl = x y, vr = 2 y + 3 y2,

and the first iteration gives

f1 = G(r0, vl) = 3 x+ 4 y, q1 = 3 x+ 4 y,

and

r1 = (u− f1 vl) + (−f1 vr)
= (u− (3 x2 y + 4 x y2)) + (−9 x y2 − 6 x y − 8 y2 − 12 y3)
= x3 − 9 x y2 − 6 x y − 8 y2 − 12 y3.

6.2. Polynomial Division and Expansion 217

The next iteration gives
f2 = −9 y − 6

and
q2 = 3 x− 5 y − 6, r2 = x3 + 28 y2 + 15 y3 + 12 y. (6.22)

Since vl does not divide any monomial of r2, G(r2, vl) = 0 and the iteration
terminates with τ = 2 and the quotient and remainder in (6.22).

On the other hand, recursive polynomial division terminates after σ = 0
iterations with qσ = 0 and rσ = u. However, if the variable order is changed
to [y, x], then both monomial-based division and recursive division give the
same result

qτ = qσ = (4/3)x, rτ = rσ = x3 + (5/3)x2 − (8/3)x y. �

Properties of Monomial-Based Division

In order to analyze monomial-based division, it is useful to express the
iteration scheme in another form. Let vl = lm(v, L) and vr = v − vl, and
define the iteration scheme:

Q0 = 0, S0 = 0, P0 = u, (6.23)

and, for i ≥ 1,

Fi = G(Pi−1, vl), (6.24)
Qi = Qi−1 + Fi, (6.25)
Si = Si−1 + Pi−1 − Fi vl, (6.26)
Pi = −Fi vr (6.27)

where the function G is defined in Equation (6.12). The iteration termi-
nates when G(Pi, vl) = 0.

The next Theorem 6.28 describes some properties of this iteration scheme
and the connection between it and the one given in Definition 6.26.

Parts (1) and (3) show that the remainder ri is the sum of two parts,
Si where the monomials are not divisible by vl and Pi where some of the
monomials may be divisible by vl. This point is illustrated in Example 6.29
below.

Parts (3), (4), and (5) of the theorem show that the new scheme gives
the same quotient and remainder as the scheme in Definition 6.26.

Part (6) is used to show that the division process terminates (Theorem
6.30(1) below). Part (7) is similar Part (6), although it involves the full
remainder and the relation � rather than ≺. In fact, this distinction
between (6) and (7) is the reason the new version is easier to analyze.

218 6. Multivariate Polynomials

Theorem 6.28. Let u and v �= 0 be polynomials in Q[x1, . . . , xp], and
let L = [x1, . . . , xp] define the variable order. The iteration scheme in
Equations (6.23)-(6.27) satisfies the following properties:

1. For i ≥ 1, vl does not divide any monomial of Si.

2. Pi = Fi+1vl + (Si+1 − Si).

3. ri = Si + Pi.

4. Fi = fi.

5. Qi = qi.

6. If τ ≥ 1, then lm(Pi)≺lm(Pi−1), for i = 1, . . . , τ .

7. If τ ≥ 1, then lm(ri) �lm(ri−1), for i = 1, . . . , τ .

8. Suppose that τ ≥ 1, and let t be a monomial in rτ for which there is
no monomial in u with the same variable part as t. Then, t≺lm(u).

Proof: We show Part (1) with mathematical induction. First, for i = 1,
we have

S1 = S0 + P0 + F1 vl = u−G(u, vl) vl = R(u, vl),

where the polynomial R(u, vl) is defined in Equation (6.13) and the mono-
mials in this polynomial are not divisible by vl.

Let’s assume the induction hypothesis that Part (1) holds for i− 1 and
show that it holds for i. Using Equations (6.12), (6.13), and (6.24), we
have

Si = Si−1 + Pi−1 − Fi vl

= Si−1 + (Pi−1 −G(Pi−1, vl) vl)
= Si−1 +R(Pi−1, vl).

Since neither term in the sum on the right is divisible by vl, it follows that
Si is not divisible by vl.

Part (2) is a restatement of Equation (6.26).
To show Part (3), we again use mathematical induction. First, for

i = 0, r0 = u = S0 + P0. Let’s assume the induction hypothesis that
(3) holds for i − 1 and show that it holds for i. From Part (1), we have

6.2. Polynomial Division and Expansion 219

G(Pi−1, vl) = G(Si−1 + Pi−1, vl), and therefore, using this relation, the
induction hypothesis, Equations (6.18), (6.20), (6.24), and (6.26), we have

Si + Pi = Si−1 + Pi−1 − Fivl − Fivr

= Si−1 + Pi−1 −G(Si−1 + Pi−1, vl) v
= ri−1 −G(ri−1, vl) v
= ri.

Part (4) follows from Parts (1) and (3), and Part (5) follows from
Part (4).

To show Part (6), we have lm(vr)≺vl, and with Fi �= 0, Theorem 6.25(3)
implies that

lm(Pi) = lm(−Fivr)≺lm(−Fivl). (6.28)

In addition, since Fivl = G(Pi−1, vl)vl includes some of the monomials of
Pi−1, we have

lm(−Fivl) �lm(Pi−1). (6.29)

Therefore, the relations (6.28) and (6.29) imply that lm(Pi)≺lm(Pi−1).
To show Part (7), consider

ri = ri−1 −G(ri−1, vl) v
= (ri−1 −G(ri−1, vl) vl) + (−G(ri−1, vl) vr). (6.30)

For the first term in the sum, since G(ri−1, vl) vl cancels some of the mono-
mials from ri−1, we have

lm(ri−1 −G(ri−1, vl) vl) �lm(ri−1). (6.31)

For the second term in the sum in Equation (6.30), since lm(vr)≺vl and
since for i ≤ τ , G(ri−1, vl) �= 0, Theorem 6.25(3) implies that

lm(−G(ri−1, vl) vr)≺lm(−G(ri−1, vl) vl). (6.32)

In addition, since G(ri−1, vl) vl includes some monomials of ri−1, we have

lm(−G(ri−1, vl) vl)≺lm(ri−1). (6.33)

Therefore, from Equation (6.30) and the relations (6.31), (6.32), and (6.33),
we have lm(ri) �lm(ri−1).

To show Part (8), there must be a monomial s in some Pi (for i ≥
1) with the same variable part as t. (The coefficient parts of s and t
don’t have to be the same since coefficients may change at a later step
in the division process.) Therefore, since P0 = u, Part (6) implies that
t �lm(Pi)≺lm(u). �

220 6. Multivariate Polynomials

Example 6.29. Consider again Example 6.27 where u = x3+3 x2 y+4 x y2,
v = x y + 2 y + 3 y2, and x is the main variable. Then, vl = x y, vr =
2 y + 3 y2, and

Q0 = 0, S0 = 0, P0 = u,

F1 = 3 x+4 y, Q1 = 3 x+4 y, S1 = x3, P1 = −9 x y2−6 x y−8 y2−12 y3.

Observe that vl does not divide the monomial in S1, but does divide some
of the monomials in P1. The next iteration is

F2 = −9 y − 6, Q2 = 3 x− 5 y − 6,
S2 = x3 − 8 y2 − 12 y3, P2 = 12 y + 36 y2 + 27 y3,

where now vl does not divide any monomial of both S2 and P2. Therefore,
the iteration terminates with τ = 2, and

qτ = 3 x− 5 y − 6, rτ = S2 + P2 = x3 + 28 y2 + 15 y3 + 12 y. �

The next theorem shows that monomial-based division is a legitimate
division process.

Theorem 6.30. Let u and v �= 0 be polynomials in Q[x1, . . . , xp], and let
L = [x1, . . . , xp].

1. The monomial-based division process terminates.

2. When the division process terminates,

u = qτ v + rτ , (6.34)

Q(rτ , vl) = 0, (6.35)

lm(rτ , L) �lm(u, L), (6.36)

lm(u)≡max({lm(qτ) lm(v), lm(rτ)}) (6.37)

where the maximum is with respect to the monomial order relation.4

3. The quotient and remainder are unique in the sense that for the order
of symbols in L, they are the only polynomials that satisfy Equations
(6.34) and (6.35).

4. If u �= 0, then lm(rτ , L)≺lm(u, L) if and only if vl|lm(u, L).
5. If v|u, then qτ = cof(v, u) and rτ = 0.
4In this context we assume that the max operator returns a monomial with coefficient

part 1.

6.2. Polynomial Division and Expansion 221

Proof: To show Part (1), we use the iteration in Equations (6.23)-(6.27).
First, if v is a monomial, then v = vl, vr = 0, and the process terminates
with τ ≤ 1.

Suppose that v is not a monomial. If Fi �= 0, from Theorem 6.28(6),
lm(Pi)≺lm(Pi−1), and, therefore, at some iteration G(Pi, vl) = 0 which
terminates the division.

To show Part (2), Equation (6.34) follows from Equation (6.19), and
Equation (6.35) is the termination condition for the division. The relation
(6.36) follows from Theorem 6.28(7) with r0 = u. To show Equation (6.37),
from Equation (6.34), we have

lm(u) �max({lm(qτ v), lm(rτ)}) = max({lm(qτ)lm(v), lm(rτ)}). (6.38)

In addition,

lm(qτ) · lm(v) = lm(qτ v) = lm(u − rτ) �max({lm(u), lm(rτ)})≡lm(u).

This relation and the relation (6.36) imply that

max({lm(qτ)lm(v), lm(rτ)}) �lm(u). (6.39)

The relation (6.37) follows from the relations (6.38) and (6.39).
To show Part (3), suppose that there were two representations,

u = qτ1 v + rτ1 , u = qτ2 v + rτ2 ,

where vl does not divide any monomials in rτ1 or rτ2 . Then,

(qτ2 − qτ1) v = rτ1 − rτ2 .

If rτ1 − rτ2 = 0, then, since Q[x1, . . . , xp] is an integral domain and v �= 0,
qτ2 − qτ1 = 0. In this case, the representations are identical. On the other
hand, if rτ1 − rτ2 �= 0, then since v|rτ1 − rτ2 , Theorem 6.25(2) implies that
vl|lm(rτ1 − rτ2). Since the monomials in rτ1 − rτ2 are formed from the
monomials in rτ1 and rτ2 and can differ from one of these monomials by
at most a rational number factor (which does not affect the monomial’s
divisibility), vl must divide some monomial in either rτ1 or rτ2 (or in both)
which contradicts the definition of the remainders.

To show Part (4), first assume that vl|lm(u). Then, in the first iteration
lm(u) is eliminated, and since lm(P1)≺lm(u), we have lm(r1)≺lm(u). From
this observation and Theorem 6.28(6) we have lm(rτ)≺lm(u).

To show that the implication goes in the other direction, observe that
there are two ways that a monomial can be eliminated during the division
process. One way is when lm(vl) divides the monomial, and the other way

222 6. Multivariate Polynomials

Procedure Mb poly div(u, v, L);
Input

u, v : multivariate polynomials in L with rational number coefficients,
and v �= 0;

L : list of symbols;
Output

[qτ , rτ];
Local Variables

q, r, f, vl;
Begin

1 q := 0;
2 r := u;
3 vl := Leading monomial(v,L);
4 f := G(r, vl);
5 while f �= 0 do
6 q := q + f ;
7 r := Algebraic expand(r − f ∗ v);
8 f := G(r, vl);
9 Return([q, r])

End

Mb quotient(u, v, L)
function

:= Operand(Mb poly div(u, v, L), 1);

Mb remaineder (u, v, L)
function

:= Operand(Mb poly div(u, v, L), 2);

Figure 6.3. An MPL procedure for monomial-based polynomial division and
functions that extract the quotient and remainder. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

is when the monomial appears (with opposite sign) in some Pi. However,
since lm(Pi)≺lm(u), Pi cannot eliminate lm(u). Therefore, vl | lm(u).

The proof of (5) is left to the reader (Exercise 8). �

A procedure for monomial-based division is given in Figure 6.3. The
procedure G in lines 5 and 8 is described in Exercise 2. As a practical
matter, it is only necessary to include the variables in the divisor v in the
variable list L because the only use of this list is to obtain the leading
monomial of the divisor (line 3).

6.2. Polynomial Division and Expansion 223

Polynomial Expansion in Q[x1, . . . , xp]
Let u and v be polynomials in Q[x1, . . . , xp]. A polynomial expansion for
u in terms of v is a representation of u of the form

u = dkv
k + dk−1v

k−1 + · · ·+ d0

where the di are also polynomials in Q[x1, . . . , xp]. One way to obtain an
expansion is to modify the single-variable polynomial expansion algorithm
for polynomials in F[x] by replacing the division operation with either
recursive polynomial division or monomial-based division. The expansion
is obtained with the quotient sequence:

u = c0v + d0,

c0 = c1v + d1,

c1 = c2v + d2,

... (6.40)
ck−2 = ck−1v + dk−1,

ck−1 = ckv + dk,

ck = 0.

where ck is the quotient of ci−k divided by v and dk is the corresponding
remainder. The iteration terminates when a quotient ck is zero.

Example 6.31. Let u = 2x2+3x y+y2+3 and v = x+y be polynomials in
Q[x, y]. Using recursive polynomial division with x as the main variable,
we have

c0 = 2x+ y, d0 = 3,
c1 = 2, d1 = −y,
c2 = 0, d2 = 2,

and therefore,

u = d2 v
2 + d1 v + d0 = 2 v2 − y v + 3.

In this case, expansion using monomial-based division with x as the main
variable gives the same quotient sequence and same expansion. If instead
y is the main variable, we obtain u = v2 + x v + 3 with either form of
division. �

Although either form of polynomial division can be used for expan-
sion, monomial-based division often gives more appropriate representa-
tions. This point is illustrated in the next example.

224 6. Multivariate Polynomials

Example 6.32. Let u = (x y)2 + x y+ x+ y2 and v = x y be polynomials in
Q[x, y]. Using recursive division with x the main variable, we obtain

c0 = x y, d0 = x y + x+ y2,

c1 = 0, d1 = 0,

c2 = 0, d2 = 1,

and therefore,

u = d2 v
2 + d1 v + d0 = v2 + x y + x+ y2.

This approach selects the (x y)2 term but overlooks the x y term. If instead,
y is the main variable, both (x y)2 and x y are overlooked in the expansion.

On the other hand, using monomial-based division with either x or y
as the main variable, we obtain the more reasonable representation

u = v2 + v + x+ y2. �

Since monomial-based division usually obtains more reasonable expan-
sions, especially when v is a monomial, we use it for the remainder of
this section. Using this approach, polynomial expansion has the following
properties.

Theorem 6.33. Let u and v be polynomials in Q[x1, . . . , xp], and suppose
that v has positive degree in some variable xi.

1. The expansion process terminates and gives a polynomial

u = dk v
k + dk−1 v

k−1 + · · ·+ d0. (6.41)

2. Q(di, vl) = 0, for i = 0, . . . , k,

3. For the variable order L = [x1, . . . , xp], the expansion (6.41) that
satisfies property (2) is unique.

The proof of the theorem is left to the reader (Exercise 9). �

A procedure for polynomial expansion that utilizes monomial-based di-
vision is given in Figure 6.4. As in the single variable case (Figure 4.2,
page 122), the procedure returns a polynomial

Pu(t) = dk t
k + dk−1 t

k−1 + · · ·+ d1 t+ d0

6.2. Polynomial Division and Expansion 225

Procedure Mb poly exp(u, v, L, t);
Input

u : a multivariate polynomial in L with rational coefficients;
v : a non-constant multivariate polynomial in L with

rational coefficients;
L : a list of symbols;
t : an algebraic expression;

Output
the polynomial Pu(t);

Local Variables
d, q, r;

Begin
1 if u = 0 then
2 Return(0)
3 else
4 d := Mb poly div(u, v, L);
5 q := Operand(d, 1);
6 r := Operand(d, 2);
7 Return(Algebraic expand(t ∗Mb poly exp(q, v, L, t) + r))

End

Figure 6.4. An MPL procedure for polynomial expansion that utilizes monomial-
based polynomial division. (Implementation: Maple (txt), Mathematica (txt),
MuPAD (txt).)

which is the expansion polynomial with the polynomial v replaced by the
symbol t. As before, using the division relation

u = qτ v + rτ ,

we obtain the recurrence relation

Pu(t) = t Pqτ (t) + rτ (6.42)

(Exercise 11) which is applied at line 7.

Expansion-Based Substitutions

Using polynomial expansion, we can generalize the notion of substitution
for multivariate polynomials. For example, to replace v = a+ b in

u = a2b+ 2 ab2 + b3 + 2 a+ 2 b+ 3

226 6. Multivariate Polynomials

by t, we use the expansion

Mb poly exp(u, v, [a, b], t)→ b t2 + 2 t+ 3.

Simplification with a Side Relation

One important substitution operation is concerned with simplification with
respect to a side relation. For example, to simplify the expression u =
a ı3 + b ı2 + c ı + d with respect to the side relation ı2 = −1, we use the
expansion

Mb poly exp(u, ı2, [ı],−1)→ −a ı− b+ c ı+ d.

If a side relation is equated to zero, the simplification is obtained with
monomial-based division. For example, to apply the side relation ı2+1 = 0
we use

mbrem
(
a ı3 + b ı2 + c ı+ d, ı2 + 1, [ı]

)→ −a ı− b+ c ı+ d.

A particularly important side relation for simplification is the trigono-
metric identity

sin2(x) + cos2(x) − 1 = 0. (6.43)

Using division, we can apply the identity even in cases where the identity
is hidden. For example, consider the simplification

u = sin4(x) + sin3(x) + 2 sin2(x) cos2(x) + cos4(x) (6.44)

=
(
sin2(x) + cos2(x)

)2
+ sin3(x),

= 1 + sin3(x).

We can simplify Equation (6.44) directly using monomial-based division5

mbrem
(
u, sin2(x) + cos2(x)− 1, [cos(x), sin(x)]

)→ 1 + sin3(x). (6.45)

Using polynomial division, we can formulate a procedure

Trig ident(u)

that applies the identity (6.43) at appropriate places in u. This procedure
has the following properties.

5Although the procedures for monomial-based division and polynomial expansion
have been defined when L is a list of symbols, they work as well with function forms as
long as the members of L are independent.

6.2. Polynomial Division and Expansion 227

1. The procedure should apply the identity with an appropriate variable
order so that the new expression is really simpler than the old expres-
sion. For example if the division (6.45) is applied with the variable
order [cos(x), sin(x)], we obtain

mbrem
(
u, sin2(x) + cos2(x)− 1, [sin(x), cos(x)]

)
→ − sin(x) cos2(x) + sin(x) + 1. (6.46)

Since the remainder in (6.45) is smaller than the remainder in (6.46),
it is reasonable to consider the first remainder as the simplified form
of u.

One way to define the size of an expression is with the Tree size op-
erator described in Exercise 12. Using this operator, we compare
the size of the original expression to the sizes of the expressions ob-
tained using the remainder operation with the two variable orders
[sin(x), cos(x)] and [cos(x), sin(x)] and choose as a simplified form
the one that has the smallest size. Using this criteria, the expression

u = sin3(x) + cos3(x)

is already simplified because the remainders

mbrem
(
u, sin2(x) + cos2(x)− 1, [cos(x), sin(x)]

)
→ sin3(x) − cos(x) sin2(x) + cos(x),

mbrem
(
u, sin2(x) + cos2(x) − 1, [sin(x), cos(x)]

)
→ cos3(x)− sin(x) cos2(x) + sin(x)

are larger in size than the original expression.

2. The procedure should apply the identity (6.43) for an arbitrary ar-
gument of the sin and cos functions. For example, if

u = sin2(z) sin2(x)+sin2(z) cos2(x)+cos2(z) sin2(y)+cos2(z) cos2(y),

then Trig ident(u)→ 1.

We leave the formal definition of Trig ident to the reader (Exercise 13).

Generalized Polynomial Operations

Let u and v be multivariate polynomials with rational number coefficients.
Polynomial operators such as Degree gpe(u, v) and Coefficient gpe(u, v, n)

228 6. Multivariate Polynomials

described in Section 1.4 perform in an awkward way when v is not a com-
plete sub-expression of u. Using polynomial expansion, these operations
can be obtained in a way that produces more reasonable results. For ex-
ample, if

u = x3y2 + x y2 = x (x y)2 + y (x y),

it is reasonable to define the degree of u with respect to v = x y as 2. This
degree operation is defined using the operations

w := Mb poly exp(u, v, [x, y], t);

Degree gpe(w, t);

The procedures that perform the polynomial operations in this general
sense are left to the reader (Exercise 14).

Exercises
1. Let u and v be polynomials in K[x], and suppose that lc(v, x) is a unit.

Show that, in this case, the recursive polynomial division process satisfies
the Euclidean property and the quotient and remainder are unique.

2. Let u be a polynomial and v �= 0 be a monomial in Q[x1, . . . , xp]. Give a
procedure G(u, v) that computes the function in Equation (6.12).

3. Prove Theorem 6.22.

4. Prove Theorem 6.25(2),(3).

5. (a) Let u and v be monomials, and let L be a list of symbols that deter-
mines the symbol order. Give a procedure

Lexicographical order (u, v, L)

that determines if two monomials are in lexicographical order. When
u≺v, the procedure returns true and otherwise returns false.

(b) Let u be a polynomial. Give a procedure, Monomial list(u, L) that
returns a list of the monomials in u in lexicographical order.

6. Show that

mbquot(u1 + u2, v, L) = mbquot(u1, v, L) + mbquot(u2, v, L),

mbrem(u1 + u2, v, L) = mbrem(u1, v, L) + mbrem(u2, v, L).

7. For the monomial-based division process in Definition 6.26, show that u =
qiv + ri for i = 0, . . . , τ .

8. Prove Theorem 6.30(5). Hint: Use the uniqueness property of monomial
based division.

6.3. Greatest Common Divisors 229

9. Prove Theorem 6.33.

10. Let u = a2 +b2 +c2 +a b+2a c+2 b c and v = a+b+c . Find a polynomial
expansion of u in terms of v for the variable order L = [a, b, c].

11. Derive the recurrence relation in Equation (6.42) for Pu(t).

12. Let u be an algebraic expression. Define the tree-size of u as the num-
ber of symbols, integers, algebraic operators, and function names that oc-
cur in u. For example, the expression (x + sin(x) + 2) ∗ x3 consists of
x,+, sin, x, 2, ∗, x,∧, and 3 and so has a tree-size of 9. Give a procedure
Tree size(u) that obtains the tree-size of u.

13. Let u be a GPE with generalized variables that are symbols, sine functions
or cosine functions. In addition, assume that u is a polynomial in each
generalized variable that is a sine or cosine. Give a procedure for the oper-
ator Trig ident(u) that is described on page 226. The Tree size operator
described in Exercise 12 is useful in this exercise.

14. Let u and v be multivariate polynomials with rational number coefficients.
Give procedures for the operators

Degree exp mv(u, v ,L), Coeff exp mv(u, v, n, L)

that return the degree and coefficient values when v is not necessarily a
complete sub-expression of u. Your procedures should employ polynomial
expansion as described on page 227. Make sure your procedures can de-
termine when u is not a generalized polynomial in v. For example, for

u + sin(2x y + 1)(x y)2 + 2x y, v = x y,

then
Degree exp mv(u, v, [x, y]) → Undefined

because x y appears as part of the argument for sin.

6.3 Greatest Common Divisors

The goal of this section is the computation of greatest common divisors
in a multivariate polynomial domain K[x1, . . . , xp]. Our approach is to
view a multivariate polynomial in a recursive way as a polynomial in a
main variable x1 whose coefficients are polynomials in the integral domain
K[x2, . . . , xp]. For this reason, the gcd computation involves computation
in the original polynomial domain along with gcd computations in the
coefficient domain.

We begin by describing the gcd concept in an integral domain.

Definition 6.34. Let a and b be two expressions in an integral domain K.
The greatest common divisor of a and b (at least one of which is non-
zero) is an expression d in K that satisfies the following three properties.

230 6. Multivariate Polynomials

1. d is a common divisor of a and b.

2. If e is any common divisor of a and b, then e|d.

3. d is unit normal. (This property is defined below.)

The operator gcd(a, b) represents the greatest common divisor. If both of
the expressions a and b are zero, the above definition does not apply. In
this case, by definition, gcd(0, 0) = 0.

Properties (1) and (2) are the same as the properties in the gcd def-
initions for integers and polynomials in F[x] (Definition 2.6, page 20 and
Definition 4.19, page 126). In general, however, there are many expressions
d that satisfy (1) and (2), although any two such expressions are associates
(Exercise 5, page 207). In our previous discussions of greatest common
divisors, we made the concept precise by including a third property that
selects the unique gcd from among the associates. Property (3) is also
included to make the gcd unique, although the definition of unit normal
depends on the domain K. This concept is described in the next definition.

Definition 6.35. The unit normal expressions are a subset H of K that
satisfies the following properties.

1. The additive identity 0 and the multiplicative identity 1 are in H.

2. If a and b are in H, then a · b is in H.

3. For each b �= 0 in K, there is a unique unit c in K such that c · b is
in H.

Example 6.36. Consider the integral domain K = Z which has the units
±1. For this domain, H is the set of non-negative integers. Properties (1)
and (2) of Definition 6.35 follow immediately, and for property (3), let

c =
{
1, if b > 0,
−1, if b < 0. �

Example 6.37. The gcd definition is most meaningful when the two ex-
pressions are not units, although the definition includes these cases as well.
Consider the domain K = Q where all non-zero expressions are units. In
this case,

H = {0, 1}.

6.3. Greatest Common Divisors 231

Properties (1) and (2) of Definition 6.35 follow immediately, and for prop-
erty (3), let

c =
{
b−1, if b > 0,
−b−1, if b < 0.

In this domain, whenever a or b is non-zero, gcd(a, b) = 1. �

Observe that in property (3) we require c to be a unique unit. By doing
so we restrict the size of H and obtain the uniqueness of the gcd. This
point is the basis of the next theorem.

Theorem 6.38. Let a and b be expressions in an integral domain K.

1. The only expression that is both a unit and unit normal is the multi-
plicative identity 1.

2. If a and b are relatively prime, then gcd(a, b) = 1.

3. Suppose that a �= 0 and b �= 0 are unit normal, a|b, and b|a. Then,
a = b.

4. gcd(a, b) is unique.

Proof: To show (1), since a is a unit, for the expression c in Defini-
tion 6.35(3), we can let c = a−1. In addition, since a is unit normal, we
can also let c = 1. However, the multiplier c in Definition 6.35(3) is unique,
and so a−1 = 1 which implies that a = 1.

To show (2), recall that relatively prime in this context means every
common divisor of a and b is a unit (Definition 6.6, page 204). Therefore,
gcd(a, b) is a unit, and since gcd(a, b) is unit normal, Part (1) implies that
gcd(a, b) = 1.

The proof of (3) is left to the reader (Exercise 1).
Since the gcd(a, b) is unit normal, Part (4) follows from Part (3). �

Properties of the Coefficient Domain K

In order to develop our gcd algorithm, we assume that the coefficient do-
main K satisfies the following mathematical and computational properties.

1. K is a unique factorization domain.

2. There is a class H of unit normal expressions and an algorithm that
determines for each b �= 0 in K, an associate of b in H.

3. There is an algorithm that determines gcd(a, b) in K.

232 6. Multivariate Polynomials

The coefficient domains considered here are either Q, Z, or a polynomial
domain in the auxiliary variables, where the base numerical domain is either
Q or Z. These domains satisfy these three properties.6

Greatest Common Divisors in K[x]
Since the polynomial domain K[x] is an integral domain, the gcd defini-
tion Definition 6.34 applies here as well. In this context, we represent the
greatest common divisor by gcd(u, v, x) or by gcd(u, v) when x is evident
from the discussion.

For polynomial domains, the unit normal expressions are defined in the
following way.

Definition 6.39. Let K be a coefficient domain. A polynomial u in K[x] is
unit normal if lc(u, x) is unit normal in K.

It is straightforward to check that the set of unit normal polynomials
satisfies the three properties in Definition 6.35 (Exercise 2).

Example 6.40. For multivariate polynomials, the unit normal property
depends on which variable is the main variable. Consider

u = 7 x− 2 x y − 5 + y2

as a polynomial with coefficients in Z. If y is the main variable, then
lc(u, y) = 1, and so u is unit normal in Z[x, y].

On the other hand, if x is the main variable, then lc(u, x) = 7 − 2 y,
which is not unit normal in Z[y] because −2 is not unit normal in Z. There-
fore, u is not unit normal in Z[y, x]. �

The next theorem gives three important properties of the greatest com-
mon divisor.

Theorem 6.41. Let u and v be polynomials in K[x].

1. gcd(u, v, x) exists.

2. gcd(u, v, x) is unique.

3. If u �= 0, then gcd(0, u, x) = c u where c is the unique unit in K so
that c u is unit normal.

6For polynomial domains, this assertion follows from the recursive nature of the gcd
algorithm (Figure 6.7) and Theorem 6.71 on page 260.

6.3. Greatest Common Divisors 233

Proof: We show (1) by giving an algorithm to compute gcd(u, v, x) later
in this section.

Part (2) follows from Theorem 6.38(4).
Part (3) follows directly from Definitions 6.34 and 6.35. �

The recursive nature of Definition 6.39 provides a way to select a unique
gcd in a multivariate polynomial domain. This point is illustrated by the
next example.

Example 6.42. Let

u = (2 y + 1) x2 + (10 y + 5) x+ (12 y + 6),

v = (2 y + 1) x2 + (12 y + 6) x+ (18 y + 9),

be polynomials in Q[x, y] with main variable x. The polynomial

w = (2 y + 1)x+ (6 y + 3)

satisfies properties (1) and (2) of the gcd definition, but is not unit normal
because its leading coefficient 2 y + 1 is not unit normal in Q[y]. In fact,
reasoning recursively, a polynomial in Q[y] is unit normal if its leading
coefficient is unit normal in Q. In other words, the unit normal expressions
in Q[y] are either the monic polynomials or the 0 polynomial. Therefore,

gcd(u, v) = (1/2)w = (y + 1/2)x+ (3 y + 3/2).

Next, let’s consider u and v as polynomials in Z[x, y]. Since the unit normal
expressions in Z are the non-negative integers, in this setting w is unit normal
and gcd(u, v) = w. �

Pseudo-Division

When the coefficient domain is a field, we find the gcd of u and v by using
polynomial division to define the polynomial remainder sequence

R−1 = u,

R0 = v,

Ri+1 = rem(Ri−1, Ri, x), i ≥ 0, (6.47)

where
gcd(Ri+1, Ri) = gcd(Ri, Ri−1). (6.48)

Since
deg(Ri+1) < deg(Ri), (6.49)

234 6. Multivariate Polynomials

some member of the remainder sequence is 0. If Rρ is the first such re-
mainder, then

gcd(u, v) = Rρ−1/lc(Rρ−1).

Let’s try to extend this process to a multivariate polynomial domain
by replacing the remainder operation in Equation (6.47) with either the
recursive remainder or the monomial-based remainder. For both of these
division operations, Equation (6.48) is valid but, since neither one satisfies
the Euclidean property (6.49), there is no guarantee that the remainder
sequence terminates. In fact, for

u = y x2 + 2 y x+ y, v = y x2 − x2 − y + 1, (6.50)

Equation (6.47) with recursive division gives an infinite remainder sequence
(for either variable order) even though gcd(u, v) = x+ 1. For example, for
the variable order L = [x, y], we have

lc(u, x) = y, lc(v, x) = y − 1,

which implies
lc(u, x) /| lc(v, x), lc(v, x) /| lc(u, x).

Therefore,

recrem(u, v, [x, y]) = u, recrem(v, u, [x, y]) = v,

and the remainder sequence alternates between u and v. Monomial-based
division (using either variable order) also gives a remainder sequence that
does not terminate.

There is, however, a way to define a division-like process that gives
a remainder sequence that leads to the gcd. To guarantee that the gcd
remainder sequence terminates, we need a division process for u divided by
v that terminates with a remainder r that satisfies the Euclidean property

deg(r) < deg(v). (6.51)

One approach is to use recursive division but to modify u so that the
division process proceeds until the inequality (6.51) is satisfied. To see how
this is done, consider the polynomials in Z[x]:

u = x2 + x+ 1, v = 3 x+ 1.

Dividing u by v using recursive division, the termination condition

lc(v) = 3 /| 1 = lc(u) (6.52)

6.3. Greatest Common Divisors 235

immediately stops the process with

recrem(u, v, x) = r0 = x2 + x+ 1

which does not satisfy the degree condition (6.51).
One way to circumvent (6.52) is simply to replace u by

lc(v)u = 3 x2 + 3 x+ 3.

When this is done, the division process has one iteration, and

recrem(lc(v)u, v, x) = r1 = 2 x+ 3

where the termination condition

lc(v) = 3 /| 2 = lc(r1) (6.53)

stops the process, and so again, the remainder r1 does not satisfy the degree
condition (6.51). We can, however, avoid the conditions in both (6.52) and
(6.53) by replacing u by

lc(v)2 u = 9 x2 + 9 x+ 9.

Now, the division process has two iterations, and

recrem(lc(v)2 u, v, x) = r2 = 7,

where the degree condition

deg(r2) < deg(v)

terminates the process.
In general, suppose that u and v �= 0 are in K[x] with deg(u) ≥ deg(v).

To guarantee that the degree condition (6.51) stops the process, we need
to find an integer δ ≥ 0 so that when lc(v)δ u is divided by v, lc(v) | lc(ri−1)
at each step of the process. To find δ, suppose that the division process
has a sequence of remainders

u = r0, r1, . . . , rδ,

where rδ is the first remainder with

deg(rδ) < deg(v). (6.54)

As in the above example, to obtain this condition we multiply u by lc(v)
for each of the δ steps in the process. The maximum number of steps in
the process occurs when

deg(ri) = deg(ri−1)− 1, i = 1, . . . , δ. (6.55)

236 6. Multivariate Polynomials

When this happens,
deg(rδ) = deg(u)− δ,

and so the inequality (6.54) gives

deg(u)− deg(v) < δ.

Therefore, for
δ = deg(u)− deg(v) + 1, (6.56)

recursive division of lc(v)δ u by v gives

lc(v)δ u = recquot(lc(v)δ u, v) v + recrem(lc(v)δ u, v) (6.57)
= q v + r,

with the termination condition

deg(r, x) < deg(v, x).

The division in Equation (6.57) with u replaced by lc(v, x)δ u is called
the pseudo-division of u by v. We shall see below, when the coefficient domain
K is not a field, that this process provides a way to compute the gcd using
a remainder sequence.

Pseudo-Division Computation. From Equation (6.3), the pseudo-division in
Equation (6.57) involves the iteration scheme:

q0 = 0, r0 = lc(v)δ u,

qi = qi−1 + cof(lc(v, x), lc(ri−1, x))xdeg(ri−1,x)−deg(v,x), (6.58)

ri = ri−1 − cof(lc(v, x), lc(ri−1, x)) v xdeg(ri−1,x)−deg(v,x),

where the degree condition

deg(ri, x) < deg(v, x)

terminates the process. In this form, the operation cof(lc(v, x), lc(ri−1, x))
involves division in the coefficient domain K.

There is another way to view pseudo-division that avoids division in the
coefficient domain. Consider the iteration scheme:

p0 = 0, s0 = u,

pi = lc(v, x) pi−1 + lc(si−1, x) xdeg(si−1,x)−deg(v,x), (6.59)

si = lc(v, x) si−1 − lc(si−1, x) v xdeg(si−1,x)−deg(v,x)

6.3. Greatest Common Divisors 237

where the degree condition

deg(si, x) < deg(v, x)

terminates the process. Observe that this process does not involve division
in the coefficient domain.

The next theorem gives the relationship between Equation (6.58) and
Equation (6.59).

Theorem 6.43. Let u and v �= 0 be polynomials in K[x] with deg(u, x) ≥
deg(v, x). Then,

qi = lc(v)δ−i pi, (6.60)
ri = lc(v)δ−i si. (6.61)

Proof: We verify Equation (6.61) using mathematical induction. For the
base case i = 0,

r0 = lc(v)δ u = lc(v)δ−0 s0.

Let’s assume the induction hypothesis that Equation (6.61) holds for i− 1
and show that it also holds for i. We have

ri = ri−1 − cof(lc(v), lc(ri−1)) v xdeg(ri−1)−deg(v)

= lc(v)δ−(i−1) si−1

− cof
(
lc(v), lc

(
lc(v)δ−(i−1)si−1

))
v xdeg(si−1)−deg(v)

= lc(v)δ−(i−1) si−1 − lc(v)δ−(i−1)−1lc(si−1) v xdeg(si−1)−deg(v)

= lc(v)δ−i
(
lc(v) si−1 − lc(si−1) v xdeg(si−1)−deg(v)

)
= lc(v)δ−i si. �

In the next definition we summarize the pseudo-division process that is
based on Theorem 6.43.

Definition 6.44. Let u and v �= 0 be polynomials in K[x] and let

δ = max({deg(u, x)− deg(v, x) + 1, 0}).
The pseudo-division of u by v is defined by the iteration

p0 = 0, s0 = u,

pi = lc(v, x)pi−1 + lc(si−1, x)xdeg(pi−1,x)−deg(v,x), (6.62)

si = lc(v, x)si−1 − lc(si−1, x) v xdeg(si−1,x)−deg(v,x).

238 6. Multivariate Polynomials

The process terminates when

deg(si, x) < deg(v, x). (6.63)

Let σ be the value of i at termination. Then,

q = lc(v)δ−σ pσ (6.64)

is called the pseudo-quotient and

r = lc(v)δ−σ sσ (6.65)

is called the pseudo-remainder of u divided by v. We also represent the
pseudo-quotient with the operator notation psquot(u, v, x) and the pseudo-
remainder with psrem(u, v, x).

The definition includes the case deg(u, x) ≥ deg(v, x), for which δ ≥ 1,
and the case deg(u, x) < deg(v, x), for which δ = 0.

When deg(u, x) ≥ deg(v, x), there is at least one iteration, and so σ ≥ 1.
Observe that the pseudo-quotient and pseudo-remainder include the factor
lc(v)δ−σ so that they correspond to the quotient and remainder obtained
by the recursive division of lc(v)δ u by v.

When deg(u, x) < deg(v, x), there are no iterations, and so σ = 0. In
this case, psquot(u, v, x) = 0 and psrem(u, v, x) = u.

Example 6.45. Let u = 5 x4y3 + 3 xy + 2 and v = 2 x3y + 2 x + 3 be
polynomials in Q[x, y] with main variable x. Then, δ = 2 and

p1 = 5 y3 x, s1 = −10 x2 y3 − 15x y3 + 6x y2 + 4y.

Since deg(s1, x) < deg(v, x), the process terminates with σ = 1, and

q = lc(v, x)δ−σ p1 = (2 y)1 p1 = 10 y4x,

r = lc(v, x)δ−σ s1 = −20 x2y4 − 30 x y4 + 12 x y3 + 8 y2. �

Pseudo-division satisfies the following properties.

Theorem 6.46. Let u and v �= 0 be polynomials in K[x].

1. The pseudo-division process terminates with σ ≤ δ.

2. At termination,
lc(v, x)δu = q v + r (6.66)

where
deg(r, x) < deg(v, x). (6.67)

6.3. Greatest Common Divisors 239

3. The polynomials q and r are the only ones that satisfy (6.66) and
(6.67).

Proof: The degree condition (6.67) is called the Euclidean Property for
pseudo-division. The proof of the theorem is similar to the one for Theorem
4.5 on page 113. The details are left to the reader (Exercise 3). �

A procedure7 for pseudo-division that is based on Definition 6.44 is given
in Figure 6.5.

The next example shows that the basic gcd relationship in Equation
(6.48) does not always hold for pseudo-division.

Example 6.47. Consider u = x and v = x y + y as polynomials in Q[x, y]
with main variable x. Then, δ = 1, σ = 1, and

lc(v, x)u = x y = q v + r = (1)(x y + y) + (−y).

Notice that gcd(u, v) = 1 while gcd(v, r) = y, and so gcd(u, v) �= gcd(v, r).
In other words, the pseudo-division process has introduced an extraneous
factor y into the greatest common divisor of v and r. �

Since pseudo-division is such a simple process (it doesn’t utilize the
gcd properties of the coefficient domain), it is not surprising that it cannot
be used directly to find the gcd. However, we show below that by first
preprocessing the polynomials and modifying the gcd remainder sequence,
pseudo-division can be used as the basis for a gcd algorithm. Before we do
this, however, we need a few more mathematical tools.

Content and Primitive Part

Definition 6.48. Let u be a polynomial in K[x]. The content of u is
defined by one of the following rules.

1. If u =
n∑
i=0

aix
i is a sum with two or more (non-zero) terms, then the

content is the greatest common divisor in K of the non-zero coeffi-
cients of u.

7See footnote 2 on page 115 for comments about the termination condition in line 8.

240 6. Multivariate Polynomials

Procedure Pseudo division(u, v, x);
Input

u, v : multivariate polynomials with x the main variable;
x : a symbol;

Output
the list [q, r];

Local Variables
p, s,m, n, δ, lcv , σ, lcs ;

Begin
1 p := 0;
2 s := u;
3 m := Degree gpe(s, x);
4 n := Degree gpe(v, x);
5 δ := Max({m− n + 1, 0});
6 lcv := Coefficient gpe(v, x, n);
7 σ := 0;
8 while m ≥ n do
9 lcs := Coefficient gpe(s, x,m);
10 p := lcv ∗ p + lcr ∗ xm−n;
11 s := Algebraic expand

i
lcv ∗ s− lcs ∗ v ∗ xm−n

J
;

12 σ := σ + 1;
13 m := Degree gpe(s, x);

14 Return
io
Algebraic expand

i
lcvδ−σ ∗ pJ ,Algebraic expand ilcvδ−σ ∗ sJPJ

End

Pseudo quotient(u, v, x)
function

:= Operand(Pseudo division(u, v, x), 1);

Pseudo remainder(u, v, x)
function

:= Operand(Pseudo division(u, v, x), 2);

Figure 6.5. An MPL procedure for pseudo-division of u by v and functions that
extract the pseudo-quotient and pseudo-remainder. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

2. If u = aix
i is a non-zero monomial, then the content is d ai where d

is the unique unit in K so that the content is unit normal.

3. If u = 0, then the content is 0.

The content is denoted by cont(u, x) or by cont(u) if x is understood from
the context.

Observe that cont(u, x) is always unit normal.

6.3. Greatest Common Divisors 241

Example 6.49. In Z[x], we have

cont(4 x2 − 6 x, x) = 2, cont(2 x, x) = 2, cont(−x, x) = 1.

In Q[x], all non-zero polynomials have content 1.

In Q[x, y] with main variable x, we have

cont((1/2)x y + 6 y, x) = y, cont(2 x, x) = 1, cont(−x, x) = 1. �

Definition 6.50. A polynomial u �= 0 in K[x] is a primitive polynomial if
cont(u, x) = 1.

Example 6.51. In Z[x], the polynomials 2 x2 + 3 x and −x are primitive,
while 4x2 + 6x and 2x are not.

In Q[x], all non-zero polynomials are primitive.

In Q[x, y] with main variable x, the polynomials x y+ y+1 and 2x are
primitive, while (1/2)x y + 6y and x2y2 are not. �

Theorem 6.52. A polynomial u �= 0 in K[x] can be factored uniquely as
u = c v, where c is unit normal in K and v is primitive in K[x].

Proof: To obtain the factorization, let

u =
n∑
i=0

aix
i, c = cont(u, x).

Therefore, u = c v where

v =
n∑
i=0

cof(c, ai)xi.

To show that v is primitive, we show that an expression r that divides
each of the non-zero coefficients of v must be a unit. Since r c divides
each coefficient of u, and since c is the greatest common divisor of the
coefficients of u, r c|c. Therefore, c = r c cof(r c, c), and by Theorem 6.4,
1 = r cof(r c, c). This implies r is a unit, and so v is primitive.

To show the uniqueness property, suppose that there were two such
factorizations

u = c1 v1 = c2 v2

242 6. Multivariate Polynomials

where

v1 =
n∑
i=0

eix
i, v2 =

n∑
i=0

fix
i.

Since c1ei = c2fi for i = 0, . . . , n, and since v1 and v2 are primitive, we
have

c1 = gcd(c1e0, . . . , c1en) = gcd(c2f0, . . . , c2fn) = c2.

This implies v1 = v2, and so the representation is unique. �

Definition 6.53. Let u �= 0 be a polynomial in K[x]. The polynomial v in
Theorem 6.52 is called the primitive part of u with respect to x and is
denoted by pp(u, x). If u = 0, the primitive part of u is, by definition, 0.
If x is understood from the context, we use the simpler notation pp(u).

Example 6.54. Let u = (y2 + 2y + 1)x2 + (2y2 − 2)x + (3y + 3) be a
polynomial in Q[x, y] with main variable x. Then,

cont(u, x) = y + 1, pp(u, x) = (y + 1)x2 + (2y − 2)x+ 3. �

Gauss’s Theorem

To develop our algorithm, we need the fact that the product of primitive
polynomials is primitive (Theorem 6.56 below). The next theorem, which
is a fundamental one for the analysis of polynomials in K[x], is used to
prove this property.

Theorem 6.55. Let u and v be in K[x], and let c be an irrreducible expres-
sion in K that divides each coefficient of the product u v. Then, c divides
each coefficient of u or each coefficient of v.

Proof: Let

u = umx
m + um−1x

m−1 + · · ·+ u1x+ u0,

v = vnx
n + vn−1x

n−1 + · · ·+ v1x+ v0.

Then, the coefficient ck of xk in u v is given by

c0 = u0v0,

c1 = u0v1 + u1v0,

c2 = u0v2 + u1v1 + u2v0,

...

6.3. Greatest Common Divisors 243

ck =
k∑
i=0

uivk−i (6.68)

...

where the coefficients of u and v in the sum (6.68) that have subscripts
larger than their degrees are assumed to be zero. Suppose that c divides
all the coefficients ck. If c does not divide all the coefficients of u or v, then
there are indices i0 and j0 such that

c|u0, u1, . . . , ui0−1, c /|ui0 , (6.69)

c|v0, v1, . . . , vj0−1, c /| vj0 . (6.70)

Let

R =
i0−1∑
i=0

uivi0+j0−i, S =
i0+j0∑
i=i0+1

uivi0+j0−i.

Then, by Equation (6.68),

ci0+j0 = R+ ui0vj0 + S

where c|R, c|S, and c|ci0+j0 . Therefore, c|ui0vj0 , and since c is irrreducible,
Theorem 6.10(2) implies c|ui0 or c|vj0 , which contradicts the conditions
(6.69) or (6.70). Therefore, c divides all the coefficients of u or v. �

Theorem 6.56. [Gauss’s Theorem] If u and v are primitive polynomials in
K[x], then u v is also primitive.

Proof: If u v were not primitive, then there would be a (non-unit) irrreducible
expression c in K that divides each of the coefficients of u v. Then, by The-
orem 6.55, c divides all the coefficients of either u or v which implies that
one of these polynomials is not primitive. �

The next theorem is a restatement of Gauss’s theorem in terms of
contents and primitive parts.

Theorem 6.57. Let u and v be polynomials in K[x]. Then,

cont(u v) = cont(u) cont(v), (6.71)
pp(u v) = pp(u) pp(v). (6.72)

244 6. Multivariate Polynomials

Proof: By representing u v, u, and v in terms of contents and primitive parts,
we have

u v = cont(u v) pp(u v) (6.73)

and

u v = (cont(u) pp(u)) · (cont(v) pp(v))
= (cont(u) cont(v)) · (pp(u) pp(v)). (6.74)

However, since the contents are unit normal, cont(u) cont(v) is also unit
normal, and by Theorem 6.56, pp(u) pp(v) is primitive. With these obser-
vations, the relations in Equations (6.71) and (6.72) follow from Equations
(6.73) and (6.74) and the uniqueness property in Theorem 6.52. �

The next theorem, which is the basis for the preprocessing part of the
gcd algorithm, expresses the gcd in terms of the greatest common divisors
of the contents and primitive parts.

Theorem 6.58. Let u and v be polynomials in K[x], and let

d = gcd(cont(u), cont(v)) (in K),
w = gcd(pp(u), pp(v)) (in K[x]).

Then, gcd(u, v) = dw.

Proof: Since d divides both cont(u) and cont(v), and w divides both pp(u)
and pp(v), the product dw divides both u and v. Now let p be any divisor
of u and v. Then, by Theorem 6.57

cont(p)|cont(u), pp(p)|pp(u),
cont(p)|cont(v), pp(p)|pp(v),

and so cont(p)|d and pp(p)|w. Therefore, p|dw. Finally, since d and w are
greatest common divisors, they are unit normal, and so dw is unit normal
as well. Therefore, gcd(u, v) = dw. �

The Primitive Gcd Algorithm for K[x]
Although pseudo-division cannot be used directly to compute the gcd, it
can be used for primitive polynomials. In this case, the algorithm is based
on the relationship in the next theorem.

Theorem 6.59. Let u and v �= 0 be primitive polynomials in K[x]. Then,

gcd(u, v) = gcd(v, pp(psrem(u, v, x), x)). (6.75)

6.3. Greatest Common Divisors 245

Proof: Let r = psrem(u, v, x). To prove the theorem, we show that the two
pairs of polynomials u, v and v, pp(r, x) have the same common divisors.

Let p be a polynomial that divides u and v. Observe that p is primitive
because it divides a primitive polynomial (Exercise 8). In addition, since

lc(v, x)δ u = psquot(u, v, x) v + r, (6.76)

p|r, and there is a polynomial s such that r = p s. By Theorem 6.57,

pp(r, x) = pp(p s, x) = pp(p, x) pp(s, x) = p · pp(s, x),

and so p|pp(r, x).
Next, let’s suppose that p divides v and pp(r, x) where, by Exercise 8,

p is primitive. Therefore, by Equation (6.76), p|lc(v, x)δ u, and there is a
polynomial s such that

lc(v, x)δ u = s p

= cont(s, x) pp(s, x) cont(p, x) pp(p, x)
= cont(s, x) pp(s, x) p

where, by Theorem 6.56, the product pp(s, x) p is primitive. Since u is
primitive and since cont(s, x) is unit normal, Theorem 6.52 implies

c lc(v, x)δ = cont(s, x)

where c is the unique unit inK so that c lc(v, x)δ is unit normal. Therefore,

u = pp(u) = c pp(s, x) p,

and p|u.
This analysis shows that the polynomials u and v and the polynomials

v and pp(r, x) have the same common divisors, and therefore gcd(u, v) =
gcd(v, pp(r, x)). �

The next example shows that the pp operator in Equation (6.75) is re-
quired since the pseudo-division of a primitive polynomial u by a primitive
polynomial v may give a pseudo-remainder that is not primitive.

Example 6.60. The polynomials

u = x2 + x+ (y + 1), v = x2y2 + x

are primitive in Z[x, y] with main variable x. Then,

246 6. Multivariate Polynomials

psrem(u, v, x) = (y2 − 1)x+ y2 (y + 1)

which is not primitive. �

We describe now a gcd algorithm for polynomials that is based on The-
orems 6.58 and 6.59. Let u and v be two non-zero polynomials in K[x].
First, compute

d = gcd(cont(u, x), cont(v, x)). (6.77)

This step, which constitutes the preprocessing step of the algorithm, uses
a gcd algorithm in the coefficient domain K to compute the contents and
the gcd in Equation (6.77). Next, when v �= 0, consider the remainder
sequence:

R−1 = pp(u),
R0 = pp(v),
R1 = pp(psrem(R−1, R0, x)),

... (6.78)
Ri = pp(psrem(Ri−2, Ri−1, x)),

...

This sequence is called the primitive remainder sequence because each of
the remainders is primitive. Since pseudo-division satisfies the Euclidean
property, there is some remainder in this sequence which is zero. Let
Rρ = 0 be the first such remainder. By Theorem 6.59,

gcd(pp(u), pp(v)) = gcd(R−1, R0)
= gcd(R0, R1)
... (6.79)
= gcd(Rρ−1, Rρ) = gcd(Rρ−1, 0)
= Rρ−1

where Rρ−1 is the non-normalized form of the gcd. Therefore, by Theorem
6.58 and Equation (6.77),

gcd(u, v) = c · d · Rρ−1

where the unit c in K transforms the gcd to unit normal form.
This discussion is summarized in the following theorem.

6.3. Greatest Common Divisors 247

Theorem 6.61. Let u and v be polynomials in K[x] at least one of which is
non-zero, and let

d = gcd(cont(u, x), cont(v, x)). (6.80)

Then,
gcd(u, v) = c · d ·Rρ−1 (6.81)

where c is the unique unit so that transforms the gcd to unit normal form.

Proof: Although the theorem was derived assuming v �= 0, it is true when
u �= 0 and v = 0 as well. In this case, ρ = 0 and

Rρ−1 = pp(u), d = cont(u).

Therefore,

gcd(u, 0) = c · d · Rρ−1 = c · cont(u) pp(u) = c u

where c transforms u to unit normal form. �

The algorithm based on Equations (6.78), (6.79), (6.80), and (6.81)
is called the primitive gcd algorithm because the remainders in Equa-
tion (6.78) are primitive.

Example 6.62. Let

u = −yx2 + y3, v = yx2 + 2y2x+ y3

be polynomials in Z[x, y] with main variable x. Then,

cont(u, x) = y, cont(v, x) = y,

d = gcd(cont(u, x), cont(v, x)) = y,

R−1 = pp(u, x) = −x2 + y2,

R0 = pp(v, x) = x2 + 2yx+ y2,

and

R1 = pp(psrem(R−1, R0, x), x)
= pp(2 y2 + 2 y x, x)
= y + x,

R2 = pp(psrem(R0, R1, x), x)
= pp(0, x)
= 0.

248 6. Multivariate Polynomials

At this point, the process terminates, and using Equation (6.81),

gcd(u, v) = dR1 = y x+ y2. �

The Mv poly gcd and Mv poly gcd rec Procedures. Procedures that obtain
the gcd in the multivariate polynomial domain K[x1, . . . , xp] when K is
either Z or Q are given in Figures 6.6 and 6.7. The input polynomials
are multivariate polynomials (in expanded form) in the symbols in the list
L where the first symbol in L is the main variable. The main procedure
Mv poly gcd handles some simple cases in lines 1–4, and, at line 6, calls on
the recursive procedure Mv poly gcd rec which performs the calculations.
The Normalize operator in lines 2, 4, and 6, which transforms the gcd to
unit normal form, is described in Exercise 12. Since the unit normal form
depends on the base coefficient domain, the domain variable K is included
in the parameter list for Normalize.

The procedure Mv poly gcd rec, which returns the greatest common
divisor in non-normalized form, is highly recursive because the content
computations in lines 7, 8, and 17 and the gcd computation in line 9 in-
volve recursive calls on the procedure. (The Polynomial content operator
is described in Exercise 7.)

Procedure Mv poly gcd(u, v, L,K);
Input

u, v : multivariate polynomials with variables in L and coefficients
in Z or Q;

L : list of symbols;
K : the symbol Z or Q;

Output
gcd(u, v);

Begin
1 if u = 0 then
2 Return(Normalize(v, L,K))
3 elseif v = 0 then
4 Return(Normalize(u,L,K))
5 else
6 Return(Normalize(Mv poly gcd rec(u, v, L,K), L, K))

End

Figure 6.6. The main MPL procedure that obtains the gcd of two multivari-
ate polynomials with coefficients in Z or Q. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

6.3. Greatest Common Divisors 249

Procedure Mv poly gcd rec(u, v, L,K);
Input

u, v : non-zero multivariate polynomials with variables in L and
coefficients in Z or Q;

L : a list of symbols;
K : the symbol Z or Q;

Output
gcd(u, v) (not normalized);

Local Variables
x,R, cont u, cont v , d, pp u, pp v , r, pp r, cont r ;

Begin
1 if L = [] then
2 if K = Z then Return(Integer gcd(u, v))
3 elseif K = Q then Return(1)
4 else
5 x := First(L);
6 R := Rest(L);
7 cont u := Polynomial content(u, x,R,K);
8 cont v := Polynomial content(v, x,R,K);
9 d := Mv poly gcd rec(cont u, cont v , R,K);
10 pp u := Rec quotient(u, cont u, L,K);
11 pp v := Rec quotient(u, cont v , L,K);
12 while pp v �= 0 do
13 r := Pseudo remainder(pp u, pp v , x);
14 if r = 0 then
15 pp r := 0
16 else
17 cont r := Polynomial content(r, x,R,K);
18 pp r := Rec quotient(u, cont r , L,K);
19 pp u := pp v ;
20 pp v := pp r ;
21 Return(Algebraic expand(d ∗ pp u))

End

Figure 6.7. The MPL procedure that obtains a (non-normalized) gcd of two
multivariate polynomials with coefficients in Z or Q. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

Lines 1–3 provide a termination condition for the recursion. When the
input list L is empty, the input expressions are in the base coefficient domain.
When this domain is Z, we return the gcd of the two integers (line 2), and
when the domain is Q, we simply return the integer 1 (line 3).

250 6. Multivariate Polynomials

In lines 5–9, we obtain the expression d in Equation (6.80), and, in
lines 10–11, we obtain the primitive parts of the input polynomials. In
lines 12–20, we form the polynomial remainder sequence (6.78), and, in
line 21, we obtain the gcd in non-normalized form using Equation (6.81).
(The constant c that obtains the normalized form is obtained in Normalize
at line 6 of Mv poly gcd .)

Appraisal of the Algorithm

In Example 4.26 on page 130 we showed that the gcd algorithm in Q[x]
exhibits a phenomenon called coefficient explosion where succeeding poly-
nomials in the remainder sequence have coefficients that require more and
more digits. The next example shows that this problem can be even more
pronounced for multivariate polynomials.

Example 6.63. Consider the polynomials

u = x3y2 + 6 x4y + 9 x5 + 4 x2y2 + 24 x3y + 36 x4 + 5 xy2 + 30 yx2

+45 x3 + 2 y2 + 12 y x+ 18 x2,

v = x5y2 + 8 x4y + 16 x3 + 12 x4y2 + 96 x3y + 192 x2 + 45 x3y2

+360 yx2 + 720 x+ 50 x2y2 + 400 y x+ 800

as polynomials in Z[x, y] with x the main variable. Observe that

deg(u, x) = 5, deg(u, y) = 2, deg(v, x) = 5, deg(v, y) = 2,

and the maximum number of digits in the integer coefficients in u and v
is 3.

By collecting coefficients in powers of x, we obtain

u = 9 x5 + (6 y + 36)x4 +
(
y2 + 24 y + 45

)
x3 +

(
4 y2 + 30 y + 18

)
x2

+
(
5 y2 + 12 y

)
x+ 2 y2,

v = y2 x5 +
(
8 y + 12 y2

)
x4 +

(
96 y + 16 + 45 y2

)
x3

+
(
192 + 50 y2 + 360 y

)
x2 + (720 + 400 y)x+ 800.

In this form, we see that

cont(u, x) = 1, cont(v, x) = 1,

and so,
d = gcd(cont(u, x), cont(v, x)) = 1.

6.3. Greatest Common Divisors 251

Therefore, R−1 = u and R0 = v, and at the first iteration, we have (in
collected form)

r = psrem(R−1, R0, x)
=

(−72 y− 72 y2 + 6 y3
)
x4

+
(
y4 − 360 y2 − 144− 864 y + 24 y3

)
x3

+
(
4 y4 − 3240 y− 1728 + 30 y3 − 432 y2

)
x2

+
(
5 y4 − 6480− 3600 y+ 12 y3

)
x

+2 y4 − 7200.

Although pseudo-division has decreased the degree in the main variable x
by 1, it has increased the degree in y to 4 and increased the size of the
integer coefficients. Because of this, the content computation at line 17 of
Mv poly gcd rec involves coefficient explosion of up to 7 digits. Since the
content of this polynomial is 1, we have R1 = r.

At the next iteration, we obtain

r = psrem(R0, R1, x)
=

(− 6048 y6 + y10 + 672 y8 − 2448 y7 + 20736 y2

− 48 y9 + 82944 y3 + 221184 y4 + 29376 y5
)
x3

+
(
4 y10 + 57024 y5 − 89856 y6 + 2040 y8 + 4464 y7

+995328 y3 + 248832 y2 − 192 y9 + 1254528 y4
)
x2

+
(− 144288 y6 + 1848 y8 + 5 y10 − 176256 y5

+1710720 y4− 240 y9 + 19296 y7 + 3732480 y3

+933120 y2
)
x

+1036800 y2− 345600 y5 + 22464 y6 + 172800 y4

+912 y8 − 96 y9 + 2 y10 + 1152 y7 + 4147200 y3.

Again, pseudo-division has decreased the degree in x by 1, but has increased
the degree in y to 10, and has increased the size of the integer coefficients.
At this step, the content computation at line 17 involves coefficients with
up to 41 digits. Since the content of this polynomial is y2, we have

R2 = Rec quotient(r, y2, [x, y]).

The iteration continues until R5 = 0. The coefficient and degree explo-
sion for the remaining iterations is summarized in Figure 6.8. Observe that,
at iterations 3 and 4, the remainder r involves more coefficient explosion
and degree explosion in y (columns 2 and 4). In addition, the degree of

252 6. Multivariate Polynomials

i Max. Digits deg(r, x) deg(r, y) deg(cont(r), y) Max. Digits
r in computation

(line 13) (line 13) (line 13) (line 17) of cont r
(line 17)

1 4 4 4 0 7

2 7 3 10 2 41

3 14 2 18 10 44

4 17 1 24 24 17

5 1 −∞ −∞ −∞ 1

Figure 6.8. The degree and coefficient explosion in the procedure Mv poly gcd rec
for the polynomials in Example 6.63.

the content increases (column 5), and the most significant coefficient ex-
plosion occurs during the content computation (column 6). Although, at
the fourth iteration deg(r, y) = 24, all of this involves content, and once
this content is removed, the algorithm obtains

gcd(u, v) = x+ 2. �

The Subresultant gcd Algorithm in K[x]
There are two competing actions at work in the gcd algorithm that affect
the coefficient and degree explosion. First, the content computation and
division at lines 17–18 of Mv poly gcd rec tend to reduce the size of the
remainders. On the other hand, the content computation for these remain-
ders involves significant coefficient explosion and degree explosion in the
auxiliary variables.

We describe now another approach that avoids the content computation
of the pseudo-remainders but still tends to reduce the size of the remain-
ders. The algorithm is known as the subresultant gcd algorithm because its
mathematical justification is based on a mathematical concept with this
name. Since the mathematics behind this algorithm is quite involved, we
only describe the algorithm and refer the reader to the references cited at
the end of the chapter for the mathematical details.

Let u and v be in K[x]. As before, we first compute

d = gcd(cont(u, x), cont(v, x)), (6.82)

and, for this algorithm, compute

g = gcd(lc(u, x), lc(v, x)) (6.83)

where the gcd and content computations are done in K. For v �= 0 and
deg(u, x) ≥ deg(v, x), this approach replaces the sequence in Equation (6.78)

6.3. Greatest Common Divisors 253

by the sequence

S−1 = pp(u),
S0 = pp(v),

S1 =
psrem(S−1, S0, x)

β1
,

...

Si =
psrem(Si−2, Si−1, x)

βi
, (6.84)

...

where the sequence terminates when Sρ = 0. In this sequence, the content
removal in Equation (6.78) is replaced with the division by the expression
βi �= 0 that is defined in the following way. Let

δi = deg(Si−2, x)− deg(Si−1, x) + 1, i ≥ 1, (6.85)

and consider the recurrence relations

ψ1 = −1, β1 = (−1)δ1 , (6.86)

ψi =
(−lc(Si−2, x))δ(i−1)−1

ψ
δ(i−1)−2

i−1

, i > 1, (6.87)

βi = −lc(Si−2, x)ψδi−1
i , i > 1. (6.88)

Once the remainder sequence (6.84) terminates, the gcd is obtained with

s =
lc(Sρ−1)

g
, (6.89)

W =
Sρ−1

s
, (6.90)

gcd(u, v) = c · d · pp(W,x) (6.91)

where c is the unit that transforms the gcd to unit normal form.
The divisor sequence βi is defined in terms of an auxiliary sequence

ψi, and both sequences involve computation in the coefficient domain K.
Using some involved mathematics, it can be shown that

βi|cont(Si, x),
and so, the division in Equation (6.84) removes part of the content from Si.
For this reason, Si tends to have somewhat larger coefficients and higher

254 6. Multivariate Polynomials

degree in the auxiliary variables than Ri. On the other hand, βi does not
involve a gcd computation which significantly reduces the coefficient and
degree explosion in K. These points are illustrated in Example 6.64 below.

Finally, this approach requires that deg(u, x) ≥ deg(v, x), and when
this is not so, it is necessary to interchange u and v.

The Sub resultant gcd rec Procedure. In Figures 6.9 and 6.10, we give a
procedure that uses this algorithm to obtain a gcd in the multivariate
polynomial domain K[x1, . . . , xp] when K is either Z or Q. The procedure,
which is similar to the procedure for Mv poly gcd rec in Figure 6.7, returns
the gcd in non-normalized form. The normalized form is obtained using the
procedure Mv poly gcd (Figure 6.6) with Mv poly gcd rec at line 6 replaced
by Sub resultant gcd rec.

In lines 6–11, we select U and V so that deg(U, x) ≥ deg(V, x). In
lines 13–15 we obtain d in Equation (6.82) using the Polynomial content sr
operator described in Exercise 7 and a recursive call on the procedure. The
remainder sequence is initialized in lines 16–17, and g in Equation (6.83) is
obtained in line 18. In lines 19–38, we obtain the remainder sequence (6.84)
where βi and ψi are obtained in lines 23–32. Finally, a non-normalized form
of the gcd is obtained in lines 39–43 using Equations (6.89), (6.90), and
(6.91). (The constant c that obtains the normalized form is obtained in
Normalize at line 6 of Mv poly gcd .)

Example 6.64. Consider the gcd calculation for the polynomials in Ex-
ample 6.63. In Figure 6.11 we summarize the degree and coefficient explo-
sion obtained by Sub resultant gcd rec in the pseudo-remainder calculation
(line 21) and β calculation (lines 26 and 32).

Comparing these results with those in Figure 6.8, we see, for this pro-
cedure, the remainder r involves coefficient explosion (column 2) of up to
24 digits and degree explosion (column 4) up to degree 32. This is some-
what larger than for r in Mv poly gcd rec which involves up to 17 digits
and degree 24.

On the other hand, β involves coefficient explosion (column 6) of up
to 11 digits and degree explosion (column 5) up to degree 16, which is sig-
nificantly smaller than the computation of cont r in Mv poly gcd rec, which
involves up to 44 digits and degree 24. Because of this, the computation
time for this example for Sub resultant gcd rec is about one third the time
for Mv poly gcd rec. �

6.3. Greatest Common Divisors 255

Procedure Sub resultant gcd rec(u, v, L,K);
Input

u, v : non-zero multivariate polynomials with variables in L with
coefficients in Z or Q;

L : a list of symbols;
K : the symbol Z or Q;

Output gcd(u, v) (not normalized);
Local Variables

x,U, V,R, cont U , cont V , d, g, i, r, δ, ψ, β, δp, f, s,W, cont W , pp W ;
Begin

1 if L = [] then
2 if K = Z then Return(Integer gcd(u, v))
3 elseif K = Q then Return(1)
4 else
5 x := First(L);
6 if Degree gpe(u, x) ≥ Degree gpe(v, x) then
7 U := u;
8 V := v
9 else
10 U := v;
11 V := u
12 R := Rest(L);
13 cont U := Polynomial content sr(U, x,R,K);
14 cont V := Polynomial content sr(V, x,R,K);
15 d := Sub resultant gcd rec(cont U , cont V , R,K);
16 U := Rec quotient(U, cont U , L,K);
17 V := Rec quotient(V, cont V , L,K);

18 g := Sub resultant gcd rec
Q

Leading Coefficient gpe(U, x),Leading Coefficient gpe(V, x),R,K
w

;

Continued in Figure 6.10.

Figure 6.9. An MPL procedure that obtains a gcd of two multivariate polynomials
using the subresultant algorithm. (Implementation: Maple (txt), Mathematica
(txt), MuPAD (txt).)

256 6. Multivariate Polynomials

19 i := 1;
20 while V �= 0 do
21 r := Pseudo remainder(U, V, x);
22 if r �= 0 then
23 if i = 1 then
24 δ = Degree gpe(U, x) −Degree gpe(V, x) + 1;
25 ψ := −1;
26 β = (−1)δ

27 elseif i > 1 then
28 δp = δ;
29 δ = Degree gpe(U, x) −Degree gpe(V, x) + 1;
30 f := Leading Coefficient gpe(U,x);
31 ψ := Rec quotient

i
Algebraic expand

i
(−f)δp−1

J
,

Algebraic expand
i
ψδp−2
J
, R, K

J
;

32 β := Algebraic expand
i−f ∗ ψδ−1

J
;

33 U := V ;
34 V := Rec quotient(r, β, L,K);
35 i := i + 1
36 elseif r = 0 then
37 U := V ;
38 V := r;
39 s := Rec quotient(Leading Coefficient gpe(U, x), g, R,K);
40 W := Rec quotient(U, s, L,K);
41 cont W := Polynomial content sr(W,x,R,K);
42 pp W := Rec quotient(W, cont W , L,K);
43 Return(Algebraic expand(d ∗ pp W))

End

Figure 6.10. Continuation of Figure 6.9.

i Max. digits deg(r, x) deg(r, y) deg(β, y) Max. digits
r in computation

(line 21) (line 21) (line 21) (lines 26 of β
and 32) (lines 26

and 32)

1 4 4 3 0 1

2 7 3 10 2 1

3 15 2 18 6 5

4 24 1 32 16 11

5 1 −∞ −∞ − −

Figure 6.11. The degree and coefficient explosion in the procedure
Sub resultant gcd rec for the polynomials in Example 6.63.

6.3. Greatest Common Divisors 257

Because of coefficient and degree explosion, gcd computation for polyno-
mials with large coefficients and many variables of high degree is a difficult
problem. There are, however, more sophisticated algorithms that obtain
the gcd more efficiently than those given here. The references cited at the
end of the chapter survey some of the recent developments for this problem.

Rational Simplification

One application of multivariate polynomial gcd computation is to obtain
the rationally simplified form of an algebraic expression. Consider the class
of expressions RS-IN defined by the following rules.

RS-IN-1. u is an integer.

RS-IN-2. u is a fraction.

RS-IN-3. u is a symbol.

RS-IN-4. u is sum with operands that are in RS-IN.

RS-IN-5. u is a product with operands that are in RS-IN.

RS-IN-6. u is a power with a base that is in RS-IN and exponent that is
an integer.

In the next definition we describe a standard form for expressions in
RS-IN.

Definition 6.65. Let u be an expression in RS-IN. The expression u is in
rationally simplified form if it satisfies one of the following rules.

RS-1. u is a multivariate polynomial with integer coefficients.

RS-2. Let
n = Numerator(u), d = Denominator(u).

Then, n and d satisfy the following:

1. n and d are multivariate polynomials in a list of symbols L with
integer coefficients.

2. d �= 0 and d �= 1.

3. n and d are relatively prime.

4. n and d are in unit normal form.

RS-3. u = (−1) v where v satisfies RS-2.

258 6. Multivariate Polynomials

The process of transforming an expression in the class RS-IN to a ra-
tionally simplified form in the class RS is called rational simplification.

Example 6.66. The following transformations illustrate the rational sim-
plification process:

−4 a2 + 4 b2

8 a2 − 16 a b+ 8 b2
→ − a+ b

2 a− 2 b
, L = [a, b], (6.92)

→ a+ b

2 b− 2 a
, L = [b, a], (6.93)

1(
1
a
+

c

a b

) +
a b c+ ac2

(b+ c)2
→ a, L = [a, b, c],

2 a3 + 22 a b+ 6 a2 + 7 a+ 6 a2b+ 12 b2 + 21 b
7 a2 − 2 a2b− 5 a− 5 a b2 + 21 a b− 15 b+ 3 b3

(6.94)

→ 2 a2 + 4 b+ 6 a+ 7
7 a− 2 a b+ b2 − 5

, L = [b, a].

The expression to the right of the arrow is in rationally simplified form. In
each case the variable order is indicated by a list L where the main variable
is the first symbol in L. Observe that in Equations (6.92) and (6.93), the
rational simplified form depends on the variable order. In Equation (6.94),
there is a common factor of a+3 b in the numerator and denominator. �

In Exercise 13 we describe a procedure that obtains the rationally sim-
plified form of an expression.

The Extended Euclidean Algorithm in K[x]
When the coefficient domain is a field, using the extended Euclidean algo-
rithm, we obtain polynomials A and B such that Au + B v = gcd(u, v).
When the coefficient domain is not a field, this relationship takes the fol-
lowing form.

Theorem 6.67. Let u and v be polynomials in K[x]. Then, there are
polynomials A and B in K[x] and a unit normal expression s in K such
that

Au+B v = s gcd(u, v). (6.95)

6.3. Greatest Common Divisors 259

Proof: A constructive proof of the theorem is similar to the proofs for
Theorem 2.12 (page 24) and Theorem 4.27 (page 132) with modifications
to accommodate the properties of the coefficient domain K. The details of
the proof are left to the reader (Exercise 14). �

Example 6.68. Consider the polynomials

u = −4 x3y + 4 xy3 + 4 xy, v = 6 x4y + 12 x3y2 + 6 y3x2

in Z[x, y] with main variable x. Then,

s = 24 y4 + 24 y2, gcd(u, v) = 2 xy,

A = 12 y2+24 y4x2+24 y5x+12 y2x2, B = 16 y4x+8 xy2−16 y5−16 y3.

�

The next theorem extends the divisor properties described in Theorem
6.10 (page 205) from the coefficient domain K to K[x].

Theorem 6.69. Suppose that u, v, and w are in K[x] with w|u v.
1. If w and u are relatively prime, then w|v.
2. If w is irrreducible, then w|u or w|v.

Proof: To show (1), by Theorem 6.67, there are polynomials A and B in
K[x] and an s in K such that

Aw +B u = s gcd(w, u)

where, since w and u are relatively prime, s gcd(w, u) is in K. Therefore,

Aw v + B u v = s gcd(w, u) v,

and, since w divides each term in the sum, w|s gcd(w, u) v. Furthermore,
Theorem 6.57 implies that

pp(w, x)|pp(s gcd(w, u), x) pp(v, x),
and, since pp(s gcd(w, u), x) = 1,

pp(w, x)|pp(v, x). (6.96)

In addition, since w|u v, Theorem 6.57 implies

cont(w, x)|cont(u, x) cont(v, x).

260 6. Multivariate Polynomials

However, w and u are relatively prime, and so cont(w, x) and cont(u, x)
are relatively prime as well. Therefore, Theorem 6.10(1) implies

cont(w, x)|cont(v, x). (6.97)

By combining the relations (6.96) and (6.97), we have w|v.
Part (2) is a direct consequence of Part (1). �

Theorem 6.70. If K is a unique factorization domain, then K[x] is also a
unique factorization domain.

Proof: A proof, which is based on Theorem 6.69, is similar to the proof of
Theorem 4.38. The details are left to the reader (Exercise 15). �

By repeatedly applying this theorem, we obtain the following.

Theorem 6.71. If K is a unique factorization domain, then K[x1, . . . , xp]
is also a unique factorization domain.

Exercises
1. Prove Theorem 6.38(3).

2. Show that the set of unit normal polynomials defined in Definition 6.39
satisfies the properties of Definition 6.35.

3. Prove Theorem 6.46.

4. Let u = 2yx3 + 3yx + 4y and v = y x + 2x + 5 be polynomials in Z[x, y]
with main variable x. Find the pseudo-quotient and pseudo-remainder for
u divided by v.

5. Consider the polynomial u = −2y2x2 +8x2−2y x−4x−2y2 +8 with main
variable x.

(a) Find cont(u, x) and pp(u, x) in Z[x, y].

(b) Find cont(u, x) and pp(u, x) in Q[x, y].

6. Prove or disprove: the sum of primitive polynomials is primitive.

7. Let L = [x, y, . . . , z] be a list of symbols, and let u be a polynomial in
K[x, y, . . . , z] where the base coefficient domain K is either Z or Q. In
addition, let R = Rest[L].

(a) Give a procedure

Polynomial content(u, x,R,K)

that finds the content of u with respect to the main variable x and
auxiliary variables R using Mv poly gcd to find the gcd for the coeffi-
cients in the auxiliary variables R.

6.3. Greatest Common Divisors 261

(b) Give a procedure

Polynomial content sr(u, x,R,K)

that finds the content that uses the subresultant algorithm to find
the gcd for the coefficients in the auxiliary variables R.

8. Let p, u, and v be in K[x].

(a) Suppose that u is primitive and v|u. Show that v is also primitive.

(b) For p a primitive polynomial and p|gcd(u, v, x), show that

p|gcd(pp(u, x),pp(v, x), x).

9. Suppose that u and v are polynomials in K[x], and suppose that

deg(gcd(u, v), x) = 0.

Show that pp(u, x) and pp(v, x) are relatively prime.

10. Suppose that u and v are polynomials in K[x] with positive degree, and
suppose that psrem(u, v, x) = 0. Show that u and v have a common factor
with positive degree.

11. Let u and v be polynomials in K[x]. Show that

(a) gcd(cont(u, x), cont(v, x), x) = cont(gcd(u, v, x), x).

(b) gcd(pp(u, x),pp(v, x), x) = pp(gcd(u, v, x), x).

12. Let u be a polynomial in K[x, y, . . . , z] with x the main variable where the
coefficient domain K is either Z or Q, and let L = [x, y, . . . , z]. Give a
procedure

Normalize(u,L,K)

that finds the unit normal form of u. If u = 0, return 0. Note: The
normalized form depends on the base coefficient domain.

13. Let u be an expression that satisfies the RS-IN rules on page 257, and let
L be the list of the symbols in u. Give a procedure Rational simplify(u,L)
that transforms u to rationally simplified form. If a division by zero is
encountered, return the global symbol Undefined.

14. Prove Theorem 6.67 using the following approach. Assume that

deg(u, x) ≥ deg(v, x),

and consider the remainder sequence

T−1 = u,

T0 = v,

T1 = psrem(pp(T−1, x),pp(T0, x), x),

262 6. Multivariate Polynomials

...

Ti = psrem(pp(Ti−2, x),pp(Ti−1, x), x),

...

Observe that Ri = pp(Ti, x), and so the iteration terminates when Tρ = 0.
Let

li = lc(pp(Ti−1, x))δi , i ≥ 1,

where δi = deg(Ti−2, x) − deg(Ti−1, x) + 1, and let

ki =

k
1, if i = −1,
ki−1 cont(Ti−1, x), if i ≥ 0.

Define sequences of polynomials Ai and Bi with the recurrence relations:

A−1 = 1, A0 = 0,

B−1 = 0, B0 = cont(u, x),

and for i ≥ 1,

Ai = cont(Ti−1, x) li Ai−2 −QiAi−1,

Bi = cont(Ti−1, x) li Bi−2 −QiBi−1

where Qi = psquot(pp(Ti−2, x),pp(Ti−1, x), x).

(a) Show that for i ≥ −1,

ki Ti = Ai u + Bi v.

(b) Let d = gcd(cont(u, x), cont(v, x)), and let c be the unit in K that
transforms the greatest common divisor to unit normal form. Show
that

A = c dAρ−1, B = c dBρ−1, k = kρ.

15. Prove Theorem 6.70.

Further Reading

6.1 Integral Domains. Integral domains are described in greater detail in
Akritas [2], Geddes, Czapor, and Labahn [39], Herstein [46], and Dean [31].
Artin [3], page 349 gives an example of an integral domain that is not a unique
factorization domain.

6.2 Polynomial Division and Expansion. The Trigident operator is similar
to the trigsimp command in Macsyma. See also the algsubs command in Maple.

6.3. Greatest Common Divisors 263

6.3 Greatest Common Divisors. The approach here is similar to the approach

in Knuth [55]. The subresultant algorithm presented here is given in Brown [14],

[15], Brown and Traub [16], and Collins [25], [27]. For modern developments

in gcd calculations, see Akritas [2], Geddes, Czapor, and Labahn [39], von zur

Gathen and Gerhard [96], Winkler [101], Yap [105], and Zippel [108].

7

The Resultant

In this chapter we introduce the concept of the resultant of two polynomials.
The resultant has applications in calculations with algebraic numbers, the
factorization of polynomials with coefficients in algebraic number fields, the
solution of systems of polynomial equations, and the integration of rational
functions.

The resultant of polynomials u and v is formally defined in Section 7.1
as the determinant of a matrix whose entries depend on the coefficients of
the polynomials. In addition, we describe a Euclidean type algorithm that
obtains the resultant without a determinant calculation. In Section 7.2, we
use resultants to find polynomial relations for explicit algebraic numbers.

7.1 The Resultant Concept

Suppose that we are given two polynomials

u = x2 + t x+ 2, v = x2 + 5 x+ 6,

and want to know for which values of t the polynomials have a common
factor with positive degree. Since the polynomials do not have a common
factor for all values of t, a greatest common divisor algorithm cannot be
used for this purpose. In this section, we introduce the resultant of two
polynomials which provides a way to determine t.

Let’s generalize things a bit. Let u and v be polynomials in F[x] with
degree 2:

u = u2 x
2 + u1 x+ u0, v = v2 x

2 + v1 x+ v0.

265

266 7. The Resultant

Our goal is to find a function of the coefficients of the two polynomials
that determines if there is a common factor. Suppose, for the moment,
that gcd(u, v) = 1. Then, by Theorem 4.36 on page 137, there are unique
polynomials A(x) and B(x) with deg(A) < deg(v) and deg(B) < deg(u)
such that

Au+B v = 1. (7.1)

With A = a1 x+ a0 and B = b1 x+ b0, Equation (7.1) becomes

(a1 x+ a0) (u2 x
2 + u1 x+ u0) + (b1 x+ b0) (v2 x

2 + v1 x + v0) = 1.

Expanding the left side of this equation and comparing the coefficients of
powers of x, we obtain a system of linear equations:

u2 a1 + v2 b1 = 0, (coefficient of x3),
u1 a1 + u2 a0 + v1 b1 + v2 b0 = 0, (coefficient of x2),
u0 a1 + u1 a0 + v0 b1 + v1 b0 = 0, (coefficient of x1),

u0 a0 + v0 b0 = 1, (coefficient of x0).

In matrix form these equations become:

M

a1

a0

b1
b0

 =

0
0
0
1

 , (7.2)

where M is the matrix of coefficients

M =

u2 0 v2 0
u1 u2 v1 v2

u0 u1 v0 v1

0 u0 0 v0

 .

Since the polynomials A and B are the unique solution to Equation (7.1),
the system (7.2) also has a unique solution. Therefore, when gcd(u, v) = 1,
we have det(M) �= 0.

Conversely, if we assume that det(M) �= 0, then Equation (7.2) has
a solution, which implies that Equation (7.1) has a solution, and so by
Theorem 4.30 on page 133, u and v are relatively prime.

The value det(M) is called the resultant of the polynomials u and v.
In practice, we usually work with the transpose of the matrix M , which is
obtained by interchanging the rows and columns

MT =

u2 u1 u0 0
0 u2 u1 u0

v2 v1 v0 0
0 v2 v1 v0

 .

7.1. The Resultant Concept 267

Since det(MT) = det(M), the determinant of the transpose gives an iden-
tical result.

Example 7.1. Let’s return to the problem proposed at the beginning of the
section with u = x2 + t x+ 2 and v = x2 + 5 x+ 6. Since we want u and v
to have a common factor, their resultant must be 0. Therefore,

det(MT) = det

1 t 2 0
0 1 t 2
1 5 6 0
0 1 5 6

 = 6 t2 − 40 t+ 66 = 0.

This equation has the roots t = 3, 11/3, which are the values of t for which
u and v have a common factor. For t = 3, the common factor is x+2, and
for t = 11/3, the common factor is x+ 3. �

The resultant concept is formally described in the next two definitions.

Definition 7.2. Let K be a coefficient domain,1 and let

u(x) = umx
m + um−1x

m−1 + · · ·+ u0,

v(x) = vnx
n + vn−1x

n−1 + · · ·+ v0

be polynomials in K[x] with m = deg(u) > 0 and n = deg(v) > 0. Define
the matrix

S(u, v, x) =

um um−1 · · · u0

um um−1 · · · u0

.
um um−1 · · · u0

vn vn−1 · · · v0

vn vn−1 · · · v0

.
vn vn−1 · · · v0

(7.3)

which has n rows of u’s coefficients and m rows of v’s coefficients. The
blank locations in the matrix contain zeroes. The matrix S(u, v, x) is called
the Sylvester matrix2 of the two polynomials u and v.

1In this section, the coefficient domain K satisfies the properties on page 231.
2The matrix is named after the mathematician James Joseph Sylvester (1814- 1897)

who first studied the matrix in relation to the elimination of variables from systems of
polynomial equations.

268 7. The Resultant

The Sylvester matrix has n + m rows and columns and is only de-
fined when u and v have positive degree. For example, if deg(u) = 2 and
deg(v) = 3,

S(u, v, x) =

u2 u1 u0 0 0
0 u2 u1 u0 0
0 0 u2 u1 u0

v3 v2 v1 v0 0
0 v3 v2 v1 v0

 .

Definition 7.3. Let u and v be non-zero polynomials in K[x], with m =
deg(u) and n = deg(v). The resultant3 of u and v is defined as

res(u, v, x) =

1, if deg(u, x) = 0, deg(v, x) = 0,
un0 , if deg(u, x) = 0, deg(v, x) > 0,
vm0 , if deg(u, x) > 0, deg(v, x) = 0,
det(S(u, v, x)), if deg(u, x) > 0, deg(v, x) > 0.

(7.4)

The resultant is not defined when either u or v is the zero polynomial.4

When there is no chance for confusion, we omit the variable x and use the
notation res(u, v).

The most important case of the definition is when both polynomials
have positive degree, and the other cases are natural extensions of this
case. For example, if deg(u, x) = 0 and deg(v, x) > 0, then a natural
extension of the Sylvester matrix is one with n = deg(v, x) rows of u’s
coefficients and m = deg(u, x) = 0 rows of v’s coefficients. Since u = u0,
this matrix has the form

S =

u0 . . . 0
0 u0 . . . 0

. . .
0 0 . . . u0

 ,

where there are n rows and columns. Therefore, det(S) = un0 , and so it is
reasonable for this case to define res(u, v) = un0 .

Example 7.4. Let

u = 2 x+ 3, v = 4 x2 + 5 x+ 6. (7.5)
3The resultant is obtained in Maple with the resultant operator, in Mathematica

with the Resultant operator, and in MuPAD with the polylib :: resultant operator.
(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

4In Maple, Mathematica, and MuPAD, the resultant operator returns 0 when either
u or v is 0.

7.1. The Resultant Concept 269

The resultant is

res(u, v) = det

 2 3 0

0 2 3
4 5 6

 = 30. (7.6)

In the definition of the Sylvester matrix, we emphasized that the leading
coefficients of u and v cannot be 0. Indeed, if the resultant is computed with
a Sylvester matrix that is too large, the value may change. For example,
suppose that we redefine u in Equation (7.5) as

u = c x2 + 2 x+ 3

where c is an undefined symbol. Then,

res(u, v) = det

c 2 3 0
0 c 2 3
4 5 6 0
0 4 5 6

 = 36 c2 − 129 c+ 120. (7.7)

To return to the situation in Equation (7.5), we let c = 0, and so res(u, v) =
120 rather than the value 30 obtained in Equation (7.6). �

Properties of the Resultant

The resultant satisfies the following properties.

Theorem 7.5. Let b and c be in the coefficient domain K, and let u and v
be non-zero polynomials in K[x] with m = deg(u) and n = deg(v).

1. res(u, v) = (−1)mn res(v, u).

2. res(c u, v) = cn res(u, v).

3. res(u, c v) = cm res(u, v).

4. res(x, v) = v(0).

5. If u = b (x− c), then res(u, v) = bnv(c).

6. If the coefficients of u are linear in the symbol c, then

deg(res(u, v), c) ≤ n.

7. res((x − b)u, v) = v(b) res(u, v).

270 7. The Resultant

Proof: To prove (1), we assume first that both u and v have positive
degree and show that S(v, u, x) is obtained from S(u, v, x) by m · n row
interchanges. Let Si be the ith row of S(u, v, x) where S1, S2, . . . Sn are
the rows with coefficients of u and Sn+1, Sn+2, . . . Sn+m are the rows with
coefficients of v. Consider the following row interchanges:

S1

S2

...
Sn

Sn+1

Sn+2

...
Sn+m

→

Sn+1

S1

...
Sn

Sn+2

Sn+3

...
Sn+m

→

Sn+1

Sn+2

S1

...
Sn

Sn+3

Sn+4

...
Sn+m

→ · · · →

Sn+1

Sn+2

...
Sn+m

S1

S2

...
Sn

.

To move each Si (n + 1 ≤ i ≤ n + m) to its new place requires n row
interchanges, and since there arem such rows to move, the row interchange
property for determinants implies that res(u, v) = (−1)mnres(v, u). If
deg(u) = 0 or deg(v) = 0, (1) can also be easily verified from the definition.

The proofs of (2) and (3), which also follow from the properties for
determinants, are left to the reader (Exercise 5).

To show (4), we assume first that deg(v) > 0. Then, the Sylvester
matrix is the n+ 1 by n+ 1 matrix

S(x, v, x) =

1 0 · · ·
0 1 0 · · ·

...
· · · 1 0

vn vn−1 · · · v0

 ,

and, therefore,

res(x v) = det(S(x, v, x)) = v0 = v(0).

When deg(v) = 0, the relationship follows directly from the definition of
the resultant.

To show (5), first assume that deg(v) > 0. Then,

res(b (x− c), v) = det

b −b c 0 · · ·
0 b −b c 0 · · ·

...
0 · · · b −b c

vn vn−1 · · · v0

 .

7.1. The Resultant Concept 271

Let Cj be the jth column of this n + 1 by n + 1 matrix and form a new
matrix with Cn+1 replaced by

cn C1 + cn−1 C2 + · · · cCn + Cn+1 =

cn b− cn−1 b c
cn−1 b− cn−2 b c

...
c b− b c

vn c
n + vn−1 c

n−1 + · · ·+ v0

 =

0
0
...
0

v(c)

 .

Since this column operation does not change the value of the determinant,
we have

res(b (x− c), v) = det

b −b c 0 · · · 0
0 b −b c 0 · · · 0

...
0 · · · b 0

vn vn−1 · · · v1 v(c)

 .

Evaluating the determinant by expanding with the last column, we have

res(b (x− c), v) =

v(c) · det

b −b c 0 · · ·
0 b −b c 0 · · ·

...
0 · · · b −b c
0 · · · 0 b

= v(c) bn.

The case where deg(v) = 0 is left to the reader.
We show (6) when deg(u) > 0 and deg(v) > 0 and leave the other cases

to the reader. Recall that the evaluation of a determinant involves the sum
of terms which are products with one element from each row and column of
the matrix. Since the matrix S has n rows with u’s coefficients, and since
each coefficient has degree at most 1 in c, the resultant is at most degree
n in c.

We show (7) when deg(u) > 0 and deg(v) > 0 and leave the other cases
to the reader. Let

w = (x − b)u = wm+1x
m+1 + · · ·+ w0

272 7. The Resultant

where

wi =

{um, i = m+ 1,
ui−1 − b ui, i = 1, . . . ,m,
−b ui, i = 0.

(7.8)

We have res(w, v) = det(S(w, v, x)) where S(w, v, x) is the m+ 1 + n by
m+ 1 + n matrix

S(w, v, x) =

wm+1 wm · · · w0

wm+1 wm · · · w0

.
wm+1 wm · · · w0

vn vn−1 · · · v0

vn vn−1 · · · v0

.
vn vn−1 · · · v0

. (7.9)

Multiplying column Ci (1 ≤ i < m+1+ n) by bm+1+n−i and adding these
columns to the last column, we obtain a new matrix S2 where the last
column has the entries

bm+n C1 + bm+n−1 C2 + · · ·+ b Cm+n

=

bm+nwm+1 + · · ·+ bn−1 w0

...
bm+1 wm+1 + · · ·+ w0

bm+n vn + · · ·+ bm v0

...
bn vn + · · ·+ v0

=

bn−1w(b)
...

w(b)
bm v(b)

...
v(b)

=

0
...
0

bm v(b)
...

v(b)

.

We can factor v(b) out of the last column and obtain a new matrix S3

where the last column has the entries

0, . . . , 0, bm, · · · , 1,
and

res(w, v) = det(S(w, v, x)) = det(S2) = v(b) · det(S3). (7.10)

Observe that det(S(w, v, x)) is a polynomial in b, and by Part (6),

deg(det(S(w, v, x)), b) ≤ n.

7.1. The Resultant Concept 273

However, since deg(v(b), b) = n, Equation (7.10) implies

deg(v(b) · det(S3), b) = deg(v(b), b) + deg(det(S3), b,)
= n+ deg(det(S3), b)
≤ n,

and so
deg(det(S3), b) = 0.

In other words, the symbol b is eliminated in the evaluation of det(S3).
Therefore, we substitute 0 for b in S3 and obtain a new matrix S4 with the
m+ 1 + n entries

0, . . . , 0, 1

in the last column. From Equation (7.10), evaluating det(S4) by expanding
about the last column, we obtain

res(w, v) =

v(b) det

wm+1 wm · · · w0

wm+1 wm · · · w0

.
wm+1 wm · · · w1

vn vn−1 · · · v0

vn vn−1 · · · v0

.
vn vn−1 · · · v0

(7.11)

where the matrix has n rows of w coefficients, m rows of v coefficients, and
the last entry in row n is w1. However, when b = 0, Equation (7.8) gives

wi =
{
ui−1, i = 1, · · · ,m,
0, i = 0,

and therefore, Equation (7.11) gives

res(w, v) = v(b) det

um um−1 · · · u0

um um−1 · · · u0

.
um um−1 · · · u1

vn vn−1 · · · v0

vn vn−1 · · · v0

.
vn vn−1 · · · v0

= v(b) res(u, v). �

274 7. The Resultant

Fundamental Theorems

The next three theorems are fundamental to the application of resultants.

Theorem 7.6. Let u and v be polynomials of positive degree in K[x]. Then,
u and v have a common factor of positive degree if and only if there are
non-zero polynomials C and D in K[x] with

deg(C) < deg(v), deg(D) < deg(u) (7.12)

such that
C u+Dv = 0.

Proof: First, assume that u and v have a common factor w of positive
degree. Then, u = pw, v = q w, and so let C = −q and D = p. Therefore,
C and D are non-zero and satisfy the degree conditions (7.12). In addition,

C u+Dv = −q (pw) + p (q w) = 0.

Conversely, assume that C and D exist with the properties stated in
the theorem, and suppose that u and v do not have a common factor of
positive degree. Then, pp(u) and pp(v) are relatively prime (Exercise 9,
page 261) and

pp(C) pp(u) = −pp(D) pp(v).

Using Theorem 6.69(1), we have

pp(u)|pp(D). (7.13)

But since pp(D) �= 0 and

deg(pp(D)) = deg(D) < deg(u) = deg(pp(u)),

the condition (7.13) can’t be true. Therefore, u and v have a common
factor of positive degree. �

The next theorem is the resultant version of the relationship obtained
with the extended Euclidean algorithm.

Theorem 7.7. Let u and v be polynomials in K[x] with deg(u) = m > 0
and deg(v) = n > 0. Then, there are polynomials A and B in K[x] with
deg(A) < n and deg(B) < m such that

Au+B v = res(u, v). (7.14)

7.1. The Resultant Concept 275

Proof: Let Ci be the ith column of the Sylvester matrix, and form a new
matrix S2 by replacing column Cm+n by

xm+n−1 C1 + xm+n−2 C2 + · · ·+ xCm+n−1 + Cm+n =

xn−1 u
xn−2 u

...
u

xm−1 v
xm−2 v

...
v

.

Therefore,

S2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

um um−1 · · · u0 · · · xn−1u
um um−1 · · · u0 · · · xn−2u

.
um um−1 · · · u

vn vn−1 · · · v0 · · · xm−1v
vn vn−1 · · · v0 · · · xm−2v

.
vn vn−1 · · · v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.15)

and since this column operation does not change the value of the determi-
nant we have

res(u, v) = det(S) = det(S2).

If we evaluate det(S2) by expanding about the last column, we obtain Equa-
tion (7.14), where the coefficients of A and B are determinant cofactors of
the elements in the last column of S2. The degree conditions for A and B
are obtained from the powers of x that multiply u and v in S2. �

Example 7.8. We consider pairs of polynomials inQ[x] and the polynomials
A and B obtained by evaluating det(S2).

For u = x2 + 5 x+ 6 and v = x2 − 1, then

gcd(u, v) = 1, res(u, v) = 24, A = −5 x+ 7, B = 5 x+ 18.

For u = x3 + 2 x2 + x+ 2 and v = x3 − 2 x2 + x− 2, then

gcd(u, v) = x2 + 1, res(u, v) = 0, A = 0, B = 0.

276 7. The Resultant

In this case, the polynomials A and B are not unique. Indeed

Au+B v = (−x+ 2)u+ (x + 2) v = 0. �

The next theorem describes the fundamental relationship between the
resultant and the common structure (in x) of u and v.

Theorem 7.9. Let u and v be polynomials in K[x] with positive degree.
Then, u and v have a common factor w with deg(w, x) > 0 if and only if
res(u, v, x) = 0.

Proof: To prove the theorem first suppose that w is a common factor of u
and v with deg(w, x) > 0. Then, by Equation (7.14), w|res(u, v). However,
since w has positive degree and since res(u, v) is inK, we have res(u, v) = 0.

Conversely, suppose that res(u, v) = 0. By Theorem 7.7 there are poly-
nomials A and B with deg(A) < n and deg(B) < m such that

Au+B v = 0. (7.16)

Observe that if A �= 0 and B �= 0, then Theorem 7.6 implies that there
is a common factor of u and v with positive degree. Unfortunately, the
polynomials A and B obtained in Theorem 7.7 may both be zero (see
Example 7.8 above). When this occurs, we obtain a proof as follows. If

A(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a0,

B(x) = bm−1x
m−1 + bm−2x

m−2 + · · ·+ b0,

the matrix form of Equation (7.16) is given by

ST ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an−1

an−2

...
a0

bm−1

bm−2

...
b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

0
0

...

0
0

(7.17)

where ST is the transpose of the Sylvester matrix S. Since det(ST) =
det(S) = res(u, v) = 0, the homogeneous system (7.17) has a solution with
some ai or bi not zero. This implies that there are polynomials A and
B, not both zero, which satisfy Equation (7.16). In fact, Equation (7.16)

7.1. The Resultant Concept 277

implies that Au = −B v which implies that both A and B are not zero.
Therefore, Theorem 7.6 implies that u and v have a common factor of
positive degree. �

Euclidean Algorithms for Resultant Calculation

Although the resultant can be computed directly from the determinant def-
inition, it can also be obtained with an algorithm similar to the Euclidean
algorithm. Since the development is simpler when the coefficient domain
is a field F, we consider this case first.

Resultant Calculation in F[x]. In this case, the algorithm is based on the next
theorem which is the resultant version of Theorem 4.22 on page 128.

Theorem 7.10. Suppose that u and v are polynomials in F[x] with posi-
tive degree, where m = deg(u) and n = deg(v). Let rσ be defined by the
polynomial division

u = qσ v + rσ,

and let s = deg(rσ). Then,

res(u, v, x) =
{
0, if rσ = 0,
(−1)mn vm−s

n res(v, rσ , x), if (rσ) �= 0. (7.18)

Proof: To verify the first case, if rσ = 0, then deg(gcd(u, v)) > 0, and by
Theorem 7.9, res(u, v) = 0.

Assume next that rσ �= 0. First observe that when m < n, we have
rem(u, v) = u, and the second case follows from Theorem 7.5(1).

For the remainder of the proof we assume that m ≥ n. Let’s look at
the interplay between the division process and the matrix S. Recall that
the remainder in polynomial division is defined by the iteration scheme

ri = ri−1 − lc(ri−1)
lc(v)

v xdeg(ri−1)−deg(v), r0 = u. (7.19)

Since m ≥ n, there is a least one iteration step and

r1 = u− um
vn

v xm−n (7.20)

where deg(r1) ≤ m− 1. Suppose that

r1 = u
(1)
m−1x

m−1 + u
(1)
m−2x

m−2 + · · ·+ u
(1)
0

278 7. The Resultant

where the notation u
(1)
j represents the coefficient of xj in r1. Observe that

the iteration (7.19) gives

0 = um − um
vn

vn,

u
(j)
m−1 = um−1 − um

vn
vn−1, (7.21)

u
(j)
m−2 = um−2 − um

vn
vn−2,

...

Let Sj be the jth row of the Sylvester matrix S. In matrix terms, the
operation (7.21) corresponds to replacing row Sj , by Sj − (um/vn)Sj+n,
for 1 ≤ j ≤ n, and this row operation does not change the value of the
determinant. Therefore,

res(u, v) = det

0 u
(1)
m−1 · · · u

(1)
0

0 0 u
(1)
m−1 · · · u

(1)
0

.
0 u

(1)
m−1 · · · u

(1)
0

vn vn−1 · · · v0

vn vn−1 · · · v0

.
vn vn−1 · · · v0

,

where the matrix has n rows of r1’s coefficients and m rows of v’s coeffi-
cients.

The division process continues in this manner obtaining the remainders
r2, r3, . . . with the iteration (7.19). At each step we modify the matrix
with the corresponding row operations as was done for r1, and, as before,
the value of the determinant is not changed. The process terminates with
the remainder

rσ = u(σ)
s xs + u

(σ)
s−1x

s−1 + · · ·+ u
(σ)
0

with s = deg(rσ) < deg(v) and

7.1. The Resultant Concept 279

res(u, v) =

det

0 · · · 0 u
(σ)
s · · · u

(σ)
0

0 0 · · · 0 u
(σ)
s · · · u

(σ)
0

.
0 0 · · · 0 u

(σ)
s · · · u

(σ)
0

vn vn−1 · · · v0

0 vn vn−1 · · · v0

. . .
. . .

0 vn vn−1 · · · v0

.

(7.22)

This matrix has n rows of rσ coefficients, m rows of v coefficients, and
the first row has 0 in the first m− s columns. Observe that vn is the only
member of column 1 that is not zero. Therefore, evaluating the determinant
by expanding about column 1 we obtain

res(u, v) = vn · (−1)n

· det

0 · · · 0 u
(σ)
s · · · u

(σ)
0

0 0 · · · 0 u
(σ)
s · · · u

(σ)
0

.
0 0 · · · 0 u

(σ)
s · · · u

(σ)
0

vn vn−1 · · · v0

vn vn−1 · · · v0

.
vn vn−1 · · · v0

.

(7.23)

Although the matrices (7.22) and (7.23) look the same, the one in (7.23)
has n rows of rσ ’s coefficients, m − 1 rows of v’s coefficients, and the first
m− s− 1 coefficients in row 1 are 0. Again, we evaluate this determinant
by expanding about column 1. By repeating this process m− s− 1 times,
we obtain

280 7. The Resultant

res(u, v) =

(vn(−1)n)m−s · det

u
(σ)
s · · · u

(σ)
0

0 u
(σ)
s · · · u

(σ)
0

.
· · · u

(σ)
s · · · u

(σ)
0

vn vn−1 · · · v0

vn vn−1 · · · v0

.
vn vn−1 · · · v0

,

(7.24)

where there are n rows of rσ’s coefficients and s = deg(rσ) rows of v’s
coefficients.

Let’s assume first that deg(rσ) ≥ 1. Since the determinant in Equa-
tion (7.24) is res(rσ, v), it follows from Theorem 7.5(1) that

res(u, v) = (vn(−1)n)m−s (−1)n s res(v, rσ) = (−1)nm vm−s
n res(v, rσ),

which proves the second case of the theorem when deg(rσ) ≥ 1. Finally,
suppose that deg(rσ) = 0. Evaluating the determinant and using Defini-
tion 7.3, we obtain

res(u, v) = ((−1)nvn)m (u(σ)
0)

n
= (−1)nm vmn rnσ = (−1)nmvmn res(v, rσ),

which proves the second case of the theorem. �

We can compute res(u, v) by repeatedly applying Theorem 7.10 to
members of the polynomial remainder sequence Ri (see Equation (4.24),
page 128).

Example 7.11. Let u = 2 x3−3 x+1 and v = 3 x2−4 x+3. The remainder
sequence is given by

R−1 = u, R0 = v, R1 = −13/9 x− 5/3, R2 = 1962/169.

Therefore, applying Theorem 7.10, we have

res(u, v) = res(R−1, R0) = (−1)3·2 33−1 res(R0, R1)
= 9 · res(R0, R1). (7.25)

Since deg(R2) = 0, using Equation (7.4), we have res(R1, R2) = (1962/169)1,
and therefore

res(R0, R1) = (−1)1·2 (−13/9)2 res(R1, R2) = 218/9. (7.26)

7.1. The Resultant Concept 281

Procedure Polynomial resultant(u, v, x);
Input

u, v : non-zero polynomials in F[x] where all field
in F are obtained with automatic simplification;

x : a symbol;
Output

res(u, v, x);
Local Variables

m,n, r, s, l;
Begin

1 m := Degree gpe(u, x);
2 n := Degree gpe(v, x);
3 if n = 0 then
4 Return(vm)
5 else
6 r := Remainder(u, v, x);
7 if r = 0 then
8 Return(0)
9 else
10 s := Degree gpe(r, x);
11 l := Coefficient gpe(v, x, n);
12 Return(Algebraic expand(

(−1)m∗n ∗ lm−s ∗ Polynomial resultant(v, r, x)))
End

Figure 7.1. An MPL procedure for a Euclidean algorithm that obtains the
resultant for polynomials in F[x]. (Implementation: Maple (txt), Mathematica
(txt), MuPAD (txt).)

Therefore, using Equation (7.25), we have res(u, v) = 218. �

A procedure for the resultant that is based on Theorem 7.10 is given in
Figure 7.1. Lines 3 and 4, which are based on Equation (7.4), and Lines 7
and 8, which are based on Equation (7.18), provide termination conditions
for the recursion. Lines 7 through 12 are based on the recursion relation
in the theorem.

Resultant Calculation in K[x]. When the coefficient domain K is not a field,
resultant calculation is based on pseudo-division rather than ordinary poly-
nomial division. Let u and v be polynomials in K[x] with positive degree
wherem = deg(u, x), n = deg(v, x), δ = m−n+1, andm ≥ n. In addition,

282 7. The Resultant

assume that
r = psrem(u, v, x) �= 0.

To motivate the relation between res(u, v, x) and res(v, r, x), recall that we
can view pseudo-division as the recursive division

lc(v)δ u = q v + r, (7.27)

and, in this case, the division terminates when deg(r, x) < deg(v, x). If we
assume, for the moment, that the recurrence relation (7.18) holds in this
setting for Equation (7.27), we have, using Theorem 7.5(2),

res
(
lc(v)δ u, v, x

)
= lc(v)δ n res(u, v, x) = (−1)mn lc(v)m−s res(v, r, x)

where s = deg(r). Therefore,

lc(v)δ n−m+sres(u, v, x) = (−1)mn res(v, r, x).
However, since n ≥ 1, m ≥ n, and s ≥ 0,

δ n−m+ s = (m− n+ 1)n−m+ s

≥ mn− n2 + n−m

= (n− 1)(m− n)
≥ 0,

we have

res(u, v, x) =
(−1)mn res(v, r, x)

lc(v)δ n−m+s
.

This discussion suggests that in this setting, Theorem 7.10 has the
following form.

Theorem 7.12. Suppose u and v are polynomials in K[x] with positive
degree where m = deg(u), n = deg(v), and m ≥ n. For the pseudo-division
lc(v)δu = q v + r with s = deg(r, x), we have

res(u, v, x) =

0, if r = 0,
(−1)mn res(v, r, x)

lc(v)δ n−m+n
, if r �= 0. (7.28)

Proof: A proof of the theorem that is based on the definition of pseudo-
division (Definition 6.44, page 237) is similar to the one for Theorem 7.10.
The details are left to the reader (Exercise 8). �

7.1. The Resultant Concept 283

Procedure Polynomial resultant mv(u, v, L,K);
Input

u, v : non-zero multivariate polynomials in symbols in L
with coefficients in Z or Q;

L : a list of symbols with main variable x = Operand(x, 1);
K : the symbol Z or Q;

Output
res(u, v, x);

Local Variables
x,m, n, δ, r, s, l, w, f, k;

Begin
1 x = Operand(L, 1);
2 m := Degree gpe(u, x);
3 n := Degree gpe(v, x);
4 if m < n then
5 Return ((−1)m∗n ∗ Polynomial resultant mv(v, u, L,K))
6 elseif n = 0 then
7 Return(vm)
8 else
9 δ := m− n + 1;
10 r := Pseudo remainder(u, v, x);
11 if r = 0 then
12 Return(0)
13 else
14 s := Degree gpe(r, x);
15 w := Algebraic expand(

(−1)m∗nPolynomial resultant mv(v, r, L,K));
16 l := Leading Coefficient gpe(v, x);
17 k := δ ∗ n−m + s;
18 f := Algebraic expand(lk);
19 Return(Rec quotient(w, f, L,K))

End

Figure 7.2. An MPL procedure for a Euclidean algorithm that obtains
the resultant for multivariate polynomials. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

A procedure for resultant calculation in this setting is given in Fig-
ure 7.1. The input polynomials u and v are multivariate polynomials in
the symbols in L where the first operand x of L is the main variable.
The procedure returns the resultant with respect to x. Observe that the
coefficient domain K is included as a formal parameter because it is re-
quired by Rec quotient in line 19.

284 7. The Resultant

Recursive call deg(r, x) deg(r, y) Max. digits
r

1 4 4 4
2 3 10 6
3 2 22 14
4 1 54 33

Figure 7.3. Coefficient and degree explosion for the monomials in r obtained at
line 10 in the procedure Polynomial resultant mv for the polynomials in Exam-
ple 7.13.

Since Polynomial resultant and Polynomial resultant mv are based on
polynomial remainder sequences, they produce coefficient and degree ex-
plosion similar to the gcd procedures in Figure 4.3 and Figure 6.6. This
point is illustrated in the next example.

Example 7.13. Consider the polynomials

u = x3y2 + 6 x4y + 9 x5 + 4 x2y2 + 24 x3y + 36 x4 + 5 xy2 + 30 yx2

+45 x3 + 2 y2 + 12 y x+ 18 x2,

v = x5y2 + 8 x4y + 16 x3 + 12 x4y2 + 96 x3y + 192 x2 + 45 x3y2

+360 yx2 + 720 x+ 50 x2y2 + 400 y x+ 800

as polynomials in Z[x, y] with x the main variable. In Example 6.63
(page 250), we obtained gcd(u, v) = x+2, and, therefore, by Theorem 7.9,

res(u, v, x) = 0.

In Figure 7.3, we give a summary of the coefficient and degree explosion ob-
tained in the monomials in the pseudo-remainder r at line 10 in Figure 7.1.
Observe that there is a dramatic increase in the coefficient and degree ex-
plosion for subsequent procedure calls. Eventually, the pseudo-remainder
r = 0 terminates the recursion (lines 11–12), and so the recursion unwinds
giving a resultant of 0. �

Resultant Calculation: The Subresultant Remainder Sequence. There are a num-
ber of ways to reduce the coefficient and degree explosion in resultant calculation.
We briefly describe an approach based on the subresultant remainder se-
quence that was used in Section 6.3 to reduce coefficient and degree explo-
sion in multivariate gcd calculations. This approach involves the remainder
sequence

S−1 = pp(u),

7.1. The Resultant Concept 285

Recursive call deg(r, x) deg(r, y) Max. digits
r

1 4 4 4
2 3 8 7
3 2 12 9
4 1 16 14

Figure 7.4. Coefficient and degree explosion for the monomials in r obtained at
line 9 in the procedure Sr polynomial resultant rec for the polynomials in Exam-
ples 7.13 and 7.14.

S0 = pp(v),

S1 =
psrem(S−1, S0, x)

β1
,

...

Si =
psrem(Si−2, Si−1, x)

βi
, (7.29)

...

which reduces the coefficient and degree explosion by dividing the pseudo-
remainders by the expression βi given by the recurrence relations

ψ1 = −1, β1 = (−1)δ1 , (7.30)

ψi =
(−lc(Si−2, x))δ(i−1)−1

ψ
δ(i−1)−2

i−1

, i > 1, (7.31)

βi = −lc(Si−2, x)ψδi−1
i , i > 1 (7.32)

where
δi = deg(Si−2, x)− deg(Si−1, x) + 1, i ≥ 1. (7.33)

Procedures to compute the resultant using this approach are given in
Figures 7.5, 7.6, and 7.7. The main procedure Sr polynomial resultant
removes the content of the polynomials and then obtains the resultant of the
primitive parts using the recursive procedure Sr polynomial resultant rec.
At line 10, the resultant is obtained using Theorem 7.5(2),(3).

The recursive procedure Sr polynomial resultant rec performs the cal-
culations using the subresultant remainder sequence. Observe that the
formal parameter list includes δp and ψp which correspond to the previous

286 7. The Resultant

Procedure Sr polynomial resultant (u, v, L,K);
Input

u, v : non-zero multivariate polynomials in symbols in L
with coefficients in Z or Q;

L : a list of symbols with main variable x = Operand(x, 1);
K : the symbol Z or Q;

Output
res(u, v, x);

Local Variables
x,R,m, n, cont u , pp u, cont v , pp v , s;

Begin
1 x = Operand(L, 1);
2 R = Rest(L);
3 m := Degree gpe(u, x);
4 n := Degree gpe(v, x);
5 cont u := Polynomial content sr(u, x,R,K);
6 pp u := Rec quotient(u, cont u, L,K);
7 cont v := Polynomial content sr(v, x,R,K);
8 pp v := Rec quotient(v, cont v , L,K);
9 s := Sr polynomial resultant rec(pp u, pp v , L,K, 1, 0, 0);
10 Return((cont u)n ∗ (cont v)m ∗ s)

End

Figure 7.5. The main MPL procedure that obtains the resultant for multivariate
polynomials using the subresultant remainder sequence. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

values δi−1 and ψi−1 in Equations (7.31) and (7.32). The initial call on
the procedure at line 9 of Figure 7.5 uses the actual parameters δp = 0 and
ψp = 0 because δp and ψp are not used when i = 1 (see lines 15–17).

Since this approach requires deg(u, x) ≥ deg(v, x), at lines 4–5 we check
this condition and, if necessary, apply Theorem 7.5(1). Lines 6-7 use a case
in Definition 7.3 as one of the termination conditions for the recursion. In
lines 9–11, we compute the pseudo-remainder and then check the termina-
tion condition in Equation (7.28). We compute the current values of ψi and
βi in lines 15–21, and obtain the division in Equation (7.29) at line 22. At
line 23, we obtain (recursively) res(v, r) and then apply Theorem 7.5(1),(2).
Finally, in lines 24–28 we perform the division in Equation (7.28).

Example 7.14. Consider again the resultant calculation for the polynomi-
als in Example 7.13. In Figure 7.4 (page 285), we give a summary of the

7.1. The Resultant Concept 287

Procedure Sr polynomial resultant rec(u, v, L,K, i, δp, ψp);
Input

u, v : non-zero multivariate polynomials in symbols in L
with coefficients in Z or Q;

L : a list of symbols with main variable x = Operand(x, 1);
K : the symbol Z or Q;
i, δp, ψp : non-negative integers;

Output
res(u, v, x);

Local Variables
x,m, n, r, δ, R, ψ, β, f, s, w, l, k;

Begin
1 x = Operand(L, 1);
2 m := Degree gpe(u, x);
3 n := Degree gpe(v, x);
4 if m < n then
5 Return((−1)m∗n ∗ Sr polynomial resultant rec(v, u, L,K, i, δp, ψp))
6 elseif n = 0 then
7 Return(vm)
8 else
9 r := Pseudo remainder(u, v, x);
10 if r = 0 then
11 Return(0)

Continued in Figure 7.7

Figure 7.6. A recursive MPL procedure that obtains the resultant for multivari-
ate polynomials using the sub-resultant remainder sequence. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

coefficient and degree explosion obtained in the monomials in the pseudo-
remainder r at line 9 in the procedure Sr polynomial resultant rec in Fig-
ure 7.6. Comparing these results with those in Figure 7.3, we see that sub-
resultant remainder sequence significantly reduces degree and coefficient
explosion. �

Exercises
1. Let u = x3 − 1 and v = x2 + 2.

(a) Give the Sylvester matrix S(u, v, x).

288 7. The Resultant

12 elseif r �= 0 then
13 δ := m− n + 1;
14 R := Rest(L);
15 if i = 1 then
16 ψ = −1;
17 β = (−1)δ

18 elseif i > 1 then
19 f := Leading Coefficient gpe(u, x);

20 ψ := Rec quotient
i
Algebraic expand

i
(−f)δp−1

J
,

Algebraic expand
i
ψδp−2
J
, R, K

J
;

21 β := Algebraic expand
i−f ∗ ψδ−1

J
;

22 r := Rec quotient(r, β, L,K);
23 w := Algebraic expand((−1)m∗n ∗ βn

∗Sr polynomial resultant(v, r, L,K, i + 1, δ, ψ));
24 l := Coefficient gpe(v, x, n);
25 s := Degree gpe(r, x);
26 k = n ∗ δ −m + s;

27 f := Algebraic expand
i
lk
J

;
28 Return(Rec quotient(w, f, L,K))

End

Figure 7.7. Continuation of Figure 7.6.

(b) Compute res(u, v) using the determinant definition.

(c) Compute res(u, v) using the algorithm in Figure 7.1.

2. For what values of t do the two polynomials u = x2 + 5x + t and v =
x2 + t x + 9 have a common factor of positive degree?

3. Consider the two equations u = ax2+b x+a = 0 and v = x3−2x2+2x−1 =
0. Show that the two equations have a common root if a = −b or a = −b/2.

4. Suppose u and v in K[y] and res(u, v) �= 0. Show that A and B in Equation
(7.14) are unique.

5. Prove Theorem 7.5, Parts (2) and (3).

6. Let m be a positive integer, and let v be in F[x]. Show that res(xm, v) =
vm
0 .

7. Let u = x2 + 1 and v = x2 + 2x + 1. Find res(u, v) and the polynomials A
and B described in Theorem 7.7.

8. Prove Theorem 7.12.

7.2. Polynomial Relations for Explicit Algebraic Numbers 289

7.2 Polynomial Relations for Explicit Algebraic Numbers

Let α be an explicit algebraic number. The algorithm described in this
section uses the resultant to find a non-zero polynomial u(x) in Q[x] that
has α as a root. The algorithm is based on the following theorem.

Theorem 7.15. Let v(x) and w(x) be polynomials in Q[x] with positive
degree, and suppose that v(α) = 0 and w(β) = 0. Then:

1. α+ β is a root of

u(x) = res(v(x − y), w(y), y) = 0.

2. αβ is a root of

u(x) = res(ym v(x/y), w(y), y) = 0

where m = deg(v(x), x).

3. If α �= 0, then α−1 is a root of

u(x) = res(x y − 1, v(y), y) = 0.

4. If a/b is a positive rational number in standard form, then αa/b is a
root of

u(x) = res(v(y), xb − ya, y) = 0.

Proof: To show (1), define the polynomial

f(y) = v(α+ β − y).

Since f(β) = v(α) = 0 and w(β) = 0, the polynomials f and w have
a common root β, and Theorem 7.9 implies that res(f(y), w(y), y) = 0.
Therefore,

u(α+ β) = res(v(α + β − y), w(y), y) = res(f(y), w(y), y) = 0.

The other statements in the theorem are proved in a similar way (Ex-
ercise 2). �

As a consequence of Theorem 7.15, we have the following theorem.

Theorem 7.16. The algebraic numbers A are a field.

290 7. The Resultant

Proof: Theorem 7.15 shows that the algebraic numbers are closed under
addition (Axiom F-1) and multiplication (Axiom F-2), and that the multi-
plicative inverse of a non-zero algebraic number is also an algebraic number
(Axiom F-12). The remaining field properties follow because the algebraic
numbers are included in the field of complex numbers. �

In the next few examples, we show that by repeatedly applying Theo-
rem 7.15 we obtain a polynomial that has a given explicit algebraic number
as a root.

Example 7.17. Consider the explicit algebraic number

α = 21/2 + 31/2 + 51/2.

The three radicals in the sum have minimal polynomials

p2(x) = x2 − 2, p3(x) = x2 − 3, p5(x) = x2 − 5.

Using Theorem 7.15(1), 21/2 + 31/2 is a root of

u(x) = res(p2(x− y), p3(y), y) = x4 − 10 x2 + 1.

Applying the theorem again, we have α is a root of

res(u(x− y), p5(y), y) = x8 − 40 x6 + 352 x4 − 960 x2 + 576.

Since this polynomial is monic and irrreducible, it is the minimal polynomial
for α. �

Example 7.18. Consider the explicit algebraic number

α =
1√

2 +
√
3
+

1√
5 +
√
7
.

From the last example, the polynomial u1(x) = x4−10 x2+1 has 21/2+31/2

as a root, and applying Theorem 7.15(3), we obtain

u2(x) = res(x y − 1, u1(y), y) = x4 − 10 x2 + 1

which has 1/(21/2 + 31/2) as a root. (Although u1 = u2 in this case,
this is not generally true.) In a similar way, 1/(51/2 + 71/2) is a root of
u3(x) = 4 x4 − 24 x2 + 1. Applying Theorem 7.15(1), α is a root of

u4(x) = res(u2(x − y), u3(y), y)
= 256 x16 − 16384 x14 + 363776 x12 − 3729408 x10

+ 18468704 x8 − 39450624 x6 + 23165264 x4

− 3909760 x2 + 46225.

7.2. Polynomial Relations for Explicit Algebraic Numbers 291

Since this polynomial is irrreducible in Q[x], (1/lc(u4)) · u4 is the minimal
polynomial for α. �

Example 7.19. Let
α =
√
2
√
3 +
√
6.

Repeated application of Theorem 7.15 gives

u(x) = x8 − 48 x6 + 576 x4 = x4 (x2 − 24)2 (7.34)

which has α as a root. In this case, u(x) is reducible and the factors of u
give additional information about α. In a numerical sense, α can have up
to eight different values that correspond to the sign interpretations of its
three square root symbols

(±
√
2)(±

√
3) ±

√
6. (7.35)

These numerical values are indicated by the factors of the polynomial. For
example, since x4 is a factor, there are four choices of signs where the
expression (7.35) simplifies to zero:

(+
√
2)(+

√
3)−

√
6, (+

√
2)(−

√
3) +

√
6,

(−
√
2)(+

√
3) +

√
6, (−

√
2)(−

√
3)−

√
6.

In addition, since (x2 − 24)2 is a factor, there are two choices of signs
where the expression (7.35) simplifies to +

√
24 = 2(+

√
6), and two choices

of signs where it simplifies to −√24 = 2(−√6).
It is interesting to see what happens when Theorem 7.15(3) is applied

to u(x) in Equation (7.34) to find the polynomial associated with

1
(±√2)(±√3) ± √6 , (7.36)

because, for some choices of signs, the denominator is 0. In this case we
obtain

res(x y − 1, u(y), y) = res(x y − 1, y8 − 48 y6 + 576 y4, y)
= 576 x4 − 48 x2 + 1
= (24 x2 − 1)2

which has as its solutions the four expressions in (7.36) where the signs
are chosen so that division by 0 does not occur. In Exercise 3, we give a
resultant relation that shows why this is so. �

292 7. The Resultant

Example 7.20. Let

α =
√
2 +
√
3 +

√
5 + 2

√
6.

Repeated application of Theorem 7.15 gives the reducible polynomial

u(x) = x16 − 80 x14 + 2208 x12 − 28160 x10

+ 172288 x8 − 430080 x6 + 147456 x4

= x4 (x2 − 8)2(x2 − 12)2(x4 − 40 x2 + 16) (7.37)

which has α for a root. In a numerical sense, α can have up to 16 different
values that correspond to the sign interpretations of its four square root
symbols

±
√
2±
√
3±

√
5± 2

√
6. (7.38)

Since x4 is a factor of u(x), there are four possible choices of signs where
the expression (7.38) simplifies to zero:

+
√
2 +
√
3−

√
5 + 2

√
6, +

√
2−
√
3 +

√
5 + 2

√
6,

−
√
2 +
√
3−

√
5− 2

√
6, −

√
2−
√
3 +

√
5 + 2

√
6.

In addition, since (x2−8)2 is a factor, there are four choices of signs where
it simplifies to ±√8 = ±2√2. In a similar way, there are four choices
of signs where it simplifies to ±√12 = ±2√3, and four choices where it
simplifies to one of the roots ±2√2± 2

√
3 of x4 − 40 x2 + 16 = 0. �

The procedure Find polynomial in Figures 7.8 and 7.9 is based on The-
orem 7.15. The procedure returns a polynomial that has the explicit alge-
braic number α as a root. Notice that the procedure uses a global mathe-
matical symbol y to avoid using a local variable that would not be assigned
before it was used (see page 3).

Degree and Coefficient Explosion. Although Find polynomial returns a poly-
nomial relation for any explicit algebraic number, both the degree of the
polynomial and the number of digits in its coefficients increase rapidly
with the complexity of the number (Exercise 4). For example, for α =
21/2 + 31/2 + 51/2 + 71/2 + 111/2 + 131/2 the procedure returns a monic,
irrreducible polynomial in Z[x] of degree 64 with some coefficients that
have more than 35 digits.

7.2. Polynomial Relations for Explicit Algebraic Numbers 293

Procedure Find polynomial(α, x);
Input

α : an explicit algebraic number;
x : a symbol;

Output
a polynomial in Q[x];

Local Variables base , exponent , n, d, j, p, q, w,m;
Global y;
Begin

1 if Kind(α) ∈ {integer, fraction} then Return(x− α)
2 elseif Kind(α) = ” ∧ ” then
3 base := Operand(α, 1);
4 exponent := Operand(α, 2);
5 n := Numerator(exponent);
6 d := Denominator(exponent);
7 p := Substitute(Find polynomial(b, x), x = y);
8 if exponent > 0 then

9 Return
Q
Sr polynomial resultant

Q
p, xd − yn, [y, x],Q

ww
10 else

11 w := Substitute
Q

Sr polynomial resultant
Q
p, xd − y|n|, [y, x],Q

w
, x = y
w

;

12 Return(Sr polynomial resultant(x ∗ y − 1, w, [y, x],Q))

Continued in Figure 7.9.

Figure 7.8. The MPL Find polynomial procedure. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

Exercises
1. For each of the following explicit algebraic numbers, find a non-zero poly-

nomial in Q[x] which has α for a root.

(a) α = 1 +
√

2 +
√

3.

(b) α = (
√

2 +
√

3)2.

(c) α = 1 + 31/2 + 41/3.

(d) α = 1/(2
√

2 + 3
√

3).

2. Prove Parts (2), (3), and (4) of Theorem 7.15.

3. Let v be a polynomial in Q[y] with positive degree. Prove each of the
following statements.

294 7. The Resultant

13 elseif Kind(α) = ” + ” then
14 w := Find polynomial(Operand(α, 1), x);
15 for j := 2 to Number of operands(α) do
16 p := Find polynomial(Operand(α, j), x);
17 q := Algebraic expand(Substitute(p, x = x− y));
18 w := Sr polynomial resultant(q,Substitute(w, x = y), [y, x],Q);
19 Return(w)
20 elseif Kind(α) = ” ∗ ” then
21 w := Find polynomial(Operand(α, 1), x);
22 for j := 2 to Number of operands(α) do
23 p := Find polynomial(Operand(α, j), x);
24 m := Degree gpe(p, x);

25 q := Algebraic expand
Q
ym ∗ Substitute(p, x = x/y)

w
;

26 w := Sr polynomial resultant(q,Substitute(w, x = y), [y, x],Q);
27 Return(w)

End

Figure 7.9. Continuation of Figure 7.8.

(a) If y|v(y), then res(x y − 1, v(y), y) = res(x y − 1, v(y)/y, y).

(b) Suppose that v(y) = 0 has zero as a root of multiplicity r. Show that
res(x y − 1, v(y), y) = res(x y − 1, v(y)/yr, y).

Notice that this exercise implies that if α �= 0 is a root of v(y) = 0, which
also has zero as a root of multiplicity r, we can still apply the relation in
Theorem 7.15 because the resultant is computed as if the factor yr (which
corresponds to the root y = 0 of multiplicity r) has been removed.

4. In this exercise, we describe a way to find the degrees of the polyno-
mials u(x) in Theorem 7.15. Let v and w be polynomials in F[x] with
m = deg(v, x) > 0 and n = deg(w, x) > 0. Prove each of the following
statements.

(a) deg(res(v(x− y), w(y), y), x) = mn.

(b) deg(res(ym v(x/y), w(y), y), x) = mn.

(c) If r is the maximum positive integer such that yr|v(y), then

deg(res(x y − 1, v(y), y), x) = m− r.

(d) If a/b is a positive rational number in standard form, then

deg(res(v(y), xb − ya, y), x) = bm.

7.2. Polynomial Relations for Explicit Algebraic Numbers 295

5. Suppose that α is a root of xm − 1 = 0 and β is a root of xn − 1 = 0. Show
that αβ is a root of xm n − 1.

6. Let α be an algebraic number which is a root of ax2 + b x+ c = 0, and let
β be an algebraic number which is a root of d x2 + e x + f = 0.

(a) Show that if c �= 0, then 1/α is a root of c x2 + b x + a = 0. (The
condition c �= 0 implies that α �= 0.)

(b) Show that αβ is a root of

a2d2x4 − a b d e x3 +
i−2 a c d f + a e2 c + d b2f

J
x2

−b c e f x + c2f2 = 0.

(c) Show that α + β is a root of

a2d2x4 +
i
2 a b d2 + 2 d e a2Jx3

+
i
b2d2 + 2 d2a c + 3 a b d e + a2e2 + 2 a2d f

J
x2

+
i
2 a2e f + d e b2 + 2 a b d f + a e2b + 2 d2b c + 2 a c d e

J
x

+ c2d2 + a b e f − 2 a c d f + a2f2 + f d b2 + a e2c + b c d e

= 0.

Further Reading

7.1 The Resultant Concept. See Akritas [2], Buchberger et al. [17] (“Com-
puting in Algebraic Extensions”), Cohen [22], Geddes et al. [39], von zur Gathen
and Gerhard [96], and Zippel [108] for a discussion of resultants. See Collins [26]
for a discussion of the computation of multivariate polynomial resultants.

7.2 Polynomial Relations For Explicit Algebraic Numbers. The mate-

rial in this section is based on the work of R. Loos (see Buchberger et al. [17],

“Computing in Algebraic Extensions”).

8

Polynomial Simplification
with Side Relations

In Section 4.3 we considered the simplification of polynomials with sym-
bols for algebraic numbers that are defined as the solutions of polynomial
equations. In Section 6.2 we considered the simplification of multivariate
polynomials with respect to a single polynomial side relation. In this chap-
ter we again consider the polynomial simplification problem but this time
allow for several multivariate polynomial side relations that may have sym-
bols in common. Because of this, the supporting mathematical theory is
more involved than the material in Sections 4.3 and 6.2. The algorithm in
this chapter is a generalization of the algorithms in these earlier sections.

In Section 8.1 we describe the division process that is used in the simpli-
fication algorithm. In Section 8.2 we give a precise definition of the simpli-
fication problem and introduce the concept of a Gröbner basis which plays
a key role in our algorithm. Finally, in Section 8.3, we give an algorithm
that finds a Gröbner basis and the polynomial simplification algorithm.

8.1 Multiple Division and Reduction

To simplify the presentation, we assume that all polynomials are in the
domain Q[x1, . . . , xp]. We begin with some examples.

Example 8.1. Suppose that w, x, y, and z, satisfy the two side relations

f1 = w2 + x2 − 1 = 0, (8.1)

297

298 8. Polynomial Simplification with Side Relations

f2 = y z − 1 = 0, (8.2)

and consider the simplification of the polynomial

u =
(
y z2 + xw

)
f1 + (w − z x) f2 (8.3)

= yz2 w2 + y z2 x2 − y z2 + xw3 + x3 w − xw + w y z

−w − z2 x y + z x (8.4)

with respect to the two side relations. Although it is evident from the
unexpanded form in Equation (8.3) that u simplifies to 0 at all points that
satisfy the side relations, this is not apparent from the expanded form
in Equation (8.4). We can simplify the expanded form, however, using
monomial-based division. First, dividing u by f1 and then using the side
relation f1 = 0, we obtain

u = mbquot(u, f1, [w, x]) f1 +mbrem(u, f1, [w, x])
= mbrem(u, f1, [w, x])
= w y z − w − z2 x y + z x

In a similar way, dividing the new u by f2 and then using the side relation
f2 = 0, we obtain the simplified form for u

u = mbrem(u, f2, [y, z]) = 0.

In this example, since the two side relations are expressed in terms of
different variables, we obtain the simplification with two division steps. �

The next example shows that the simplification problem is more in-
volved when the two side relations have variables in common.

Example 8.2. Let x and y be solutions of the two side relations:

f1 = 3 x2 + 5x y − 5 x− 2 y2 + 11 y − 12 = 0, (8.5)
f2 = 2 x2 + x y − 5 x− 3 y2 + 10 y − 7 = 0, (8.6)

and consider the simplification of the polynomial

u = x f1 + y f2 (8.7)
= 3 x3 + 7 x2y − 5 x2 − x y2 + 6 x y − 12 x (8.8)
−3 y3 + 10 y2 − 7y

with respect to these side relations. Again, it is evident from the unex-
panded form in Equation (8.7) that u simplifies to 0, but not from the
expanded form in Equation (8.8).

8.1. Multiple Division and Reduction 299

Let’s try to obtain this simplification using monomial-based division.
Dividing u by f1 with x as the main variable and then using the side
relation f1 = 0, we obtain

u = mbquot(u, f1, [x, y]) f1 +mbrem(u, f1, [x, y])
= mbrem(u, f1, [x, y])

= −7
3
x y2 − 5

3
x y − 5

3
y3 +

8
3
y2 + y (8.9)

However, since lm(f2, [x, y]) = 2 x2 does not divide any monomial of u
in Equation (8.9), division by f2 does not obtain the simplified form 0.
Although we can continue the division process on u with y as the main
variable, this again does not lead to the simplified form 0. In fact, no
matter how we order the divisions or the variables we cannot obtain the
simplified form 0 using monomial-based division.

The problem here is not so much with the division process but with
the form of the side relations. We shall see (in Section 8.3) that the first
step in our simplification algorithm is to obtain an equivalent set of side
relations (called the Gröbner basis), and then to apply the division process
with these new side relations. In this case, the algorithm in Section 8.3
gives the Gröbner basis relations

g1 = 258 x+ 462 y3 − 1471 y2 + 339 y = 0, (8.10)
g2 = 66 y4 − 163 y3 − 128 y2 + 217 y+ 116 = 0. (8.11)

Dividing u by g1 with x as the main variable, we obtain the remainder

r = −1369599
79507

y9 +
26164677
159014

y8 − 171536827
318028

y7 +
3026492827
5724504

y6

+
3730217111
5724504

y5 − 8003771203
5724504

y4 +
240501299
5724504

y3

+
1288231829
1431126

y2 − 191757295
1431126

y − 137520262
715563

,

and then division of r by g2 gives remainder 0. �

The goal in this chapter is the description of an algorithm that simplifies
a multivariate polynomial u with respect to the relations f1 = 0, . . . , fn =
0. A precise description of this problem is given in Section 8.2, and the
simplification algorithm is given in Section 8.3.

Multiple Division

Let’s begin by examining in greater detail the division of a polynomial by
a list of polynomial divisors. The condition in the next definition is used
to terminate the division process.

300 8. Polynomial Simplification with Side Relations

Definition 8.3. Let F be a set or list of non-zero distinct polynomials
f1, . . . , fn, and let L be a list of symbols . The polynomial u is reduced1

with respect to F if either u = 0 or if no monomial in u is divisible by
lm(fi, L), i = 1, . . . , n.

This condition is similar to the one that terminates monomial-based
division with a single divisor (Definition 6.26, page 215). In Example 8.2
above, Equation (8.9) is reduced with respect to the side relations in Equa-
tions (8.5) and (8.6).

Definition 8.4. Let F = [f1, . . . , fn] be a list of non-zero polynomials, and
let L be a list of symbols that defines the variable order. Multiple division
of a polynomial u by the divisor list F is defined by the iteration scheme:

c1 := c2 := · · · := cn := 0; r := u;

while r is not reduced with respect to F do
for i := 1 to n do

q := mbquot(r, fi, L);
ci := ci + q;
r := mbrem(r, fi, L);

The process terminates when r is reduced with respect to F . Upon termi-
nation, the polynomials c1, . . . , cn are the multiple quotients with respect
to F , and r is the multiple remainder.

Observe that the relations for q, ci, and r are defined (by assignments)
in terms of the previous values of r and ci. The algorithm includes a for
loop which is nested within a while loop. We have done this because
division by fj may introduce new opportunities for division by some other
fi with i < j, which means the process may require several passes through
the while loop. (See Example 8.5 below and Exercise 2.) In addition, at
each division step in the for loop,

rold = qnew fi + rnew ,

where the rold is the old remainder value, and rnew and qnew are the new
values. Therefore, since r = u at the start, at each iteration step we have
the representation

u = c1 f1 + · · ·+ cn fn + r (8.12)
1Similar terms reducible and irrreducible were introduced to describe the factorization

of polynomials (Definition 4.11, page 118) and the factorization of expressions in an
integral domain (Definition 6.7, page 204). In this chapter the term reduced refers to the
concept in Definition 8.4.

8.1. Multiple Division and Reduction 301

where the polynomials ci and r are the most recently computed values. At
termination, the remainder r is reduced with respect to F .

The division process depends on both the order of the polynomials in
F and the order of the symbols in L. This point is illustrated in the next
example.

Example 8.5. Let

u = x3 + 2 x2y − 5 x+ y3 − 3 y, f1 = x y − 1, f2 = x2 + y2 − 4,

F = [f1, f2], and L = [x, y]. Monomial-based division of u by f1 gives

c1 = 0 + q = mbquot(u, f1, [x, y]) = 2 x,

r = mbrem(u, f1, [x, y]) = x3 − 3 x+ y3 − 3 y.

Next, division of r by f2 gives

c2 = 0 + q = mbquot(r, f2, [x, y]) = x,

r = mbrem(r, f2, [x, y]) = −x y2 + x+ y3 − 3 y.

Observe that division by f2 has created a new opportunity for division by
f1. Division of r by f1 for a second time gives

c1 = 2 x+ q = 2 x+mbquot(r, f1, [x, y]) = 2 x− y,

r = mbrem(r, f1, [x, y]) = x+ y3 − 4 y.

Since r is reduced with respect to F , the process terminates, and we obtain
the representation for u in the form of Equation (8.12)

u = (2 x− y) f1 + x f2 + (x+ y3 − 4 y). (8.13)

The representation in Equation (8.12) is not unique. To obtain another
representation, we reverse the order of the divisions. Starting the process
by dividing u by f2, we obtain

c2 = 0 + q = mbquot(u, f2, [x, y]) = x+ 2 y,

r = mbrem(u, f2, [x, y]) = −x y2 − x− y3 + 5 y,

and division of r by f1 gives

c1 = 0 + q = mbquot(r, f1, [x, y]) = −y,

r = mbrem(r, f1, [x, y]) = −x− y3 + 4 y.

302 8. Polynomial Simplification with Side Relations

Since r is reduced with respect to F , the division process terminates with
another representation

u = (−y) f1 + (x+ 2 y) f2 + (−x− y3 + 4 y). (8.14)

A third representation of the form in Equation (8.12) is obtained by
using y as the main variable and dividing u by [f1, f2]

u = x f1 + y f2 + (y + x3 − 4 x).

In this case, division of u by [f2, f1] with y as the main variable gives the
same representation. In fact, there are infinitely many representations of
the form in Equation (8.12), although only three of them are obtained by
multiple division (Exercise 1). �

The properties of multiple division are given in the next theorem.

Theorem 8.6. Let u be a polynomial, F = [f1, . . . , fn] a list of non-zero
polynomials, and L a list of symbols that defines the variable order.

1. The multiple division algorithm terminates.

2. When the algorithm terminates,

u = c1f1 + · · ·+ cnfn + r (8.15)

where r is reduced with respect to F . In addition,

lm(r) �lm(u), (8.16)

and

lm(u)≡max ({lm(c1) lm(f1), . . . , lm(cn) lm(fn), lm(r)}) (8.17)

where the maximum is with respect to the monomial order relation.

Proof: Consider the algorithm in Definition 8.4. First, if u = 0, the
algorithm terminates immediately, and so we assume that u �= 0. After one
pass through the while loop, the remainder r = R1 has the form

R1 = M1 + T1,

whereM1 is reduced with respect to F , and each monomial in T1 is divisible
by some lm(fi), i = 1, . . . , n− 1. (We have not included lm(fn) in this list

8.1. Multiple Division and Reduction 303

because after completing the for loop, R1 is reduced with respect to fn.)
We show that

lm(T1)≺lm(u).

To see why, let t be a monomial of T1, and suppose that lm(fi)|t. How-
ever, after division by fi, all monomials in the current remainder are not
divisible by lm(fi). Therefore, for some j > i, the operation mbrem(r, fj)
has created a monomial s with the same variable part as t. By Theo-
rem 6.30(2), at each step in the for loop, lm(r) �lm(u). In addition, by
Theorem 6.28(8), s≺lm(r), and therefore lm(T1)≺lm(u).

Consider now the second pass through the while loop. Since M1 is
reduced with respect to F , the termination of the process depends only on
T1. Therefore, for the sake of analysis, let’s apply the division operations
to M1 and T1 separately.2 First, since M1 is reduced with respect to F ,
the execution of the for loop beginning with r = M1 simply gives M1 for
a remainder. Next, beginning with r = T1, the execution of the for loop
gives a remainder M2+T2 where M2 is reduced with respect to F and each
monomial in T2 is divisible by some lm(fi), i = 1, . . . , n − 1. Therefore,
starting with r = M1 +T1, the execution of the for loop gives a remainder

R2 = M1 +M2 + T2.

In addition, using an argument similar to the one in the previous paragraph,
we have

lm(T2)≺lm(T1).

In general, after s passes through the while loop, the remainder has the
form

Rs = M1 + · · ·+Ms + Ts

where eachMi is reduced with respect to F , each monomial in Ts is divisible
by some lm(fi), i = 1, . . . , n− 1, and

lm(Ts)≺lm(Ts−1)≺ · · ·≺lm(T1)≺lm(u).
Therefore, after some pass through the while loop, Ti = 0 and the process
terminates.

To show (2), Equation (8.15) is given in Equation (8.12), and the re-
duction (8.16) follows by repeatedly applying the relation (6.36) in Theo-
rem 6.30 (page 220) at each monomial-based division step in the for loop.

For now, we omit the proof of Equation (8.17), because we prove it later
for a more general division process called reduction. �

A procedure that performs multiple division is described in Exercise 3.
2See Exercise 6 on page 228 for a justification for this approach.

304 8. Polynomial Simplification with Side Relations

Reduction

From an algorithmic perspective, multiple division is adequate for our sim-
plification process as long as the side relations have the proper form. From
a theoretical (and practical) perspective, however, we need a more flexi-
ble division process. The next two examples illustrate some limitations of
multiple division.

Example 8.7. Let f1 = x y − 1, f2 = x2 + y2 − 4, L = [x, y], and

u = 2 x3 + 3 x2y + x2 + 2 y3 + 4 y + 1.

Using multiple division of u by F1 = [f1, f2], we obtain the representation

u = (3 x− 2 y) f1 + (2 x+ 1) f2 + r (8.18)

with remainder
r = 11 x+ 2 y3 − y2 + 2 y + 5.

Next, let f3 = r, and consider the division of u by

F2 = [f1, f2, f3]. (8.19)

Since we have included the remainder r in F2, we might expect the remain-
der in this division to be 0. Instead, we obtain the representation

u = 3 x f1 + (2 x+ 1) f2 +
(
− 2
11

y2 + 1
)

f3 (8.20)

+
(
4
11

y5 − 2
11

y4 +
4
11

y3 +
10
11

y2 + 2 y
)

where the sum in parentheses on the last line is the non-zero remainder.
The problem here is the division of u by F1 requires two passes through
the while loop using the divisor sequence f1, f2, f1, f2. By including f3 in
F2, multiple division uses the divisor sequence f1, f2, f3, f1, f2, f3 which
gives a non-zero remainder. In fact, no matter how we order the divisors in
Equation (8.19), multiple division obtains a representation with a non-zero
remainder.

There is, however, a way to divide u by the set {f1, f2, f3} that obtains
the remainder 0, although it doesn’t use the divisor sequence specified by
the for loop in Definition 8.4. In fact, if we perform division using the
divisor sequence

f1, f2, f1, f2, f3, (8.21)

we obtain the representation

8.1. Multiple Division and Reduction 305

u = (3 x− 2 y) f1 + (2 x+ 1) f2 + f3 (8.22)

which has remainder 0. �

Example 8.8. Let f1 = x y − 1, f2 = x2 + y2 − 4, L = [x, y], and

u = x2 + x y + y2 − 5.

Using multiple division of u by [f1, f2], we obtain the representation

u = f1 + f2 (8.23)

which has remainder 0. Consider next the division of

v =
(
x y2

)
u = x3 y2 + x2 y3 + x y4 − 5 x y2 (8.24)

by [f1, f2]. Since we have simply multiplied u by the monomial x y2, we
might expect that this division also has remainder 0. Instead, we obtain
the representation

v = (x2 y + x y2 + x+ y3 − 4 y) f1 + 0 · f2 +
(
x+ y3 − 4 y

)
, (8.25)

where the sum in parentheses on the right is the non-zero remainder. In
addition, reversing the order of the divisors does not help because division
of v by [f2, f1] gives the representation

v = (−y) f1 + (y3 + x y2) f2 + (−y5 + 4 y3 − y) (8.26)

where again the sum in parentheses on the right is the non-zero remainder.
In Example 8.16 below, we show how to obtain a remainder 0 for Equation
(8.24) using another approach to division. �

In the previous two examples, we start with a division (Equations (8.18)
and (8.23)), and then consider a related division where we would like (but
do not obtain) a remainder 0 (Equations (8.20) and (8.25)). Since we
need a division process that is flexible enough to obtain both of these
simplifications, we consider another approach to division.

The new (and more general) division scheme must overcome two prob-
lems with multiple division. First, as we saw in Example 8.7, the new
process must have some flexibility in the choice of the order of the divi-
sors. Next, as we saw in Example 8.8, simply reordering the divisors does
not solve all of our problems. As we shall see in Example 8.16 below, the
problem here is that each monomial-based division step actually performs
too much simplification. For this reason, we need to change the individual
division step as well as the order of the divisions.

306 8. Polynomial Simplification with Side Relations

The operation in the next definition replaces monomial-based division
with a simplified division process.

Definition 8.9. Let u and f �= 0 be polynomials, and let L be a list of
symbols that defines the variable order. For m a monomial of u such that
lm(f)|m, the reduction step of u by f using the monomial m is given by

Q = m/lm(f),
R = u−Qf.

The polynomial Q is the quotient of the reduction step, and R is its re-
mainder. We use the notation

u
[f,m]
=⇒ R (8.27)

to indicate that the reduction step of u by f using the monomial m gives a
remainder R.

The reduction step simplifies the process by applying only one step of
monomial-based division to a single monomial m of u. Since

u = Qf +R, (8.28)

we view the reduction step as a form of division even though the remainder
R may not be reduced with respect to the divisor f . Since a reduction step
is used to simplify u with respect to side relation f = 0, we have introduced
the notation in (8.27) as a way of indicating that the process simplifies u
to R in the context of this side relation.

Example 8.10. Let

u = x3 y2 + x2 y3 + x y4 − 5 x y2, f = x2 + y2 − 4,

m = x3 y2, and L = [x, y]. Then, lm(f) = x2 and

Q = x3 y2/x2 = x y2, R = u−Qf = x2 y3 − x y2,

and so, u
[f,m]
=⇒ x2 y3 − x y2. �

The properties of a reduction step are given in the next theorem.

Theorem 8.11. Let u and f �= 0 be polynomials, and let L be a list of
symbols that defines the variable order.

8.1. Multiple Division and Reduction 307

1. The remainder R in a reduction step of u by f with the monomial m
satisfies lm(R) �lm(u).

2. If u �= 0 and m = lm(u), then lm(R)≺lm(u).
3. lm(u)≡max({lm(Q) lm(f), lm(R)})

where the maximum is with respect to the monomial order relation.

Proof: To show (1), first, if u = 0, the inequality follows immediately from
the definition. Next, suppose that u �= 0, and let f = lm(f) + fr where fr
represents the lower order monomials. Then

R = u− m

lm(f)
f

= u− m

lm(f)
lm(f)− m

lm(f)
fr

= (u−m)−
(

m

lm(f)
fr

)
. (8.29)

Let’s consider the two expressions in parentheses. First,

lm(u−m) �lm(u). (8.30)

In addition,

lm
(

m

lm(f)
fr

)
≺lm

(
m

lm(f)
lm(f)

)
= m �lm(u). (8.31)

From Equation (8.29) and the relations (8.30) and (8.31), we have

lm(R) �max
({

u− lm(u), lm
(

m

lm(f)
fr

)})
�lm(u).

For Part (2), the proof is the same as Part (1) with the relation (8.30)
replaced by lm(u− lm(u))≺lm(u).

To show (3), first, if u = 0, the relationship follows immediately from
the definition. Next, if u �= 0 we have, using Equation (8.28),

lm(u) �max({lm(Q)lm(f), lm(R)}). (8.32)

In addition, by Part (1),

lm(Qf) = lm(u −R) �max({lm(u), lm(R)})≡lm(u). (8.33)

From Part (1) and the relation (8.33), we have

max({lm(Q)lm(f), lm(R)}) �lm(u). (8.34)

308 8. Polynomial Simplification with Side Relations

Therefore, the relations (8.32) and (8.34) imply that

lm(u)≡max({lm(Q)lm(f), lm(R)}). �

The new division process for a set of divisors is described in the next
definition.

Definition 8.12. Let F = {f1, . . . , fn} be a set of non-zero polynomials, and
let L be a list of symbols that defines the variable order. The reduction of
a polynomial u by the divisor set F is defined by the iteration scheme:

c1 := c2 := · · · := cn := 0; r := u;

while r is not reduced with respect to F do
Select a monomial m in r and a divisor fi in F

such that lm(fi, L)|m;
Q := m/lm(fi, L);
ci := ci +Q;
r := r −Qfi;

The process terminates when r is reduced with respect to F . When this oc-
curs, the polynomials c1, . . . , cn are the reduction quotients with respect
to F , and r is the reduction remainder. We use the notation

u
F−→ r (8.35)

to indicate that the reduction of u by F gives a remainder r.

Observe that each pass through thewhile loop involves a single reduction
step, and, for each step,

rold = Qnew fi + rnew ,

where rold is the old remainder value, and rnew and Qnew are the new
values. Therefore, since r = u at the start, at each iteration step we obtain
the representation

u = c1 f1 + · · ·+ cn fn + r, (8.36)

where the polynomials ci and r are the most recently computed values. At
termination, the remainder r is reduced with respect to F .

Since the division process introduced here is used to simplify an expres-
sion with respect to side relations f1 = 0, . . . , fn = 0, we have introduced

8.1. Multiple Division and Reduction 309

the notation in (8.35) as a way of indicating that the process simplifies u to
r in the context of these side relations using some reduction step sequence

u = r0
[fi1 ,m1]
=⇒ r1

[fi2 ,m2]
=⇒ · · · [fiq ,mq]

=⇒ = rq = r. (8.37)

Keep in mind, however, if we chose another reduction step sequence, we
may obtain

u
F−→ s

where s �= r.
Of course, the process in Definition 8.12 is not really an algorithm until

we give a selection scheme for choosing the monomial m and the divisor
fi. One possible scheme is multiple division (see Example 8.13 below), and
another one is given in Figure 8.1 below. For now, we assume that some
scheme is given (which may vary from example to example) and the process
terminates.

A reduction can be obtained with many different reduction step se-
quences. This point is illustrated in the next example.

Example 8.13. Let

u = x3 + 2 x2 y − 5 x+ y3 − 3 y, f1 = x y − 1, f2 = x2 + y2 − 4,

where L = [x, y]. In Example 8.5 we considered the multiple division of
u by [f1, f2] which obtains the remainder x + y3 − 4 y using the divisor
sequence f1, f2, f1 (see Equation (8.13)). From the reduction perspective,
this division obtains

u
{f1, f2}−→ x+ y3 − 4 y (8.38)

using the reduction step sequence

u
[f1,2x

2y]
=⇒ x3 − 3 x+ y3 − 3 y

[f2,x
3]

=⇒ −x y2 + x+ y3 − 3 y (8.39)
[f1,−x y2]=⇒ x+ y3 − 4 y.

We also obtain the reduction (8.38) using two other reduction step se-
quences:

u
[f2,x

3]
=⇒ 2 x2 y − x y2 − x+ y3 − 3 y

[f1,2x
2y]

=⇒ −x y2 + x+ y3 − 3y (8.40)
[f1,−xy2]
=⇒ x+ y3 − 4 y,

310 8. Polynomial Simplification with Side Relations

u
[f2,x

3]
=⇒ 2 x2 y − x y2 − x+ y3 − 3 y

[f1,−x y2]=⇒ 2 x2y − x+ y3 − 4 y (8.41)
[f1,2 x

2y]
=⇒ x+ y3 − 4 y,

although neither one of them is obtained by multiple division.
In Example 8.5 we also considered the multiple division of u by [f2, f1],

which obtains the remainder −x−y3+4y using the divisor sequence f2, f1

(see Equation (8.14)). This division corresponds to the reduction

u
{f1,f2}−→ − x− y3 + 4 y (8.42)

using the reduction step sequence

u
[f2,2x

2y]
=⇒ x3 − 5 x− y3 + 5 y

[f2,x
3]

=⇒ −x y2 − x− y3 + 5 y (8.43)
[f1,−x y2]=⇒ −x− y3 + 4 y.

In this case, the first two reduction steps correspond to monomial-based
division by f2, and the last step to monomial-based division by f1.

We can also obtain the reduction (8.42) using two other reduction step
sequences (Exercise 4). In fact, these six reduction step sequences are the
only ones possible with u, f1, and f2.

In Example 8.37 below, we show that u can be simplified to 0 with
respect to the side relations f1 = 0, f2 = 0, although this is not obtained
with reduction by {f1, f2}. �

Example 8.14. Let f1 = x y − 1, f2 = x2 + y2 − 4, L = [x, y], and

u = 2x3 + 3x2y + x2 + 2y3 + 4y + 1.

In Example 8.7 we considered the multiple division of u by F1 = [f1, f2]
which obtained the remainder 11x+2y3−y2+2y+5 (see Equation (8.18)).
This corresponds to the reduction

u
{f1,f2}−→ 11x+ 2y3 − y2 + 2y + 5 (8.44)

with reduction step sequence

u
[f1,3x

2y]
=⇒ 2x3 + x2 + 3x+ 2y3 + 4y + 1

[f2,2x
3]

=⇒ x2 − 2x y2 + 11x+ 2y3 + 4y + 1 (8.45)

8.1. Multiple Division and Reduction 311

[f2,x
2]

=⇒ 2 y3 + 4 y + 5 + 11 x− 2 xy2 − y2

[f1,−2x y2]
=⇒ 11x+ 2y3 − y2 + 2y + 5.

We can also obtain the reduction (8.44) with 11 other reduction step se-
quences, although none of them are obtained with multiple division. In
addition, there are 12 reduction step sequences that reduce u to another
polynomial, one of which corresponds to multiple division by [f2, f1] (Ex-
ercise 5).

Let f3 = 11x + 2y3 − y2 + 2y + 5 which is the polynomial obtained
with the reduction (8.44). In Example 8.7 we observed that u could not be
reduced to 0 using multiple division by the polynomials {f1, f2, f3} using
any divisor order. However, u

{f1,f2,f3}−→ 0 using the reduction step sequence
(8.45) followed by the reduction step

11x+ 2y3 − y2 + 2y + 5
[f3,11x]=⇒ 0. �

The next theorem, which plays a role in the implementation of our
algorithm, describes the last reduction in the previous example.

Theorem 8.15. Let S = {f1, . . . , fn} be a set of non-zero polynomials, and
let L be a list of symbols that defines the variable order. Suppose that there
is a reduction step sequence which gives

u
S−→ r, (8.46)

and let fn+1 = r and T = {f1, . . . , fn, fn+1}. Then there is a reduction
step sequence which gives

u
T−→ 0. (8.47)

Proof: The reduction step sequence for (8.47) is simply the one used to
obtain (8.46) followed by the reduction step

r
[fn+1,lm(r)]

=⇒ 0. �

Example 8.16. Consider the reduction of u = x2+x y+y2−5 with respect
to F = {f1, f2} = {x y − 1, x2 + y2 − 4} with L = [x, y]. In Example
8.8 we showed that multiple division of u by [f1, f2] gives a representation
with remainder 0 (see Equation (8.23)). This division is obtained with the
reduction step sequence

u
[f1,x y]=⇒ (

x2 + y2 − 4
) [f2,x

2]
=⇒ 0. (8.48)

312 8. Polynomial Simplification with Side Relations

In Example 8.8 we also showed that multiple division of v = (x y2)u =
x3y2 + x2y3 + x y4 − 5x y2 by [f1, f2] obtains remainder x + y3 − 4y (see
Equation (8.25)). This multiple division is obtained with the reduction
step sequence

v
[f1,x

3 y2]
=⇒ (

x2y3 + x2y + x y4 − 5x y2
)

[f1,x
2y3]

=⇒ (
x2y + x y4 − 4x y2

)
[f1,x

2y]
=⇒ (

x y4 − 4x y2 + x
)

[f1,x y
4]

=⇒ (−4x y2 + x+ y3
)

[f1,x]=⇒ (
x+ y3 − 4y

)
.

Observe that multiple division has forced all reduction steps to be done
with f1. In other words, so much simplification is done by f1 there is
nothing left to be done by f2. However, using a reduction step sequence
similar to (8.48) we obtain

v
[f1,x

2y3]
=⇒ (

x3y2 + x y4 − x y2
) [f2,x

3y2]
=⇒ 0. (8.49)

In each case, the monomial used for reduction is the product of x y2 and
the corresponding monomial in (8.48). �

The next theorem, which plays an important role in the theoretical jus-
tification of our algorithm, describes the relationship between the sequences
(8.48) and (8.49).

Theorem 8.17. Let F = {f1, . . . , fn} be a set of non-zero polynomials, and
let L be a list of symbols that defines the variable order. Suppose that for
a polynomial u, u F−→ g. Then, for a monomial m, mu

F−→mg.

Proof: Since u
F−→ g, there is a sequence of reduction steps

u = r0
[fi1 ,m1]
=⇒ r1

[fi2 ,m2]
=⇒ · · · [fiq ,mq]

=⇒ = rq = g.

where
rj+1 = rj − mj

lm(fij)
fij , j = 1, . . . , q.

Therefore,
mrj+1 = mrj − mmj

lm(fij)
fij ,

8.1. Multiple Division and Reduction 313

and

mu = mr0
[fi1 ,mm1]
=⇒ mr1

[fi2 ,mm2]
=⇒ · · · [fiq ,mmq]

=⇒ mrq = mg. �

The properties of the reduction process are given in the next theorem.

Theorem 8.18. Let u be a polynomial, F = [f1, . . . , fn] a list of non-zero
polynomials, and L a list of symbols that defines the variable order. Then,
when reduction terminates

u = c1f1 + · · ·+ cnfn + r, (8.50)

lm(r) �lm(u), (8.51)

lm(u)≡max ({lm(c1)lm(f1), . . . , lm(cn)lm(fn), lm(r)}) (8.52)

where the maximum is with respect to the monomial order relation.

Proof: The representation (8.50) is given in Equation (8.36), and the
relation (8.51) follows by applying Theorem 8.11(1) at each reduction step
in the process.

We show that Equation (8.52) holds at each reduction step using math-
ematical induction. When the process begins,

c1 = 0, . . . , cn = 0, r = u.

At the first reduction step, for some fi in F , lm(fi)|lm(u) and

u = Qfi + r, ci = Q.

By Theorem 8.11(3),

lm(u)≡max({lm(Qfi), lm(r)}) = max({lm(ci)lm(fi), lm(r)}) (8.53)

which is Equation (8.52) at this point.
For the induction step, we assume that Equation (8.52) holds at some

point in the process and show that it also holds at the next reduction step.
Suppose that at this step

rnew = r −Qfi (8.54)

where rnew and Q are the most recently computed values. Since,

u = c1f1 + · · ·+ cnfn +Qfi + rnew

= c1f1 + · · ·+ ci−1fi−1 + (ci +Q)fi + ci+1fi+1 + · · ·+ cnfn + rnew ,

314 8. Polynomial Simplification with Side Relations

we have

lm(u) � max({lm(c1)lm(f1), . . . , lm(ci−1)lm(fi−1), (8.55)
lm(ci +Q)lm(fi), lm(ci+1)lm(fi+1),
. . . , lm(cn)lm(fn), lm(rnew)}).

In addition, the induction hypothesis in Equation (8.54) and Theorem
8.11(3) imply that

lm(u) ≡ max({lm(c1)lm(f1), . . . , lm(cn)lm(fn), lm(r)})
≡ max({lm(c1)lm(f1), . . . , lm(cn)lm(fn),

lm(Qfi), lm(rnew)})
� max({lm(c1)lm(f1), . . . , lm(ci−1)lm(fi−1), (8.56)

lm(ci +Q)lm(fi), lm(ci+1)lm(fi+1),
. . . , lm(cn)lm(fn), lm(rnew)}).

Therefore, the relations (8.55) and (8.56) imply that

lm(u) ≡ max({lm(c1)lm(f1), . . . , lm(ci−1)lm(fi−1),
lm(ci +Q)lm(fi), lm(ci+1)lm(fi+1),
. . . , lm(cn)lm(fn), lm(rnew)}),

which is Equation (8.52) for the next reduction step. �

In the next example we show that there are simplifications that cannot
be obtained with reduction.

Example 8.19. Let f1 = x y − 1, f2 = x2 + y2 − 4, and

u = (2x+ y) f1 + (x− 2y) f2 (8.57)
= 2x y2 + 7y − 6x+ x3 − 2y3, (8.58)

with L = [x, y]. Consider the simplification of u with respect to the side
relations f1 = 0, f2 = 0. It is evident from the unexpanded form (8.57)
that u simplifies to 0 but not apparent from the expanded form (8.58).
However, this simplification cannot be obtained with reduction by {f1, f2},
since there are only two possible reduction step sequences which obtain the
same non-zero remainder:

u
[f1,2x y

2]
=⇒ 9y − 6x+ x3 − 2y3

[f2,x
3]

=⇒ 9y − 2x− 2y3 − x y2

[f1,−x y2]=⇒ 8y − 2x− 2y3,

8.1. Multiple Division and Reduction 315

u
[f2,x

3]
=⇒ x y2 + 7y − 2x− 2y3

[f1,x y
2]

=⇒ 8y − 2x− 2y3.

The problem here is not the reduction process, but the form of the side
relations. In Example 8.37 (page 327) we show how this simplification is
obtained using reduction with an equivalent set of side relations called the
Gröbner basis. �

Reduction Algorithm
In Figure 8.1 we give a procedure Reduction that reduces u with respect to
F using a selection scheme which obtains the reduction in Theorem 8.15.
In this approach the current remainder is a sum r + R, where r contains
monomials that cannot be reduced by F , and R contains monomials that
may be reducible. By doing this we can check for termination by sim-
ply comparing R to 0 instead of checking whether the full remainder is
reduced with respect to F , as is done in Definition 8.12. These variables
are initialized in lines 1–2.

At each pass through the while loop, we try to reduce R using a
reduction step with monomial m = lm(R) and a polynomial f from F .
The divisibility test is given in line 11. Since a successful division at line
10 results in a monomial which may have a coefficient that is an integer or
fraction, we check for this by checking if the denominator of Q is an inte-
ger. If the test is successful, we perform the reduction (line 12), update the
quotient (line 13), and then continue the process with the first polynomial
in F (line 14). By always returning to the first divisor after a successful
reduction, we insure that the selection scheme obtains the reduction in
Theorem 8.15.

If the test at line 11 fails, we try again with the next divisor in the
list (line 16). However, if i is larger than the number of polynomials in
F , the current monomial m is not divisible by the leading monomial of
any polynomial in F , and so it is removed from R (line 18), added to r
(line 19), and the process repeats with the first polynomial in F (line 20).
Lines 22-23 are included so that the quotients are returned in the list q.

Theorem 8.20. Let u be a polynomial, F = [f1, . . . fn] be a list of non-
zero polynomials, and L be a list of symbols that defines the variable order.
Then, the reduction algorithm in Figure 8.1 terminates.

Proof: By Theorem 8.11(2), at each execution of line 12, lm(R) decreases
with respect to the ≺ relation. On the other hand, if lm(f) /| lm(R)
for all polynomials f in F , then line 18 is executed and again lm(R) de-

316 8. Polynomial Simplification with Side Relations

Procedure Reduction(u, F, L);
Input

u : a polynomial in symbols in L;
F : a list of non-zero polynomials in symbols in L;
L : a list of symbols;

Output
the list [q, r] where q is a list of reduction quotients and r is a
reduction remainder;

Local Variables
R, r, i, c,m, f, lmf , Q, q;

Begin
1 R := u;
2 r := 0;
3 for i := 1 to Number of operands(F) do
4 c[i] := 0;
5 i := 1;
6 while R �= 0 do
7 m := Leading monomial(R,L);
8 f := Operand(F, i);
9 lmf := Leading monomial(f, L);
10 Q := m/lmf ;
11 if Kind(Denominator(Q)) = integer then
12 R := Algebraic expand(R−Q ∗ f);
13 c[i] := c[i] + Q;
14 i := 1
15 else
16 i := i + 1;
17 if i = Number of operands(F) + 1 then
18 R := R−m;
19 r := r + m;
20 i := 1;
21 q := [];
22 for i from 1 to Number of operands(F) do
23 q := Join(q, [c[i]]);
24 Return([q, r])

End

Figure 8.1. An MPL procedure for reduction. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

creases. Therefore, eventually R = 0, and the condition at line 6 terminates
the algorithm. At termination, r is reduced with respect to F since each
monomial included in r at line 19 is reduced with respect to F . �

8.1. Multiple Division and Reduction 317

The motivation for introducing the reduction process is to have a di-
vision process that is flexible enough to obtain the reductions mentioned
in Theorems 8.15 and 8.17. Although the Reduction procedure obtains the
reduction in Theorem 8.15, it may not obtain the reduction in Theorem
8.17. While Theorem 8.17 is of theoretical importance for the verification
of our simplification algorithm, it does not appear as a computational step
in the algorithm. For this reason, it is enough to know that the general
reduction process in Definition 8.12 can obtain this reduction, even though
it is not obtained by the selection scheme used for the procedure Reduction.

Exercises
1. Let u = x3 + 2x2y− 5x+ y3 − 3y, f1 = x y− 1 and f2 = x2 + y2 − 4, where

x is the main variable. Show that there are infinitely many representations
of u of the form (8.12). Hint: Find a general representation that contains
Equations (8.13) and (8.14).

2. Let u = x y z + x z2 − x + y3 + y2 − y z2 + y − 1, and let

f1 = z2 − 1, f2 = y2 + y − z2, f3 = x z − y.

Show that u simplifies to 0 using the side relations f1 = 0, f2 = 0, f3 = 0.
Note: This simplification requires three passes through the while loop in
the multiple division process in Definition 8.4.

3. Let u be a polynomial, F a list of non-zero polynomials, and let L be a list
of variables that defines the variable order. Give a procedure

Multiple division(u, F, L)

that returns a two element list that contains the list of multiple quotients
and the multiple remainder.

4. Let

u = x3 + 2x2y − 5x + y3 − 3y, f1 = x y − 1, f2 = x2 + y2 − 4,

where L = [x, y].

(a) In Example 8.13 we gave a reduction step sequence for

u
{f1,f2}−→ − x− y3 + 4y.

Find two more reduction step sequences that obtain this reduction.

(b) Show that there are six reduction step sequences for u with {f1, f2}.

5. Let f1 = x y − 1, f2 = x2 + y2 − 4, L = [x, y], and

u = 2x3 + 3x2y + x2 + 2y3 + 4y + 1.

318 8. Polynomial Simplification with Side Relations

(a) In Example 8.14 we gave a reduction sequence that obtains

u
{f1,f2}−→ 11x + 2y3 − y2 + 2y + 5.

Find two more reduction step sequences that obtain this reduction.

(b) Find a reduction step sequence that reduces u to another polynomial
using {f1, f2}.

6. Let F = {f1, f2} = {x y − 1, x2 + y2 − 4} and L = [x, y]. For

u = x3 + 3x2y − 3y3,

find all possible reduction step sequences and indicate which ones corre-
spond to a multiple division and which ones correspond to the algorithm
in Figure 8.1.

8.2 Equivalence, Simplification, and Ideals

Let’s return now to our main goal, the development of a simplification
algorithm that transforms a polynomial u to an equivalent polynomial v
that is simplified with respect to the side relations

f1 = 0, . . . , fn = 0. (8.59)

Polynomial Equivalence with Side Relations

Since simplification involves finding an equivalent simplified expression, we
begin by addressing the meaning of equivalence.

Definition 8.21. Let u and v be polynomials, and let F = {f1, . . . , fn}
be a set of non-zero polynomials in Q[x1, . . . , xp]. The polynomial u is
equivalent to v with respect to the side relations (8.59) if

u(a1, . . . , ap) = v(a1, . . . , ap)

at each point (x1, . . . , xp) = (a1, . . . , ap) that is a solution of the system
(8.59). (The values ai can be real or complex.) We use the notation

u
F= v

to indicate that u is equivalent to v.

In other words, since the system of equations (8.59) defines a set of
points, two polynomials u and v are equivalent if they have the same value
as functions at each point in the solution set.

8.2. Equivalence, Simplification, and Ideals 319

Example 8.22. In Example 8.19 on page 314 we considered the simplifica-
tion of

u = 2x y2 + 7y − 6x+ x3 − 2y3

with respect to the side relations

f1 = x y − 1 = 0, f2 = x2 + y2 − 4 = 0.

These equations have the four solutions

x = −
(
1/2
√
6 + 1/2

√
2
)3

+ 2
√
6 + 2

√
2, y = 1/2

√
6 + 1/2

√
2,

x = −
(
1/2
√
6− 1/2

√
2
)3

− 2
√
6 + 2

√
2, y = 1/2

√
6− 1/2

√
2,

x = −
(
−1/2

√
6 + 1/2

√
2
)3

+ 2
√
6− 2

√
2, y = −1/2

√
6 + 1/2

√
2,

x = −
(
−1/2√6− 1/2

√
2
)3

− 2
√
6− 2

√
2, y = −1/2√6− 1/2

√
2.

Since u evaluates to 0 at each of these points, we have u
F=0. �

Consistent Side Relations

Polynomial equivalence is only meaningful if the system (8.59) has at least
one solution. This point is illustrated in the next example.

Example 8.23. Consider the side relations

f1 = x y + x+ 2y + 3 = 0, (8.60)

f2 = x y + 2y + 1 = 0. (8.61)

with F = {f1, f2}. This system of equations does not have a solution for x
and y in the complex numbers. To see why, first eliminate y by subtracting
Equation (8.61) from Equation (8.60) which gives x = −2. Substituting
this value into Equation (8.60) gives 1 = 0, and so the system does not
have a solution.

In this situation equivalence is not meaningful because, in a trivial
sense, any two polynomials are equivalent. In fact, 0 F=1 because these
two constant polynomials agree as functions at each point of the empty
solution set. �

In order that our simplification problem be meaningful, we assume that
our side relation equations are consistent in the following sense.

320 8. Polynomial Simplification with Side Relations

Definition 8.24. A system of equations f1 = 0, . . . , fn = 0 that has at least
one solution is called a consistent system of equations. If the system does
not have a solution it is called an inconsistent system.

In Section 8.3 we show how to test for the consistency of the side rela-
tions.

Equivalence and Reduction

Although Definition 8.21 is useful in a theoretical sense, it is not useful
in an algorithmic sense. First, consistent systems of equations may have
either finitely many or infinitely many solutions. In addition, in most cases
it is impossible to find a formula representations for solutions, and even
in cases where formulas are available, the verification of equivalence can
involve a difficult radical simplification.

A better approach is to avoid the solution of the side relation equa-
tions altogether. The next theorem suggests a more fruitful approach that
involves reduction.

Theorem 8.25. Let u and r be polynomials, F = {f1, . . . , fn} a set of
non-zero polynomials, and L a list that determines variable order. Then,
u
F−→ r implies that u F= r.

Proof: Since u
F−→ r, the polynomial u has a representation

u = c1f1 + · · · cnfn + r. (8.62)

For each point (x1, . . . , xp) = (a1, . . . , ap) in the solution set of

f1 = 0, . . . , fn = 0,

we have

u(a1, . . . , ap) = c1(a1, . . . , ap)f1(a1, . . . , ap) + · · ·
+cn(a1, . . . , ap)fn(a1, . . . , ap) + r(a1, . . . , ap)

= r(a1, . . . , ap). �

This theorem suggests that instead of testing equivalence directly, we
might use reduction to test for equivalence. Unfortunately, something is
lost in the translation, since, as we saw in Example 8.19 (page 314), u F= r

does not imply that u F−→ r.

8.2. Equivalence, Simplification, and Ideals 321

The Zero Equivalence Problem

One aspect of simplification has to do with the zero equivalence problem
which involves checking whether or not

u
F=0. (8.63)

An important class of polynomials that satisfy Equation (8.63) consists of
those polynomials that have a representation of the form

u = c1f1 + · · ·+ cnfn (8.64)

where c1, . . . , cn are polynomials in Q[x1, . . . , xp]. For this class of poly-

nomials, reduction can determine that u
F=0 although this involves first

finding an equivalent set of side relations (the Gröbner basis), and then ap-
plying reduction with this new basis. (See Theorem 8.33(b) on page 325.)
Unfortunately, there are polynomials that are equivalent to 0 that do not
have the form (8.64) for which reduction with a Gröbner basis does not
obtain 0. (See Theorem 8.58 on page 345 and Example 8.57 on page 345.)

The Goal of the Simplification Algorithm

In light of the previous discussion, we give two goals for our simplification
algorithm.

1. If u has a representation of the form (8.64), the algorithm determines
(using reduction) that u F=0. In addition, we require that this prop-
erty does not depend on either the order in the symbol list L or the
selection scheme used for reduction.

2. For polynomials u in Q[x1, . . . , xp] that do not have a representa-
tion of the form (8.64), the algorithm obtains (using reduction) a
polynomial r that is reduced with respect of F such that u F= r.

In order to describe the algorithm, we introduce some new terminology
and theoretical concepts.

Ideals

The collection of polynomials of the form (8.64) is referred to by the ter-
minology in the next definition.

Definition 8.26. Let
F = {f1, . . . , fn}

322 8. Polynomial Simplification with Side Relations

be a set of non-zero polynomials. The ideal I generated by F is the set of
polynomials of the form

u = c1f1 + · · ·+ cnfn, (8.65)

where c1, . . . , cn are polynomials in Q[x1, . . . , xp]. The set F is called a
basis for I, and the notation

I = < f1, . . . , fn >

indicates that I is generated by the basis.

In other words, one goal of the simplification algorithm is to obtain the
simplified form 0 for all polynomials in the ideal I = <f1, . . . , fn>.

The next theorem describes the basic algebraic properties of an ideal.

Theorem 8.27. Let I be an ideal with basis F = {f1, . . . , fn}.
1. If u and v are in I, then u+ v is in I.

2. If u is in I and c is in Q[x1, . . . , xp], then c u is in I.

3. Suppose that u and v �= 0 are in I, and suppose that m is a monomial

of u with lm(v)|m. Then, u
[v,m]
=⇒ r implies that r is in I.

4. If u is in I and u
F−→ r, then r is in I.

Proof: The proof of Parts (1) and (2) follow directly from the definition
of an ideal. The proof of Part (3) follows from the definition of a reduction
step together with Parts (1) and (2), and Part (4) follows from (3). The
details of the proofs are left to the reader (Exercise 2). �

Example 8.28. Consider the ideal I = <x + y, x − y > which consists of
all polynomials of the form

u(x, y) = c1(x + y) + c2(x− y) (8.66)

where c1 and c2 are polynomials. For example, the polynomial x2+y2 is in
I with c1 = x and c2 = −y. The representation (8.66) is not unique since
c1 = y and c2 = x gives another representation for x2 + y2.

An ideal can have many different bases. For example, {x, y} is also a
basis for I. To show this, we show that the set of polynomials of the form

u(x, y) = d1x+ d2y (8.67)

8.2. Equivalence, Simplification, and Ideals 323

is the same as the set of polynomials of the form (8.66). First, since

c1(x+ y) + c2(x− y) = (c1 + c2)x+ (c1 − c2) y,

any polynomial of the form (8.66) has the form (8.67). Conversely, since

d1x+ d2y =
d1 + d2

2
(x+ y) +

d1 − d2

2
(x− y),

any polynomial of the form (8.67) has the form (8.66).
Using the basis {x, y}, we can obtain another simple description of this

ideal. From Equation (8.67), u(0, 0) = 0, and so, each polynomial in I
has a zero constant term. Conversely, any polynomial with zero constant
term is in I. To show this, suppose that u has a zero constant term,
and consider the representation u = q x + r where q = mbquot(u, x) and
r = mbrem(u, x). Notice that q x is the sum of all monomials in u that
have x as a factor, and r can depend on y but is free of x. Then, since

u(0, 0) = 0 = q(0, 0) · 0 + r(0),

we have r(0) = 0, which means that r has a zero constant term. Therefore,
r = y s(y), and u has the required representation q x+ s y. �

In the next example, we show that for single variable polynomials, ideals
take a particularly simple form.

Example 8.29. Consider an ideal I = <f1, . . . , fn> in Q[x] . Let f �= 0 be
a polynomial in the ideal of minimal degree. We show that {f} is another
basis for the ideal. For any polynomial u in I, polynomial division of u by
f gives u = q f + r where deg(r) < deg(f). However, since r = u− q f is in
the ideal, the minimal degree property of f implies that r = 0. Therefore,
u = q f which means f is a basis for the ideal. In fact, it can be shown
that I = <gcd(f1, . . . , fn)> (Exercise 3(b)). �

An ideal with a single polynomial for a basis is called a principal ideal.
The previous example shows that for single variable polynomials, all ideals
are principal ideals. For polynomials with more than one variable, however,
there are ideals that are not principal (Exercise 4).

Gröbner Bases for Ideals
Reduction with respect to an ideal basis F may not obtain the remainder 0
for polynomials in the ideal. However, if the basis is a special type known
as a Gröbner basis,3 reduction does obtain the remainder 0.

3Gröbner bases for ideals were invented by Bruno Buchberger who called them
Gröbner bases in honor of his Ph.D. dissertation advisor Wolfgang Gröbner. These
bases are also known as standard bases.

324 8. Polynomial Simplification with Side Relations

Definition 8.30. Let F = {f1, . . . , fn} be a set of non-zero polynomials,
and suppose that I = < f1, . . . , fn >. The set F is a Gröbner basis for
I if for each u in I, there is an fi such that lm(fi)|lm(u).

Example 8.31. Consider the ideal I = <x+y, x−y> which was considered
in Example 8.28, and assume that L = [x, y].

We show first that F = {f1, f2} = {x+ y, x− y} is not a Gröbner basis
for I. To see why, consider the polynomial

u = 2 y = f1 − f2

which is in I. Since both lm(f1, L) = x and lm(f2, L) = x do not divide
lm(y, L) = y, F is not a Gröbner basis.

However, G = {g1, g2} = {x, y} is a Gröbner basis for the ideal. To
show that G satisfies the Gröbner basis property, from Example 8.28, I
consists of all polynomials in x and y that do not have a constant term.
Therefore, either lm(g1, L) = x or lm(g2, L) = y divides the leading mono-
mial of each polynomial in I.

A similar argument shows that {x− y, 2y} is also a Gröbner basis for
I, and so, the Gröbner basis is not unique. �

Example 8.32. Consider the ideal

I = <f1, f2> = <xy − 1, x2 + y2 − 4>

with L = [x, y]. We show that F = {f1, f2} is not a Gröbner basis for I.
Let

u = x+ y3 − 4y = −x f1 + y f2.

Observe that both lm(f1) = x y and lm(f2) = x2 do not divide lm(u) = x,
and, therefore, F is not a Gröbner basis.

A Gröbner basis for this ideal is

G = {g1, g2} = {−y3 + 4y − x, y4 − 4y2 + 1}.
First, since

f1 = −y g1 − g2, f2 = (−x+ y3 − 4y)g1 + (y2 − 4)g2,

and
g1 = x f1 − y f2, g2 = (−x y + 1)f1 + y2f2,

G is also a basis for the ideal.
Next, let

u = c1 g1 + c2 g2 = c1(−y3 + 4y − x) + c2(−y4 + 4y2 − 1)

8.2. Equivalence, Simplification, and Ideals 325

be an arbitrary member of the ideal. If c1 �= 0, then there is a term in u
that contains a power of x, and, since x is the main variable, lm(g1) = −x
and lm(g1)|lm(u). On the other hand, if c1 = 0, then u has a term that is a
multiple of y4, and since lm(g2) = −y4, we have lm(g2)|lm(u). Therefore,
G is a Gröbner basis. �

In the following theorem we give two other conditions that describe a
Gröbner basis.

Theorem 8.33. Let F = {f1, . . . , fn}, and let I = < f1, . . . , fn >. The
following three conditions are equivalent:

1. F is a Gröbner basis for I.

2. For each u in I, u F−→ 0 for all reduction step sequences.

3. For each u in I, there is a representation

u =
n∑
i=1

cifi (8.68)

where

lm(u)≡max({lm(c1)lm(f1), . . . , lm(cn)lm(fn)}). (8.69)

Proof: To show that (1) implies (2), suppose that F is a Gröbner basis
for I. For u in I, suppose u

F−→ r where r is reduced with respect to F .
By Theorem 8.27 (4), r is in I, and the definition of a reduced polynomial
together with the definition of a Gröbner basis implies that r = 0.

To show that (2) implies (3), if u F−→ 0, then the representation in (3)
is given in Theorem 8.18 (page 313) with r = 0.

To show that (3) implies (1), observe that Equation (8.69) implies that

lm(u)≡lm(cj)lm(fj)

for some j. Therefore, lm(fj)|lm(u), which implies that F is a Gröbner
basis. �

Although F is a Gröbner basis, Equation (8.69) does not hold for all
representations of the form (8.68). This point is illustrated in the next
example.

326 8. Polynomial Simplification with Side Relations

Example 8.34. Let L = [x, y], and consider the ideal with Gröbner basis

I = <g1, g2> = <x− y, 2y>,

which was considered in Example 8.31. Let

u = −y g1 + (x/2) g2 = y2.

Observe that

lm(u) = y2≺max({lm(−y)lm(x− y), lm(x/2)lm(2y)}) = x y.

However, the proof of Theorem 8.33 shows that Equation (8.69) is valid
whenever the polynomials c1, . . . , cn are quotients obtained from a reduction.
For example, from multiple division of u by [g1, g2], we obtain the repre-
sentation u = 0 · g1 + (1/2)y · g2 for which Equation (8.69) is valid. �

Another condition that describes a Gröbner basis is given in the follow-
ing theorem.

Theorem 8.35. F = {f1, . . . , fn} is a Gröbner basis for an ideal I if and
only if for each u in Q[x1, . . . , xp], the polynomial r in the representation

u = c1f1 + · · ·+ cnfn + r (8.70)

is unique.

In this theorem, the uniqueness property for r applies to any represen-
tation as in Equation (8.70), not just those that are obtained by reduction.
The proof of the theorem is left to the reader (Exercise 9). �

Although the remainders in the previous theorem are unique, the quo-
tients are not. This point is illustrated in the next example.

Example 8.36. Let L = [x, y], and consider the ideal with Gröbner basis

I = <g1, g2> = <x− y, 2y>

from Example 8.34. Let
u = y2x− x y3.

Then, multiple division of u by [g1, g2] gives the representation

u =
(
y2 − y3

)
g1 +

(
(1/2)y2 − (1/2)y3

)
g2,

while multiple division by [g2, g1] gives the second representation

u = 0 · g1 +
(
(1/2)x y − (1/2)x y2

)
g2.

In both divisions, we obtain the (unique) remainder 0. �

8.2. Equivalence, Simplification, and Ideals 327

Simplification with Gröbner Bases

Theorems 8.33(2) and 8.35 have important consequences for the simplifi-
cation problem. When the polynomials in the side relations

g1 = 0, · · · , gn = 0

are a Gröbner basis for an ideal I, Theorem 8.33(2) implies that simplifica-
tion of u in I using reduction obtains 0 for all reduction step sequences. In
addition, Theorem 8.35 implies that once a symbol order L is chosen and
a Gröbner basis is found, the simplification of polynomials in Q[x1, . . . , xp]
with reduction obtains the same remainder r for all reduction step se-
quences.

Example 8.37. Let

I = <f1, f2> = <xy − 1, x2 + y2 − 4>

with L = [x, y]. In Examples 8.19 and 8.22, we observed that

u = 2x y2 + 7y − 6x+ x3 − 2y3

is equivalent to 0 with respect to the side relations f1 = 0, f2 = 0, but
this cannot be obtained with reduction by {f1, f2}. However, using the
Gröbner basis

I = <g1, g2> = <−y3 + 4y − x, y4 − 4y2 + 1>

given in Example 8.32 and the equivalent side relations g1 = 0, g2 = 0, we

have u
{g1,g2}−→ 0 using the ten step reduction sequence

u
[g1,x

3]
=⇒ 2xy2 + 7y − 6x− 2y3 − x2y3 + 4yx2

[g1,−x2y3]
=⇒ 2xy2 + 7y − 6x− 2y3 + 4yx2 + xy6 − 4xy4

[g1,4y x
2]]

=⇒ 18xy2 + 7y − 6x− 2y3 + xy6 − 8xy4

[g1,x y
6]

=⇒ 18xy2 + 7y − 6x− 2y3 − 8xy4 − y9 + 4y7

[g1,−8x y4]
=⇒ 18xy2 + 7y − 6x− 2y3 − y9 + 12y7 − 32y5

[g1,18x y
2]

=⇒ 7y − 6x+ 70y3 − y9 + 12y7 − 50y5

[g1,−6x]
=⇒ −17y+ 76y3 − y9 + 12y7 − 50y5

[g2,−y9]=⇒ −17y+ 76y3 + 8y7 − 49y5

[g2,8y
7]

=⇒ −17y+ 68y3 − 17y5

[g2,−17y5]
=⇒ 0.

328 8. Polynomial Simplification with Side Relations

Since a Gröbner basis introduces many more opportunities for reduction
steps, it usually produces longer reduction sequences and increases dramat-
ically the number of possible sequences. �

A Computational Test for a Gröbner Basis

In the remainder of this section we develop a computational test for a
Gröbner basis. We begin with some new terminology.

Definition 8.38. Let u and v be non-zero monomials, and let L be a list
that defines the variable order. The least common multiple of u and v
is a monomial d that satisfies the following three properties.

1. u|d and v|d.
2. If u|e and v|e, then d|e.
3. The coefficient part of d is 1.

The operator lcm(u, v, L) represents the least common multiple, and
when L is understood from context, we use the simpler notation lcm(u, v).

The variable part of the monomial

u v

gcd(u, v)

satisfies the three properties of the definition (Exercise 10(a)). An operator
that obtains the least common multiple is described in Exercise 10a(b).

Definition 8.39. Let u and v be non-zero polynomials, and let L be a list
of symbols that defines the variable order. The S-polynomial of u and v
is defined by

S(u, v, L) =
d

lm(u, L)
u− d

lm(v, L)
v, (8.71)

where
d = lcm(lm(u, L), lm(v, L)).

When L is evident from context, we use the simpler notation S(u, v).

In this definition, d/lm(u, L) and d/lm(v, L) are monomials, and by
Theorem 6.25(1),

lm
(

d

lm(u, L)
u

)
= d = lm

(
d

lm(v, L)
v

)
.

8.2. Equivalence, Simplification, and Ideals 329

Therefore, in Equation (8.71), the leading monomials of
d u

lm(u, L)
and

d v

lm(v, L)
cancel.

Example 8.40. Let u = x y − 1 and v = x2 + y2 − 4, and let L = [x, y]
define the variable order. Then, d = lcm(x2, x y) = x2y, and

S(u, v, L) =
x2 y

x y
u− x2 y

x2
v = xu− y v = −x− y3 + 4 y.

This polynomial is the one used in Example 8.32 to show that a basis was
not a Gröbner basis. �

A procedure that obtains an S-polynomial is described in Exercise 10a.

Theorem 8.41. The S-polynomials satisfy the following properties.

1. S(u, u) = 0.

2. S(u, v) = −S(v, u).
3. If u and v are in an ideal I, then S(u, v) is also in I.

4. If m and n are monomials, then,

S(mu, n v) =
A

B
S(u, v),

where

A = lcm(lm(mu), lm(n v)), B = lcm(lm(u), lm(v)).

5. Suppose that u and v are non-zero polynomials, and

lm(u) = lm(v) = M.

Then:

(a) lm(S(u, v))≺M .

(b) If
f = c u+ d v

where c and d are rational numbers and lm(f)≺M , then

f = k S(u, v)

where k is a rational number.

330 8. Polynomial Simplification with Side Relations

Proof: The proofs of Parts (1), (2), (3), and (4), which follow from the
definition, are left to the reader (Exercise 5).

To show (5a), observe in this case S(u, v) = u− v. Since M is elimi-
nated from S(u, v), we have lm(S(u, v))≺M .

To show (5b), let V be the variable part of M . We have

u = a V + r, v = b V + s,

where r and s represent lower order monomials, and a and b are non-zero
rational numbers. Since f = (c a+d b)V + c r+d s and lm(f)≺M , we have
c a+ d b = 0, and

f = c a (u/a) + d b (v/b)

= c a

(
V

aV
u− V

b V
v

)
+

v

b
(c a+ d b)

= c a S(u, v). �

The next theorem uses S-polynomials to give a computational test that
determines if a basis is a Gröbner basis.

Theorem 8.42. Let I = < g1, . . . , gn > where n ≥ 2, and let L be a list
of symbols that defines the variable order. The following conditions are
equivalent.

1. G = {g1, . . . , gn} is a Gröbner basis for I.

2. For all i < j, S(gi, gj)
G−→ 0 for all reduction step sequences.

3. For all i < j, S(gi, gj)
G−→ 0 for at least one reduction step sequence.

Notice that condition (2) refers to all reduction step sequences, while
condition (3) refers to at least one reduction step sequence. By stating
the theorem in this way, we can use condition (2) to show that G is not a
Gröbner basis by finding just one reduction step sequence which does not
obtain 0 and can use the weaker condition (3) to show that G is a Gröbner
basis.

Proof of Theorem 8.42: To show that (1) implies (2), if G is a Gröbner
basis, then, since S(gi, gj) is in I, Theorem 8.33(2) implies that

S(gi, gj)
G−→ 0.

It is obvious that (2) implies (3).

8.2. Equivalence, Simplification, and Ideals 331

We show that (3) implies (1) using the condition in Theorem 8.33(3).
Since the proof for this case is quite involved, we illustrate the basic idea
for a basis with two polynomials {g1, g2}. We will show that the condition
in (3) implies that each f in I = < g1, g2 > has a representation

f = c1g1 + c2g2 (8.72)

such that
lm(f)≡max({lm(c1g1), lm(c2g2)}). (8.73)

Suppose that Equation (8.73) does not hold for a representation where

lm(f)≺M = max({lm(c1g1), lm(c2g2)}). (8.74)

In Example 8.34, we showed that, in this situation, we can find another
representation for f where Equation (8.73) holds using multiple division
by a Gröbner basis. We take a similar approach here although we can’t
simply divide f by [g1, g2], because the point of the proof is to show that
{g1, g2} is a Gröbner basis. Instead, we apply the reduction process to a
related polynomial to find a new representation f = d1 g1 + d2 g2 where

M2 = max({lm(d1 g1), lm(d2 g2)})≺M.

If lm(f)≡M2, the proof is complete. If lm(f)≺M2, we repeat the process (a
finite number of times) until we find a representation that satisfies Equation
(8.73).

The inequality (8.74) implies that in Equation (8.72) the leading mono-
mials of c1g1 and c2g2 must cancel, and, therefore,

M = lm(c1g1) = lm(c2g2). (8.75)

Let Vi be the variable part of lm(ci), i = 1, 2. We have

c1 = k1V1 + l1, c2 = k2V2 + l2 (8.76)

where k1 and k2 are rational numbers and l1 and l2 represent the lower
order monomials with respect to ≺. Define

g = k1V1g1 + k2V2g2. (8.77)

Observe that
f = g + l1g1 + l2g2, (8.78)

and since

lm(V1g1)≡lm(c1g1) = M = lm(c2g2)≡lm(V2g2), (8.79)

332 8. Polynomial Simplification with Side Relations

lm(l1g1)≺M, lm(l2g2)≺M, (8.80)

it follows that g contains the part of f that creates the inequality (8.74).
In addition, Theorem 8.41(5b) (applied to V1g1, V2g2, and g), Theorem
8.41(4), and Equation (8.79) imply that

g = k S(V1g1, V2g2) = k
VM
d

S(g1, g2), (8.81)

where k is a rational number,

VM = lcm(lm(V1g1), lm(V2, g2))

is the variable part of M , and

d = lcm(lm(g1), lm(g2)).

Equation (8.81), condition (3), and Theorem 8.17 imply that

g
G−→ 0

for some reduction step sequence. Therefore, Theorem 8.18 implies that
there is a representation

g = e1g1 + e2g2 (8.82)

where
lm(g)≡max({lm(e1)lm(g1), lm(e2)lm(g2)}). (8.83)

In addition,

S(V1g1, V2g2) =
VM

lm(V1g1)
V1g1 − VM

lm(V2g2)
V2g2. (8.84)

Equation (8.79) implies that VM/lm(V1g1) and VM/lm(V2g2) are rational
numbers, and since the leading monomials in

VM
lm(V1g1)

V1g1

and
VM

lm(V2g2)
V2g2

cancel, it follows from Equations (8.79) and (8.84) that

lm(g)≡lm(S(V1g1, V2g2))≺max({lm(V1g1), lm (V2g2)})≡M. (8.85)

8.2. Equivalence, Simplification, and Ideals 333

Finally, from Equations (8.78) and (8.82), we have the new representation

f = (e1 + l1)g1 + (e2 + l2)g2, (8.86)

where from the relations (8.80), (8.83), and (8.85),

M2 = max({lm((e1 + l1)g1), lm((e2 + l2)g2)})
� max({lm(e1g1), lm(l1g1), lm(e2g2), lm(l2g2)})
≡ max({lm(g), lm(l1g1), lm(l2g2), })
≺ M.

To summarize, we have constructed a new representation for f in Equa-
tion (8.86) where lm(f) �M2≺M. If lm(f)≡M2, Theorem 8.33(3) implies
that {g1, g2} is a Gröbner basis. If lm(f)≺M2, we reapply the construction
a finite number of times until a representation is found such that

f = p1 f1 + p2 f2, lm(f)≡max({lm(p1 f1), lm(p2 f2)}).

Therefore, Theorem 8.33(3) implies that {g1, g2} is a Gröbner basis. �

Exercises
1. Use a CAS to find a Gröbner basis for some of the ideals in this section.
Note: In Maple use gbasis, in Mathematica use GroebnerBasis, and in
MuPAD use groebner::gbasis. Since computer algebra systems use a
number of ordering schemes for monomials, make sure the system uses the
lexicographical order. (Implementation: Maple (mws), Mathematica (nb),
MuPAD (mnb).)

2. Prove Theorem 8.27.

3. Let I be an ideal in Q[x].

(a) If I = < f1, f2 >, show that I = < gcd(f1, f2) > . Hint: Use the
extended Euclidean algorithm.

(b) If I = < f1, . . . , fn >, show that I = < gcd(f1, . . . , fn) > .

4. Let I = < x, y >.

(a) Show that < 3x + 2y, 2x + 3y > is also a basis for I .

(b) Show that I is not a principal ideal. Hint: Suppose that

I = < f(x, y) >,

and use a degree argument to show that if x and y are multiples of
f(x, y), then f(x, y) is a rational number.

334 8. Polynomial Simplification with Side Relations

5. Suppose that I = < f >. Show that {f} is a Gröbner basis for the ideal.

6. Suppose that I = < f1, . . . , fn > where

Variables(fi) ∩Variables(fj) = ∅
for i �= j. Show that {f1, . . . , fn} is a Gröbner basis for I .

7. Suppose that I = < f1, . . . , fn > where each fi is a monomial. Show that
{f1, . . . , fn} is a Gröbner basis for I .

8. Consider the ideal I = < f1, f2 >= < y x2 + 1, y3 + 2y − 1 >.

(a) Show that {f1, f2} is not a Gröbner basis for I .

(b) Show that {g1, g2} = {x2 + y2 + 2, y3 + 2y− 1} is a Gröbner basis for
I using Definition 8.30.

9. Prove Theorem 8.35.

10. (a) Let u and v be non-zero monomials. Show that the polynomial

u v

gcd(u, v)

satisfies properties (1) and (2) of Definition 8.38. Hint: See Exercise
18, page 35.

(b) Let L be a list of symbols that defines the variable order, and let
u and v be non-zero monomials in the symbols in L with rational
number coefficients. Give a procedure

Monomial lcm(u, v, L)

that obtains the lcm(u, v, L). If u = 0 or v = 0, return the global
symbol Undefined.

(c) Let u and v be polynomials, and let L be a list that defines the variable
order. Give a procedure S poly(u, v, L) that returns S(u, v, L) in
expanded form.

11. Prove Theorem 8.41, Parts (1), (2), (3), and (4).

8.3 A Simplification Algorithm

Let u be a polynomial in Q[x1, . . . , xp], and consider the simplification of
u with respect to the side relations f1 = 0, . . . , fn = 0. Our discussion
in the previous two sections suggests that our simplification algorithm has
two steps.

1. Let I = < f1, . . . , fn >, and let L be a list that determines the
variable order. Find a Gröbner basis G = {g1, . . . , gm} so that
I = <g1, . . . , gm>.

8.3. A Simplification Algorithm 335

2. Find the simplified form of u as the (reduced) remainder r of the
reduction u

G−→ r.

The next theorem shows that this algorithm obtains the two goals of
our simplification algorithm (page 321).

Theorem 8.43. Suppose that F = {f1, . . . , fn}, and let I be the ideal that is
generated by F . In addition, suppose that G = {g1, . . . , gm} is a Gröbner
basis for I.

1. For u in I, u G−→ 0.

2. If u G−→ r, then u
F= r.

3. If u G−→ r, then r is reduced with respect to F .

Proof: Statement (1) is a restatement of Theorem 8.33(2) (page 325).
To show (2), Theorem 8.25 states that u G−→ r implies u G= r. Since

I = <f1, . . . , fn> = <g1, . . . , gm>,

the two systems f1 = 0, . . . , fn = 0 and g1 = 0, . . . , gm = 0 have the same
solutions, and therefore u F= r.

The proof of (3), which follows from the definition, is left to the reader
(Exercise 1). �

Gröbner Basis Algorithm

The first step in a simplification algorithm involves finding a Gröbner basis
for an ideal. An algorithm that does this is based on the reduction property
for S-polynomials given in Theorem 8.42 on page 330. We illustrate the
general approach in the next example.

Example 8.44. Consider the ideal

I = <f1, f2> = <xy + x+ 1, x y2 + y + x2 + 1>,

and let L = [x, y]. Our strategy is to add the non-zero reductions of
S-polynomials to the basis until the third condition in Theorem 8.42 is
satisfied. In this example, all reductions are done with the selection scheme
given in Figure 8.1 on page 316.

First, S(f1, f2) = x2 + x− x y3 − y2 − y, and since

S(f1, f2)
{f1,f2}−→ r = x− 2 y − 1,

336 8. Polynomial Simplification with Side Relations

the condition in Theorem 8.42(2) is not satisfied for this S-polynomial.
When this happens, however, since r is in I, we can include it in the basis.
Therefore, if f3 = r, we have I = <f1, f2, f3>, and by Theorem 8.15,

S(f1, f2)
{f1,f2,f3}−→ 0. (8.87)

To determine if {f1, f2, f3} is a Gröbner basis, we must also check that
the reduction condition for S-polynomials is satisfied for S(f1, f3) and
S(f2, f3). However,

S(f1, f3) = x+ 2 y2 + y + 1
{f1,f2,f3}−→ r = 2 y2 + 3 y + 2, (8.88)

and since r �= 0, we append f4 = r to the basis giving I = <f1, f2, f3, f4>.
As before, by Theorem 8.15,

S(f1, f3)
{f1,f2,f3,f4}−→ = 0.

In addition, a calculation shows that

S(f2, f3) = x y2 + 2 x y + x+ y + 1
{f1,f2,f3,f4}−→ = 0.

At this point, since we are using the selection scheme in Figure 8.1, we have
the reduction conditions

S(fi, fj)
{f1,f2,f3,f4}−→ = 0, i < j = 1, 2, 3.

In fact, some calculation also shows that

S(fi, f4)
{f1,f2,f3,f4}−→ = 0, i = 1, 2, 3,

and therefore

{f1, f2, f3, f4} = {x y+x+1, x y2+ y+x2+1, x−2 y−1, 2 y2+3 y+2}

is a Gröbner basis for I. �

The algorithm we have followed in the last example is known as Buch-
berger’s algorithm. We show in Theorem 8.52 below that the algorithm
terminates and obtains a Gröbner basis for an ideal.

A procedure for Buchberger’s algorithm is given in Figure 8.2. The
input list F of polynomials generates an ideal, and the input list L of
symbols determines the variable order. At line 1, the variable G, which
eventually contains the Gröbner basis, is initialized to F . The variable P ,

8.3. A Simplification Algorithm 337

Procedure G basis(F,L);
Input

F : a list of non-zero polynomials in L;
L : a list of symbols;

Output
a list with a Gröbner basis;

Local Variables
G,P, i, j, t, s, r;

Begin
1 G := F ;
2 P := [];
3 for i := 1 to Number of operands(G) do
4 for j := i + 1 to Number of operands(G) do
5 P := Join(P, [[Operand(G, i),Operand(G, j)]]);
6 while P �= [] do
7 t := Operand(P, 1);
8 P := Rest(P);
9 s := S poly(Operand(t, 1),Operand(t, 2), L);
10 r := Operand(Reduction(s,G,L), 2);
11 if r �= 0 then
12 for i from 1 to Number of operands(G) do
13 P := Join(P, [[Operand(G, i), r]]);
14 G := Join(G, [r]);
15 Return(G)

End

Figure 8.2. An MPL procedure for Buchberger’s algorithm. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

which is a list of two element lists of polynomials from G, is constructed in
lines 2–5. This list, which is used to construct the S-polynomials, changes
as the algorithm progresses (lines 8, 12–13). For each pass through the
while loop, we first choose (and remove) a pair t from P , construct an
S-polynomial from t (lines 7–9), and then perform the reduction s

G−→ r
(line 10). (The S poly procedure is described in Exercise 10, page 334.)
We then check the condition in Theorem 8.42 (line 11). If the reduced
polynomial r �= 0, new pairs of polynomials, which are constructed from
members of the current basis G with r, are added to P , and r is added
to G (lines 12–14). The algorithm terminates when P = [], which means
there are no more S-polynomials to test.

338 8. Polynomial Simplification with Side Relations

In its current form, the G basis procedure returns a basis with some
redundant polynomials. The next theorem provides a way to eliminate
this redundancy

Theorem 8.45. Let I = < g1, . . . , gn > where G = {g1, . . . , gn} is a
Gröbner basis for I, and suppose that L is a list of symbols that defines
the variable order. If

gi
{g1,...,gi−1,gi+1,...,gn}−→ 0,

then {g1, . . . , gi−1, gi+1, . . . , gn} is also a Gröbner basis for I.

The proof, which follows from the definition of a Gröbner basis, is left
to the reader (Exercise 4). �

Example 8.46. In Example 8.44 we considered the ideal

I = <f1, f2> = <xy + x+ 1, x y2 + y + x2 + 1>

where L = [x, y] and showed that

{f1, f2, f3, f4} = {x y+ x+1, x y2 + y+ x2 +1, x− 2y− 1, 2y2 + 3y+ 2}
is a Gröbner basis for the ideal. However, using the selection scheme in

Figure 8.1, we have f1
{f2,f3,f4}−→ 0 and f2

{f3,f4}−→ 0. Therefore,

{f3, f4} = {x− 2y − 1, 2y2 + 3y + 2}
is also a Gröbner basis for I. �

In Exercise 5 we describe a procedure, based on Theorem 8.45, that
eliminates redundant polynomials from a Gröbner basis.

In most cases, finding a Gröbner basis involves significant computa-
tion and coefficient explosion, particularly if the coefficients or degrees
are large, or there are many variables, or the algorithm encounters many
S-polynomials that do not reduce to 0. This point is illustrated in the next
example.

Example 8.47. Consider the ideal

I = <f1, f2> = <2x3y + 3x2 + 6, 5x2 + x+ 3y2 + y + 1>

where L = [x, y]. The G basis procedure forms a basis of eight polynomials:

8.3. A Simplification Algorithm 339

f1 = 2 x3y + 3 x2 + 6,
f2 = 5 x2 + x+ 3 y2 + y + 1,

f3 = −3
5
xy3 − 1

5
xy2 − 4

25
xy − 3

10
x+

3
25

y3 − 43
50

y2 − 13
50

y +
27
10

,

f4 =
3
10

xy2 +
73
750

xy − 22
25

x− 3
25

y5 − 2
25

y4 − 38
375

y3 +
23
750

y2

+
1
250

y − 19
50

,

f5 = − 3551
11250

xy − 4297
750

x− 6
25

y7 − 6
25

y6 − 128
125

y5

− 448
1125

y4 − 16213
11250

y3 − 6188
5625

y2 +
13432
5625

y − 389
250

,

f6 = −55134547
958770

x− 647416
266325

y7 − 540886
266325

y6 − 8071024
798975

y5

−26558308
7190775

y4 − 35705726
2396925

y3 − 1864529
191754

y2 +
372290599
14381550

y

−97071797
4793850

,

f7 =
1620
3551

y9 +
2160
3551

y8 +
2700
3551

y7 +
1050
3551

y6 +
95
53

y5 +
13785
3551

y4

−29295
3551

y3 − 20785
3551

y2 +
52785
3551

y +
18675
3551

,

f8 =
900
3551

y8 +
900
3551

y7 +
1200
3551

y6 +
550
10653

y5 +
3475
3551

y4 +
6500
3551

y3

−55325
10653

y2 − 5400
3551

y +
31125
3551

.

After removing redundant polynomials from the basis, we obtain a Gröbner
basis {f6, f8}. �

Both the Gröbner basis and the path taken by the algorithm are de-
pendent on the choice of reduction selection scheme, the order of the side
relations, and the symbol order. This point is illustrated in the next ex-
ample.

Example 8.48. Let

F = {f1, f2, f3} = {x y + x+ z − 3, x z + y + x2 + 1, y + z2 + x+ 2},
L = [x, y, z], and let I be the ideal generated by F . For the basis or-
der [f1, f2, f3], the G basis procedure obtains a Gröbner basis with seven
members, and, once redundant polynomials are eliminated, we have the
Gröbner basis

340 8. Polynomial Simplification with Side Relations

{
y + z2 + x+ 2,

− 2 y + 5 z + z4 − 2 z2 − 10,
− 5 z3 + 13 z2 − z6 − 2 z4 + z5 − 18 z + 20

}
.

On the other hand, for the basis order [f2, f3, f1], the G basis procedure ob-
tains a Gröbner basis with nine members, and once redundant polynomials
are eliminated, we have the Gröbner basis{

y + z2 + x+ 2,

3 z + 6 y − 7 z2 − z4 + 5 z3 + z6 − z5 + 10,
5/3 z3 − 13/3 z2 + 1/3 z6 + 2/3 z4 − 1/3 z5 + 6 z − 20/3

}
. �

Termination of Buchberger’s Algorithm

In order to show that Buchberger’s algorithm terminates, we must look at
some more advanced concepts from the theory of ideals. First, in most
textbooks on this subject, an ideal is defined in a more general way than
we have given in Definition 8.26 (page 321).

Definition 8.49. A set I ⊂ Q[x1, . . . , xp] is an ideal if it satisfies the
following two conditions.

1. If u and v are in I, then u+ v is also in I.

2. If u is in I and c is in Q[x1, . . . , xp], then c u is also in I.

In this definition an ideal is defined as any set of polynomials that
satisfies properties (1) and (2) of Theorem 8.27 on page 322. Although this
definition appears more general than the one in Definition 8.26, the two
definitions are actually equivalent as long as we restrict our attention to
the domainQ[x1, . . . , xp]. This fact is the content of the following theorem,
known as the Hilbert Basis Theorem.

Theorem 8.50. Let I be an ideal in the sense of Definition 8.49 which
is contained in Q[x1, . . . , xp]. Then, I is generated by a finite basis of
polynomials.

The proof of the theorem is given in the references cited at the end of
the chapter. �

The ideal described in the next definition is used in the proof of the
termination of Buchberger’s algorithm.

8.3. A Simplification Algorithm 341

Definition 8.51. Let F = {f1, . . . , fn} be a set of non-zero polynomials that
generate an ideal I, and let L be a list of symbols. The leading monomial
ideal of F is the ideal

LMI(F) = < lm(f1), . . . , lm(fn)> .

Theorem 8.52. Let F = [f1, . . . , fn] be a list of non-zero polynomials that
generate an ideal I, and let L be a list of symbols that determines the vari-
able order. Then, the G basis procedure terminates and returns a Gröbner
basis for I.

Proof: The proof of termination, which is based on the Hilbert Basis
Theorem, is by contradiction. If the algorithm does not terminate, there is
an infinite sequence of sets

G1 = {f1, . . . , fn},
G2 = G1 ∪ {r1},

...
Gk+1 = Gk ∪ {rk},

...

where rk �= 0 is the reduction with respect to Gk of the S-polynomial of
two polynomials in Gk. Although

G1 ⊂ G2 ⊂ · · ·Gk ⊂ Gk+1 ⊂ · · · , (8.89)

we still have
Gk ⊂ I, k = 1, 2, (8.90)

In order to apply the Hilbert Basis Theorem, we need to introduce
another ideal into the discussion. From (8.89), we have

LMI(G1) ⊂ LMI(G2) ⊂ · · · ⊂ LMI(Gk) ⊂ LMI(Gk+1) ⊂ · · · . (8.91)

In addition, since rk is reduced with respect to Gk, lm(rk) is not divisible
by the leading monomial of any polynomial in Gk, and therefore

LMI(Gk) �= LMI(Gk+1). (8.92)

Define
J = ∪∞k=1LMI(Gk),

342 8. Polynomial Simplification with Side Relations

where the notation indicates that J is the union of all the ideals LMI(Gk),
k = 1, 2, Observe that J is also an ideal (in the sense of Definition 8.49),
which is included in Q[x1, . . . , xp]. Therefore, the Hilbert Basis Theorem
implies that it has a finite basis

J = <p1, . . . , pm>, (8.93)

where each polynomial pj is in some LMI(Gkj) (which depends on j). Since
the basis in Equation (8.93) is finite, there is a positive integer k′ where

{p1, . . . , pm} ⊂ LMI(Gk′),

and therefore

LMI(Gk) = LMI(Gk′), for k ≥ k′. (8.94)

However, since (8.92) and (8.94) cannot both be true, we reach a contra-
diction which implies that the G basis algorithm terminates.

To complete the proof, we must show that the set Gk′ is a Gröbner
basis for I. First, since F ⊂ Gk′ , Equation (8.90) implies that Gk′ is a

basis for I. In addition, by Equation (8.94), for f , g in Gk′ , S(f, g)
Gk′−→ 0,

and therefore Theorem 8.42 implies that Gk′ is a Gröbner basis for I. �

Simplification

Before we present our simplification procedure, we need to address the
problem of side relation consistency. The following theorem shows that
this question is easily addressed as part of the simplification process.

Theorem 8.53. Let F = {f1, . . . , fn} be a set of non-zero polynomials, and
let I be the ideal generated by F . Then, the system f1 = 0, . . . , fn = 0
is inconsistent if and only if each Gröbner basis for I contains a non-zero
constant polynomial.

Proof: The original system of side relations and the system of side relations
determined by a Gröbner basis have the same solutions. Therefore, if the
Gröbner basis contains a non-zero constant c, we have a side relation c = 0
which implies that the system is inconsistent.

The proof of the implication in the reverse direction, which is more
involved, is given in the references cited at the end of the chapter. �

Example 8.54. In Example 8.23 we showed that the system of equations

f1 = x y + x+ 2y + 3 = 0, f2 = x y + 2y + 1 = 0

8.3. A Simplification Algorithm 343

Procedure Simplify side relations(u, F, L);
Input

u : a polynomial in the symbols in L;
F : a list of non-zero polynomials in the symbols in L;
L : a list of symbols that determines the variable order;

Output
the simplified form of u with respect to F or the global
symbol Inconsistent;

Local Variables
G,H ;

Begin
1 G := G basis(F,L);
2 H := Elim poly(G,L);
3 if Number of operands(H) = 1

and Kind(Operand(H, 1)) ∈ {integer, fraction} then
4 Return(Inconsistent)
5 else
6 Return(Operand(Reduction(u,H,L), 2));

End

Figure 8.3. An MPL procedure for simplifications with side relations. (Imple-
mentation: Maple (txt), Mathematica (txt), MuPAD (txt).)

is inconsistent. Applying the G basis procedure to [f1.f2], we obtain the
Gröbner basis G = [x y + x + 2y + 3, x y + 2y + 1, x + 2, 1]. Since the
constant polynomial 1 is in this basis, the side relations are inconsistent.
In addition, by applying the process suggested in Theorem 8.45, we obtain
a basis with only the constant polynomial 1. �

A procedure for simplification with side relations is given in Figure 8.3.
In line 1 we obtain the Gröbner basis G, and in line 2 we remove redun-
dant polynomials from the basis. (The Elim poly procedure is described
in Exercise 5.) At line 3 we check for side relation consistency. This test
is based on the observation that if a non-zero constant is in the Gröbner
basis, then H only contains a constant. If the side relations are consistent,
we return the reduction of u with respect to H (line 6).

Example 8.55. In this example, we consider the simplification of the alge-
braic number expression described in Example 4.63. Consider the depen-
dent algebraic numbers α1 =

√
2 and α2 =

√
8 with minimal polynomials

344 8. Polynomial Simplification with Side Relations

p1(x1) = x2
1 − 2, p2(x2) = x2

2 − 8, and dependence relation

h(x1, x2) = 2 x1 − x2 = 0, (8.95)

and consider the expression

u = α2
1 + 2 a2

2 + a2
1 a

2
2 − 8 a1 a2 − 2

which simplifies to 0. Simplification of u with division by the minimal
polynomials p1(α1) and p2(α2) obtains

u = −8α1 α2 + 32

rather than the simplified form u = 0. However,

Simplify side relations(u, [p1(α1), h(α1, α2)], [α1, α2])→ 0

and

Simplify side relations(u, [p2(α1), h(α1, α2)], [α1, α2])→ 0.

Observe that, in both cases, we obtain the simplified form using only one
of the minimal polynomials together with the dependence relation. �

Appraisal of the Simplification Algorithm

Practical Limitations. Although the simplification algorithm achieves the
goals listed on page 321, it is most useful as a test for zero equivalence
at least for expressions that have a representation in the form (8.64). How-
ever, when an input expression does not simplify to 0, the algorithm can
return a surprisingly complex expression. This point is illustrated in the
next example.

Example 8.56. Let

I = <f1, f2> = <2x3y + 3x2 + 6, 5x2 + x+ 3y2 + y + 1>

with L = [x, y] which was considered in Example 8.47 on page 338, and
consider the simplification of

u = f1 + f2 + x (8.96)
= 2x3y + 8x2 + 2x+ 3y2 + y + 7

with respect to the side relations f1 = 0 and f2 = 0. It is apparent from
Equation (8.96) that u simplifies to x with respect to these side relations.

8.3. A Simplification Algorithm 345

In fact, using the Reduction procedure, we obtain u
{f1,f2}−→ x. However,

simplifying with reduction by the Gröbner basis obtained in Example 8.47,
we obtain a much more involved expression

r =
372290599
827018205

y − 9322645
55134547

y2 − 71411452
275672735

y3 − 3725088
21205595

y5

− 53116616
827018205

y4 − 11653488
275672735

y7 − 9735948
275672735

y6 − 97071797
275672735

.

The problem here is the simple expression x in Equation (8.96) is not
reduced with respect to the Gröbner basis. However, reduction with the
Gröbner basis can determine that r − x simplifies to 0. �

Theoretical Limitations. In the next example we show that reduction with
Gröbner bases cannot always solve the zero equivalence problem.

Example 8.57. Let

F = {f1, f2} = {x2 − 2x+ y2 − 4y + 1, x2 + 4x+ y2 − 4y + 7}

with L = [x, y], and consider the simplification of u = 2x + 3y − 4 with
respect to the side relations f1 = 0, f2 = 0. In this case, the side relations
represent two circles that intersect at the single point (x, y) = (−1, 2), and
since u evaluates to 0 at this point, u F=0.

However, in this case we cannot reduce u to 0 even with a Gröbner
basis. Indeed, a Gröbner basis for the ideal I = <f1, f2> is

G = {g1, g2} = {−6x− 6, y2 − 4y + 4},

and u
G−→ 3y − 6. �

This example shows that the relationship between equivalence and reduction
is not as straightforward as we would like. However, a theoretical relation-
ship between the two concepts is given in the following theorem.

Theorem 8.58. Let F = {f1, . . . , fn} be a set of non-zero polynomials in
Q[x1, . . . , xp], and consider the side relations

f1 = 0, . . . , fn = 0. (8.97)

In addition, let G be a Gröbner basis for I =< f1, . . . , fn >. Then, u F= 0
if and only if um G−→ 0 for some positive integer m.

346 8. Polynomial Simplification with Side Relations

In other words, u simplifies to 0 within the context of the side relations
in (8.97) if and only if um can be simplified to 0 using reduction with a
Gröbner basis. The proof of the theorem, which depends on some involved
concepts from the theory of ideals, is given in the references cited at the
end of this chapter. �

Example 8.59. Consider the side relations and polynomial u from Example
8.57 above. In this case, u2 G=⇒ 0 using the reduction step sequence

u2 = 4x2 + 12x y − 16x+ 9y2 − 24y + 16
[4x2, g1]
=⇒ 12x y − 20x+ 9y2 − 24y + 16

[12x y, g1]
=⇒ −20x+ 9y2 − 36y + 16

[−20x, g1]
=⇒ 9y2 − 36y + 16

[9y2, g2]
=⇒ 0. �

Exercises
1. Prove Theorem 8.43(3).

2. Use Buchberger’s algorithm to find a Gröbner basis for each of the following
ideals. In addition, remove any redundant polynomials from the Gröbner
basis. In each case, the variable order is given by L = [x, y].

(a) I = <xy − 1, x2 + y2 − 4>.

(b) I = <x2 y − 1, x + y2 − 4>.

(c) I = <x2 + x y + y2, x y>.

(d) I = <x3 y + x2 − 1, x + y2 + 1>.

(e) I = <x3 y + x2 − 1, x y2 + y + 1>.

(f) I = <x2 − 2, x2 + 2x y + 2, y2 − 2>.

3. Let F = {f1, f2, f3} = {x y − 1, x z − 1, y z − 1}, and let I be the ideal
generated by F .

(a) Find a Gröbner basis for I .

(b) Using the simplification algorithm in this section show that

3 x y z
F
=x + y + z.

4. Prove Theorem 8.45.

5. Let G be a set of polynomials which is a Gröbner basis for an ideal, and
let L be a list of symbols that defines the variable order. Give a procedure
Elim poly(G,L) that eliminates the redundant polynomials from G using
the condition described in Theorem 8.45.

8.3. A Simplification Algorithm 347

6. Suppose that f1, . . . , fn are non-zero polynomials in Q[x]. Suppose that
we use the G basis procedure followed by Elim poly procedure (Exercise 5)
to find a Gröbner basis for I =< f1, . . . , fn >. Explain why this process
produces a basis with one polynomial which is a (non- monic) greatest
common divisor of f1, . . . , fn. Hint: See Exercise 3, page 333.

7. Consider the polynomial u = x + 3y − 7 and the two side relations

f1 = x y−2x−y+2 = 0, f2 = x4−4x3 +6x2−4x+y3−6y2 +12y−7 = 0.

(a) Show that u
{f1,f2}

= 0 with respect to the side relations, but that this
cannot be obtained by reduction with the Gröbner basis G for the
ideal I = <f1, f2>.

(b) Find a positive integer m such that um G−→ 0.

8. Let F = [f1, . . . , fn] be a list of non-zero polynomials that is a basis for an
ideal I , and let L be a list of variables that defines the variable order. Let
u be a polynomial in I . Give a procedure

Represent basis(u, F, L)

that finds a representation for u in terms of the basis F . Notice that
this can only be done directly with reduction when F is a Gröbner basis.
Therefore, if F is not a Gröbner basis, you will need to modify the G basis
procedure so that it keeps track of a representation of each member of the
Gröbner basis in terms of F , and then uses this information along with the
representation of u in terms of a Gröbner basis to find the representation
of u in terms of F .

9. Consider the ideal

I = <f1, f2> = <xy −
√

2, x2 + y2 − 4
√

2 >

which is included in the domain Q
i√

2
J

[x, y]. Find a Gröbner basis for I .

Hint: α =
√

2 satisfies α2 − 2 = 0.

10. Gröbner basis computation can be used to compute (non- monic) greatest
common divisors of polynomials with one variable (Exercise 3, page 333).
How can you use a Gröbner basis computation to compute the gcd of
u = x2 − 2 and v = x2 − 2

√
2x + 2 in Q

i√
2
J

[x]?

11. Consider the algebraic number u = 1 + 2
√

2 + 3
√

3. How can you use the
simplification algorithm in this section to find the multiplicative inverse of
u in the field Q(

√
2,
√

3)?

Further Reading

In this chapter we have given an introduction to the concept of a Gröbner basis.

There is, however, much more to this subject. A good starting point for this

348 8. Polynomial Simplification with Side Relations

material is Geddes, Czapor, and Labahn [39], Chapter 10. Adams and Loustau-

nau [1] is a comprehensive introduction to both the theory and applications of

Gröbner bases. Our approach in Theorem 8.42, is similar to the one given in this

book which contains the complete proof as well as the proofs for Theorems 8.50,

8.53 and 8.58. Becker, Weispfenning, and Kredel [6] gives a more advanced (and

theoretical) discussion of Gröbner bases, including an algorithm to compute the

power m in Theorem 8.58. Chou [20] describes how Gröbner bases are used for

the mechanical development of proofs in geometry. The article by Buchberger

[18], the inventor of Gröbner bases, is of historical interest.

9

Polynomial Factorization

The goal of this chapter is the complete description of a modern algorithm
for the factorization of polynomials in Q[x] in terms of irrreducible poly-
nomials.

In Section 9.1 we describe an algorithm that obtains a partial factor-
ization of a polynomial. The algorithm can separate factors of different
multiplicities as in

x5 + 7 x4 + 17 x3 + 17 x2 + 7 x+ 1 = (x+ 1)
(
x2 + 3 x+ 1

)2
,

but is unable to separate factors of the same multiplicity as in

x3 + 4 x2 + 4 x+ 1 = (x+ 1)
(
x2 + 3 x+ 1

)
.

This factorization is important, however, because it reduces the factoriza-
tion problem to polynomials without multiple factors. In Section 9.2 we
describe the classical approach to factorization, which is known as Kro-
necker’s algorithm. This algorithm is primarily of historical interest be-
cause it is much too slow to be used in practice. In Section 9.3 we describe
an algorithm that factors polynomials in Zp[x]. Although this algorithm
is important in its own right, it is included here because it plays a role in
the modern approach for factorization in Q[x]. Finally, in Section 9.4 we
describe a modern factorization algorithm, known as the Berlekamp-Hensel
algorithm, which uses a related factorization in Zp[x] together with a lifting
algorithm to obtain the factorization in Q[x].

The efficient factorization of polynomials is a difficult computational
problem. For this reason, both the mathematical and computational tech-
niques in this chapter are more involved than those in previous chapters.

349

350 9. Polynomial Factorization

9.1 Square-Free Polynomials and Factorization

A square-free polynomial is one without any repeated factors. In this sec-
tion we examine the square-free concept and describe an algorithm that
factors a polynomial that is not square-free in terms of square-free factors.
This type of factorization is the easiest one to obtain and is an important
first step in the irrreducible factorization of polynomials.

Square-Free Polynomials

The formal definition of a square-free polynomial reflects the origin of the
term “square-free.”

Definition 9.1. Let F be a field. A polynomial u in F[x] is square-free
if there is no polynomial v in F[x] with deg(v, x) > 0 such that v2|u.

Although the definition is expressed in terms of a squared factor, it
implies that the polynomial does not have a factor of the form vn with
n ≥ 2.

Example 9.2. The polynomial u = x2+3 x+2 = (x+1) (x+2) is square-free,
while u = x4 + 7 x3 + 18 x2 + 20 x+ 8 = (x+ 1) (x+ 2)3 is not. �

The square-free property can also be described in terms of the irrreducible
factorization of a polynomial.

Theorem 9.3. Suppose that u is a polynomial in F[x] with an irrreducible
factorization

u = c pn1
1 pn2

2 · · · pns−1
s−1 pns

s .

Then, u is square-free if and only if ni = 1 for 1 ≤ i ≤ s.

The proof, which is straightforward, is left to the reader (Exercise 4). �

Theorem 9.5 (below) describes a simple test that determines if a poly-
nomial is square-free. This test involves the derivative of a polynomial q
in F[x], which is defined using the ordinary differentiation rules given in
calculus. For a monomial q = a xn, the derivative q′ is given by

q′ =

0, if n = 0,
(a+ · · ·+ a)︸ ︷︷ ︸

n

xn−1, if n > 0, (9.1)

9.1. Square-Free Polynomials and Factorization 351

where the notation indicates the sum has n copies of a. The derivative of
a polynomial is defined as the sum of the derivatives of its monomials.

In Equation (9.1), we have resisted using the simpler expression q′ =
n axn because the integer n may not be in the field F. For example, for
q = 2 x4 + x+ 2 in Z3[x],

q′ = (2 + 2 + 2 + 2)x3 + 1 = 2 x3 + 1.

With this derivative definition as a staring point, we can obtain the
ordinary sum and product rules for differentiation.

In the proof of Theorem 9.5 (below), we use the fact that a polynomial
u with positive degree has a derivative which is not the zero polynomial.
Unfortunately, for some coefficient fields F, this property is not true. For
example, in Z3[x], we have

(x3 + 1)′ = (1 + 1 + 1)x2 = 0 · x2 = 0.

However, if F contains the integers Z, the property does hold.1

Theorem 9.4. Let F be a field that contains Z, and suppose that u is a
polynomial in F[x] with positive degree. Then, u′ is not the zero polynomial.

Proof: Let u = an x
n + · · · + a0, where n > 0 and an �= 0. For the

leading monomial an xn, the derivative is n anx
n−1. Since a field has no

zero divisors, the coefficient n an �= 0, and, therefore, the derivative is not
the zero polynomial. �

For the remainder of this section, we assume that all fields contain Z.

Theorem 9.5. Let F be a field that contains Z, and let u be a polynomial
in F[x]. Then, u is square-free if and only if gcd(u, u′) = 1.

Proof: We prove the theorem by proving its negation, namely, u is not
square-free if and only if gcd(u, u′) �= 1.

Let’s suppose first that u is not square-free, which means there are
polynomials v and w, with deg(v) > 0, such that u = v2 w. Differentiating
this expression, we have

u′ = 2 v v′ w + v2 w′.

1In abstract algebra textbooks, a field F that contains the integers Z is called a field
of characteristic 0.

352 9. Polynomial Factorization

Since v divides each term of the sum, it also divides u′, and since v also di-
vides u, it divides gcd(u, u′) as well. Therefore, deg(gcd(u, u′)) ≥ deg(v) >
0 which implies that gcd(u, u′) �= 1.

We show that the implication goes in the other direction as well. If
gcd(u, u′) �= 1, there is an irrreducible polynomial v with positive degree
that divides both u and u′. Therefore,

u = q1 v, u′ = q2 v, (9.2)

and differentiating the first expression, we have

u′ = q1 v
′ + q′1 v.

In this expression, v divides both u′ and q′1 v, which implies that

v|q1 v′.

Since v is irrreducible, it divides one of the terms in this product (Theorem
4.29(2), page 133). However, by Theorem 9.4, v′ �= 0, and since deg(v′) <
deg(v), we have v /| v′. Therefore, v|q1 and so, q1 = r v. Substituting
this expression into u, we obtain u = r v2, which implies that u is not
square-free. �

Example 9.6. Consider the polynomial u = x3+1 in Q[x]. Then, u′ = 3 x2

and gcd(u, u′) = 1 which means that u is square-free. However, u can be
factored as u = (x+ 1)(x2 − x+ 1). �

Since the square-free concept is so closely connected to the gcd concept,
it is not surprising that the property does not depend on the size of the
coefficient field. This is the content of the next theorem.

Theorem 9.7. Suppose that F1 and F2 are fields with Z contained in F1

and F1 contained in F2. Then, if u is square-free as a polynomial in F1[x],
it is also square-free as a polynomial F2[x].

Proof: The proof follows from the observation that for u in F1[x], the
computation of gcd(u, u′) (using differentiation and Euclid’s algorithm)
involves operations in F1, and so its value does not change if u is viewed
as a polynomial in F2[x]. �

Example 9.8. Since the polynomial u = x2 − 2 is square-free in Q[x], it is
also square-free in Q(

√
2)[x]. On the other hand, x2 − 2 is irrreducible in

Q[x], but can be factored as (x−√2)(x+√2) in Q(√2)[x]. �

9.1. Square-Free Polynomials and Factorization 353

Square-Free Factorization

Theorem 9.9. A polynomial u in F[x] has a unique factorization

u = c s1 s
2
2 · · · smm (9.3)

where c is in F and each si is monic and square-free with gcd(si, sj) = 1
for i �= j. The factorization in Equation (9.3) is called the square-free
factorization of u.

Example 9.10. The polynomial

u = 2 x7−2 x6 + 24 x5 − 24 x4 + 96 x3−96 x2+128 x− 128

has a square-free factorization 2 (x− 1) (x2 + 4)3 where c = 2, s1 = x − 1,
s2 = 1, and s3 = x2 + 4. Notice that a square-free factorization may not
contain all the powers in Equation (9.3). �

Example 9.11. A square-free factorization only involves the square-free
factors of a polynomial and leaves the deeper structure that involves the
irrreducible factors intact. For example, in the square-free factorization

x6 − 9 x4 + 24 x2 − 16 = (x2 − 1) (x2 − 4)2,

both factors are reducible. �

Proof of Theorem 9.9: Suppose that u has the factorization in terms of
distinct, monic, irrreducible polynomials

u = c pn1
1 · pn2

2 · · · pnr−1
r−1 · pnr

r . (9.4)

Define the sequence of polynomials

s1 = product of the pj in Equation(9.4) such that nj = 1,
s2 = product of the pj in Equation(9.4) such that nj = 2,
s3 = product of the pj in Equation(9.4) such that nj = 3,

...

Since si is the product of distinct, irrreducible, monic polynomials, it is
square-free and has no factors in common with the other sj (i �= j). In
addition, since each of the irrreducible factors in Equation (9.4) is a factor
of some si, the square-free factorization is given by

u = c s1 s
2
2 · · · smm, (9.5)

where m = max({n1, . . . , nr}). Finally, since the irrreducible factorization
in Equation (9.4) is unique, the square-free factorization is unique as well. �

354 9. Polynomial Factorization

A Square-Free Factorization Algorithm

Let F be a field that contains the integers, and let u be in F[x]. In or-
der to develop the square-free factorization algorithm, we need to express
gcd(u, u′) in terms of the square-free factors of u. Let’s see what this rela-
tionship looks like in a simple case.

Suppose that u has a square-free factorization

u = c r s2 t3, (9.6)

where c is in F and r, s, and t are monic, square-free, and relatively prime
polynomials. Differentiating u we have

u′ = c (r′ s2 t3 + 2 r s s′ t3 + 3 r s2 t2 t′)
= c s t2 (r′ s t+ 2 r s′ t+ 3 r s t′). (9.7)

From Equations (9.6) and (9.7), we see that s t2 divides both u and u′,
and, therefore,

s t2|gcd(u, u′). (9.8)

In fact, we can show that gcd(u, u′) = s t2. If gcd(u, u′) �= s t2, then the
two polynomials

u1 =
u

s t2
= c r s t,

u2 =
u′

s t2
= c (r′ s t+ 2 r s′ t+ 3 r s t′) (9.9)

have a common monic, irrreducible factor w with deg(w) > 0. However,
if w|u1, it follows from Theorem 4.29(2) that w divides exactly one of the
(relatively prime, square-free) polynomials r, s, and t. Let’s suppose that
w|r. (If w divides s or t, the argument is the same.) Since r is square-free,
Theorem 9.5 implies that w /| r′, and since r, s, and t are relatively prime,
w does not divide s or t. Therefore, by Theorem 4.29(2),

w /| c r′ s t. (9.10)

On the other hand, from Equation (9.9),

u2 − 2 c r s′ t− 3 c r s t′ = c r′ s t,

where w divides the left side of the equation. Since this statement and
(9.10) cannot both be true, the polynomial w does not exist, and therefore,

gcd(u, u′) = s t2. (9.11)

The general form of Equation (9.11) is given in the following theorem.

9.1. Square-Free Polynomials and Factorization 355

Theorem 9.12. Suppose that F is a field that contains Z, and suppose that
u in F[x] has the square-free factorization u = c s1 s

2
2 · · · smm with m ≥ 2.

Then,

gcd(u, u′) =
m∏
i=2

si−1
i . (9.12)

Proof: The general proof, which follows the lines of the above argument,
is left to the reader (Exercise 7). �

To motivate the square-free factorization algorithm, suppose that u is
a monic polynomial with a square-free factorization

u = q r2 s3 t4,

where q, r, s, and t are monic, square-free, and relatively prime polynomi-
als. We show that it is possible to find the factors q, r, s and t using only
the polynomial division and greatest common divisor operations.

First, let’s see how to obtain the factor q. Using Theorem 9.12, let

R = gcd(u, u′) = r s2 t3 (9.13)

where the exponent of each factor in R is one less than the corresponding
exponent in u. Next, using polynomial division, we obtain a polynomial
that is the product of each polynomial in the factorization:

F = quot(u,R) = q r s t. (9.14)

Let
G = gcd(R,F) = r s t, (9.15)

where all the factors except q appear to the first power. Finally, we obtain
q with the division

F

G
= quot(q r s t, r s t) = q. (9.16)

To obtain the next factor r, we redefine R by dividing the old value of R
(from Equation (9.13)) by the value for G (from Equation (9.15)),

R = quot(r s2 t3, r s t) = s t2, (9.17)

and redefine F as the current value of G in Equation (9.15):

F = r s t. (9.18)

356 9. Polynomial Factorization

Procedure Square free factor(u, x);
Input

u : a polynomial in F[x] where all field operations
in F are obtained with automatic simplification
and Z is contained in F;

x : a symbol;
Output

The square-free factored form of the polynomial u;
Local Variables

U, c, P,R, F, j,G, s;
Begin

1 if u = 0 then Return(u)
2 else
3 c := Leading Coefficient gpe(u, x);
4 U := Algebraic expand(u/c);
5 P := 1;
6 R := Polynomial gcd(U, Derivative(U,x), x);
7 F := Quotient(U,R,x);
8 j := 1;
9 while R �= 1 do
10 G := Polynomial gcd(R,F, x);
11 s := Quotient(F,G, x);
12 P := P ∗ sj ;
13 R := Quotient(R,G, x);
14 F := G;
15 j := j + 1;
16 P := P ∗ F j ;
17 Return(c ∗ P)

End

Figure 9.1. The MPL square-free factorization procedure. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

Then, repeating the operations in Equations (9.15) and (9.16), we obtain
the polynomial r:

G = gcd(R,F) = s t,
F

G
= quot(r s t, s t) = r.

Continuing in this fashion we find all the components in the factorization.

A procedure that obtains the square-free factorization using these op-
erations is given in Figure 9.1. In lines 3 and 4 we remove the leading

9.1. Square-Free Polynomials and Factorization 357

coefficient from u. The variable P , which contains the factored form, is
initialized at line 5. Lines 6 and 7, which correspond to the operations in
Equations (9.13) and (9.14), assign the initial values for R and F . The
variable j in line 8 keeps track of the powers of the factors.

Lines 10 and 11, which correspond to the operations in Equations (9.15)
and (9.16), obtain values for G and the factor s. The factor sj is combined
with P in line 12, and R, F , and j are redefined in lines 13–15. Notice that
the original R (line 6) is a monic polynomial, and when R is redefined by
polynomial division (line 13), it is still monic. Eventually R = 1, and the
loop terminates (line 9).

To see what happens at this point, suppose that the square-free factorization
for u is given by u = s1 s

2
2 · · · smm. At the beginning of the last pass through

the loop,
R = sm, F = sm−1 sm, j = m− 1.

Therefore, from lines 10–15,

G = sm, s = sm−1, P = s1 s
2
2 · · · sm−1

m−1,

R = 1, F = sm, j = m.

At this point the loop terminates, and this last factor smm is combined with
P in line 16.

Example 9.13. In this example, we trace the procedure for the polynomial

u = x5 + 6 x4 + 10 x3−4 x2−24 x− 16.

In this case, c = 1, U = u, U ′ = 5 x4 + 24 x3 + 30 x2 − 8 x− 24, and

R = gcd(U,U ′) = x2 + 4 x+ 4, F = quot(U,R) = x3 + 2 x2−2 x− 4.

Since R �= 1, the first pass through the loop gives

G = gcd(R,F) = x+ 2, s = quot(F,G) = x2 − 2, P = x2 − 2,

R = quot(R, G) = x+ 2, F = x+ 2, j = 2.

On the second pass through the loop,

G = x+ 2, s = 1, P = x2 − 2,

R = 1, F = x+ 2, j = 3.

Since R = 1, the loop terminates, and the procedure returns the square-free
factorization c P F 3 = (x2 − 2)(x+ 2)3. �

The square-free factorization algorithm described above does not work
for polynomials in Zp[x] because the coefficient field does not contain Z. A
square-free factorization algorithm for Zp[x] is given in Section 9.3.

358 9. Polynomial Factorization

Square-Free Factorization in Z[x]
Let’s consider briefly the square-free factorization of polynomials in Z[x]
using the gcd operations described in Section 6.3. In this case, both the
theorems and algorithm are similar to those given above with modifications
to account for the form of the gcd in this setting.

Since a polynomial in Z[x] with positive degree has a non-zero deriva-
tive, a theorem similar to Theorem 9.5 is valid. However, since the gcd
in Z[x] is unit normal rather than monic, the theorem takes the following
form.

Theorem 9.14. Let u be a polynomial in Z[x]. Then, u is square-free if
and only if deg(gcd(u, u′)) = 0.

In this setting, u has a unique square-free factorization of the form

u = c s1 s
2
2 · · · smm, (9.19)

where2

c = sign(lc(u)) cont(u), (9.20)
and the si are square-free, primitive, unit normal, and relatively prime
(Exercise 12). In this setting, the analogue of Equation (9.12) is

gcd(u, u′) = |c|
m∏
i=2

si−1
i ,

where the absolute value guarantees that the gcd is unit normal.

Example 9.15. Let

u = −750 x4 − 525 x3 + 90 x2 + 132 x+ 24.

Then, cont(u) = 3, and u has the square-free factorization

u = −3 (2 x− 1) (5 x+ 2)3.

In order that each factor be unit normal, it is necessary to take

c = sign(lc(u)) cont(u) = sign(−750) · 3 = −3. �

A procedure that finds the factorization in Equation (9.19) in Z[x] is
similar to the one in Figure 9.1 with two changes. First, c is initialized
using Equation (9.20). In addition, the gcd operators in lines 6 and 10
are replaced by the operator Mv poly gcd (page 249). The details of the
procedure are left to the reader (Exercise 13).

2 In Equation (9.20), the sign operator returns +1 for a positive rational number, −1
for a negative rational number, and 0 for the number 0.

9.1. Square-Free Polynomials and Factorization 359

Exercises
1. Determine whether or not each of the polynomials is square-free.

(a) u = x3/3 + x2/2 + 1 in Q[x].

(b) u = 2 x3 + 9x2 + 12x + 24 in Q[x].

(c) u = x3 − 6
√

2x2 + 22x− 12
√

2 in Q(
√

2)[x].

2. For which real numbers t is the polynomial x3 + t x2 + 8x+ 4 square-free?

3. Let n be a positive integer, and let c �= 0 be a rational number. Show that
u = xn − cn is square-free.

4. Prove Theorem 9.3.

5. Let F be a field that contains the integers, and let u and v �= 0 be polyno-
mials in F[x].

(a) For an integer n ≥ 2, show that if vn|u, then vn−1|gcd(u, u′).

(b) For n ≥ 2 an integer and v irrreducible, show that if vn−1|gcd(u, u′),
then vn|u. Give an example that shows this statement may not hold
when v is reducible.

(c) Show that the polynomial quot(u, gcd(u, u′))
is square-free.

(d) Show that any irrreducible factor of u is also an irrreducible factor of

quot(u, gcd(u, u′)).

6. Let u(x) have the square-free factorization u = c s1 s
2
2 · · · sm

m. Show that

deg(u, x) = deg(s1, x) + 2 deg(s2, x) + · · · + mdeg(sm, x).

7. Prove Theorem 9.12.

8. Prove that u in Q[x] is square-free if and only if it has no multiple roots
that are complex numbers.

9. Using the algorithm described in this section, find a square-free factorization
for each of the following polynomials.

(a) u = x3 + x2−8x− 12 in Q[x].

(b) u = x3 − 7
√

2x2 + 32x− 24
√

2 in Q(
√

2)[x].

10. Give a procedureAlg square free factor(u, x, p, α) that finds the square-free
factorization for polynomials in Q(α)[x] where α is an algebraic number
with minimal polynomial p.

11. Another algorithm that obtains the square-free factorization is suggested
by the following manipulations. Suppose that u is a monic polynomial in
F[x] with a square-free factorization u = q r2 s3 t4. Let

R = gcd(u, u′) = r s2 t3, F = quot(u,R) = q r s t (9.21)

360 9. Polynomial Factorization

D = quot(u′, R) − F ′ = q (r′ s t + 2 r s′ t + 3 r s t′).

We obtain the first factor with the operation

s1 = gcd(F,D) = q. (9.22)

To obtain the next factor, redefine F by dividing the old value of F (from
Equation (9.21)) by the value for s1 to obtain F = quot(q r s t, q) = r s t,
and redefine D with

D = quot(D, s1) − F ′ = r (s′ t + 2 r s t′),

where the D on the right side of the equation is the old value of D. Then,
performing the operation in Equation (9.22), we get the next factor

s2 = gcd(F,D) = r.

Continuing in this fashion, we find all the components in the factoriza-
tion. Give a procedure that finds the square-free factorization using these
operations.

12. Let u be a polynomial in Z[x]. Show that u has a square-free factorization of
the form u = c s1 s

2
2 s

m
m where the si are square-free, primitive, unit normal,

and relatively prime and c = sign(lc(u)) cont(u).

13. Give a procedure Square free factor Z (u, x) that obtains the square-free
factorization of u in Z[x] using the approach described on page 358.

9.2 Irreducible Factorization: The Classical Approach

In this section we describe a simple (but highly inefficient) algorithm that
obtains the irrreducible factorization for polynomials in Q[x].

First, we show that it is sufficient to give a factorization algorithm for
polynomials in the simpler domain Z[x]. Let

u = unx
n + · · ·+ u0

be a polynomial in Q[x], and let ai and bi be the numerator and denomi-
nator of the coefficients ui. To obtain an equivalent factorization in Z[x],
let M be the least common multiple3 of the denominators,

M = lcm(b0, b1, . . . , bn), (9.23)
3A procedure that obtains the least common multiple of two integers is described

in Exercise 18 on page 35. The least common multiple of integers b0, . . . , bn is given
recursively by

lcm(b0, . . . , bn) = lcm(lcm(b0, . . . , bn−1), bn).

9.2. Irreducible Factorization: The Classical Approach 361

and define the polynomial in Z[x]:

v = M u = (M an/bn)xn + · · ·+ (M a0/b0). (9.24)

Then,

u =
v

M
=

cont(v)
M

pp(v), (9.25)

where pp(v) is a primitive polynomial in Z[x]. In addition, if pp(v) has the
irrreducible factorization (in Z[x])

pp(v) = p1(x) · · · pr(x),

then a factorization of u is given by

u =
cont(v)

M
p1(x) · · · pr(x). (9.26)

Although the polynomials pi are not necessarily monic, this form is simi-
lar to the one obtained by the factor operator in most computer algebra
systems.

Example 9.16. If u = (3/2)x2 − 3/8, then

M = 8, v = 12 x2 − 3, cont(v) = 3, pp(v) = 4 x2 − 1.

We have u = (3/8) (4 x2 − 1) = (3/8) (2 x− 1)(2 x+ 1). �

Before describing a factorization algorithm, we need to verify a technical
point. Although each polynomial pi in Equation (9.26) is irrreducible in
Z[x], we need to show that it is also irrreducible in the larger domain Q[x].
This point is addressed in the following theorem.

Theorem 9.17. Let u be an irrreducible polynomial in Z[x] with positive
degree. Then, u is also irrreducible in Q[x].

Proof: The proof is by contradiction. Suppose that u = p q, where p and
q are in Q[x] with positive degree. We use p and q to find a factorization
in Z[x].

Let M be the least common multiple of the denominators of the coef-
ficients of p, and let N be the least common multiple of the denominators
of q. Then, the polynomials

p0 = M p, q0 = N q

362 9. Polynomial Factorization

are in Z[x] with positive degree, and

(M ·N)u = p0 q0.

In addition, if the integer M ·N has the irrreducible factorization

M ·N = i1 i2 · · · is,

then
i1 i2 · · · is u = p0 q0.

Now, by Theorem 6.55 (page 242), i1 divides either all of the coefficients
of p0 or all of the coefficients of q0. If i1 divides all of the coefficients p0,
we form a new polynomial p1 in Z[x] by dividing i1 into each coefficient of
p0. Therefore,

i2 i3 · · · is u = p1 q0.

Continuing in this fashion, we can eliminate each integer factor ij from the
left side of the equation and represent u as a product of polynomials in Z[x]
with positive degree. This contradicts the hypothesis that u is irrreducible
in Z[x]. �

Kronecker’s Factorization Algorithm in Z[x]
Let u be a polynomial in Q[x] with positive degree. Using the algorithm
described in Section 9.1 and Equation (9.25), the factorization problem is
reduced to the factorization of primitive, square-free polynomials in Z[x].
The algorithm described in this section also works, however, when u is not
primitive or square-free. The approach we describe below is attributed to
the German mathematician Leopold Kronecker (1823–1891).

Let u(x) be a polynomial of degree n ≥ 2, and suppose that u(x) can
be factored in Z[x] as

u(x) = q(x) v(x) (9.27)

where both factors have positive degree. Since deg(q(x)) + deg(v(x)) = n,
one of the factors (say q(x)) has degree ≤ n/2, and since n/2 may not be
an integer, let s = �n/2�. The algorithm either finds a factor q(x) with
positive degree ≤ s or shows that q(x) cannot be found. Let

q(x) = qs x
s + qs−1 x

s−1 + · · ·+ q0. (9.28)

Since q(x) has s + 1 unknown coefficients, we first determine its value at
s+1 values of x and then find its coefficients by solving a system of linear
equations. We use the original polynomial u(x) to find the x values and
the corresponding q(x) values.

9.2. Irreducible Factorization: The Classical Approach 363

Since u(x) has degree n, the equation u(x) = 0 has at most n roots,
and there are integers x1, x2, . . . , xs+1 such that

u(xi) �= 0, i = 1, 2, . . . , s+ 1.

Although we don’t know the value of q(xi), we do know from Equation
(9.27) that q(xi)|u(xi). If we let Si represent the set of (positive and
negative) divisors of u(xi), then

q(xi) ∈ Si, i = 1, 2, . . . , s+ 1. (9.29)

Since we don’t know the values q(xi), the best that we can do is try the
various possibilities from the sets Si. To determine a possible candidate
for q(x), we choose a collection of values

ri ∈ Si, i = 1, 2, . . . , s+ 1,

and find the polynomial q(x) that passes through the points

(x1, r1), (x2, r2), . . . , (xs+1, rs+1).

If q(x) is a divisor of u(x) with positive degree, then we have found a factor
of u(x). If not, we repeat this process for another set of values r1, . . . , rs+1.
We keep doing this until we either have found a factor or have exhausted
all possible choices of the values ri.

If we don’t find a factor by this method, the original polynomial is
irrreducible. If we do find a factor, then we divide q(x) into u(x) and
obtain the factorization u(x) = q(x) v(x). However, since either q(x) or
v(x) may have coefficients that are fractions (rather than integers), we
first find an equivalent factorization in terms of polynomials with integer
coefficients (Exercise 3), and then complete the factorization by applying
the process recursively to these new factors.

Example 9.18. Consider the polynomial

u(x) = x4 + 2 x3 + 2 x2 + 2 x+ 1.

Since u has degree 4, we search for a factor with degree s = �4/2� = 2:

q(x) = q2 x
2 + q1 x+ q0. (9.30)

To find the coefficients q1, q2, and q3, we need three values of x where
u(x) �= 0. These values are given by u(0) = 1, u(1) = 8, and u(2) = 45,
and therefore,

S1 = {±1},
S2 = {±1,±2,±4,±8},
S3 = {±1,±3,±5,±9± 15,±45}.

364 9. Polynomial Factorization

Next choose three values ri, one from each Si, substitute (0, r1), (1, r2), and
(2, r2) in Equation (9.30), and solve the linear system for the coefficients
q0, q1, and q2. For example, for r1 = 1, r2 = −1, and r3 = 3, we obtain
q(x) = 3 x2 − 5 x + 1 which (by polynomial division) is not a factor of u.
However, for r1 = 1, r2 = 2, and r3 = 3, we obtain q(x) = x + 1 which
is a factor, and, by polynomial division

u = (x+ 1)(x3 + x2 + x+ 1). (9.31)

The cubic polynomial in Equation (9.31) can be factored further with a
recursive application of the process as

(x3 + x2 + x+ 1) = (x+ 1) (x2 + 1).

The quadratic polynomial x2 + 1 cannot be factored further, and so the
factorization is given by u(x) = (x+ 1)2 (x2 + 1). �

Procedures for Kronecker’s algorithm are given in Figures 9.2 and 9.3.
The main procedure is the Kronecker procedure shown in Figure 9.2. At

Procedure Kronecker (u, x);
Input

u : a polynomial in Z[x];
x : a symbol;

Output
an irrreducible factorization of u in Z[x];

Local Variables
n, s, x u values ,S sets ;

Begin
1 n := Degree gpe(u, x);
2 if n ≤ 1 then
3 Return(u)
4 else
5 s := Floor(n/2);
6 x u values := Find x u values(u, s, x);
7 S sets := Find S sets(x u values);
8 Return(Kronecker factors(S sets, u, x))

End

Figure 9.2. The main MPL procedure for Kronecker’s polynomial factorization
algorithm for polynomials in Z[x]. (Implementation: Maple (txt), Mathematica
(txt), MuPAD (txt).)

9.2. Irreducible Factorization: The Classical Approach 365

Procedure Kronecker factors(S sets, u, x);
Input

u : a polynomial in Z[x];
S sets : a list of lists of the form [xi, Si] where Si is

the set of positive and negative divisors of u(xi);
x : a symbol;

Output
an irrreducible factorization of u in Z[x];

Local Variables c,m,N, i, j, S, points,X, q, v, k, w, g, p;
Begin

1 N := 1;
2 for i := 1 to Number of operands(S sets) do
3 c[i] := 1;
4 m[i] := Number of operands(Operand(Operand(S sets, i), 2));
5 N := N ∗m[i];
6 k := 1;
7 while k ≤ N do
8 points := [];
9 for j := 1 to Number of operands(S sets) do
10 w := Operand(S sets , j);
11 X := Operand(w, 1);
12 S := Operand(w, 2);
13 points := Adjoin([X,Operand(S, c[j])], points);
14 q := Lagrange polynomial(points, x);
15 if Degree gpe(q, x) > 0 then
16 g := Polynomial division(u, q, x);
17 if Operand(g, 2) = 0 then
18 v := Operand(g, 1);
19 p := Find integer factors(q, v, x);
20 Return(Kronecker(Operand(p, 1), x)

∗Kronecker(Operand(p, 2), x));
21 j := 1;
22 while j ≤ Number of operands(S sets) do
23 if c[j] < m[j] then
24 c[j] := c[j] + 1;
25 j := Number of operands(S sets) + 1
26 else
27 c[j] := 1; j := j + 1;
28 k := k + 1;
29 Return(u)

End

Figure 9.3. The MPL Kronecker factors procedure. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

366 9. Polynomial Factorization

line 6, the procedure Find x u values obtains a list of lists

[[x1, u(x1)], . . . , [xs+1, u(xs+1)]], (9.32)

where xi is an integer and u(xi) �= 0. At line 7, the procedure Find S sets
obtains another list

[[x1, S1], . . . , [xs+1, Ss+1]] (9.33)

where Si is the set of positive and negative divisors of u(xi). The details
of both of these procedures are left to the reader (Exercises 4 and 5).

The Kronecker factors procedure, which is the heart of the algorithm,
is invoked at line 8. This procedure is given in Figure 9.3. The procedure
searches for a factor of u by choosing, in a systematic way, values ui from
the sets Si and creating and testing a trial factor that passes through the
points

[[x1, u1], . . . , [xs+1, us+1]].

The array c[i], i = 1, 2, . . . , s+ 1 keeps track of which divisor is selected
from each Si, while the array m[i] contains the number of divisors in Si.
Both of these arrays are given values in lines 2–5. Since each c[i] is initial-
ized to 1, the first trial factor passes through the point [xi,Operand(Si, 1)]
for 1 ≤ i ≤ s + 1. The variable N , which contains the number of ways a
trial factor can be chosen, is also initialized in this loop.

The main loop of the procedure is given in lines 7–28. In lines 8–13,
we construct a list called points that is used to find a trial divisor q in
line 14. (The Lagrange polynomial procedure is described in Exercise 6.)
In lines 15–17, we check if q is a divisor with positive degree and, if so,
divide q into u at line 16. If the remainder of this division is 0 (line 17),
then v is the quotient (line 18). Since q and v may have coefficients that
are not integers, at line 19 we first find the equivalent factors with integer
coefficients using the Find integer factors procedure (Exercise 3), and then
apply the Kronecker procedure recursively to the new polynomials and
return the product of the factors (line 20). In lines 21–29, we increment
the c[j] values and j in preparation for trying another trial factor q. If
we complete the main loop without finding a divisor, then we return the
irrreducible polynomial u (line 29).

Computational Efficiency of Kronecker’s Algorithm

Although Kronecker’s algorithm shows that polynomial factorization is an
algorithmic process, it is notoriously slow. In fact, the algorithm is only
practical for low degree polynomials with small coefficients, since in other
cases the number of trial factors is prohibitively large.

9.2. Irreducible Factorization: The Classical Approach 367

Since polynomial factorization is such an important operation for com-
puter algebra, it has attracted the attention of research mathematicians and
computer scientists who have developed a number of more efficient (and
much more involved) approaches to the problem. We describe a modern
factorization algorithm in Section 9.4.

Kronecker’s Algorithm for Multivariate Polynomials

Kronecker’s algorithm has a natural extension to multivariate polynomials
which we illustrate with an example.

Example 9.19. Consider the polynomial

u(x, y) = 3 x y − y x3 − x2 + 2 x+ xy2 + x2 y + y2 x2.

Let’s first express u(x, y) as a polynomial in y with coefficients that are
polynomials in x:

u(x, y) =
(
2 x− x2

)
+
(
3 x+ x2 − x3

)
y +

(
x+ x2

)
y2.

We can simplify the process with

cont(u, y) = gcd
(
2 x− x2, 3 x+ x2 − x3, x+ x2

)
= x

and the preliminary factorization

u = cont(u, y) pp(u, y) = x · ((2 − x) +
(
3 + x− x2

)
y + (1 + x)y2

)
.

(9.34)
In this case, cont(u, y) is irrreducible. If this were not so, it could be
factored with the univariate version of Kronecker’s algorithm.

Let

w(x, y) = pp(u, y) =
(
(2 − x) +

(
3 + x− x2

)
y + (1 + x)y2

)
.

Observe that w(x, y) is a quadratic in y, and so, if it can be factored, both
of the factors must be linear in y. Let

q(x, y) = m(x) y + b(x) (9.35)

be one of the linear factors, and suppose that

w(x, y) = q(x, y) v(x, y)

where v(x, y) is also linear in y. To find the two coefficients m(x) and b(x),
we imitate what was done in the univariate case, but now the unknown

368 9. Polynomial Factorization

coefficients are polynomials in x. To do this, we need to find the values
of q(x, y) at two values y = y1 and y = y2, and then, by substituting
(y1, q(x, y1)) and (y2, q(x, y2)) into Equation (9.35), we obtain two linear
equations for the two unknown polynomials m(x) and b(x). We use w(x, y)
to find the two y values and the corresponding q(x, y) values.

As in the univariate case, we need two y values with w(x, y) �= 0. In
this case,

w(x, 0) = 2− x, w(x, 1) = 6 + x− x2

will do. Since q(x, y) is a divisor of w(x, y), we must find all the divisors of
w(x, 0) and w(x, 1). Since these expressions are polynomials in x, we can
find the divisors of these polynomials by first factoring them (using Kro-
necker’s algorithm for univariate polynomials) and then finding all divisors
of the polynomials (Exercise 12, page 125). Therefore,

q(x, 0) ∈ S1 = {±1, ± (2 − x)},
q(x, 1) ∈ S2 = {±1, ± (2 + x), ± (3 − x), ± (2 + x) (3 − x)}.

To find a trial factor q(x, y), we choose an expression r1 from S1 and an
expression r2 from S2. Therefore, substituting

y = 0, q(x, y) = r1

and
y = 1, q(x, y) = r2

into Equation (9.34), we obtain two equations for m(x) and b(x). If the
solution q(x, y) is a divisor of w(x, y), then q(x, y) is a factor. If not we
repeat the process with other values for u1 and u2. For example, if we
choose

r1 = 2− x, r2 = 3− x,

we obtain the two equations

2− x = m(x) · 0 + b(x), 3− x = m(x) · 1 + b(x).

Solving these equations we obtain b(x) = 2 − x and m(x) = 1, and so a
trial factor is q(x, y) = y + (2 − x). In this case q(x, y) is a factor, and by
dividing q(x, y) into w(x, y) we obtain the factorization

w(x, y) = (y + 2− x) (x y + y + 1).

Therefore, using Equation (9.34), the original polynomial u(x, y) can be
factored as

u(x, y) = x (y + 2− x) (x y + y + 1). �

9.2. Irreducible Factorization: The Classical Approach 369

Exercises
1. Factor each of the following using Kronecker’s algorithm.

(a) x3 + 2x2 + 2x + 1

(b) x3 + x2 + x + 1

2. Use Kronecker’s algorithm to show that u = x2 + 1 cannot be factored in
Z[x].

3. Let u be a polynomial in Z[x], and let u = v w be a factorization in terms
of rational coefficients. Give a procedure

Find integer factors(v, w, x)

that returns a list [v1, w1] where u = v1 · w1 is a factorization in Z[x].

4. Let u be a polynomial in Z[x] with positive degree, x a symbol, and s > 0
an integer. Give a procedure

Find x u values(u, x, s)

that returns the list (9.32), where xi is an integer and u(xi) �= 0.

5. Let L be a list of the form (9.32). Give a procedure

Find S sets(L)

that returns the list (9.33). (Exercise 6 on page 34 is useful in this exercise.)

6. Let P = [[x1, y1], . . . , [xr+1, yr+1]] be a list of 2 element lists, where xi

and yi are rational numbers. The Lagrange interpolation polynomial that
passes through these points is given by

L(x) =

r+1�
i=1

yiLi(x).

where

Li(x) =
(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xr+1)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xr+1).

Give a procedure Lagrange polynomial(P, x) that returns the polynomial
L(x). For example,

Lagrange polynomial([[1, 1], [2,−1]], x) → −2x + 3.

7. Give a procedure

Find Z poly(u, x)

that returns the list [cont(v)/M, pp(v)] where M is given by Equation
(9.23) and v is given by Equation (9.24).

370 9. Polynomial Factorization

8. Give a procedure

Factor sv(u, x)

that finds the irrreducible factorization of a polynomial u in Q[x]. (The suf-
fix “sv” stands for “single variable.”) First, find a square-free factorization
of u in Q[x]. Then, use Kronecker’s algorithm to factor the primitive part
of the integer-coefficient version of each square-free factor of u (see Equa-
tions (9.23)-(9.26)). (Exercise 7 is useful in this exercise.)

In Exercise 18 on page 429, we suggest a modification of this procedure that
finds the irrreducible factorization in Z[x] using the approach described in
Section 9.4.

9. Use Kronecker’s algorithm to factor u = y2 + x y + y + x.

9.3 Factorization in Zp[x]

Let p > 1 be a prime number. In this section we describe an algorithm
that finds the irrreducible factorization of a polynomial u in Zp[x]. First,
we obtain a square-free factorization of u by using a modification of the
approach described in Section 9.1, and then complete the process by finding
the irrreducible factorization of each of the square-free factors. Since the
finite field Zp has a richer algebraic structure than the infinite integral
domain Z, the irrreducible factorization problem is simpler in Zp[x] than
in Z[x].

Although the factorization problem in Zp[x] is important in its own
right, we introduce it here because it plays an essential role in the factor-
ization algorithm in Z[x].
Notation Convention. In this section, to simplify the notation, we

use the ordinary algebraic operators (+ and ·) for addition and multiplica-
tion of polynomials rather than the more cumbersome notation ⊕p and ⊗p
introduced for Zp in Section 2.3. For example, for u(x) and v(x) in Zp[x],
u(x) + v(x) refers to the addition of polynomials where the arithmetic of
corresponding coefficients of the polynomials is performed in Zp.

Algebraic Relationships in Zp[x]

We begin by describing a number of algebraic relationships that apply to
polynomials in Zp[x].

Theorem 9.20. Let p > 1 be a prime number. Then, in Zp[x],

xp − x = x (x− 1) · · · (x− (p− 2)) (x − (p− 1)). (9.36)

9.3. Factorization in Zp[x] 371

Proof: By Fermat’s little theorem (Theorem 2.43(3), page 54), each b in
Zp is a root of xp − x = 0. Since both sides of Equation (9.36) are monic
and have the same degree and roots, the relationship follows. �

The relationship in the next theorem is the polynomial version of Theo-
rem 2.43(2) on page 54. The proof is similar to the proof for that theorem.

Theorem 9.21. Let p > 1 be a prime number, and let u(x) and v(x) be
polynomials in Zp[x]. Then, (u(x) + v(x))p = u(x)p + v(x)p. �

The relationship in the next theorem plays a key role in the development
of both the square-free and irrreducible factorization algorithms in Zp[x].

Theorem 9.22. Let p > 1 be a prime number, and let u(x) be in Zp[x].
Then, u(x)p = u(xp).

Proof: The proof uses mathematical induction on n = deg(u). For n = 0,
the polynomial u is a constant, and so the theorem follows from Fermat’s
little theorem (page 54). Suppose that n > 0, and assume the induction
hypothesis that the theorem holds for polynomials with degree ≤ n − 1.
We have

u(x) = unx
n + v(x)

where v represents all the terms in u(x) that have degree ≤ n − 1. Using
Theorem 9.21 and the induction hypothesis applied to v, we have

u(x)p = (unxn + v(x))p = (unxn)p + v(x)p

= upn · (xn)p + v(xp) = un · (xp)n + v(xp)
= u(xp). �

Square-Free Factorization Algorithm in Zp[x]
In Section 9.1 we described an algorithm that obtains the square-free
factorization for polynomials in F[x] when the field F contains the inte-
gers. In that setting, both the mathematics and the algorithm use the
property that a polynomial with positive degree cannot have a zero deriva-
tive (Theorem 9.4, page 351). Since this property does not hold for all
polynomials in Zp[x] (e.g., for p = 3, (x3 + 1)′ = 0), the mathematical de-
velopment and algorithm must be modified. Fortunately, there is a simple
way to describe polynomials in Zp[x] which have a zero derivative.

Theorem 9.23. Let p > 1 be a prime number, and let u be a polynomial in
Zp[x]. Then, u′ = 0 if and only if u = f(xp), where f(x) is in Zp[x].

372 9. Polynomial Factorization

Proof: If u = f(xp), then p divides the coefficient of each monomial in the
derivative, and so u′ = 0. Conversely, suppose that u = anx

n + · · · + a0

and u′ = 0. This implies that p divides the coefficient of each monomial
ai i x

i−1 of u′, and since p is a prime, by Theorem 2.16(2), we have p|ai or
p|i. If p|ai, then since 0 ≤ ai ≤ p− 1, we have ai = 0. On the other hand,
if p|i, the monomial in u has the form ai(xp)q where q = iquot(i, p). Since
each non-zero monomial has this form, u has the form f(xp). �

Using the last theorem and Theorem 9.22, we obtain the analogue of
Theorem 9.5 in Zp[x].

Theorem 9.24. Let p > 1 be a prime number, and let u be a polynomial in
Zp[x]. Then, u is square-free if and only if gcd(u, u′) = 1.

Proof: The proof is similar to the one for Theorem 9.5 (page 351), with
the following modification to the second half of the proof when u has a
factor with positive degree and zero derivative. As in the earlier proof,
suppose that u = q1 v with deg(v) > 0, but now suppose that v′ = 0.
Then, by Theorems 9.22 and 9.23, v = (f(x))p, which implies that u is not
square-free. With this observation added to the proof of Theorem 9.5, we
obtain a proof of the present theorem. �

Suppose now that u has the square-free factorization

u = c
∏

1≤i≤m
sii (9.37)

where the polynomials si are monic, square-free, and relatively prime. An
algorithm that obtains this factorization is similar to the one given in Sec-
tion 9.1 with a modification that accounts for the possibility that some of
the square-free factors may have zero derivative. Let

v =
∏

1 ≤ i ≤ m
s′i
= 0

sii, w =
∏

1 ≤ i ≤ m
s′i = 0

sii,

where v and w are monic and

u = c v w. (9.38)

Since w′ = 0, we have u′ = c v′ w, and since each square-free factor of v
has non-zero derivative, gcd(v, v′) is obtained with manipulations similar
to those given in Section 9.1. Therefore (using Exercise 11, page 144),

9.3. Factorization in Zp[x] 373

gcd(u, u′) = gcd(c v w, c v′ w)
= w gcd(v, v′) (9.39)

= w
∏

2 ≤ i ≤ m
s′i
= 0

si−1
i .

A procedure that obtains the square-free factorization in Zp[x] is similar
to the one in Figure 9.1 (page 356) with three modifications. The following
discussion refers to the variables in this procedure.

First, Equation (9.39) shows that the variable R assigned at line 6 of
this procedure has w as a factor. In addition, this factor is not removed
from R by the manipulations in the loop (lines 10–15). To see why, suppose
that at line 4, U = v w. Then at lines 6–7,

R = w gcd(v, v′), F =
U

R
=

v

gcd(v, v′)
.

In addition, in the while loop that begins at line 9, G at line 10 does not
have w as a factor, and so R at line 13 does have w as a factor. Therefore,
if line 9 is replaced by

while Derivative(R, x) �= 0 do,

then at line 16, P contains the square-free factorization of v and R = w.
The secondmodification of the procedure obtains the square-free factorization

of w. By Theorems 9.22 and 9.23, we can represent w as

w(x) = f(xp) = f(x)p, (9.40)

where f(x) is obtained by substituting x1/p for x in w. We obtain the
square-free factorization of f with a recursive application of the procedure
and then obtain the factorization for w by taking the factorization for f to
the power p.

Finally, the square-free factorization for u is obtained using the factor-
izations for v and w and Equation (9.38). The details of the procedure are
left to the reader (Exercise 1).

Irreducible Factorization of Square-Free Polynomials in Zp[x]
To complete the factorization problem, we must obtain the irrreducible
factorization of each of the monic, square-free polynomials si in Equa-
tion (9.37).

Let u be a monic square-free polynomial in Zp[x] with n = deg(u). A
simple approach to the factorization problem is obtained by mimicking the

374 9. Polynomial Factorization

trial-factors approach used by Kronecker’s algorithm. If u is reducible, it
must have a monic factor of degree m with 1 ≤ m ≤ iquot(n, 2), and since
Zp is finite, there are a finite number of trial polynomials of this type.
Using polynomial division, we check each trial polynomial (starting with
polynomials of degree 1), and if a factor f is found, we obtain the complete
factorization by applying the algorithm recursively to quot(u,f). If none of
the trial polynomials is a factor, then u is irrreducible.

Although, the approach is not difficult to implement (Exercise 10), like
Kronecker’s algorithm, it is highly inefficient. Indeed, the number of trial
factors is given by

piquot(n,2)+1 − p

p− 1

which is large even for small values of p (Exercise 2). For example, for p =
11 and n = 16, there are 235, 794, 768 trial factors with degree 1 ≤ m ≤ 8.
There has got to be a better way!

A better approach is an algorithm, discovered in the late 1960s by E.
R. Berlekamp, that obtains the factorization by reducing the problem to
the solution of a system of linear equations followed by a number of gcd
calculations.

Auxiliary Polynomials

The first step in the development of the algorithm is the formal definition
of the auxiliary polynomials that are used in the gcd calculations. The
Chinese remainder theorem (Theorem 4.41, page 140) plays a central role
here since it guarantees (in a theoretical sense) the existence of these poly-
nomials. However, the Chinese remainder procedure that finds the solution
to the remainder equations has no computational role in the algorithm.

The auxiliary polynomials are defined in the following way. Let u(x) be
a monic and square-free polynomial in Zp[x] with an irrreducible factorization

u = u1 · · · ur, (9.41)

where each ui is monic and has positive degree. Suppose that a1, . . . , ar
are in Zp, and consider the polynomial h(x) that satisfies the system of
remainder equations and degree condition

rem(h(x), ui) = ai for 1 ≤ i ≤ r, deg(h) < deg(u). (9.42)

Since u is square-free, the ui are distinct, and so the Chinese remainder
theorem guarantees that there is a unique h(x) that satisfies these condi-
tions.

9.3. Factorization in Zp[x] 375

Example 9.25. Suppose that p = 5 and u = x6 + x5 + x + 4. Using the
algorithm described later in this section, the irrreducible factorization for
u in Z5[x] is given by

u = u1 u2 u3 = (x2 + x+ 2) (x2 + 2 x+ 3) (x2 + 3 x+ 4).

Each choice of a1, a2, and a3 gives a unique polynomial h(x). For example,
if a1 = 1, a2 = 2, and a3 = 3, then using the algorithm suggested in the
proof of the Chinese remainder theorem, we have

h = 4 x5 + 4 x. (9.43)

In a similar way, if a1 = 1, a2 = 1, and a3 = 2, then

h = 2 x5 + x4 + 4 x3 + 4 x2 + 2 x+ 1. (9.44)

Finally, if a1 = 1, a2 = 1, and a3 = 1, then

h = 1. (9.45)

�

The next theorem gives two important properties of the auxiliary poly-
nomials h(x).

Theorem 9.26. Let p > 1 be a prime number, and let u(x) be a monic,
square-free polynomial in Zp[x] with the irrreducible factorization

u = u1 · · ·ur.

1. There are pr distinct polynomials h(x) that satisfy the remainder
equations (9.42) where each sequence a1, . . . , ar gives a unique h(x).

2. For each h(x) that satisfies the remainder equations (9.42),

u(x) =
p−1∏
j=0

gcd(u(x), h(x) − j) (9.46)

where the factors in the product are relatively prime.

Proof: To show (1), for each sequence a1, a2, . . . , ar, the Chinese remainder
theorem shows that there is a unique h(x) that satisfies the remainder
equations (9.42). In addition, since 0 ≤ ai ≤ p − 1, there are pr such

376 9. Polynomial Factorization

sequences, and since each sequence gives a distinct polynomial, there are
pr such polynomials.

To show (2), first observe that the factors in Equation (9.46) are rela-
tively prime since the polynomials h(x)−j, j = 0, 1, . . . , p−1 are relatively
prime (Exercise 11, page 125). Since both sides of Equation (9.46) are
monic, we need only show that each side divides the other side. Let

H(x) =
p−1∏
j=0

gcd(u(x), h(x) − j).

Since h(x) satisfies the remainder equations (9.42), each irrreducible fac-
tor ui of u divides some h(x) − j, which implies that each ui|H(x). In
addition, since the polynomials u1, . . . , ur are relatively prime, Theorem
4.29(3) (page 133) implies that u(x)|H(x). On the other hand, each of the
relatively prime factors of H(x) divides u(x), and so H(x)|u(x). Therefore,
we obtain Equation (9.46). �

The relationship in Equation (9.46) shows that the auxiliary polynomi-
als provide a way to obtain a factorization using gcd calculations. However,
for some j, the expression gcd(u(x), h(x)− j) may be 1, and for other j, it
may be reducible. Both of these points are illustrated in the next example.

Example 9.27. Suppose that p = 5, and consider the polynomial

u = x6 + x5 + x+ 4

in Zp[x] from Example 9.25. Using the h in Equation (9.43) and the pro-
cedure Poly div p (Exercise 9, page 125), the factorization in Equation
(9.46) is

u = 1 · (x2 + x+ 2) (x2 + 2 x+ 3) (x2 + 3 x+ 4) · 1.
In this case, we obtain all three irrreducible factors of u. However, using
the h in Equation (9.44), we obtain

u = 1 · 1 · (x4 + 3 x3 + 2 x2 + 2 x+ 1) (x2 + 3 x+ 4) · 1.
In this case, two of the irrreducible factors of u coalesce into one factor.
Finally, using the h given in Equation (9.45),

u = 1 · (x6 + x5 + x+ 4) · 1 · 1 · 1.
In this case, Equation (9.46) does not obtain any of the irrreducible factors
of u. �

9.3. Factorization in Zp[x] 377

Computation of h(x)
You may have noticed that there is something amiss about the polynomials
h(x). Although we have said that the polynomials are useful for finding the
factors of u, their formal definition is in terms of the irrreducible factors of
u which are unknown. This predicament is addressed in the next theorem
which provides another view of h(x) in terms of the unfactored form of u(x).

Theorem 9.28. Let p > 1 be a prime number, and let u(x) be a square-free
polynomial in Zp[x] with positive degree. In addition, suppose that h(x) is in
Zp[x] with deg(h) < deg(u). Then, h(x) satisfies the remainder equations
(9.42) for some sequence a1, . . . , ar if and only if

u|h(x)p − h(x). (9.47)

Proof: First, let’s assume that h(x) satisfies the remainder equations
(9.42) and show that it satisfies the condition (9.47). We have by (9.42),

h(x) = qi ui + ai, for 1 ≤ i ≤ r, (9.48)

where qi = quot(h, ui) and ai = rem(h, ui). Therefore, by Theorem 9.21
and Theorem 2.43(3) (page 54),

h(x)p = (qi ui + ai)p

= qpi u
p
i + api

= (qpi u
p−1
i)ui + ai. (9.49)

From Equations (9.48) and (9.49), we have

h(x)p − h(x) = (qpi u
p−1
i − qi)ui

which implies that ui|h(x)p − h(x) for 1 ≤ i ≤ r. Since the polynomials
u1, . . . , ur are relatively prime, Theorem 4.29(3) (page 133) implies that
u(x)|h(x)p − h(x).

To show the converse statement, we assume that the condition (9.47)
is true, and show that h(x) satisfies the remainder equations (9.42). Sub-
stituting h(x) for x in Equation (9.36) we obtain

h(x)p − h(x) = h(x) (h(x) − 1) · · · (h(x)− (p− 1)) (9.50)

where the factors in the product are relatively prime. Now Equations (9.47)
and (9.50) imply that for each irrreducible factor ui of u,

ui|h(x) (h(x) − 1) · · · (h(x) − (p− 1)),

378 9. Polynomial Factorization

and since ui is irrreducible, it divides exactly one factor on the right of this
expression. Let ai be the member of Zp determined by this factor. There-
fore, ui|h− ai for i = 1, . . . , r, and the uniqueness property for polynomial
division implies that h satisfies the remainder equations rem(h, ui) = ai. �

A Linear System of Equations for h(x)
We show next how the alternate description of h in Theorem 9.28 is used
to obtain a system of (dependent) linear equations which has as solutions
all the auxiliary polynomials h(x).

Let n = deg(u) ≥ 1. Since deg(h) < n, each h(x) has the form

h(x) = h0 + h1x+ · · ·+ hn−1x
n−1. (9.51)

Let’s set up a system of equations for the coefficients of h. First, by
Theorem 9.22,

h(x)p = h(xp) =
n−1∑
j=0

hjx
p j ,

and

h(x)p − h(x) =
n−1∑
j=0

hj (xp j − xj). (9.52)

By polynomial division,

xp j = Qj(x)u(x) + rj(x) (9.53)

where deg(rj(x)) ≤ n−1. Substituting this expression into Equation (9.52),
we have

h(x)p − h(x) =
n−1∑
j=0

hj (Qj(x)u(x) + rj(x)− xj)

=

n−1∑
j=0

hj Qj(x)

 u(x) +

n−1∑
j=0

hj (rj(x) − xj).

Observe that the sum on the far right has degree < n, and therefore, using
the condition (9.47) and the uniqueness property of polynomial division,
we have

0 = rem(h(x)p − h(x), u(x)) =
n−1∑
j=0

hj (rj(x)− xj). (9.54)

9.3. Factorization in Zp[x] 379

Now, suppose that

rj(x) =
n−1∑
i=0

rijx
i, (9.55)

and let

δij =
{
0, i �= j,
1, i = j.

Substituting Equation (9.55) into Equation (9.54), we obtain

0 =
n−1∑
j=0

hj

(
n−1∑
i=0

(
rijx

i
)− xj

)

=
n−1∑
j=0

hj

(
n−1∑
i=0

(
rijx

i − δijx
i
))

=
n−1∑
i=0

n−1∑
j=0

hj (rij − δij)

 xi,

where in the last sum the coefficient of each xi is 0. This gives the following
system of n linear equations for the coefficients of h(x):

n−1∑
j=0

hj (rij − δij) = 0, i = 0, 1, . . . , n− 1.

In matrix form the system of equations is

R h̄ = 0̄, (9.56)

where

R =

∣∣∣∣∣∣∣∣∣
r0,0 − 1 r0,1 · · · r0,(n−1)
r1,0 r1,1 − 1 · · · r1,(n−1)

...
...

...
r(n−1),0 r(n−1),1 · · · r(n−1),(n−1) − 1

∣∣∣∣∣∣∣∣∣
(9.57)

and

h̄ =

∣∣∣∣∣∣∣∣∣
h0

h1

...
hn−1

∣∣∣∣∣∣∣∣∣
, 0̄ =

∣∣∣∣∣∣∣∣∣
0
0
...
0

∣∣∣∣∣∣∣∣∣
. (9.58)

The system of equations (9.56) is not independent. For one thing, since
deg(u) > 0, r0(x) = rem(xp·0, u) = 1, and so all entries in the first column

380 9. Polynomial Factorization

are 0. This means that h0 does not appear in the equations, and so h0 can
be any member of Zp. In fact, there are exactly pr distinct solutions to the
system (9.56). This follows since each solution to this system corresponds to
a unique polynomial h(x) that satisfies Equation (9.42) for some sequence
a1, . . . , ar, and there are pr ways to choose this sequence.

The next theorem shows that we obtain useful information about the
factorization of u by obtaining the general solution to Equation (9.56).

Theorem 9.29. Let u(x) be a square-free polynomial in Zp[x] that has an
irrreducible factorization with r factors. Then, the system of equations
(9.56) has r linearly independent solutions h̄ = b̄1, . . . , h̄ = b̄r, and any
solution to Equation (9.56) is a linear combination of these solutions.

The sequence of solution vectors b̄1, . . . , b̄r described in the theorem is
called a basis for the solutions.

Proof: Since the right side of Equation (9.56) is 0̄, and since the system
has more than one solution, we know from linear algebra that we can find
a basis for the solutions. All we need to show is the basis has r vectors.

Suppose that Equation (9.56) has a basis with m vectors b̄1, . . . , b̄m so
that any solution can be expressed as

h̄ = c1b̄1 + · · ·+ cmb̄m (9.59)

where ci is in Zp. Since each ci can have p different values, there are pm

distinct expressions of the form (9.59), and since there are pr solutions to
Equation (9.56), we have m = r. �

Example 9.30. Let p = 5, and let’s consider again the polynomial from the
previous examples, u = x6 + x5 + x + 4. In this case, the remainders in
Equation (9.53) are

r0 = rem(xp·0, u) = 1,
r1 = rem(xp·1, u) = x5,

r2 = rem(xp·2, u) = 3 x5 + 2 x4 + 3 x3 + 2 x2 + 3 x+ 1,
r3 = rem(xp·3, u) = 3 x5 + 4 x4 + x2 + 3 x,
r4 = rem(xp·4, u) = x5 + 2 x4 + 2 x3 + 2 x2 + x+ 1,
r5 = rem(xp·5, u) = x,

9.3. Factorization in Zp[x] 381

which gives

R =

∣∣∣∣∣∣∣∣∣∣∣∣

1− 1 0 1 0 1 0
0 0− 1 3 3 1 1
0 0 2− 1 1 2 0
0 0 3 0− 1 2 0
0 0 2 4 2− 1 0
0 1 3 3 1 0− 1

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0 1 0
0 4 3 3 1 1
0 0 1 1 2 0
0 0 3 4 2 0
0 0 2 4 1 0
0 1 3 3 1 4

∣∣∣∣∣∣∣∣∣∣∣∣
(9.60)

where all arithmetic is done in Z5[x]. Using an approach described later in
this section, a basis for the solutions is

b̄1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1
0
0
0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣
, b̄2 =

∣∣∣∣∣∣∣∣∣∣∣∣

0
0
4
4
1
0

∣∣∣∣∣∣∣∣∣∣∣∣
, b̄3 =

∣∣∣∣∣∣∣∣∣∣∣∣

0
1
0
0
0
1

∣∣∣∣∣∣∣∣∣∣∣∣
. (9.61)

Since the basis has three vectors, we know that u has three irrreducible
factors. These solutions to Equation (9.56) correspond to the three linearly
independent solutions to Equation (9.42):

b1(x) = 1, b2(x) = x4 + 4 x3 + 4 x2, b3(x) = x5 + x,

and any auxiliary polynomial h(x) is a linear combination of these polyno-
mials. For example, h(x) in Equation (9.44) is given by

h = 2 x5 + x4 + 4 x3 + 4 x2 + 2 x+ 1 = 1 · b1 + 1 · b2 + 2 · b3. �

Separating the Factors of u(x) with Basis Polynomials
The final step in the factorization process involves finding the irrreducible
factors of u using the auxiliary polynomials h(x). The basic tool for this
factorization is the relation in Equation (9.46) on page 375. However,
as we saw in Example 9.27, for some h(x), Equation (9.46) may not ob-
tain the complete irrreducible factorization. In fact, if u has more than

382 9. Polynomial Factorization

p factors, Equation (9.46) cannot obtain the complete factorization with
one h(x), and so more than one auxiliary polynomial is needed. The
next theorem and subsequent discussion show how the basis polynomials
b1(x), b2(x), . . . , br(x) can be used to separate the factors.

Theorem 9.31. Suppose that u is a square-free polynomial in Zp[x] with
r ≥ 2 factors, and let ui and uj be two distinct irrreducible factors of u.

1. There is a basis polynomial bk(x) such that rem(bk, ui) �= rem(bk, uj).

2. There is an element d in Zp such that

ui|gcd(u, bk − d), uj /| gcd(u, bk − d)

where bk is obtained in Part (1) of the theorem.

Proof: To show (1), from the definition of the auxiliary polynomials, there
is an h that satisfies Equation (9.42) such that

rem(h, ui) = ai �= aj = rem(h, uj). (9.62)

In addition, we can represent h as

h = c1 b1 + · · ·+ cr br

where ci is in Zp. We claim that it is not possible to have

rem(bk, ui) = rem(bk, uj), 1 ≤ k ≤ r.

If this were so,

rem(h, ui) = c1 rem(b1, ui) + · · ·+ cr rem(br, ui)
= c1 rem(b1, uj) + · · ·+ cr rem(br, uj)
= rem(h, uj)

which contradicts the conditions in (9.62).
To show (2), let bk be the polynomial obtained in Part (1), and let

d = rem(bk, ui). Then, ui|bk − d, which implies that ui|gcd(u, bk − d).
Next, if uj|gcd(u, bk − d), then uj|bk − d, and the uniqueness property of
polynomial division implies that rem(bk, uj) = d which contradicts Part
(1) of the theorem. �

Theorem 9.31(2) gives a way to determine each factor ui of u. The
theorem implies that for each of the other factors

uj, j = 1, . . . , i− 1, i+ 1, . . . , r,

9.3. Factorization in Zp[x] 383

there is a basis polynomial bθ(j) in {b1, . . . , br} and an element dj in Zp
such that

ui|gcd(u, bθ(j) − dj), uj /| gcd(u, bθ(j) − dj), (9.63)

for j = 1, . . . , i − 1, i+ 1, . . . , r. (The function notation θ(j) indicates the
choice of the basis polynomial depends on the factor uj.) If we let

ej = gcd(u, bθ(j) − dj), (9.64)

then
ui = gcd(e1, . . . , ei−1, ei+1, . . . , er). (9.65)

Indeed, by (9.63), ui divides all the ej , and so it divides the gcd on the
right. However, since

gcd(e1, . . . , ei−1, ei+1, . . . , er)|ej |u,

and since no other factor of u divides all the ej , we obtain Equation (9.65).
The relationship in Equation (9.65) is important in a theoretical sense

because it shows that by performing a sufficient number gcd calculations
of the form

gcd(u, bk − j), k = 1, . . . , r, j = 0, . . . , p− 1,

we have enough information to obtain each factor of u. However, the
formula is not useful in a computational sense because it overstates the
work required. Later in this section, we give an algorithm that obtains the
factorization from the basis polynomials.

Procedures for Berlekamp’s Algorithm

Let u be a square-free and monic polynomial in Zp[x]. Berlekamp’s algo-
rithm obtains the irrreducible factorization of u using the following three
steps.

1. Find the matrix R.

2. Using the matrix R, find a list S = [b1, . . . , br] that contains a basis
of auxiliary polynomials. When there are r polynomials in S, the
polynomial u has r irrreducible factors.

3. Use the basis polynomials in S to find the irrreducible factors of u.

384 9. Polynomial Factorization

Procedure Berlekamp factor(u, x, p);
Input

u : a monic, square-free polynomial in Zp[x];
x : a symbol;
p : a prime > 1;

Output
The set of irrreducible factors of u;

Global
R : an n by n matrix with entries in Zp;

Local Variables
n, S;

Begin
1 n := Degree gpe(u, x);
2 if n = 0 or n = 1 thenReturn({u})
3 else
4 R matrix(u, x, n, p);
5 S := Auxiliary basis(x, n, p);
6 if Number of operands(S) = 1 then
7 Return({u})
8 else
9 Return(Find factors(u, S, x, p))

End

Procedure R matrix(u, x, n, p);
Input

u : a monic, square-free polynomial in Zp[x];
x : a symbol;
n : a positive integer representing deg(u);
p : a prime > 1;

Output
Creates the global matrix R

Global
R : an n by n matrix with entries in Zp;

The body of the procedure is left to the reader (Exercise 5).

Figure 9.4. The MPL procedure Berlekamp factor and the heading of the pro-
cedure R matrix in Berlekamp’s algorithm. The Berlekamp factor procedure
returns the set of irrreducible factors of u. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

9.3. Factorization in Zp[x] 385

The Berlekamp factor Procedure. Figure9.4 gives the Berlekamp factor
procedure that obtains this factorization. The three procedure calls that
correspond to these steps are in lines 4, 5, and 9. Observe that the matrix
R, which is created by the call on R matrix at line 4 and then used by
Auxiliary basis at line 5, is a global variable.

The R matrix Procedure. The heading of the R matrix procedure is given
in Figure 9.4. There are a number of ways to find the coefficients of R.
One possibility is to use the polynomial divisions that define the remainder
coefficients rij using Equations (9.53) and (9.55). Another approach is
based on a recurrence relation that is described in Exercise 5. We leave the
details of this procedure to the reader.

The Auxiliary basis Procedure. The second step in Berlekamp’s algorithm
involves finding a basis of solutions to a linear system of equations. In
the next example we illustrate an approach to this problem. The general
algorithm and procedure are described after the example.

Example 9.32. Let p = 5, and consider the linear system of equations

R ȳ = 0̄, (9.66)

where

R =

∣∣∣∣∣∣∣∣
0 3 1 2
2 0 2 1
2 1 4 0
4 1 1 1

∣∣∣∣∣∣∣∣ , ȳ =

∣∣∣∣∣∣∣∣
y1

y2

y3

y4

∣∣∣∣∣∣∣∣ , 0̄ =

∣∣∣∣∣∣∣∣
0
0
0
0

∣∣∣∣∣∣∣∣ . (9.67)

To find a basis of solutions, we obtain an equivalent system with the same
solutions from which we can determine a basis. Our approach is similar
to the solution algorithms encountered in linear algebra, where linear op-
erations are applied to the rows of the matrix to eliminate variables from
equations. Since the right side of Equation (9.66) is 0̄, our manipulations
do not modify this side of the equation, and so we only show how the ma-
trix R changes over the course of the computations. At any point in the
computation, Ri represents the ith row of the current matrix R, and Cj
represents the jth column.

To begin, let’s eliminate y1 from all but one of the equations. To do
this, we use the first non-zero entry r21 = 2 in C1 to eliminate the other
entries in this column. This entry is called the pivot entry for column C1.
First, we multiply row R2 of R by the multiplicative inverse of the pivot

r−1
21 = 2−1 = 3 (in Z5)

to obtain the new second row

386 9. Polynomial Factorization

R′
2 = r−1

21 R2 = |1∗ 0 1 3| (9.68)

where the ∗ superscript indicates the location of the pivot entry. Next, we
modify the other three rows so that the value in the first column of each
row is zero:

R′
1 = R1 − r11 R

′
2 = |0 3 1 2| ,

R′
3 = R3 − r31 R

′
2 = |0 1 2 4| , (9.69)

R′
4 = R4 − r41 R

′
2 = |0 1 2 4| .

Although the first entry in R1 is already 0, we have applied the transforma-
tion to R1 to illustrate the general approach. With these manipulations,
we obtain the new the system of equations∣∣∣∣∣∣∣∣

0 3 1 2
1∗ 0 1 3
0 1 2 4
0 1 2 4

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
y1

y2

y3

y4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
0
0
0
0

∣∣∣∣∣∣∣∣ , (9.70)

where now R represents the matrix on the left. Notice that the variable
y1 only appears in the second equation, and this new system has the same
solutions as Equation (9.66). The modification of R using Equations (9.68)
and (9.69) is called the elimination step associated with y1.

Next, we eliminate the variable y2 from all but one of the equations in
(9.70). To do this, using the new R, we find a non-zero pivot entry in C2 in
a row which has not been used for an earlier pivot. In this case, a pivot is
located in R1. Multiplying R1 by r−1

12 = 3−1 = 2, we obtain a new first row

R′
1 = |0 1∗ 2 4| ,

and then form the new rows

R′
2 = R2 − r22 R

′
1 = |1 0 1 3| ,

R′
3 = R3 − r32 R

′
1 = |0 0 0 0| ,

R′
4 = R4 − r42 R

′
1 = |0 0 0 0| .

This gives a new system of equations∣∣∣∣∣∣∣∣
0 1∗ 2 4
1∗ 0 1 3
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
y1

y2

y3

y4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
0
0
0
0

∣∣∣∣∣∣∣∣ , (9.71)

9.3. Factorization in Zp[x] 387

where now R represents the matrix on the left. Notice that the variable y2

only appears in the first equation, and this system has the same solutions
as Equation (9.66).

Next, using the new R, we try to eliminate y3 from all but one equation
by finding a pivot in C3. However, since the only non-zero entries in C3

are in rows that already contain pivots, we cannot find a pivot. Instead,
this situation is an opportunity to construct the first member of the basis.
Since there are now only two independent equations, we can assign values
to two of the variables (say y3 = 1 and y4 = 0) and find a basis vector of
the form

S̄3 =

∣∣∣∣∣∣∣∣
y1

y2

1
0

∣∣∣∣∣∣∣∣ . (9.72)

The subscript 3 refers to the current column, and the two unknown values
y1 and y2 are determined using the two non-zero equations in (9.71). (We
will see below why this is a useful form.) Using the first equation in (9.71),
we have y2 +2 = 0 or y2 = −2 = 3 (in Z5), and using the second equation,
we have y1 + 1 = 0 or y1 = −1 = 4. Therefore, the first basis vector is

S̄3 =

∣∣∣∣∣∣∣∣
4
3
1
0

∣∣∣∣∣∣∣∣ . (9.73)

Finally, we try to find a pivot for y4, and again find that the only non-
zero entries in C4 are in rows that already contain pivots. Instead, we find
a second basis solution of the form

S̄4 =

∣∣∣∣∣∣∣∣
y1

y2

0
1

∣∣∣∣∣∣∣∣ . (9.74)

Using the first two non-zero equations in (9.71), we obtain

S̄4 =

∣∣∣∣∣∣∣∣
2
1
0
1

∣∣∣∣∣∣∣∣ . (9.75)

Let’s show that the set S = {S̄3, S̄4} is a basis for the solutions. First,
the solutions in S are linearly independent since one solution is not a con-
stant multiple of the other solution. To show that any solution ȳ of Equa-
tion (9.67) is a linear combination of the basis, we use Equation (9.71) to

388 9. Polynomial Factorization

obtain y1 and y2 in terms of y3 and y4 (in Z5) as

y1 = −y3 − 3 y4 = 4 y3 + 2 y4, y2 = −2 y3 − 4 y4 = 3 y3 + y4.

Therefore,

ȳ =

∣∣∣∣∣∣∣∣
y1

y2

y3

y4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
4 y3 + 2 y4

3 y3 + y4

y3

y4

∣∣∣∣∣∣∣∣ = y3S̄3 + y4S̄4.

Notice that the forms used for the basis vectors lead to this simple rela-
tionship. �

The General Approach. Let’s consider the general system of equations (9.66),
where R is an n by n matrix with entries in Zp, and ȳ and 0̄ are n-
dimensional vectors. An algorithm that obtains a basis of solutions uses
an approach similar to the one in the last example. First, we try to find a
pivot entry in column C1 by selecting a row Ri where ri1 �= 0. If a pivot is
found, we modify R using the elimination step given below in Equations
(9.76) and (9.77) with j = 1. On the other hand, if all the entries in C1

are zero, then a pivot cannot be found, and we define the first solution
basis vector

S̄1 =

∣∣∣∣∣∣∣∣∣
1
0
...
0

∣∣∣∣∣∣∣∣∣
.

In this case, y1 does not appear in any equation, and so S̄1 is a solution to
the system of equations.

In general, let R be the matrix obtained after applying the elimination
step (if possible) to Cj−1. We search for a pivot in the next column Cj .
A pivot occurs in this column at row Ri if the following conditions are
satisfied.

1. rij �= 0.

2. Ri does not contain the pivot entry for some column Cl with l < j.

Let’s suppose a pivot is found in row Ri. We modify the matrix R using
the following elimination step.

1. Replace row Ri by a new row

R′
i = r−1

ij Ri. (9.76)

9.3. Factorization in Zp[x] 389

2. For each of the other rows Rk (k �= i), form a new row

R′
k = Rk − rkj R

′
i. (9.77)

We claim that this elimination step at Cj with Equations (9.76) and
(9.77) does not change any element in column Cl with l < j. This follows,
since in the pivot row Ri, ril = 0 for l < j. Indeed, if Cl has a pivot, since
Ri contains the pivot location for Cj (and not for Cl), the elimination step
for Cl implies that ril = 0. On the other hand, if Cl does not have a
pivot, then we also have ril = 0, because otherwise Ri would contain a
pivot for Cl.

Once the pivot operation for column Cj is done, in the new matrix R,

rkj =
{
1, for k = i,
0, for k �= i

which implies that the variable yj appears only in the ith equation. In
addition, the new system R h̄ = 0̄ has the same solutions as the original
system.

To keep track of which rows contain pivots, we define a sequence of
non-negative integers Pi, i = 1, . . . , n with the following rules.

1. At the start of the algorithm, Pi = 0, i = 1, . . . , n.

2. If the pivot in column Cj is in row Ri, then Pi = j.

Observe that the condition Pi = 0 provides a simple check that row Ri
does not contain a pivot.

Next, let’s suppose that a pivot is not found in Cj . In this case, we
define the next basis vector

S̄j =

∣∣∣∣∣∣∣∣∣∣∣

s1j

...

snj

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1j

...
s(j−1) j

1
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

slj =

−rej , if l < j and Pe = l for some (unique) 1 ≤ e ≤ n,
0, if l < j and Pe �= l for all 1 ≤ e ≤ n,
1, if l = j,
0, if j < l.

(9.78)

390 9. Polynomial Factorization

In other words, for l < j, slj = −rej whenever column Cl has a pivot in
row Re, and slj = 0 when Cl does not have a pivot.

Example 9.33. Let’s consider again the computation in Example 9.32 where
p = 5 and

R =

∣∣∣∣∣∣∣∣
0 3 1 2
2 0 2 1
2 1 4 0
4 1 1 1

∣∣∣∣∣∣∣∣ .
At the beginning of the computation Pi = 0 for i = 1, 2, 3, 4. After the
pivot for C1 is found in R2, we set P2 = 1, and after the pivot for C2 is
found in R1, we set P1 = 2.

When j = 3, since

R =

∣∣∣∣∣∣∣∣
0 1∗ 2 4
1∗ 0 1 3
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ ,
C3 does not have a pivot, and Equation (9.78) gives

S̄3 =

∣∣∣∣∣∣∣∣
−r23
−r13
1
0

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−1
−2
1
0

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
4
3
1
0

∣∣∣∣∣∣∣∣ .
In a similar way, for j = 4, we have

S̄4 =

∣∣∣∣∣∣∣∣
−r24
−r14
0
1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−3
−4
0
1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
2
1
0
1

∣∣∣∣∣∣∣∣ . �

Returning to the general approach, let’s show that S̄j defined by Equa-
tion (9.78) is a solution to the system of equations. At this point in the
computation,

R =

∣∣∣∣∣∣∣∣∣∣

0 · · · 1∗ · · · rek · · · rej re,j+1 · · · ren
...

...
...

...
...

0 · · · 0 · · · 0 · · · 0 rf,j+1 · · · rfn
...

...
...

...
...

∣∣∣∣∣∣∣∣∣∣
(9.79)

↑ ↑ ↑
l k j

9.3. Factorization in Zp[x] 391

where row Re is a typical row with a pivot and row Rf is a typical row
without a pivot. To show that Re · S̄j = 0, suppose that in Equation (9.79)
column l contains the pivot and column k is another typical column to the
left of Cj . From Equation (9.78), the vector S̄j has the form

S̄j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:
−rej
:
0
:
1
0
:
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

← l

← k

← j
. (9.80)

Using the corresponding entries in Re and S̄j , we have

Re · S̄j = 1 · (−rej) + · · ·+ rek · 0 + rej · 1 + · · ·
+re,j+1 · 0 + · · ·+ ren · 0

= 0.

In row Rf , which does not contain a pivot, all entries in positions ≤ j are 0.
Indeed, entries in columns with pivots are 0, and entries in other columns
are 0 because Rf does not contain a pivot. Therefore,

Rf · S̄j = 0

and S̄j is a solution to the system of equations. In fact, S̄j is a solution to
the system of equations at the end of the computation because all future
changes in R occur in columns j + 1 to n, and the entries of S̄j are 0 for
all positions from j + 1 to n.

Using the above scheme, we obtain a set of solutions to Equation (9.66)

S = {S̄j | Cj does not have a pivot} (9.81)

where the notation indicates a new S̄j is formed whenever Cj does not have
a pivot.

To show that S is a basis we must show that: (1) the solutions in S are
linearly independent, and (2) each solution to Equation (9.66) is a linear
combination of the solutions in S. The linear independence follows directly
from the definition for S̄j and is left to the reader (Exercise 6).

To show (2), we show that for any solution ȳ to Equation (9.66), we
have

ȳ =
∑
j

Cj does not
have a pivot

yj S̄j .

392 9. Polynomial Factorization

We verify this by showing that for each component yl of ȳ,

yl =
∑
j

Cj does not
have a pivot

yj slj . (9.82)

To show this, first assume that Cl (the column associated with the variable
yl) does not have a pivot. With this assumption, Equation (9.78) implies
that

slj =
{
0, if l �= j ,
1, if l = j,

and so Equation (9.82) follows.
On the other hand, suppose that Cl has a pivot with Pe = l, and

consider the entries in row Re at the end of the computation. First, the
elimination steps give rel = 1, and rej = 0 for all other columns Cj that
have pivots. We also have rej = 0 when j < l, where Cj does not have a
pivot because, if this were not so, Re would contain a pivot for one of these
columns Cj . Therefore, substituting ȳ into the eth equation, we obtain

yl +
∑
j > l

Cj does not
have a pivot

yj rej = 0. (9.83)

However, since Cl has a pivot in Re, Equation (9.78) implies that

slj =

{−rej , if l < j,
1, if l = j,
0, if j < l,

(9.84)

and Equations (9.83) and (9.84) imply

yl =
∑
j > l

Cj does not
have a pivot

yj (−rej)

=
∑
j

Cj does not
have a pivot

yj slj .

The procedureAuxiliary basis that obtains a basis is given in Figures 9.5
and 9.6. Since the procedure is used by the Berlekamp factor procedure,
the basis is returned as a list S of polynomials rather than as a list of
vectors.

9.3. Factorization in Zp[x] 393

Procedure Auxiliary basis(x, n, p);
Input

x : a symbol;
n : a positive integer;
p : a prime > 1;

Output
a list containing a basis of one or more auxiliary polynomials;

Global
R : an n by n matrix with entries in Zp;

Local Variables
i, P, S, j, pivot found , a, k, f, l, s, e, c;

Begin
1 for i := 1 to n do
2 P [i] := 0;
3 S := [];
4 for j := 1 to n do
5 i := 1;
6 pivot found := false;
7 while not pivot found and i ≤ n do
8 if R[i, j] �= 0 and P [i] = 0 then
9 pivot found := true
10 else i := i + 1;
11 if pivot found then
12 P [i] := j;
13 a := Multiplicative inverse p(R[i, j], p);
14 for l := 1 to n do
15 R[i, l] := Irem(a ∗R[i, l], p);
16 for k := 1 to n do
17 if k �= i then
18 f := R[k, j];
19 for l := 1 to n do
20 R[k, l] := Irem(R[k, l] − f ∗R[i, l], p)

Continued in Figure 9.6.

Figure 9.5. An MPL procedure that finds a basis of auxiliary polynomials. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

In lines 1–2, the variables P [i] (which correspond to Pi in the above
discussion) are initialized to 0. In the j loop that begins at line 4, we
examine each column of the current matrix R to determine if it contains a
pivot (lines 5–10). If a pivot is found, we perform the elimination step in
Equations (9.76) and (9.77) (lines 12–20). The procedureMultiplicative inverse p
in line 13 is described in Exercise 11 on page 59.

394 9. Polynomial Factorization

21 elseif not pivot found then
22 s := xj−1;
23 for l := 1 to j − 1 do
24 e := 0;
25 i := 1;
26 while e = 0 and i ≤ n do
27 if l = P [i] then e := i
28 else i := i + 1;
29 if e > 0 then
30 c := Irem(−R[e, j], p);

31 s := s + c ∗ xl−1;
32 S := Join(S, [s]);
33 Return(S)

End

Figure 9.6. Continuation of Figure 9.5.

If a pivot is not found, we construct a basis solution (lines 22–31). Al-
though the basis polynomial is defined by the vector in Equation (9.78),
the component slj corresponds to the coefficient of xl−1 in a basis polyno-
mial (see Equations (9.51) and (9.58)). Based on the property that slj = 1
when l = j, at line 22 we initialize the polynomial to xj−1. The loop
starting at line 23 determines the coefficients of smaller powers of x. The
statements in lines 24–28 determine if a column Cl has a pivot row, and, if
one is found, the row of the pivot is represented by the integer e. If Cl has
a pivot, the coefficient of the polynomial is determined (in Zp) at line 31,
while if a pivot is not found, the coefficient is 0, and so no action is taken.

The matrices that arise in Berlekamp’s algorithm always have zeroes
in column C1. Therefore, when Auxiliary basis is applied to these matri-
ces, the first basis polynomial is always the polynomial 1. The procedure
Find factors described below makes use of this observation.

The Find factors Procedure. The procedure Find factors, that finds the
irrreducible factors using the list S of basis polynomials, is shown in Fig-
ure 9.7. The procedure is based on the relationships in the following
theorem.

Theorem 9.34. Let u be a square-free, monic polynomial in Zp[x], and let
h be an auxiliary polynomial that satisfies the remainder equations (9.42)
on page 374.

9.3. Factorization in Zp[x] 395

1. If w is monic and w|u, then

w =
p−1∏
j=0

gcd(w, h− j). (9.85)

2. Suppose that w is monic with w|u, and let g = gcd(w, h − j) with
deg(g) > 0. Then,

gcd(g, h− i) =
{
g, i = j,
1, i �= j, (9.86)

and for q = quot(w, g),

q =
p−1∏
i = 0
i
= j

gcd(q, h− i). (9.87)

The proofs of these properties are left to the reader (Exercise 8). �

The relationship in Equation (9.85) shows that the basic factor rela-
tionship in Equation (9.46) also holds for divisors w of u even though h
is defined in terms of u. This means that we can obtain the irrreducible
factors of u using operations of the form

gcd(w, bk(x)− j), (9.88)

where w is either u or some (reducible or irrreducible) divisor of u obtained
earlier in the computation. The relationships in Equations (9.86) and (9.87)
are used below to justify the logic of the algorithm. We illustrate the
approach in the next example.

Example 9.35. Let p = 5, and consider the polynomial u = x6+x5+x+4.
Three basis polynomials were obtained in Example 9.30 (page 380), and so
u has three factors. Since b1 = 1, we do not obtain new factors with this
basis polynomial. Using the second basis polynomial b2 = x4 + 4x3 + 4x2,
we have

gcd(u, b2 − j) = 1, j = 0, 1. (9.89)

However,

g = gcd(u, b2 − 2) = x4 + 4x3 + 4x2 + 3

396 9. Polynomial Factorization

Procedure Find factors(u, S, x, p);
Input

u : a monic square-free polynomial in Zp[x];
S : a list containing a basis of one or more auxiliary

polynomials where the first polynomial in S is b = 1;
x : a symbol;
p : a prime ≥ 2;

Output
The set of irrreducible factors of u;

Local Variables
r, factors , k, b, old factors , i, w, j, g, q;

Begin
1 r := Number of operands(S);
2 factors := {u};
3 for k := 2 to r do
4 b := Operand(S , k);
5 old factors := factors ;
6 for i := 1 to Number of operands(old factors) do
7 w := Operand(old factors , i);
8 j := 0;
9 while j ≤ p− 1 do
10 g := Poly gcd p(b− j, w, x, p);
11 if g = 1 then j := j + 1
12 elseif g = w then j := p
13 else
14 factors := factors ∼ {w};
15 q := Operand(Poly div p(w, g, x, p), 1);
16 factors := factors ∪ {g, q};
17 if Number of operands(factors) = r then Return(factors)
18 else
19 j := j + 1
20 w := q;

End

Figure 9.7. The MPL procedure Find factors for Berlekamp’s algorithm. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

is a factor of u, and we obtain another factor with

q = quot(u, g) = x2 + 2x+ 3.

Although u = q g, this is not the irrreducible factorization since there are
only two factors. Instead of continuing the gcd calculations with u, we

9.3. Factorization in Zp[x] 397

apply the process to the factors obtained so far. However, by Equation
(9.86), we do not obtain any new factors using the auxiliary polynomial
b2 with the factor g, and we continue the process with b2 and q. The
relationship in Equation (9.87) suggests we search for factors of q with
calculations of the form gcd(q, b2 − i) with i �= 2. However, by Equation
(9.89), when i = 0, 1 we do not obtain new factors of q and so continue the
process with i = 3, 4. We obtain

gcd(q, b2 − 3) = 1, gcd(q, b2 − 4) = q,

and so no new factors are obtained with b2.
At this point we use the next basis polynomial b3 = x5 + x, and apply

the process to both of the current factors in

u = (x4 + 4x3 + 4x2 + 3) (x2 + 2x+ 3). (9.90)

For w = x4 +4x3+4x2+3, we obtain gcd(w, b3− j) = 1 for j = 0, 1, while

g = gcd(w, b3 − 2) = x2 + 3x+ 4.

This implies that w is reducible and can be replaced in the factorization
(9.90) by the product of g and

q = quot(w, g) = x2 + x+ 2.

Therefore,

u = (x2 + 3x+ 4) (x2 + x+ 2) (x2 + 2x+ 3),

and since there are three distinct factors, this is the irrreducible factorization
and the process terminates. �

The algorithm used by the Find factors procedure (Figure 9.7) is similar
to the one illustrated in the last example. To begin, at line 1 we determine
the number of irrreducible factors r as the size of the basis list S. The
variable factors , which first appears at line 2, contains the set of factors at
each point in the computation. This variable is initialized to {u}, and the
procedure terminates when factors contains r polynomials (line 17).

For each traversal of the k loop beginning at line 3, a basis polynomial
b in S is selected at line 4 for use in gcd calculations. Notice that this
loop starts with the second basis vector because the first basis vector is the
polynomial 1, which does not give new factors. At line 5, another variable
old factors is given the value of factors . When k = 2, old factors has the
value {u}, and on subsequent passes through the k loop it contains the

398 9. Polynomial Factorization

divisors obtained using the previous basis polynomials. We introduce this
new variable because we reference each of the old factors at line 7, and the
value of factors is changed whenever a new factor is found.

In the i loop beginning at line 6, we select an old factor w at line 7 and
try to find a new factor by applying the gcd operation in line 10 for various
values of j. Notice that when g = 1 (line 11), we have not found a new
factor, and so we increment j by 1 which continues the computation. If
g = w, then Equation (9.85) implies that we will not find any new factors
with this w using the current basis function, and so we assign j to p, which
terminates the j loop.

If g is any other polynomial, then we have found a factor of w. At this
point, we remove w from factors (line 14), add g and q = quot(w, g) to
factors (line 16), and check for termination at line 17. If this condition is
not satisfied, then by Equation (9.86), there is no reason to continue the
gcd calculations with g and the current basis polynomial b because larger
values of j obtain a gcd of 1. In addition, Equation (9.87) implies that
any factors of q obtained with the current b are obtained with j values
different from the current j. However, none of the factors of the current q
are obtained with earlier j values because they would have been obtained
earlier in the computation, and we would have a different q at this point.
Therefore, we are justified in using larger values of j, and so we increment
j by 1 (line 10), assign the value of q to w (line 20), and continue looking
for factors of the new w at line 9.

The process described in the previous paragraph is applied (using the i
loop) to each of the old factors of u. If we don’t obtain all the factors with
the current basis polynomial, we continue the process with the next basis
polynomial (lines 3, 4). Continuing in this fashion, we eventually obtain
all factors of u.

Exercises

1. Give a procedure Square free factor p(u, x, p) that obtains the square-free
factorization of u using the recursive approach that is described beginning
on page 373. Explain why the recursion terminates. (Exercise 9, page 125
and Exercise 4, page 142 are useful in this problem.)

2. Let u be a monic polynomial in Zp[x] with deg(u) = n. Show that there are

(piquot(n,2)+1−p)/(p−1) trial factors of degree m with 1 ≤ m ≤ iquot(n, 2).

3. Let A and U be lists of r > 0 polynomials in Zp[x] that satisfy the condi-
tions in the Chinese Remainder theorem (Theorem 4.41, page 140). Give
a procedure Polynomial Chinese rem p(A,U, x, p).

4. (a) Show that h(x) = c (a constant polynomial in Zp) if and only if
a1 = a2 = · · · = ar = c.

9.4. Irreducible Factorization: A Modern Approach 399

(b) Suppose that u is irrreducible. Show that h(x) is constant.

(c) Suppose that h(x) has positive degree. Explain why the factorization
in Equation (9.46) has at least two distinct factors of positive degree.

5. In this exercise, we describe a recurrence relation that determines the re-
mainders rem(xp j , u). Suppose that u = xn + v where n = deg(u), and
v contains all terms with a degree ≤ n − 1. Let yk = rem(xk, u). We
can represent yk as yk(x) = ck x

n−1 + zk(x), where ck is in Zp and zk(x)
contains all terms with degree ≤ n− 2.

(a) Derive the recurrence relation

yk+1 = −ck v + x zk.

(b) Give a procedure R matrix(u, x, n, p) that creates the matrix R as-
sociated with u. Use the recurrence relation in (a) to obtain the
remainders. The matrix R created by this procedure is a global vari-
able. For this reason, do not return an expression from the procedure.

6. Show that the set of solutions S in (9.81) is linearly independent.

7. Use the algorithm that finds an auxiliary basis to show that the matrix in
Equation (9.60) has the basis given in Equation (9.61).

8. Prove Theorem 9.34. Hint: Exercise 12, page 144 is useful in this problem.

9. Let p = 5, and consider the square-free polynomial x3 + 2x+ 4. Show that
this polynomial is irrreducible using Berlekamp’s algorithm.

10. Give a procedure Trial factor p(u, x, p) that finds an irrreducible factorization
of u in Zp[x] using the trial-factors approach described on page 373. First,
obtain a square-free factorization of u, and then apply the trial factors
approach to each of the monic, square-free factors. Be sure to use only
trial factors that are monic, and arrange the computation to minimize the
number of trial divisors.

11. Give a procedure Factor p(u, x, p) that obtains the irrreducible factor-
ization of u in Zp[x]. The procedure should first obtain a square-free
factorization of u and then apply the Berlekamp factor procedure to each
of the square-free factors.

9.4 Irreducible Factorization: A Modern Approach

Let u be a polynomial in Q[x]. To find the irrreducible factorization of u,
first, we obtain the square-free factorization using the algorithm described
in Section 9.1. Since each of the polynomials in the square-free factorization
is monic and square-free, the problem is reduced to polynomials with these
properties. Next, using Equation (9.24) on page 361, the problem is sim-
plified again to primitive, square-free polynomials in Z[x]. The last step in
the process involves the factorization of these polynomials.

400 9. Polynomial Factorization

The algorithm described in this section obtains the irrreducible factorization
of a square-free, monic polynomial u in Z[x] by factoring a related poly-
nomial in Zp[x] (for a suitable prime p) and then using the factors of this
new polynomial to obtain the factors of u.
Notation Conventions. In this section, we perform polynomial op-

erations in both Z[x] and Zm[x]. To distinguish the operations in the two
contexts, we adopt the following notation conventions.

1. For polynomial operations in Z[x], we use the ordinary infix symbols
for addition (+) and multiplication (·).

2. For polynomial operations in Zm[x], we use the symbols ⊕m for ad-
dition and ⊗m for multiplication that were introduced in Section 2.3.
In this section, m is either a prime number p (in which case Zp is a
field) or a positive integer power of a prime.

3. To simplify the notation, polynomials in both Z[x] and Zm[x] are
represented using ordinary infix notation.

For example, u = x2 + 3 x+ 2 and v = x3 + 4 x+ 4 are polynomials in
both Z[x] and Z5[x]. We have, in Z[x],

u+ v = x3 + x2 + 7 x+ 6,

and, in Z5[x],
u⊕5 v = x3 + x2 + 2 x+ 1.

Reduction to Monic Polynomials

The algorithm in this section applies to monic, square-free polynomials in
Z[x]. Since the transformation in Equation (9.24) obtains a non- monic,
primitive polynomial in Z[x], the first order of business is to restate the
factorization problem in terms of monic polynomials. Simply dividing a
polynomial by its leading coefficient does not work, however, because some
coefficients of the new polynomial may not be integers. Instead, we proceed
as follows. Let

u =
n∑
i=0

aix
i

be a primitive polynomial in Z[x]. Our approach is to define a monic
polynomial v associated with u, factor v, and then use the factors of v to
obtain the factors of u. Let

v = an−1
n u(y/an) (9.91)

9.4. Irreducible Factorization: A Modern Approach 401

= an−1
n

n∑
i=0

ai(y/an)i (9.92)

=
n−1∑
i=0

an−1−i
n aiy

i + yn,

where v is a monic polynomial in Z[y]. Suppose that v has the irrreducible
factorization

v = p1(y) · · · pr(y).
One way to obtain a factorization for u is to invert the transformation in
Equation (9.92):

u =
(
1/an−1

n

)
v(an x) =

(
1/an−1

n

)
p1(an x) · · · pr(an x) (9.93)

although in this factorization, when an �= ±1, the leading constant is in Q
but not necessarily in Z. However, since

v(an x) = an−1
n u

and since u is primitive, we have

cont(v(an x), x) = an−1
n cont(u, x) = an−1

n .

Therefore, using Theorem 6.57, u has the factorization

u =
(
1/an−1

n

)
v(an x)

=
(
1/an−1

n

)
cont(v(an x), x) pp(v(an x), x)

= pp(v(an x), x)
= pp(p1(anx), x) · · · pp(pr(anx), x). (9.94)

Example 9.36. Consider the primitive polynomial

u(x) = 8 x5 − 48 x4 + 90 x3 − 90 x2 + 117 x− 27.

Then,

v = 84 u(y/8) = y5 − 48 y4 + 720 y3 − 5760 y2 + 59904 y− 110592

which has the factorization

v = p1 p2 p3 = (y − 24)
(
y2 + 96

) (
y2 − 24 y + 48

)
.

Inverting the transformation using Equation (9.93), we obtain

u = (1/4096) (8 x− 24)
(
64 x2 + 96

) (
64 x2 − 192 x+ 48

)
.

However, using Equation (9.94), we have

u = pp(p1(8x), x) pp(p2(8x), x) pp(p3(8x), x)
= (x− 3)

(
2 x2 + 3

) (
4 x2 − 12 x+ 3

)
. �

402 9. Polynomial Factorization

The Symmetric Representation for Zm
Let m ≥ 2 be an integer. In Section 2.3 we considered the set

Zm = {0, 1, . . . ,m− 1} (9.95)

with the two binary operations

a⊕m b = irem(a+ b, m), a⊗m b = irem(a · b, m).

With these operations, Zm satisfies the field axioms F-1 through F-11, and
satisfies axiom F-12 if and only if m is prime (Theorem 2.41, page 53).
The representation (9.95) is called the non-negative representation for Zm
because all elements are non-negative integers.

Our algorithm factors a polynomial u in Z[x] by factoring a related
polynomial in Zm[x], and then using the factors in Zm[x] to obtain the
factors of u. Since u and its factors may have negative coefficients, we need
another representation for Zm that includes some negative integers. This
alternate representation is defined as

Zm = {−iquot(m− 1, 2), . . . , 0, . . . , iquot(m, 2)}. (9.96)

For example,

Z5 = {−2,−1, 0, 1, 2}, Z6 = {−2,−1, 0, 1, 2, 3}.
For m odd, this representation is symmetric about 0, while for m even,
it is nearly symmetric with one more integer to the right of 0 than to
the left. For this reason, the representation (9.96) is called the symmetric
representation for Zm.

The connection between the two representations is defined as follows;
each b in the non-negative representation is associated with the unique
integer in the symmetric representation given by

Sm(b) =
{
b, if 0 ≤ b ≤ iquot(m, 2),
b−m, if iquot(m, 2) < b < m. (9.97)

For example, for m = 5, S5(3) = −2 and S5(4) = −1.
For a and b in Zm in symmetric form, define the binary operations

a⊕m b = Sm(irem(a+ b, m)), a⊗m b = Sm(irem(a · b, m)).

For m = 5, the operations are given by the following tables.

⊕5 0 1 2 -2 -1

0 0 1 2 -2 -1

1 1 2 -2 -1 0

2 2 -2 -1 0 1

-2 -2 -1 0 1 2

-1 -1 0 1 2 -2

⊗5 0 1 2 -2 -1

0 0 0 0 0 0

1 0 1 2 -2 -1

2 0 2 -1 1 -2

-2 0 -2 1 -1 2

-1 0 -1 -2 2 1

9.4. Irreducible Factorization: A Modern Approach 403

The Projection from Z[x] to Zm[x]

The projection operator in the next definition defines the relationship be-
tween Z[x] and Zm[x].

Definition 9.37. Let m ≥ 2 be an integer, and let u = an x
n + · · ·+ a0 be

in Z[x].

1. For the non-negative representation of Zm, define

Tm(u) = irem(an, m)xn + · · ·+ irem(a0, m). (9.98)

2. For the symmetric representation of Zm, define

Tm(u) = Sm(irem(an, m))xn + · · ·+ Sm(irem(a0, m)). (9.99)

In either case, Tm(u) is called the projection of u in Zm[x].

Example 9.38. For u = x2 +5 x+8, using the non-negative representation
of Z5, we have T5(u) = x2+3, while using the symmetric representation, we
have T5(u) = x2−2. Notice that there are infinitely many polynomials with
the projection x2 − 2. For example, using the symmetric representation,
we also have T5(6 x2 + 10 x+ 13) = x2 − 2. �

To simplify our notation, we use the same operator Tm(u) for both the
non-negative and symmetric representations for Zm. In our mathematical
discussions, it will be clear from the context whether (9.98) or (9.99) is
appropriate. In our procedures, however, we use the projection operators
Tnn(u, x, m) for the non-negative representation (9.98) and Ts(u, x, m)
for the symmetric representation (9.99) (Exercise 2).

The projection operator satisfies the following properties.

Theorem 9.39. Let m ≥ 2 be an integer, and let v and w be polynomials
in Z[x]. Then, the projection operator satisfies the following properties.

1. deg(Tm(v)) ≤ deg(v) where the operator < applies when m|lc(v).
2. Tm(v) = 0 if and only if m divides each coefficient of v.

3. For v in Zm[x], Tm(v) = v.

4. Tm(Tm(v)) = Tm(v).

5. Tm(v + w) = Tm(v)⊕mTm(w).
6. Tm(v · w) = Tm(v)⊗mTm(w).

404 9. Polynomial Factorization

Proof: We prove the theorem using the non-negative, representation of
Zm and leave the proof of the symmetric case to the reader (Exercise 3).

Parts (1), (2), and (3) follow directly from Definition 9.37, and Part (4)
follows from Part (3).

To show (5), first for integers a and b, integer division gives

a = q1 m+ Tm(a), b = q2 m+ Tm(b). (9.100)

Therefore,

Tm(a+ b) = irem(a+ b, m)
= irem(q1m+ Tm(a) + q2m+ Tm(b), m)
= irem(Tm(a) + Tm(b), m)
= Tm(a)⊕mTm(b). (9.101)

Part (5) follows for polynomials by applying this relationship to the corre-
sponding coefficients of v and w.

To show (6), using (9.100), we obtain

Tm(a · b) = irem
(
q1q2 m2 + Tm(a)q2m+ Tm(b)q1m+ Tm(a)Tm(b),m

)
= irem(Tm(a) · Tm(b), m)
= Tm(a)⊗mTm(b). (9.102)

Part (6) follows for polynomials by applying Equations (9.101) and (9.102)
to the coefficients of v · w. �

As a consequence of Theorem 9.39(5),(6), the polynomial operations
⊕m and ⊗m can be obtained by performing the corresponding operations
in Z[x] (with expansion and automatic simplification) and then projecting
the results into Zm[x]. This point is illustrated in the next example.

Example 9.40. In Z7[x] (using the symmetric representation), we have

(2 x− 3)⊗7 (3 x− 1)⊗7

(
x2 + 4 x− 1

)
= T7(2 x− 3)⊗7 T7(3 x− 1)⊗7 T7

(
x2 + 4 x− 1

)
= T7

(
(2 x− 3) (3 x− 1) (x2 + 4 x− 1)

)
= T7

(
6 x4 + 13 x3 − 47 x2 + 23 x− 3

)
= −x4 − x3 + 2 x2 + 2 x− 3. �

The next theorem gives some simple relationships between polynomials
in Z[x] and Zm[x] that are useful in our manipulations.

9.4. Irreducible Factorization: A Modern Approach 405

Theorem 9.41. Let u and v be polynomials in Zm[x]. Then, there are
polynomials h and k in Z[x] such that

u⊕mv = u+ v +mh,

u⊗mv = u · v +mk,

Tm(u) = u+mh,

where the operations on the right sides of the equations are performed
in Z[x].

Proof: The theorem, which holds for either the non-negative or symmet-
ric representations of Zm[x], follows directly from the definitions of the
arithmetic operations in Zm (Exercise 8). �

Relationship of Factorization of u and Tm(u)
Let’s return now to the factorization problem. Theorem 9.39(6) shows that
a factorization of u in Z[x] is reflected in a factorization of Tm(u) in Zm[x].
For example, in Z[x], we have

u = x2 + 11x+ 28 = (x+ 7)(x+ 4),

and in Z5[x], we have the symmetric representation

T5(u) = x2 + x− 2 = (x+ 2)⊗5(x− 1).

In some cases, however, the projection has more factors than u does. For
example, in Z[x],

u = x3 + x2 + x+ 1 = (x+ 1)(x2 + 1),

while, in Z5[x],

T5(u) = (x+ 1)⊗5(x+ 2)⊗5(x− 2).

However, when m /| lc(u), Tm(u) cannot have fewer factors (of positive
degree) than u. Indeed, if

u = u1 · · ·ur
where each factor has positive degree, then Theorem 9.39(6) implies that

Tm(u) = Tm(u1)⊗m · · · ⊗mTm(ur).
In addition, by Theorem 4.1 (page 112), m|/ lc(ui). and so Theorem 9.39(1)
implies that each polynomial Tm(ui) has positive degree.

406 9. Polynomial Factorization

On the other hand, if m|lc(u), the projection may have fewer factors.
For example, in Z[x],

u = 5 x2 + 11 x+ 2 = (5 x+ 1) (x+ 2)

while T5(u) = x+ 2.
We summarize this discussion in the next theorem.

Theorem 9.42. Let u be a polynomial in Z[x] such that m /| lc(u).
1. Suppose that the irrreducible factorization of u has r factors with pos-

itive degree and the irrreducible factorization of Tm(u) has s factors
with positive degree. Then, s ≥ r.

2. If Tm(u) is irrreducible in Zm[x], then u is irrreducible in Z[x].

Part (2) of the theorem is an important special case of Part (1).

Example 9.43. The converse of Theorem 9.42(2) is not true. For example,
u = x2 + x+ 4 is irrreducible in Z[x], while

T5(u) = x2 + x− 1 = (x− 2)⊗5(x− 2)

in Z5[x]. In fact, T5(u) is not even square-free. �

Example 9.44. Let’s show that the polynomial

u = x3 + 6 x2 + 16 x+ 1

is irrreducible using Theorem 9.42(2). First, we try

T2(u) = x3 + 1 = (x+ 1)⊗2

(
x2 + x+ 1

)
.

Since the projection is reducible, this gives no information about the re-
ducibility of u. In a similar way,

T3(u) = x3 + x+ 1 =
(
x2 + x− 1

)⊗3 (x− 1)

and
T5(u) = x3 + x2 + x+ 1 = (x+ 1)⊗5 (x+ 2)⊗5 (x− 2) ,

and so we still cannot arrive at a conclusion. However,

T7(u) = x3 − x2 + 2 x+ 1

is irrreducible in Z7[x], and therefore, u is irrreducible in Z[x]. �

9.4. Irreducible Factorization: A Modern Approach 407

The previous examples show that the irrreducible factorizations of u
and Tm(u) can look quite different. The question is then: how can the
irrreducible factorization of Tm(u) help obtain the factors of u?

Here is one approach. Let’s suppose that u has the irrreducible factor-
ization

u = u1 · · ·ur (9.103)

in Z[x], and suppose thatm is large enough so that the coefficients of u and
each of its factors ui are in the symmetric representation of Zm[x]. Then,
since Tm(u) = u and Tm(ui) = ui,

u = u1⊗m · · · ⊗mur
is a factorization of u in Zm[x]. However, if some of the ui are reducible in
Zm[x], this is not the irrreducible factorization for u in this setting.

On the other hand, if

u = v1⊗m · · · ⊗mvs
is the irrreducible factorization of u in Zm[x], then each ui is either some
vj or the product (in Zm[x]) of a number of vj . This suggests that each vj
or the product of a number of vj is a possible factor of u in Z[x] and, by
checking all such polynomials, we can recover the factors ui in Equation
(9.103). We illustrate this approach in the next example.

Example 9.45. Consider the polynomial

u = x4 + 5x3 + 6x2 + 5x+ 1

where u and each factor of u is in Z13[x]. Since 13 is prime, we factor the
square-free polynomial u using Berlekamp’s algorithm which gives (in the
symmetric representation for Z13)

u = (x+ 4)⊗13(x+ 6)⊗13(x− 2)⊗13(x − 3).

However, none of these linear factors is a factor of u in Z[x].
Let’s consider the trial factors obtained as the product of two of the

linear factors. For example, we try

v = (x+ 4)⊗13(x+ 6) = x2 − 3x− 2

but find, using polynomial division in Z[x], that v is not a factor. On the
other hand,

v = (x + 4)⊗13(x− 3) = x2 + x+ 1

408 9. Polynomial Factorization

is a factor, and
quot(u, v) = x2 + 4x+ 1

is also a factor. Therefore, since u has no linear factors, its irrreducible
factorization in Z[x] is

u = (x2 + x+ 1)(x2 + 4x+ 1). (9.104)

�

In order to give an algorithm that uses this approach, we must address
two issues.

1. How do we determinem so that u and all of its (unknown) irrreducible
factors have coefficients in the symmetric representation of Zm? We
cannot simply use for m the maximum of the absolute value of the
coefficients of u because there are polynomials that have factors with
coefficients larger than any coefficient of the original polynomial. (For
example, see Equation (9.105) below.)

2. In Example 9.45, we used a prime m = 13 so that Berlekamp’s algo-
rithm obtains a factorization in Zm[x]. For a large prime, however,
Berlekamp’s algorithm is time consuming, and so we prefer to use
only small primes. But if m is too small, the coefficients of u or one
of its factors may not be in Zm.

We consider both of these issues below.

Coefficient Bounds on Factors of a Polynomial

The next definition and theorem provide a way to determine m so that all
of the coefficients of u and its factors are in Zm.

Definition 9.46. Let u = anx
n + · · · + a0 be in Z[x]. The height of the

polynomial u is defined as

||u|| = max({|an|, . . . , |a0|}).

In most cases, for v|u, we have ||v|| ≤ ||u||. This point is illustrated by
the factorization in Equation (9.104). There are, however, some polynomi-
als where ||v|| > ||u||. For example,

u = x4 − 2 x3 − x2 − 2 x+ 1 = (x2 + x+ 1) (x2 − 3 x+ 1) (9.105)

where 3 = ||x2 − 3 x+ 1|| > ||u|| = 2.

9.4. Irreducible Factorization: A Modern Approach 409

The next theorem gives a bound on the coefficients of a factor of u.

Theorem 9.47. Let u and v be in Z[x] where v|u, and let n = deg(u).
Then, ||v|| ≤ B where

B = 2n
√
n+ 1 ||u||. (9.106)

We do not prove this theorem, since the proof depends on some involved
mathematics that is well beyond the scope of this book. The general theory
that leads to this theorem is cited in the references at the end of this
chapter. �

The upper bound B is usually considerably greater than the coefficients
of v. For example, for u in Equation (9.105),

B = 24
√
5 · 2 ≈ 71.55,

while the coefficients of both factors of u are actually bounded by 3. How-
ever, B provides a way to obtain an m so that u and all of its irrreducible
factors are in the symmetric representation Zm[x]. Since each b in Zm[x]
satisfies |b| ≤ m/2 (see Equation (9.96)), we choose an integer m with

2B ≤ m. (9.107)

For example, for u in Equation (9.105),

m = 144 ≥ 2B ≈ 143.11.

Example 9.48. Consider the polynomial

u = x5 − 48x4 + 720x3 − 5760x2 + 59904x− 110592.

Then, ||u|| = 110592 and B = 25
√
6 110592. Therefore, for

m ≥ 26
√
6 · 110592,

all coefficients of u and its irrreducible factors are in Zm[x]. The actual
value of m used in the factorization of u is determined in Example 9.57
below. �

Hensel’s Lifting Theorem

We have described an approach that factors u in Z[x] by obtaining a
factorization in Zm[x] for a suitably large positive integer m. Although
Berlekamp’s algorithm obtains the factorization when m is prime, it is not

410 9. Polynomial Factorization

efficient when m is large. Hensel’s lifting theorem (Theorem 9.52 below)
provides a more efficient strategy. In this approach, we choose a small
prime p, factor Tp(u) in Zp[x], and then use this factorization and the
lifting process to obtain a factorization in Zpk [x] for k > 1. From the
inequality (9.107), when

2B ≤ pk,

the symmetric representation of Zpk contains the coefficients of both u and
all of its factors.

The Hensel lifting process is based on the following generalization of
the extended Euclidean algorithm.

Theorem 9.49. Let F be a field, and let v1, . . . , vs be two or more polyno-
mials in F[x] with positive degree such that gcd(vi, vj) = 1 for i �= j. Let
F be a polynomial in F[x] with

deg(F) <
s∑
i=1

deg(vi), (9.108)

and let
v = v1 · · · vs. (9.109)

Then, there are polynomials r1, . . . , rs with deg(ri) < deg(vi) such that

F =
s∑
i=1

rigi, (9.110)

where
gi = v/vi. (9.111)

Proof: We first show that, for the special case F = 1, there are polynomials
σ1, . . . , σs such that

s∑
i=1

σigi = 1. (9.112)

The proof uses mathematical induction. First, for the base case s = 2, let

v = v1v2, g1 = v/v1 = v2, g2 = v/v2 = v1.

In this case, Theorem 4.30 (page 133) implies that there are polynomials
A and B such that

Ag1 +B g2 = Av2 +B v1 = 1, (9.113)

and so σ1 = A, σ2 = B.

9.4. Irreducible Factorization: A Modern Approach 411

For the induction step, assume that Equation (9.112) is true for the
s− 1 polynomials v1, . . . , vs−1. Define v and gi by Equations (9.109) and
(9.111), and let

hi =
v

vsvi
, i = 1, . . . , s− 1. (9.114)

By the induction hypothesis, there are polynomials τ1, . . . , τs−1 such that

s−1∑
i=1

τihi = 1. (9.115)

The polynomials gs = v/vs and vs are relatively prime, and so, by Theorem
4.30, there are polynomials A and B such that

Avs + B gs = 1. (9.116)

In addition, from Equations (9.111), (9.114), and (9.115), we have

vs = vs

s−1∑
i=1

τihi =
s−1∑
i=1

(
τivsgs
vi

)
=
s−1∑
i=1

τigi. (9.117)

Therefore, using Equations (9.116) and (9.117), we obtain

1 = A

s−1∑
i=1

τigi +B gs =
s∑
i=1

σigi (9.118)

where

σi =
{
Aτi, i = 1, . . . , s− 1,
B, i = s. (9.119)

We now use Equation (9.112) to derive the representation (9.110) for a
general polynomial F that satisfies the condition (9.108). From Equation
(9.112), we have

s∑
i=1

F σigi = F, (9.120)

and by polynomial division

F σi = qivi + ri (9.121)

where
qi = quot(F σi, vi), ri = rem(F σi, vi), (9.122)

and deg(ri) < deg(vi). Using Equations (9.111), (9.120), and (9.121), we
have

s∑
i=1

rigi =
s∑
i=1

F σigi −
s∑
i=1

qivigi = F − v
s∑
i=1

qi. (9.123)

412 9. Polynomial Factorization

To show Equation (9.110), we must show that
s∑
i=1

qi = 0. First, using

Equation (9.111),

deg

(
s∑
i=1

rigi

)
≤ max

1≤i≤s
({deg(ri) + deg(gi)})

< max
1≤i≤s

({deg(vi) + deg(gi)}) (9.124)

= deg(v).

Now, if
s∑
i=1

qi �= 0, Theorem 4.1 (page 112) and the inequality (9.108) imply

that

deg

(
F − u

s∑
i=1

qi

)
= max

({
deg(F), deg(v) + deg

(
s∑
i=1

qi

)})

= deg(v) + deg

(
s∑
i=1

qi

)

≥ deg(v). (9.125)

Since the inequalities (9.124) and (9.125) cannot both be true, we have
s∑
i=1

qi = 0.

Therefore, Equation (9.123) implies Equation (9.110). �

In Exercise 11, we describe procedures that obtain the polynomial co-
efficients σi and ri when F = Zp.

Example 9.50. Let F[x] = Z3[x] (with the symmetric representation for
Z3), and consider the polynomials

v1 = x, v2 = x− 1, F = x+ 1.

We have

v = x⊗3(x− 1), g1 = v/v1 = x− 1, g2 = v/v2 = x.

Applying the extended Euclidean algorithm to g1 = v2 and g2 = v1, there
are polynomials σ1 = −1 and σ2 = 1 such that (σ1⊗3g1)⊕3(σ2⊗3g2)=1.
Now with

r1 = rem(F⊗3σ1, v1) = −1, r2 = rem(F⊗3σ2, v2) = −1,

9.4. Irreducible Factorization: A Modern Approach 413

we have

(r1⊗3g1)⊕3 (r2⊗3g2) =
(
(−1)⊗3(x− 1)

)⊕3

(
(−1)⊗3x

)
= x+ 1. �

Example 9.51. Let F[x] = Z11[x] (with the symmetric representation for
Z11), and let

v1 = x2 − 2 x+ 4, v2 = x+ 5, v3 = x− 5, v4 = x− 2,

F = −4 x4 + x3 − 4 x2 − 3 x+ 4.

Observe that F satisfies the degree condition (9.108). By repeatedly ap-
plying the extended Euclidean algorithm (as in the proof of Theorem 9.49),
we have

σ1 = −2 x6 − 2 x5 − 2 x4 − 4 x3 − 5 x2 + 3 x+ 2,
σ2 = 2 x5 + 5 x4 + 4 x3 − x2 − 2 x+ 5,
σ3 = −x3 − x+ 3, (9.126)
σ4 = 3.

Computing the remainders in Equation (9.122), we obtain

r1 = −2 x+ 4, r2 = 0, r3 = 0, r4 = −2. (9.127)

�

The next theorem describes the Hensel lifting process.

Theorem 9.52. Let u be a monic polynomial in Z[x] with positive degree,
and let p ≥ 3 be a prime number. Suppose that

Tp(u) = v1⊗p · · · ⊗pvs
where v1, . . . , vs are monic, relatively prime polynomials in Zp[x]. Then,
for each positive integer k, there are monic, relatively prime polynomials
v
(k)
1 , . . . , v

(k)
s in Zpk [x] such that

1. Tpk(u) = v
(k)
1 ⊗pk · · · ⊗pkv

(k)
s ,

2. Tp

(
v
(k)
i

)
= vi for i = 1, . . . , s.

Proof: The theorem holds for both the non-negative and symmetric rep-
resentation of Zp and Zpk . Since the proof is quite involved, we prove

414 9. Polynomial Factorization

the theorem for s = 2 using the symmetric representation. The proof,
which uses mathematical induction, gives an algorithm for computing v

(k)
1

and v
(k)
2 .

First, for the base case k = 1, v(1)
1 = v1 and v

(1)
2 = v2 satisfy properties

(1) and (2) of the theorem.
Next, suppose that k ≥ 2, and let’s assume that we have found v

(k−1)
1

and v
(k−1)
2 , and show how to lift one more step to find v

(k)
1 and v

(k)
2 . By the

induction hypothesis, property (1) of the theorem gives the factorization
in Zpk−1 [x]

Tpk−1(u) = v
(k−1)
1 ⊗pk−1v

(k−1)
2 . (9.128)

However, the product v(k−1)
1 v

(k−1)
2 in Z[x] may not be a factorization of u,

and so we define the “error” in Z[x] between u and this factorization as

E = u− v
(k−1)
1 v

(k−1)
2 . (9.129)

This error polynomial E is used to lift the factorization from Zpk−1 [x] to
Zpk [x].

First, let’s show that E satisfies the degree condition

deg(E) < deg(u). (9.130)

Since u is monic,

deg(u) = deg
(
Tpk−1(u)

)
= deg

(
v
(k−1)
1

)
+ deg

(
v
(k−1)
2

)
,

and since v
(k−1)
1 and v

(k−1)
2 are also monic, the subtraction in Equation

(9.129) eliminates the highest degree monomial, which gives the inequality
(9.130). In addition, since

deg(u) = deg (Tp(u)) = deg (v1) + deg (v2) ,

we have
deg(E) < deg (v1) + deg (v2) . (9.131)

By Equations (9.128) and (9.129),

Tpk−1(E) = 0,

and so Theorem 9.39(2) implies that pk−1 divides the coefficient of each
monomial in E.

On the other hand, the projection Tpk(E) in Zpk [x] may not be 0,
although the coefficient of each monomial in this projection has the form

9.4. Irreducible Factorization: A Modern Approach 415

r pk−1 where r is in Zp. To see why, since each coefficient of E has the
form q pk−1, dividing q by p we obtain

q pk−1 = (a p+ s) pk−1 = a pk + s pk−1

where 0 ≤ s ≤ p− 1. From Equation (9.97), we have

Tpk

(
q pk−1

)
= Spk

(
irem

(
q pk−1, pk

))
= Spk

(
irem

(
a pk + s pk−1, pk

))
= Spk

(
s pk−1

)
=

{
s pk−1, if 0 ≤ s pk−1 ≤ iquot

(
pk, 2

)
,

s pk−1 − pk, if iquot
(
pk, 2

)
< s pk−1 < pk

= r pk−1

where

r =
{
s, if 0 ≤ s ≤ iquot(p, 2),
s− p, if iquot(p, 2) < s < p.

Therefore, the coefficient of each monomial in Tpk(E) has the form r pk−1

with r in Zp.
Next, define

F = Tpk(E)/pk−1 (9.132)

where the above discussion shows that F is in Zp[x]. In addition, from the
inequality (9.131), we have

deg(F) < deg(v1) + deg(v2),

and so Theorem 9.49 implies that there are polynomials r1 and r2 in Zp[x]
such that

(r2⊗pv1) ⊕p (r1⊗pv2) = F (9.133)

with
deg (r1) < deg (v1) , deg (r2) < deg (v2) . (9.134)

The polynomials r1 and r2 are used below to define the polynomials v
(k)
1

and v
(k)
2 .

However, before we do this, we need to mention a technical point. Sup-
pose that b is in Zpk−1 and c is in Zp. Then, since the prime p ≥ 3 is odd,
Equation (9.96) implies that

−pk−1 − 1
2

≤ b ≤ pk−1 − 1
2

, − p− 1
2
≤ c ≤ p− 1

2
.

416 9. Polynomial Factorization

Applying these inequalities to the expression b+ pk−1 c, we have

−pk−1 − 1
2

− pk−1

(
p− 1
2

)
≤ b + pk−1 c ≤ pk−1 − 1

2
+ pk−1

(
p− 1
2

)
,

and, therefore,

− pk − 1
2

≤ b+ pk−1 c ≤ pk − 1
2

(9.135)

which implies b+ pk−1 c is in Zpk .
Define the polynomials at the next step k with

v
(k)
1 = v

(k−1)
1 + pk−1r1, v

(k)
2 = v

(k−1)
2 + pk−1r2. (9.136)

We show that v(k)
1 and v

(k)
2 satisfy the properties the theorem. First, ap-

plying the inequality (9.135) to the coefficients of the monomials in v
(k)
1

and v
(k)
2 , it follows that both polynomials are in Zpk [x]. Next, since the

polynomials v(1)
1 , v(k−1)

1 , v(1)
2 , and v

(k−1)
2 are all monic, property (2) of the

induction hypothesis implies that

deg
(
v
(k−1)
1

)
= deg (v1) , deg

(
v
(k−1)
2

)
= deg (v2) . (9.137)

Therefore, the inequality (9.134) and Equations (9.136) and (9.137) imply
that v(k)

1 and v
(k)
2 are also monic, and

deg
(
v
(k)
1

)
= deg(v1), deg

(
v
(k)
2

)
= deg(v2).

To show that v
(k)
1 and v

(k)
2 satisfy property (1), first observe, using

property (2) in the induction hypothesis and Theorem 9.41, there are poly-
nomials M and N in Z[x] such that

v
(k−1)
1 = v1 + pM, v

(k−1)
2 = v2 + pN. (9.138)

In addition, since, k ≥ 2, we have

2(k − 1) ≥ k,

and this inequality, Equations (9.136) and (9.138), and the properties of
the projection operator (Theorem 9.39) imply that

v
(k)
1 ⊗pkv

(k)
2 =

(
v
(k−1)
1 + pk−1r1

)
⊗pk

(
v
(k−1)
2 + pk−1r2

)
= Tpk

((
v
(k−1)
1 + pk−1r1

) (
v
(k−1)
2 + pk−1r2

))

9.4. Irreducible Factorization: A Modern Approach 417

= Tpk

(
v
(k−1)
1 v

(k−1)
2 + pk−1 (r2v1 + r1v2)

+ pk (r2M + r1N) + p2(k−1)r1r2

)
= Tpk

(
v
(k−1)
1 v

(k−1)
2 + pk−1 (r2v1 + r1v2)

)
. (9.139)

Now, by Theorem 9.41 and Equation (9.133), there is a polynomial f in
Z[x] such that

F = r2v1 + r1v2 + p f.

Therefore, using this relation, Equations (9.129), (9.132), and (9.139) to-
gether with the properties of the projection operator (Theorem 9.39),
we have

v
(k)
1 ⊗pkv

(k)
2 = Tpk

(
v
(k−1)
1 v

(k−1)
2 + pk−1(F − p f)

)
= Tpk

(
v
(k−1)
1 v

(k−1)
2

)
+ Tpk

(
pk−1F

)
− Tpk

(
pkf

)
= Tpk

(
v
(k−1)
1 v

(k−1)
2 + E

)
= Tpk(u),

which verifies property (1).
To show property (2), using the representation (9.136), Theorem 9.39(2),(5),

and the induction hypothesis, we have

Tp

(
v
(k)
i

)
= Tp

(
v
(k−1)
i + pk−1ri

)
= Tp

(
v
(k−1)
i

)
⊕pTp

(
pk−1r1

)
= vi.

Finally, we leave to the reader the proof that v(k)
1 and v

(k)
2 are relatively

prime (Exercise 9). �

In the next example, we illustrate the algorithm in the proof of the
lifting theorem.

Example 9.53. Let p = 3 and

u = x2 + 11x+ 30.

We apply two levels of the Hensel lifting process using the symmetric rep-
resentation for Z3[x]. First, since

T3(u) = x2 − x = x⊗3(x− 1),

418 9. Polynomial Factorization

we have
v
(1)
1 = v1 = x, v

(1)
2 = v2 = x− 1.

The preliminary calculations for this example were done in Example 9.50,
where we obtained σ1 = −1 and σ2 = 1. We compute these polynomials at
the beginning of the process since they are used at each of the lifting steps.

To obtain v
(2)
1 and v

(2)
2 , we have

E = u− v
(1)
1 v

(1)
2 = 12 x+ 30

and
F = T32(E)/3 = (3 x+ 3)/3 = x+ 1.

Again, from Example 9.50, we have r1 = −1 and r2 = −1. Therefore, in
Z32 [x],

v
(2)
1 = T32(v(1)

1 + 3 r1) = x− 3, v
(2)
2 = T32(v(1)

2 + 3 r2) = x− 4.

To obtain v
(3)
1 and v

(3)
2 , we have

E = u− v
(2)
1 v

(2)
2 = 18 x+ 18

and
F = T33(E)/32 = −x− 1.

At this step, by Equation (9.122),

r1 = rem(F⊗pσ1, v1) = −1, r2 = rem(F⊗pσ2, v2) = −1,

and, therefore,

v
(3)
1 = T33(v(2)

1 + 32 r1) = x+ 6, v
(3)
2 = T33(v(2)

2 + 32 r2) = x+ 5.

Since u = v
(3)
1 v

(3)
2 is in Z[x], the lifting process terminates. (If we continue,

the next E = 0, and therefore v
(4)
1 = v

(3)
1 and v

(4)
2 = v

(3)
2 .) �

Hensel Lifting Process. The Hensel lifting process is based on the follow-
ing calculations. First, using Equations (9.113) and (9.119), we obtain a
sequence of polynomials σ1, . . . , σn in Zp[x] such that

(σ1⊗pg1)⊕p · · · ⊕p(σn⊗pgs) = 1, (9.140)

where
v = v1⊗p · · · ⊗pvs

9.4. Irreducible Factorization: A Modern Approach 419

(in unexpanded form) and gi = v/vi. The polynomials σi are computed
at the beginning of the process because they are used at each lifting step.
Next, let v

(1)
i = v1, i = 1, . . . , s, and to obtain v

(j)
i , . . . , v

(j)
s (for 2 ≤ j ≤

k), let

E = u− v
(j−1)
1 · · · v(j−1)

s , (9.141)
F = Tpj(E)/pj , (9.142)

where the algebraic operations (expansion and automatic simplification)
are performed in Z[x]. Following this, we obtain the coefficient polynomials
ri (for 1 ≤ i ≤ s), defined by Equation (9.122) with the operation (in Zp[x])

ri = rem(F⊗pσi, vi), i = 1, . . . , s. (9.143)

Finally, we obtain the new lifted factors with

v
(j)
i = Tpj

(
v
(j−1)
i + pj−1ri

)
, i = 1, . . . , s, (9.144)

where the algebraic operation on the expression in parentheses is performed
in Z[x].

Example 9.54. Consider the polynomial

u = x5 − 48 x4 + 720 x3 − 5760 x2 + 59904 x− 110592,

and let p = 11. By projecting u into Z11[x] and factoring the (square-free)
projection using Berlekamp’s algorithm, we have (in the symmetric repre-
sentation)

T11(u) = v = v1⊗11v2⊗11v3⊗11v4

=
(
x2 − 2 x+ 4

)⊗11 (x+ 5)⊗11 (x− 5) (9.145)
⊗11 (x− 2)

= v
(1)
1 ⊗11v

(1)
2 ⊗11v

(1)
3 ⊗11v

(1)
4 .

The preliminary calculations for this example were done in Example 9.51,
where the σi are given in Equation (9.126). Then, from Equation (9.141)
with j = 2,

E = u− (
x2 − 2 x+ 4

)
(x+ 5) (x− 5) (x− 2)

= −44 x4 + 737 x3 − 5852 x2 + 60104 x− 110792,

and therefore, by Equation (9.142),

F = T112(E)/11 = −4 x4 + x3 − 4 x2 − 3 x+ 4.

420 9. Polynomial Factorization

Again, from Example 9.51, the polynomials ri are given in Equation (9.127).
Therefore, from Equation (9.144),

v
(2)
1 = x2 − 24 x+ 48, v

(2)
2 = x+ 5, v

(2)
3 = x− 5, v

(2)
4 = x− 24.

In a similar way, for j = 3,

E = 121 x3 − 5808 x2 + 75504 x− 139392

and
F = x3 − 4 x2 − 3 x+ 3.

From Equation (9.143), we have

r1 = 0, r2 = 1, r3 = −1, r4 = 0,

and from Equation (9.144), we have

v
(3)
1 = x2 − 24 x+ 48, v

(3)
2 = x+ 126, v

(3)
3 = x− 126, v

(3)
4 = x− 24.

This example is continued in Examples 9.56 and 9.57 below. �

Choosing a Prime Number p. In order to apply the Hensel lifting process, the
irrreducible factorization of Tp(u) in Zp[x] must have relatively prime (and
therefore distinct) factors. In other words, Tp(u) must be a square-free
polynomial. However, even though u is square-free, Tp(u) may not have
this property. (This happens in Example 9.43.) The next theorem shows,
however, that it is always possible to find some prime p where Tp(u) is
square-free.

Theorem 9.55. Let p be a prime number, and let u be a square-free polyno-
mial in Z[x] such that p/| lc(u). Then Tp(u) is not square-free for at most
a finite number of p.

Proof: Recall that Tp(u) is square-free if and only if

res(Tp(u), Tp(u)′) �= 0.

(See Theorem 7.9 (page 276) and Theorem 9.24 (page 372).) In addition,
using Exercise 12,

res(Tp(u), Tp(u)′) = Tp(res(u, u′))

and since the integer res(u, u′) is divisible by at most a finite number of
primes p, the theorem follows. �

9.4. Irreducible Factorization: A Modern Approach 421

Example 9.56. Consider the polynomial

u = x5 − 48 x4 + 720 x3 − 5760 x2 + 59904 x− 110592.

Then

res(u, u′) = −509012486930992988160000 = −2483105472.

Since 2, 3, 5, and 7 are divisors of the resultant, p = 11 is the first prime
for which Tp(u) is square-free. �

Termination of the Hensel Lifting Process. There are two ways the Hensel lift-
ing process can terminate. First, if at some point in the lifting process the
error polynomial E = 0, the most recently lifted factors v(j−1)

1 , . . . , v
(j−1)
s

are the true factors of u in Z[x]. This situation, which arises when u and
Tp(u) have the same number of irrreducible factors, occurs in Example
9.53. On the other hand, if Tp(u) has more factors than u, the error poly-
nomial E will never be 0. In this case, the lifting process continues until
we are guaranteed that the symmetric representation of Zpk contains the
coefficients of u and all of its irrreducible factors. This situation arises in
Example 9.57 below. Using the inequality (9.107), we choose this maximum
lifting step to be the smallest integer k such that

2B ≤ pk, (9.146)

where B is defined in Equation (9.106). In this case, some of the lifted
factors may not be factors of u in Z[x]. This point is illustrated in the next
example.

Example 9.57. In this example, we obtain the irrreducible factorization of
the polynomial

u = x5 − 48 x4 + 720 x3 − 5760 x2 + 59904 x− 110592.

First, in Example 9.56 we determined that p = 11, and in Example 9.48 we
determined that B = 25

√
6 · 110592. Using the inequality (9.146), we have

k ≥ ln(2B)/ ln(p) ≈ 6.951,

and so k = 7. The factorization of T11(u) and the first two lifting steps are
described in Example 9.54. The lifting steps for j = 3, 4, 5, 6, and 7 are
similar with

v
(7)
1 = x2−24 x+48, v

(7)
2 = x−2868179, v

(7)
3 = x+2868179, v

(7)
4 = x−24.

422 9. Polynomial Factorization

This is an instance where there are more lifted factors than irrreducible
factors of u. By polynomial division in Z[x], v(7)

1 and v
(7)
4 are irrreducible

factors of u, while v(7)
2 and v

(7)
3 are not. However, the polynomial v(7)

2 ⊗117

v
(7)
3 = x2 − 96 divides u, and so the irrreducible factorization in Z[x] is

u = (x2 − 24x+ 48) (x2 + 96) (x− 24). �

Procedures

The Irreducible factor Procedure. The procedure Irreducible factor , which
obtains the irrreducible factorization of a primitive, square-free polynomial,
is shown in Figure 9.8. The global symbol y is a mathematical symbol
introduced at line 3. We have used a global symbol to avoid using a local
variable that would not be assigned before it was used (see page 3).

In lines 1–3, we obtain a monic polynomial V with the transformation
in Equation (9.92). At line 4, the Find prime operator obtains a suitable
prime number p that is guaranteed by Theorem 9.55 (Exercise 13). At line
5, the Berlekamp factor operator (page 384) obtains the set of irrreducible
factors of the projection of V in Zp[y]. Since Berlekamp factor is defined
in terms of the non-negative representation of Zp[x], the operator Tnn
projects V into the non-negative representation (Exercise 2).

At line 6, if there is only one factor in S, the irrreducible polynomial
u is returned. Otherwise, we find the value for k defined by the inequality
(9.146) with the Find k operator (Exercise 17), and then, at line 9, find
the set of irrreducible factors with the Hensel lift operator (defined below).
The Map operator in this statement transforms the factors in S to the
symmetric representation using the projection operator Ts described in
Exercise 2. Finally, in lines 10–15, we invert the monic transformation
from line 3 (see Equation (9.94)).

The Hensel lift Procedure. A procedure that performs the Hensel lifting
process is given in Figure 9.9. In lines 1–2, when k = 1 there is no lifting
to be done. In this case, we recover the factors of u by applying the
True factors operator (described below) to the set S.

The case k ≥ 2 is handled in lines 4–19. Since it is more convenient to
work with a list of (distinct) factors than with a set, we obtain a list V
at line 4. (The operator Operand list obtains the list of operands of the
main operator of an expression (see page 14).) In line 5, we obtain the
coefficient polynomials σi defined by Equation (9.140) using the operator
Gen extend sigma p described in Exercise 11.

The actual lifting process is obtained in lines 6–18. At line 7, we form
a product Vp of the factors in the list V . (The Construct operator, which

9.4. Irreducible Factorization: A Modern Approach 423

Procedure Irreducible factor(u , x);
Input

u : a primitive, square-free polynomial in Z[x] with positive degree;
x : a symbol;

Output
The factored form of u;

Local Variables
n, l, V, p, S, k,W,M, i, w;

Global y;
Begin

1 n := Degree gpe(u, x);
2 l := Leading coefficient gpe(u, x);
3 V := Algebraic expand(Substitute(ln−1 ∗ u, x = y/l));
4 p := Find prime(V, y);
5 S := Berlekamp factor(Tnn(V, y, p), y, p);
6 if Number of operands(S) = 1 then Return(u)
7 else
8 k := Find k(V, y, p);
9 W := Hensel lift(V, Map(Ts, S, y, p), y, p, k);
10 W := Substitute(W, y = l ∗ x);
11 M := 1;
12 for i := 1 to Number of operands(W) do
13 w := Operand(W, i);
14 M := M ∗Algebraic expand(w/Polynomial content(w, x, [], Z));
15 Return(M)

End

Figure 9.8. An MPL procedure that obtains the irrreducible factorization of
a primitive, square-free polynomial in Z[x]. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

creates the product, is described on page 9.) At line 8, we obtain the error
expression E defined in Equation (9.129). In lines 9–10, if E = 0, we have
found the true factors in Z[x], which terminates the process, and so we
return the set of factors. Otherwise, we perform the next lifting step by
computing F (see Equation (9.142)) and the coefficient polynomials ri (see
Equation (9.143)) using the operator Gen extend R p described in Exercise
11. In lines 14–18, we form the new list Vnew of lifted factors (see Equation
(9.144)) and assign this to V in preparation for the next lifting step. If we
complete the for loop that begins at line 6, V may have too many factors,
which are combined at line 19 by the True factors operator.

424 9. Polynomial Factorization

Procedure Hensel lift(u, S, x, p, k);
Input

u : a monic, square-free polynomial in Z[x] with positive degree;
S : a set of relatively prime monic polynomials in Zp[x]

where Tp(u) is the product in Zp[x] of members of S.
(The members of S use the symmetric representation of Zp);

x : a symbol;
p : a prime ≥ 3;
k : a positive integer;

Output
the set of irrreducible factors of u;

Local Variables
i, j, R,Vp,Vnew , V, E, F, v lift, G;

Begin
1 if k = 1 then
2 Return(True factors(u, S, x, p, k))
3 else
4 V := Operand list(S);
5 G := Gen extend sigma p(V, x, p);
6 for j := 2 to k do
7 Vp := Algebraic expand(Construct(” ∗ ”, V));
8 E := u− Vp;
9 if E = 0 then
10 Return(Construct(set, V))
11 else
12 F := Algebraic expand

i
Ts
i
E, x, pj

J
/pj−1
J

;
13 R := Gen extend R p(V,G, F, x, p);
14 Vnew := [];
15 for i := 1 to Number of operands(V) do

16 v lift := Algebraic expand
Q

Operand(V, i) + pj−1 ∗Operand(R, i)
w

;

17 Vnew := Join(Vnew , [v lift])
18 V := Vnew ;
19 Return(True factors(u,Construct(set, V), x, p, k))

End

Figure 9.9. An MPL procedure that performs the Hensel lifting process. (Imple-
mentation: Maple (txt), Mathematica (txt), MuPAD (txt).)

The True factors Procedure. The last step in the algorithm uses the lifted
factors v

(k)
1 , . . . , v

(k)
s to determine the irrreducible factors of u. This step

is based on the observation that each factor of u is either one of the lifted

9.4. Irreducible Factorization: A Modern Approach 425

polynomials or the product (in Zpk [x]) of lifted polynomials. We improve
the efficiency of the algorithm by only testing trial factors that are the
product of m lifted polynomials, where m ≤ s/2. Indeed, there is at most
one factor constructed with m > s/2, and this factor can be obtained by
dividing all factors obtained with m < s/2 from u.

The True factors procedure shown in Figure 9.10 tests all trial factors
until the complete factorization is found. The input to the procedure in-
cludes the polynomial u and a set l of lifted factors in Zpk [x], and the
output is the set of irrreducible factors of u in Z[x].

In lines 1–2, we assign the values of u and l to the local variables U and
L, which change in the course of the computation. At each point in the
computation, U represents the divisor of u that remains to be factored, and
L is the set of lifted polynomials that are used to factor U . The variable
factors initialized at line 3 contains the set of factors found so far, and the
variable m in line 4 represents the number of polynomials from L in a trial
factor. Since m is initialized to 1, the procedure first checks if each lifted
polynomial is a factor.

The operator Comb at line 6 obtains the set C of all m element subsets
of L (Exercise 15). The loop that begins at line 7 checks if a member
t of C leads to a factor of U . In lines 9–10, we compute a trial factor
T by expanding in Zpk [x] the product of the members of t. At line 11,
we divide U by T , and, if the remainder (Operand(D, 2)) is 0, we have
obtained a factor of U which is added to factors (line 13). Since none of
the polynomials in t can be used again in another factor, the members of
t are removed from L (line 15), and any remaining m element sets in C
that contain members of t are removed from C (line 16). (The operator
Clean up is described in Exercise 14.) On the other hand, if the remainder
Operand(D, 2) is not 0, we remove t from C (line 18) and return to the
beginning of the loop (line 7). Once all members of C have been eliminated,
we increment m (line 19) and return to the beginning of the loop (line 5).

When the loop in lines 5–19 is done, there are two possibilities. If U = 1
then all the factors of u have been found. On the other hand, if U �= 1,
then this polynomial is also an irrreducible factor of u, and so it is added
to factors. In either case, the set of factors is returned at line 22.

We have given a basic version of the Berlekamp-Hensel polynomial fac-
torization algorithm for polynomials in Q[x]. The polynomial factorization
problem for single variable and multivariate polynomials with large coeffi-
cients and many variables of high degree is a difficult computational prob-
lem. There are, however, more sophisticated versions of the Berlekamp-
Hensel algorithm and other algorithms that handle this problem more ef-
ficiently than the algorithm given here. The references cited at the end of
the chapter survey some of the recent developments for this problem.

426 9. Polynomial Factorization

Procedure True factors(u, l, x, p, k);
Input

u : a monic, square-free polynomial in Z[x] with positive degree;
l : the set of lifted factors in Zpk [x];
x : a symbol;
p : a prime number;
k : a positive integer;

Output
the set of irrreducible factors of u;

Local Variables
U,L, factors ,m,C, t, T,D;

Begin
1 U := u;
2 L := l;
3 factors := ∅;
4 m := 1;
5 while m ≤ Number of operands(L)/2 do
6 C := Comb(L, m);
7 while C �= ∅ do
8 t := Operand(C, 1);
9 T := Construct(” ∗ ”, t);
10 T := Ts(Algebraic expand(T), x, pk);
11 D := Polynomial division(U, T, x);
12 if Operand(D, 2) = 0 then
13 factors := factors ∪ {T};
14 U := Operand(D, 1)
15 L := L ∼ t;
16 C := Clean up(C, t);
17 else
18 C := C ∼ {t};
19 m := m + 1;
20 if U �= 1 then
21 factors := factors ∪ {U};
22 Return(factors)

End

Figure 9.10. The MPL procedure that finds the irrreducible factors of u in Z[x]
using the lifted polynomials. (Implementation: Maple (txt), Mathematica (txt),
MuPAD (txt).)

9.4. Irreducible Factorization: A Modern Approach 427

Exercises
1. Let b be in the non-negative representation of Zm. Show that Sm(b) is in

the symmetric representation of Zm. Hint: See Exercise 3, page 33.

2. Let u be a polynomial in Z[x].

(a) Give a procedure Tnn(u, x, m) that obtains the projection Tm(u)
using the non-negative representation of Zm.

(b) Give a procedure Ts(u, x, m) that obtains the projection Tm(u)
using the symmetric representation of Zm.

3. Prove Theorem 9.39 when Zm has the symmetric representation.

4. Let m and n be integers which are ≥ 2, and suppose that m|n. Show that
Tm(Tn(u)) = Tm(u).

5. Suppose that u and v are in Z[x] where v|u.

(a) If deg(u) = 2, show that ||v|| ≤ ||u||.
(b) Find an example with deg(u) = 3 where ||u|| < ||v||.
(c) In Equation (9.105) we give an example where deg(u) = 4 and ||u|| <

||v||. Find another example.

6. Suppose that u and v are polynomials in Z[x] where v|u and deg(v) = 1.
Show that ||v|| ≤ ||u||.

7. Suppose that u and v are polynomials in Z[x] where v|u and u, v and
quot(u, v) have non-negative coefficients. Show that ||v|| ≤ ||u||.

8. Prove Theorem 9.41.

9. Show that the polynomials v
(k)
1 and v

(k)
2 in the proof of Theorem 9.52 are

relatively prime.

10. (a) Factor x2 + 5x + 6 using the approach in this section.

(b) Show that x4 + 1 is irrreducible in Z[x] using the approach in this
section.

11. Let V be a list of two or more relatively prime, monic polynomials in
Zp[x], where p is a prime number and Zp is represented with the symmetric
representation.

(a) Give a procedure

Gen extend sigma p(V, x, p)

that returns the coefficient list [σ1, . . . , σs] defined by Equation (9.112),
where σi is represented with the symmetric representation for Zp.

(b) Let S be the list obtained by Part (a), and let F be a polynomial in
Zp[x] that satisfies the inequality (9.108). Give a procedure

Gen extend R p(V, S, F, x, p)

that returns the list [r1, . . . , rs] defined by Equation (9.121), where
ri is represented with the symmetric representation for Zp.

428 9. Polynomial Factorization

Note: This exercise uses operators for polynomial division (Exercise 9,
page 125) and the extended Euclidean algorithm (Exercise 4, page 142)
that must be modified to operate with the symmetric representation for
Zp[x].

12. Let p be a prime number and suppose that p /| lc(v) and p /| lc(w). Show
that Tm(res(v,w)) = res(Tm(v), Tm(w)), where the resultant on the right
is computed in Zp[x].

13. Let u be a square-free polynomial in Z[x]. Give a procedure

Find prime(u, x)

that returns a suitable prime number guaranteed by Theorem 9.55. This
procedure requires a list of primes. You can either provide a list of primes
or use a CAS operator that generates prime numbers such as ithprime(n)
in Maple, Prime[n] in Mathematica, and ithprime(n) in MuPAD (Im-
plementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

14. Let C be a set whose members are also sets, and let t be another set. Give
a procedure Clean up(C, t) that returns a new set which contains those
members s of C such that s ∩ t = ∅. For example, if

C = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}

and t = {1, 2}, then Clean up(C, t) → {{3, 4}, {3, 5}, {4, 5}}.

15. Let S be a set of mathematical expressions and let k be an integer with 0 ≤
k ≤ Number of operands(S). Give a procedure Comb(S, k) that returns the
set of all k element subsets of S. For example, if S = {a, b, c, d}, then

Comb(S, 2) → {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

The procedure can be defined by the following recursive transformation
rule sequence.

(a) If k = Number of operands(S), then Comb(S, k) → {S}.

(b) Comb(S, 0) → {∅}.

(c) Let x = Operand(S, 1), T = S ∼ {x}, and D = Comb(T, k − 1). For
D = {S1, . . . , Sn}, let E = {S1 ∪ {x}, . . . , Sn ∪ {x}}. Then

Comb(S, k) → Comb(T, k) ∪E.

16. The height of a polynomial is the maximum of the absolute values of its
coefficients. Let u be an algebraic expression. Give a procedure

Polynomial height(u, x)

that returns the height of a polynomial. If u is not a polynomial in x,
return the global symbol Undefined.

9.4. Irreducible Factorization: A Modern Approach 429

17. Let u be a polynomial in Z[x], and let p be a prime number. Give a
procedure Find k(u, x, p) that finds the integer k defined by the inequality
(9.146). (See Exercise 16 for the computation of ||u||.)

18. Modify the procedure Factor sv (see Exercise 8, page 370) that factors
polynomials in Q[x] so that operator Irreducible factor replaces Kronecker.

Further Reading

9.1 Square-Free Polynomials and Factorization. The algorithm in this
section is given in Musser [73]. Yun [106] describes a number of algorithms for
square-free factorization of single variable and multivariable polynomials, includ-
ing the algorithm in Exercise 11 on page 359. Other square-free factorization
algorithms are given in Wang and Trager [97].

9.3 Factorization in Zp[x]. The approach here is similar to the approach in
Knuth [55] and Akritas [2]. See Dean [31] and Mignotte [66] for a discussion of
irrreducible factorization in Zp[x]. Berlekamp’s algorithm is also described Dav-
enport, Siret, and Tournier [29], Mignotte and Ştefănescu [67], Geddes, Czapor,
and Labahn [39], Yap [105], Winkler [101], and Zippel [108].

9.4 Irreducible Factorization in Q[x], A Modern Approach. The approach

here is similar to the approach in Knuth [55] and Akritas [2]. Modern polynomial

factorization algorithms are also described in Davenport, Siret, and Tournier [29],

Geddes, Czapor, and Labahn [39], Mignotte and Ştefănescu [67], von zur Gathen

and Gerhard [96], Yap [105], Winkler [101] and Zippel [108]. Zippel [108] gives

a theory on bounds of coefficients of divisors of a polynomial. Theorem 9.47 is

based on Proposition 87 in this book. Coefficient bounds are also discussed in

Akritas [2], Cohen [22], and Mignotte [66].

Bibliography

[1] Williams W. Adams and Philippe Loustaunau. An Introduction to
Gröbner Bases. Graduate Studies in Mathematics, Volume 3. Amer-
ican Mathematical Society, Providence, RI, 1994.

[2] Alkiviadis G. Akritas. Elements of Computer Algebra with Applica-
tions. John Wiley & Sons, New York, 1989.

[3] Michael Artin. Algebra. Prentice Hall, Inc., Englewood Cliffs, NJ,
1991.

[4] E. J. Barbeau. Polynomials. Springer-Verlag, New York, 1989.

[5] David Barton and Richard Zippel. Polynomial decomposition algo-
rithms. Journal of Symbolic Computation, 1(1):159–168, 1985.

[6] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner
bases, A Computational Approach to Commutative Algebra. Springer-
Verlag, New York, 1993.

[7] Laurent Bernardin. A review of symbolic solvers. SIGSAM Bulletin,
30(1):9–20, March 1996.

[8] Laurent Bernardin. A review of symbolic solvers. In Michael J.
Wester, editor, Computer Algebra Systems, A Practical Guide, pages
101–120. John Wiley & Sons, Ltd., New York, 1999.

[9] A. S. Besicovitch. On the linear independence of fractional powers of
integers. J. London Math. Soc., 15:3–6, 1940.

431

432 Bibliography

[10] Garrett Birkhoff and Saunders Mac Lane. A Survey of Modern Al-
gebra. A K Peters, Ltd., Natick, MA, 1997.

[11] E. Bond, M. Auslander, S. Grisoff, R. Kenney, M. Myszewski, J. Sam-
met, R. Tobey, and S. Zilles. Formac–An experimental formula ma-
nipulation compiler. In Proc. 19th ACM National Conference, pages
K2.1–1–K2.1–11, August 1964.

[12] William E. Boyce and Richard C. DiPrima. Elementary Differential
Equations. Sixth Edition. John Wiley & Sons, New York, 1997.

[13] Manuel Bronstein. Symbolic Integration I, Transcendental Functions.
Springer-Verlag, New York, 1997.

[14] W. S. Brown. On Euclid’s algorithm and the computation of polyno-
mial greatest common divisors. Journal of the Association for Com-
puting Machinery, 18(4):478–504, October 1971.

[15] W. S. Brown. The subresultant prs algorithm. ACM Transactions
on Math. Software, 4(3):237–249, September 1978.

[16] W. S. Brown and J. F. Traub. On Euclid’s algorithm and the theory of
subresultants. Journal of the Association for Computing Machinery,
18(4):505–514, October 1971.

[17] B. Buchberger, G. E. Collins, R. Loos, and R. Albrecht. Com-
puter Algebra, Symbolic and Algebraic Computation. Second Edition.
Springer-Verlag, New York, 1983.

[18] Bruno Buchberger. Gröbner bases: An algorithmic method in poly-
nomial ideal theory. In N. K. Bose, editor, Recent Trends in Mul-
tidimensional Systems Theory, pages 184–232. D. Reidel Publishing
Company, Dordrecht, Holland, 1985.

[19] Ronald Calinger. Classics of Mathematics. Moore Publishing Com-
pany Inc., Oak Park, IL, 1982.

[20] Shang-Ching Chou. Mechanical Geometry Theorem Proving. D. Rei-
del Publishing Company, Boston, 1988.

[21] Barry A. Cipra. Do mathematicians still do math. Science, 244:769–
770, May 19, 1989.

[22] Henri Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag, New York, 1993.

Bibliography 433

[23] J. S. Cohen, L. Haskins, and J. P. Marchand. Geometry of equilib-
rium configurations in the ising model. Journal of Statistical Physics,
31(3):671–678, June 1983.

[24] Joel S. Cohen. Computer Algebra and Symbolic Computation: Ele-
mentary Algorithms. A K Peters, Natick, MA, 2002.

[25] George Collins. Subresultants and reduced polynomial remainder
sequences. J. ACM, 14:128–142, January 1967.

[26] George Collins. The calculation of multivariate polynomial resul-
tants. J.ACM, 18(4):515–532, October 1971.

[27] George Collins. Computer algebra of polynomials and rational func-
tions. American Mathematical Monthly, 80(7):725–754, September
1973.

[28] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. McGraw-Hill, New York, 1989.

[29] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra, Sys-
tems and Algorithms for Algebraic Computation. Academic Press,
New York, 1988.

[30] P. J. Davis and R. Hersh. The Mathematical Experience. Birkhäuser,
Boston, MA, 1981.

[31] Richard A. Dean. Classical Abstract Algebra. Harper and Row, New
York, 1990.

[32] William R. Derrick and Stanley I. Grossman. Differential Equations
with Applications. Third Edition. West Publishing Company, St.
Paul, MN, 1987.

[33] F. Dorey and G. Whaples. Prime and composite polynomials. Journal
of Algebra, 28:88–101, 1974.

[34] H. T. Engstrom. Polynomial substitutions. Amer. J. of Mathematics,
63:249–255, 1941.

[35] James F. Epperson. An Introduction to Numerical Methods and Anal-
ysis. John Wiley & Sons, New York, 2002.

[36] R. J. Fateman. Macsyma’s general simplifier. philosophy and op-
eration. In V.E. Lewis, editor, Proceedings of MACSYMA’s Users’
Conference, Washington, D.C., June 20–22 1979, pages 563–582.MIT
Laboratory for Computer Science, Cambridge, MA, 1979.

434 Bibliography

[37] Richard J. Fateman. Symbolic mathematics system evaluators. In
Michael J. Wester, editor, Computer Algebra Systems, A Practical
Guide, 255–284. John Wiley & Sons, Ltd., New York, 1999.

[38] Richard J. Gaylord, N. Kamin, Samuel, and Paul R. Wellin. An
Introduction to Programming with Mathematica, Second Edition.
Springer-Verlag, New York, 1996.

[39] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer
Algebra. Kluwer Academic Publishers, Boston, 1992.

[40] Jürgen Gerhard, Walter Oevel, Frank Postel, and Stefan Wehmeier.
MuPAD Tutorial, English Edition. Springer-Verlag, New York, 2000.

[41] John W. Gray. Mastering Mathematica, Programming Methods and
Applications. Second Edition. Academic Press, New York, 1997.

[42] J. Gutierrez and T. Recio. Advances on the simplification of sine-
cosine equations. Journal of Symbolic Computation, 26(1):31–70,
July 1998.

[43] G. H. Hardy and E. M. Wright. An Introduction To The Theory of
Numbers. Oxford at The Clarendon Press, London, 1960.

[44] K. M. Heal, M. L. Hansen, and K. M. Rickard. Maple 6 Learning
Guide. Waterloo Maple Inc., Waterloo, ON, Canada, 2000.

[45] André Heck. Introduction to Maple. Second Edition. Springer-Verlag,
New York, 1996.

[46] I. N. Herstein. Topics in Algebra. Second Edition. Xerox Publishing
Company, Lexington, MA, 1975.

[47] E. W. Hobson. Treatise on Plane and Advanced Trigonometry. Sev-
enth Edition. Dover Publications, Inc., New York, 1957.

[48] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden
Braid. Random House Inc., New York, 1980.

[49] David J. Jeffrey and Albert D. Rich. Simplifying square roots of
square roots by denesting. In Michael J. Wester, editor, Computer
Algebra Systems, A Practical Guide, pages 61–72. JohnWiley & Sons,
Ltd., New York, 1999.

[50] Richard D. Jenks and Robert S. Sutor. Axiom, The Scientific Com-
putation System. Springer-Verlag, New York, 1992.

Bibliography 435

[51] N. Kajler, editor. Computer-Human Interaction in Symbolic Compu-
tation. Springer-Verlag, New York, 1998.

[52] Israel Kleiner. Field theory, from equations to axiomatization. part i.
American Mathematical Monthly, 106(7):677–684, August-September
1999.

[53] Israel Kleiner. Field theory, from equations to axiomatization. part ii.
American Mathematical Monthly, 106(9):859–863, November 1999.

[54] Morris Kline. Mathematics and The Search for Knowledge. Oxford
University Press, New York, 1985.

[55] D. Knuth. The Art of Computer Programming, volume 2. Second
Edition. Addison-Wesley, Reading, MA, 1981.

[56] Donald Knuth, Ronald Graham, and Oren Patashnik. Concrete
Mathematics, A Foundation For Computer Science. Addison-Wesley,
Reading, MA, 1989.

[57] K. Korsvold. An on-line algebraic simplify program. Technical report,
Stanford University, 1965. Stanford University Artificial Intelligence
Project, Memorandum 37.

[58] J. S. Kowalik, editor. Coupling Symbolic and Numerical Computing
in Expert Systems. Elsevier Science Publishers, New York, 1986.

[59] Dexter Kozen and Susan Landau. Polynomial decomposition algo-
rithms. Journal of Symbolic Computation, 7:445–456, 1989.

[60] Susan Landau. Simplification of nested radicals. SIAM J. Comput.,
21(1):85–110, February 1992.

[61] Ulrich Libbrecht. Chinese Mathematics in the Thirteenth Century.
MIT Press, Cambridge, MA, 1973.

[62] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their
Applications. Revised Edition. Cambridge University Press, New
York, 1994.

[63] C. C. Lin and L. A. Segel. Mathematics Applied to Deterministic
Problems in the Natural Sciences. Classics in Applied Mathematics
1. Society for Industrial and Applied Mathematics, Philadelphia,
1988.

[64] John D. Lipson. Elements of Algebra and Algebraic Computing. Ben-
jamin/Cummings, Menlo Park, CA, 1981.

436 Bibliography

[65] Stephen B. Maurer and Anthony Ralston. Discrete Algorithmic
Mathematics. A K Peters, Ltd., Natick, MA, 1998.

[66] Maurice Mignotte. Mathematics for Computer Algebra. Springer-
Verlag, New York, 1991.

[67] Maurice Mignotte and Doru Ştefănescu. Polynomials, An Algorith-
mic Approach. Springer-Verlag, New York, 1999.

[68] Bhubaneswar Mishra. Algorithmic Algebra. Springer-Verlag, New
York, 1993.

[69] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M.
Vorkoetter, and J. McCarron. Maple 6 Programming Guide. Wa-
terloo Maple Inc., Waterloo, ON, Canada, 2000.

[70] Joel Moses. Symbolic Integration. PhD thesis, MIT, September 1967.

[71] Joel Moses. Algebraic simplification: A guide for the perplexed.
Communications of the ACM, 14(8):527–537, August 1971.

[72] George M. Murphy. Ordinary Differential Equations and Their So-
lutions. D. Van Nostrand, New York, 1960.

[73] David Musser. Algorithms for Polynomial Factorization. PhD thesis,
Department of Computer Science, University of Wisconsin, 1971.

[74] Paul J. Nahin. An Imaginary Tale, The Story of
√−1. Princeton

University Press, Princeton, NJ, 1998.

[75] Jurg Nievergelt, J. Craig Farrar, and Edward M. Reingold. Com-
puter Approaches to Mathematical Problems. Prentice-Hall, Engle-
wood Cliffs, NJ, 1974.

[76] F. S. Nowlan. Objectives in the teaching college mathematics. Amer-
ican Mathematical Monthly, 57(1):73–82, February 1950.

[77] R. Pavelle, M. Rothstein, and J. P. Fitch. Computer algebra. Scien-
tific American, 245:136–152, 1981.

[78] Louis L. Pennisi. Elements of Complex Variables. Holt, Rinehart and
Winston, New York, 1963.

[79] Charles Pinter. A Book of Abstract Algebra. Second Edition.
McGraw-Hill, New York, 1990.

Bibliography 437

[80] Marcelo Polezzi. A geometrical method for finding an explicit formula
for the greatest common divisor. American Mathematical Monthly,
104(5):445–446, May 1997.

[81] Frank Postel and Paul Zimmermann. Solving ordinary differential
equations. In Michael J. Wester, editor, Computer Algebra Systems,
A Practical Guide, pages 191–209. John Wiley & Sons, Ltd., New
York, 1999.

[82] T. W. Pratt. Programming Languages, Design and Implementation.
Second Edition. Prentice Hall, Englewood Cliffs, NJ, 1984.

[83] Gerhard Rayna. Reduce, Software for Algebraic Computation.
Springer-Verlag, New York, 1987.

[84] D. Richardson. Some undecidable problems involving elementary
functions of a real variable. Journal of Symbolic Logic, 33(4):511–
520, December 1968.

[85] J. F. Ritt. Prime and composite polynomials. Trans. Am. Math.
Soc., 23:51–66, 1922.

[86] P. Sconzo, A. LeSchack, and R. Tobey. Symbolic computation of f
and g series by computer. The Astronomical Journal, 70(1329):269–
271, May 1965.

[87] George F. Simmons. Differential Equations with Applications and
Historical Notes. Second Edition. McGraw-Hill, New York, 1991.

[88] George F. Simmons. Calculus with Analytic Geometry. Second Edi-
tion. McGraw-Hill, New York, 1996.

[89] Barry Simon. Symbolic magic. In Michael J. Wester, editor, Com-
puter Algebra Systems, A Practical Guide, pages 21–24. John Wiley
& Sons, Ltd., New York, 1999.

[90] Barry Simon. Symbolic math powerhouses revisited. In Michael J.
Wester, editor, Computer Algebra Systems, A Practical Guide. John
Wiley & Sons, Ltd., New York, 1999.

[91] Trevor J. Smedley. Fast methods for computation with algebraic
numbers. Research Report CS-90-12, Department of Computer Sci-
ence, University of Waterloo, May 1990.

[92] Jerome Spanier and Keith B. Oldham. An Atlas of Functions. Hemi-
sphere Publishing Corporation, New York, 1987.

438 Bibliography

[93] Frederick W. Stevenson. Exploring the Real Numbers. Prentice Hall,
Upper Saddle River, NJ, 2000.

[94] David R. Stoutemyer. Crimes and misdemeanors in the com-
puter algebra trade. Notices of the American Mathematical Society,
38(7):778–785, September 1991.

[95] R. Tobey, R. Bobrow, and S. Zilles. Automatic simplification in
Formac. In Proc. AFIPS 1965 Fall Joint Computer Conference, vol-
ume 27, pages 37–52. Spartan Books, Washington, DC, November
1965. Part 1.

[96] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer
Algebra. Cambridge University Press, New York, 1999.

[97] Paul Wang and Barry Trager. New algorithms for polynomial square
free decomposition over the integers. SIAM Journal of Comp., 8:300–
305, 1979.

[98] Mark Allen Weiss. Data Structures and Problem Solving Using C++.
Second Edition. Addison-Wesley, Reading, MA, 2000.

[99] Clark Weissman. Lisp 1.5 Primer. Dickenson Publishing Company,
Belmont, CA, 1967.

[100] Michael J. Wester. Computer Algebra Systems, A Practical Guide.
John Wiley & Sons, Ltd., New York, 1999.

[101] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-
Verlag, New York, 1996.

[102] Stephen Wolfram. The Mathematica Book. Fourth Edition. Cam-
bridge University Press., New York, 1999.

[103] D. Wooldridge. An algebraic simplify program in Lisp. Technical
report, Stanford University, December 1965. Artificial Intelligence
Project, Memo 11.

[104] W. A. Wulf, M. Shaw, P. Hilfinger, and L. Flon. Fundamental Struc-
tures of Computer Science. Addison-Wesley, Reading, MA, 1981.

[105] Chee Keng Yap. Fundamental Problems of Algorithmic Algebra. Ox-
ford University Press, New York, 2000.

[106] David Y. Y. Yun. On square-free decomposition algorithms. In R. D.
Jenks, Proceedings of the 1976 ACM Symposium of Symbolic and
Algebraic Computation, pages 26–35. ACM, New York, 1976.

Bibliography 439

[107] David Y. Y. Yun and David R. Stoutemyer. Symbolic mathematical
computation. In J. Belzer, A.G. Holzman, and A. Kent, editors,
Encyclopedia of Computer Science and Technology, volume 15, pages
235–310. M. Dekker, New York, 1980.

[108] Richard Zippel. Effective Polynomial Computation. Kluwer Aca-
demic Publishers, Boston, 1993.

[109] Daniel Zwillinger. Handbook of Differential Equations. Academic
Press, Boston, MA, 1989.

Index

A (algebraic numbers), 55
Absolute value(u), 14
Actual parameters

for a function, 3
for a procedure, 3

Adjoin(L), 4
Admissible factor

of a product, 82
Admissible term

of a sum, 83
Akritas, A., 14
Alg monic(u, x, p, α), 163
Alg coeff simp(u, x, p, α), 163
Alg collect(u), 61
Alg divide(u, v, p, α), 151
Algebraic expressions, 6

simplified structure, 6
Algebraic number field, 57
Algebraic numbers, 55

denesting problem, 162
explicit, 56
explicit nesting depth, 60
field property, 289
implicit, 56
independence of, 155

Algebraic expand(u), 14
Alg extend(u, v, x, p, α), 164
Alg gen simp(u, p, α), 164
Alg mult inverse(v, p, α), 151
Alg poly expansion

(u, v, x, t, p, α), 164

Alg polynomial division
(u, v, x, p, α), 152

Alg quotient(u, v, x, p, α), 152

Alg rational simplify sv
(u, x, p, α), 164

Alg remainder(u, v, x, p, α), 152

Alg square free factor
(u, x, p, α), 359

ASAE (u), 90
Associates(u, v, x), 207

Automatic simplification, 5

basic quotient
transformation, 76

basic associative
transformations, 69

basic difference
transformations, 75

basic distributive
transformation, 65

basic identity
transformations, 76

basic numerical
transformations, 78

basic power
transformations, 74

basic unary
transformations, 78

context of, 5

Automatically simplified

441

442 Index

algebraic expression
(ASAE), 81

Automatic simplify(u), 92
Auxiliary basis(x, n, p), 393

Base(u), 90
base(u), 81
Base rep(n, b), 35
Basic algebraic expression

(BAE), 80
Berlekamp’s algorithm

auxiliary polynomials, 374
Berlekamp, E.R., 374
Berlekamp factor(u, x, p), 384
Buchberger, B., 14

C (complex numbers), 47
CAIN (Computer Algebra Informa-

tion Network), 14
CAS, 1
Ceiling(u), 34
Ceiling function, 34
Chinese remainder problem

for F[x], 140
for integers, 28

Chinese remainder(X,M), 34
Chinese remainder 2

(m, n, r, s), 36
Clean up(C, t), 428
Coeff exp mv(u, v, n, L), 229
Coefficient explosion

in Euclid’s algorithm
in Q[x], 131

Coefficient exp(u, v, x, i), 126
Coefficient gpe(u, x, j), 12
cof(b, c), 203
cof(v, u), 117
Cofactor

in F[x], 117
in K, 203

Comb(S, k), 428
Common divisor

in F[x], 118
in an integral domain, 203
of two integers, 19

Compare(u, v), 90

Complete sub-expression, 10
Complete poly decomp

(u, x), 198
Computer algebra system (CAS), 1
COMPUTER ALGEBRA,

Algorithms, Systems
and Applications, 14

Consistent side relations, 320
computational test, 342

Const(u), 90
const(u), 83
Construct (f, L), 9
cont(u, x), 240
Czapor, S.R., 14

Davenport, J.H., 14
Decision structures, 3

in CAS languages, 6
deg(u, x), 12

properties of, 112
Degree

of a GME, 12
of a GPE, 12

Degree argument, 115
Degree exp(u, v, x), 126
Degree exp mv(u, v, L), 229
Degree gpe(u, x), 12
Denominator(u), 14
Denominator fun(u), 43
Derivative(u, x), 14
Derivative fun(u, x), 108
DiffOp, 39
Division p(s, t, p), 60
Divisor

in F[x], 117
of an integer (b | a), 19

Divisors(n), 34

Elim poly(G,L), 346
Equivalent monomials (≡), 213
Equivalent polynomials

with respect to side
relations, 318

Euclid’s gcd algorithm
for integers, 22
in F[x], 128

Index 443

Euclidean property
of polynomial division

in F[x], 114
of pseudo-division, 239

Evaluate difference(v, w), 43
Evaluate power(u, n), 42
Evaluate product(v, w), 43
Evaluate quotient(u), 42
Evaluate sum(v, w), 43
Explicit algebraic number, 289
Explicit algebraic number

(u), 60
Exponent(u), 90
exponent(u), 81
Expression

function notation for infix
operators, 39

main operator, 6
algebraic, 6
non-algebraic, 8
structure, 6
tree, 6

Extended Euclidean algorithm
for integers, 24
in F[x], 132

Extended Euclidean algorithm
(u, v, x), 134

Ext Euclidean alg p
(u, v, x, p), 142

FactOp, 39
Factor p(u, x, p), 399
Factor sv(u, x), 370
Fermat’s little theorem, 54
Fibonacci numbers

and remainder
sequences, 35

Field
axioms, 44
division or quotient

operation, 51, 59
exponentiation or power opera-

tion, 51, 59
finite, 52, 59
subtraction or difference opera-

tion, 51

Find factors(u, S, x, p), 396
Find integer factors(v, w, x), 369
Find k(u, x, p), 429
Find min deg(u, x), 198
Find min deg(S, x), 199
Find polynomial(α, x), 292
Find prime(u, x), 428
Find S sets(L), 369
Find x u values(u, x, s), 369
Find Z poly(u, x), 369
First(L), 4
Fitch, J.P., 14
Floor(u), 34
Floor function, 34
Formal parameters

in MPL, 3
of a function, 3

FracOp, 39
Fraction

in standard form, 37
Fraction (fraction), 7
Free of (u, t), 10
Fundamental Theorem of

Arithmetic, 27

Galois field, 164
Galois theory, 56
Gauss’s Theorem, 242
Gaussian rational number

expression (GRNE), 61
Gaussian rational numbers, 47

standard form, 61
G basis(F,L), 337
gcd(a, b), 20, 230
gcd(u, v, x), 232
gcd(u, v, x), 127
Geddes, K.O., 14
General monomial expression

(GME), 11
coefficient part, 11
variable part, 11

General polynomial expression
(GPE), 11

degree of, 12
Generalized coefficients, 11
Generalized variables, 11

444 Index

Gen extend R p(U,S,w, x, p), 427
Gen extend sigma p(V, x, p), 427
Gerhard, J., 14
GPE, 11
Greatest common divisor

primitive algorithm in K[x], 247
in F[x], 126
of two integers, 20
Euclid’s algorithm in F[x], 128
Euclid’s algorithm in Z, 22
in K[x], 232
in K, 229
subresultant algorithm

in K[x], 252
Gröbner basis, 324

Hensel lift(u, S, x, p, k), 424
Hilbert Basis Theorem, 340

Ideal, 322, 340
basis, 322
principal, 323

Identifier
as a mathematical symbol or vari-

able, 2
as a programming variable, 2

Integer expression, 108
Integer divisor(n), 34
Integer expression(u), 108
Integer lcm(a, b), 36
Integers, 17

least common multiple, 36
pairwise relatively

prime, 28
prime, 27
relatively prime, 19
remainder sequence, 22
representation in base b, 35

Integral domain, 48, 202
associates, 203
greatest common divisor, 229
irreducible expression, 204
relatively prime, 204
unit, 203
unit normal, 230

Integer ext euc alg(a, b), 26

Integer gcd(a, b), 23
iquot(a, b), 18
irem(a, b), 18
Irreducible factor (u, x), 423
Iteration structures, 3

in CAS languages, 6

Join(L), 4

Kind(u), 8
Kronecker (u, x), 364
Kronecker factors

(S sets, u, x), 365

Labahn, G., 14
Lagrange polynomial(P, x), 369
lc(u, x), 12

properties of, 112
lcm(a, b), 36
lcm(u, v, L), 328
Leading monomial, 214
Leading monomial ideal, 341
Leading coefficient gpe

(u, x), 12
Leading monomial(u, L), 215
Least common multiple

of monomials, 328
Lexicographical order

of monomials, 213
Lexicographical order

(u, v, L), 228
Lipson, J.D., 14
Lists

empty list([]), 3
notation, 3
operations, 4
properties, 3

lm(u, L), 214
LMI(F), 341
Local variables

in MPL, 3

Map operator
in CAS languages, 11

Maple, 1, 65, 70, 72, 73, 75, 90, 117,
262, 333, 428

Index 445

decision structures, 6

iteration structures, 6

list operations, 4
map operator, 11

polynomial operators, 13

primitive structural operations, 9

set operations, 4
structure based operators, 9

Map(F, u), 10

Map(G, u, y, . . . , z), 10

Mathematica, 1, 65, 70, 71, 73, 75,
90, 117, 333, 428

decision structures, 6

iteration structures, 6
list operations, 4

Map operator, 11

polynomial operators, 13

primitive structural operations, 9
set operations, 4

structure based operators, 9

Mathematical expressions

Data objects, 3
program statements, 3

Mathematical operators

procedures for, 3

Mathematical pseudo-language
(MPL), 2

Max({n1, . . . , nr}), 14
Max(S)

with respect to lexicographical or-
der, 220

Mb poly div(u, v, L), 222

mbquot(u, v, L), 216

Mb quotient(u, v, L), 222
mbrem(u, v, L), 216

Mb remaineder (u, v, L), 222

Merge products(p, q), 102

Merge products(p, q), 107
Mignotte, M., 14

Minimal polynomial

of an algebraic number, 147

Mishra, B., 14

Monomial lcm, 334
Monomial list(u,L), 228

MPL

general form of a
function, 3

general form of a
procedure, 5

assignment, 3
decision structures, 3
iteration structures, 3
operators

logical, 2
relational, 2

use of formal parameters, 3
use of local variables, 3

MPL
operators

algebraic, 2
Mult inv 23 (u), 59
Multiple division, 300
Multiple quotients, 300
Multiple remainder, 300
Multiple division(u,F ,L), 317
Multiplicative inverse p

(t, p), 60
MuPAD, 1, 65, 70, 75, 90, 117, 333,

428
decision structures, 6
iteration structures, 6
map operator, 11
polynomial operators, 13
primitive structural operations, 9
set operations, 4
structure based operators, 9

MuPAD
list operations, 445

Mv poly gcd rec(u, v, L,K), 249
Mv poly gcd(u, v, L,K), 248

Nest depth(u), 60
Number of digits(n), 34
Number of operands(u), 8
Numerator (u), 14
Numerator fun(u), 43
Numerical part frac(r), 176

Operand(u, i)., 9
Operand list(u), 14
Operator

446 Index

structure based, 10
Operator evaluation

and automatic simplification of ar-
guments, 6

Partial fraction(f, x), 173
Partial fraction 1

(u, v1, v2, x), 170
Partial fraction 2 (u, v, x), 171
Partial fraction 3 (u, v, x), 173
Pavelle, R., 14
Poly Chinese rem(A,U, x), 145
Poly decomp 2 (u, x, t), 192
Poly div p(u, v, x, p), 125
Poly gcd p(u, v, x, p), 142
Polynomial

height, 428
square-free factorization, 353
irreducible factorization

in F[x], 138
content, 239
decomposition

algorithm, 188
complete , 181
equivalent, 184

derivative in F[x], 350
irreducible, 118
leading monomial, 214
monic, 112
multivariate

main and auxiliary
variables, 202

primitive, 241
primitive part, 242
reduced with respect to F , 300
reducible, 118
remainder sequence, 246
square-free, 350

Polynomial decomposition, 124
Polynomial division

in F[x], 113
monomial-based, 215
recursive, 208

Polynomial expansion
in F[x], 119
in Q[x1, . . . , xp], 223

Polynomial operators
using polynomial

expansion, 123
Polynomial remainder sequence

in F[x], 128
Polynomial, composite, 179
Polynomial content sr

(u, x,R,K), 261
Polynomial content

(u, x,R,K), 260
Polynomial height(u, x), 428
Polynomial Chinese rem p

(A,U, x, p), 398
Polynomial division

(u, v, x), 116
Polynomial divisors(u, x), 125, 192
Polynomial exp(u, v, x), 126
Polynomial expansion

(u, v, x, t), 122
Polynomial gcd(u, v, x), 130
Polynomial gpe(u, v), 11
Polynomial resultant

(u, v, x), 281
Polynomial resultant mv

(u, v, L,K), 283
Polynomials

Relatively prime
in F[x], 118

PowOp, 39
pp(u, x), 242
Primitive gcd algorithm

in K[x], 247
Primitive operators

general polynomial
expressions, 11

simplified mathematical
expressions, 8

ProdOp, 39
Pseudo-division, 237
Pseudo division(u, v, x), 240
Pseudo quotient(u, v, x), 240
Pseudo remainder(u, v, x), 240
psquot(u, x), 238
psrem(u, x), 238

Q(u, v), 228

Index 447

Q (rational numbers), 45
quot(u, v, x), 113
Quotient(u, v, x), 116
QuotOp, 39

R (mathematical real numbers), 45
Rational expressions

proper, 166
standard form in Q(x), 144

Rational number
in standard form, 37

Rational number expression
(RNE), 38

Rational simplification, 144, 258
Rational integrate(f, x), 176
Rationally simplified form, 257
Rational red 1 (a, b, c, n, x), 175
Rational red 2

(r, s, a, b, c, n, x), 175
Rational red 3 (g , p, j , x), 176
Rational red 4 (g , p, j , x), 176
Rational simplify(u,L), 261
Rational simplify sv(u, x), 145
Rec poly div(u, v, L,K), 211
recquot(u, v, x), 208
Rec quotient(u, v, L,K), 211
recrem(u, v, x), 208
Rec remainder(u, v, L,K), 211
Reduction, 308
Reduction(u, F, L), 316
Reduction quotients, 308
Reduction remainder, 308
Reduction step, 306
Reduction step quotient, 306
Reduction step remainder, 306
rem(u, v, x), 113
Remainder(u, v, x), 116
Remainder representation

for integers, 28
Represent basis(u, F, L), 347
Rest(L), 4
Resultant

and polynomial division
in F[x], 277

Euclidean algorithm for, 281
properties of, 270

and pseudo-division
in K[x], 282

definition, 268
Subresultant algorithm, 284

res(u, x), 268
Return(u), 14
Ritt’s decomposition

theorem, 183
R matrix (u, x, n, p), 384, 399
Rothstein, M., 14

sci.math.symbolic discussion site, 14
Sets, 2

operations, 4
sign(u), 358
SIGSAM (Special Interest Group on

Symbolic and Algebraic Manip-
ulation), 14

Simplified structure
of differences, 7
of factorials, 8
of fractions, 7, 8
of products, 7
of quotients, 7
of sums, 7

Simplify difference(u), 106
Simplify difference(u), 108
Simplify factorial(u), 106, 108
Simplify function(u), 108
Simplify Gaussian(u), 61
Simplify integer power

(v, n), 95, 107
Simplify power(u), 107
Simplify power rec(u), 107
Simplify power(u), 94
Simplify product(u), 107
Simplify product(u), 98
Simplify product rec(L), 99
Simplify quotient(u), 106
Simplify quotient(u), 107
Simplify rational number

(u), 37
Simplify RNE(u), 40
Simplify RNE rec(u), 40
Simplify side relations

(u, F, L), 343

448 Index

Simplify function(u), 106

Siret, Y., 14
S poly(u, v, L), 334

Square-free polynomial, 350
Square free factor p(u, x, p), 398

Square free factor(u, x), 356
Square free factor Z (u, x), 360

Sr polynomial resultant
(u, v, L,K), 286

Sr polynomial resultant rec
(u, v, L,K), 287

Ştefănescu, D., 14

Stoutemyer, D.R., 14
Subresultant gcd algorithm

in K[x], 252
Sub resultant gcd rec

(u, v, L,K), 255

Substitute(u, t = r), 10
Substitution

with polynomial
expansion, 123

SumOp, 39
Sylvester’s matrix, 267

Symbol manipulation system, 1
SymbolicNet, 14

Term(u), 90
term(u), 83

Tm(u), 403
Tnn(u, x, m), 403, 427

Tournier, E., 14
Transcendental number, 58

Transformation rules
GRNE (Gaussian rational

number expressions), 61
G, 163

MPRD (Merge products
(p, q)), 102

RNE (Rational Number
Expressions), 38

RS-IN , 257

RS, 144, 257
SINTPOW

(Simplify integer
power(v, n)), 95

SPOW (Simplify power
(u)), 94

SPRDREC(Simplify
product rec rec(L)), 99

SPRD (Simplify product
(u)), 98

RS-IN, 144
Tree-size of an expression, 229
Tree size(u), 229
Trial factor p(u, x, p), 399
Trig ident(u), 229
True factors(u, s, x, p, k), 426
Ts(u, x, m), 403, 427

Unique factorization domain, 204

Variables(u), 12
Variables 2 (u), 61
von zur Gathen, J., 14

Wester, M., 14
Winkler, F., 14
Wolfram, S., 1

Yap, C.K., 14
Yun, D.Y.Y., 14

Z (integers), 17
Zero divisor

in an integral domain, 203
Zero divisors

in F[x], 112
in fields, 50
in integers, 48

Zero equivalence problem
for polynomial side

relations, 321
Zippel, R., 14
Zp, 52
Zp

multiplicative inverses
using Fermat’s little
theorem, 55

A K Peters, Ltd.

ISBN 1-56881-159-4

ì<(sl&q)=ibbfji< +^-Ä-U-Ä-U

Computer Algebra and
Symbolic Computation
M a t h e m a t i c a l M e t h o d s

J O E L S . C O H E N
Computer Algebra and
Symbolic Computation
M a t h e m a t i c a l M e t h o d s

J O E L S . C O H E N

A K
PETERS

Computer Algebra and Symbolic Computation
Cohen

M
ath

e
m

atical M
e

th
o

d
s

Mathematica™, Maple™, and similar software packages provide
programs that carry out sophisticated mathematical operations. In
this book the author explores the mathematical methods that form
the basis for such programs, in particular the application of algorithms
to methods such as algebraic simplification, polynomial decomposition,
polynomial greatest common divisor computation, and polynomial
factorization.

This text:

• is well-suited for self-study and can be used as the basis for
an advanced undergraduate or beginning graduate course.

• maintains the style set by Elementary Algorithms
• introduces advanced methods to treat complex operations.
• presents implementations in such programs as Mathematica™,

Maple™, and MuPAD™.
• includes a CD with the complete text, hyperlinks, and algorithms

as well as additional reference files.

For the student, Mathematical Methods is an essential companion to
Elementary Algorithms, illustrating applications of basic ideas. For
the professional, Mathematical Methods is a look at new applications
of familiar concepts.

	Mathematical Methods
	Contents
	Preface
	1. Background Concepts
	1.1 Computer Algebra Systems
	1.2 Mathematical Pseudo-Language (MPL)
	1.3 Automatic Simplification and Expression Structure
	1.4 General Polynomial Expressions
	1.5 Miscellaneous Operators

	2. Integers, Rational Numbers, and Fields
	2.1 The Integers
	2.2 Rational Number Arithmetic
	2.3 Fields

	3. Automatic Simplification
	3.1 The Goal of Automatic Simplification
	3.2 An Automatic Simplification Algorithm

	4. Single Variable Polynomials
	4.1 Elementary Concepts and Polynomial Division
	4.2 Greatest Common Divisors in F[x]
	4.3 Computations in Elementary Algebraic Number Fields
	4.4 Partial Fraction Expansion in F(x)

	5. Polynomial Decomposition
	5.1 Theoretical Background
	5.2 A Decomposition Algorithm

	6. Multivariate Polynomials
	6.1 Multivariate Polynomials and Integral Domains
	6.2 Polynomial Division and Expansion
	6.3 Greatest Common Divisors

	7. The Resultant
	7.1 The Resultant Concept
	7.2 Polynomial Relations for Explicit Algebraic Numbers

	8. Polynomial Simplification with Side Relations
	8.1 Multiple Division and Reduction
	8.2 Equivalence, Simplification, and Ideals
	8.3 A Simplification Algorithm

	9. Polynomial Factorization
	9.1 Square-Free Polynomials and Factorization
	9.2 Irreducible Factorization: The Classical Approach
	9.3 Factorization in Zp[x]
	9.4 Irreducible Factorization: A Modern Approach

	Bibliography
	Index

